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Abstract. Chronically elevated basal glutamate levels are hypothesized to attenuate detection of physiological signals
thereby inhibiting memory formation and retrieval, while inducing excitotoxicity-mediated neurodegeneration observed
in Alzheimer’s disease (AD). However, current medication targeting the glutamatergic system, such as memantine, shows
limited efficacy and is unable to decelerate disease progression, possibly because it modulates postsynaptic N-methyl-D-
aspartate receptors rather than glutamate release or clearance. To determine if decreasing presynaptic glutamate release leads
to long-term procognitive effects, we treated A�PP/PS1 mice with LY379268 (3.0 mg/kg; i.p.), a metabotropic glutamate
receptor (mGluR)2/3 agonist from 2–6 months of age when elevated glutamate levels are first observed but cognition is unaf-
fected. C57BL/6J genetic background control mice and another cohort of A�PP/PS1 mice received normal saline (i.p.) as
vehicle controls. After 6 months off treatment, mice receiving LY379268 did not show long-term improvement as assessed by
the Morris water maze (MWM) spatial learning and memory paradigm. Following MWM, mice were isoflurane anesthetized
and a glutamate selective microelectrode was used to measure in vivo basal and stimulus-evoked glutamate release and clear-
ance independently from the dentate, CA3, and CA1 hippocampal subregions. Immunohistochemistry was used to measure
hippocampal astrogliosis and plaque pathology. Similar to previous studies, we observed elevated basal glutamate, stimulus
evoked glutamate release, and astrogliosis in A�PP/PS1 vehicle mice versus C57BL/6J mice. Treatment with LY379268 did
not attenuate these responses nor diminish plaque pathology. The current study builds upon previous research demonstrat-
ing hyperglutamatergic hippocampal signaling in A�PP/PS1 mice; however, long-term therapeutic efficacy of LY379268 in
A�PP/PS1 was not observed.

Keywords: Alzheimer’s disease, amyloid-�, cognition, early intervention, glial fibrillary acidic protein, metabotropic gluta-
mate receptor

INTRODUCTION

Alzheimer’s disease (AD) is an age-related
neurodegenerative disorder resulting in gradual accu-
mulation of extracellular amyloid-� (A�) plaques
and intracellular neurofibril tangles composed of

∗Correspondence to: Erin R. Hascup, Department of Neurol-
ogy, Center for Alzheimer’s Disease and Related Disorders,
Southern Illinois University School of Medicine, P.O. Box 19628,
Springfield, IL 62794-9628, USA. Tel.: +1 217 545 6988; E-mail:
ehascup@siumed.edu.

hyperphosphorylated tau protein [1]. Over time, the
accumulation of these proteins either coincides with,
or causes, alterations in neurotransmitter dynamics,
synapse loss, and cerebral atrophy that culminates in
the eventual cognitive and functional decline associ-
ated with AD [2]. Current pharmacotherapy options
target cholinesterase inhibitors, to increase acetyl-
choline levels, and N-methyl-D-aspartate (NMDA)
receptor antagonism, to prevent glutamate medi-
ated excitotoxicity [3, 4]. However, these therapies
have limited efficacy, are symptomatic, and do

ISSN 1387-2877/19/$35.00 © 2019 – IOS Press and the authors. All rights reserved
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not decelerate disease progression, possibly because
they are administered at advanced AD stages when
synapse loss is too pronounced. To slow or stop
cognitive decline, future therapeutics should target
neurological components that are altered during the
prodromal phase of AD. Increasing evidence supports
the glutamatergic system as a possible early target
that meets these criteria [5–10].

Glutamate, the predominant excitatory neurotrans-
mitter in the mammalian central nervous system, has
a strong prevalence in neocortical and hippocam-
pal pyramidal neurons, playing a critical role in
learning and memory. However, altered glutamate
release, clearance, or both may lead to the cognitive
and functional decline observed in AD. For exam-
ple, postmortem analysis has revealed that vesicular
glutamate transporter 1 boutons were elevated in pre-
clinical AD cases [11] while glutamate transporters
were decreased in AD patients [12]. As such, a pre-
vailing hypothesis in AD research supports persistent,
excessive activation of NMDA receptors impedes
detection of physiological signals initiating cogni-
tive impairment [13, 14]. While the mechanistic link
behind the elevated glutamate is not fully elucidated,
data supports that accumulation of soluble A� iso-
forms are the bioactive component initiating synaptic
dysfunction and the eventual neurodegeneration [15,
16]. Our laboratory and others have demonstrated
that soluble A�42 elicits glutamate release through
the �7 nicotinic acetylcholine receptor (�7nAChR)
[17–19]. We have also demonstrated that double
transgenic mice expressing the amyloid precursor
protein (Mo/HuAPP695swe) and Presenilin 1 (PS1-
dE9) genes (A�PP/PS1) have elevated hippocampal
glutamate as early as 2–4 months of age; prior to the
onset of cognitive decline [10] that continues through
at least 12 months of age [20] when cognitive deficits
are more pronounced. These data support the hypoth-
esis that elevated synaptic glutamate levels may, over
time, result in excitotoxicity and the eventual atro-
phy observed in AD. To attenuate the glutamatergic
tone, targeting the metabotropic glutamate receptor
(mGluR), may provide promising therapeutic inter-
ventions for early AD treatments.

The G-protein-coupled mGluRs modulate pre-
and postsynaptic glutamate release and consist of
various subtypes including group I (mGluR1/5),
group II (mGluR2/3), and group III (mGluR4/6/7/8).
Group I is positively coupled to phospholipase C and
potentiates glutamate release whereas Groups II and
III typically inhibit adenylate cyclase activity thereby
suppressing glutamate release [21]. The mGluRs

are expressed throughout the brain particularly in
regions associated with neurodegenerative disorders
including the hippocampus [22]; however, their
cellular distribution varies. For example, mGluR2 is
predominantly expressed on preterminal extrasynap-
tic sites whereas mGluR3 is more widely distributed
on pre- and postsynaptic neurons as well as glia.
These receptors are well positioned to monitor
extrasynaptic spillover of glutamate, and therefore,
act as a negative feedback loop that maintains phys-
iological levels of glutamatergic neurotransmission
to prevent excitotoxicity [23]. In support of this,
mGluR2/3 agonists, specifically 1R,4R,5S,6R)-4-
amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic
acid (LY379268), has been shown to attenuate basal
as well as stimulus-evoked glutamate release [24, 25]
while providing long-lasting neuroprotective proper-
ties against apoptotic and excitotoxic stimuli [26, 27].

The purpose of the present study was to deter-
mine if starting LY379268 treatment in 2-month-old
A�PP/PS1 mice could provide long-term procog-
nitive effects that were mediated through reduction
of the hippocampal glutamatergic tone. To do this,
intraperitoneal (i.p.) injections of 3.0 mg/kg body
weight (b.w.) of LY379268 was given to A�PP/PS1
mice from 2–6 months of age, prior to the onset
of cognitive deficits [8, 28], but when elevated
hippocampal glutamate has been observed [10].
C57BL/6J and A�PP/PS1 mice receiving vehicle
(normal saline; i.p.) were used as controls. Starting
at 12 months of age, when A�PP/PS1 mice typically
present with elevated A� plaque burden that corre-
lates with cognitive deficits [29], mice were tested
for cognitive performance using the Morris water
maze (MWM) paradigm. In vivo hippocampal gluta-
mate signaling was assessed using an enzyme-based
microelectrode array (MEA) coupled with con-
stant potential amperometry. Immunohistochemistry
(IHC) was used to examine hippocampal astroglio-
sis and A� plaque burden. The results presented
here support that LY379268 does not have long-term
procognitive efficacy nor reduce hippocampal gluta-
matergic tone, astrogliosis, and plaque pathology in
A�PP/PS1 mice.

METHODS

Animals

Male C57BL/6J (RRID:IMSR JAX:000664) and
A�PP/PS1 (RRID:MMRRC 034832-JAX) mice
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Fig. 1. Experimental design. A graphical outline of the experimen-
tal design. LY379268 treatment was conducted when mice were
2–6 months of age. At 6 months of age, treatment was discontinued
for the remainder of the study. MWM, Morris water maze.

were obtained from Jackson Laboratory (Bar Harbor,
ME). Protocols for animal use were approved by
the Laboratory Animal Care and Use Committee
at Southern Illinois University School of Medicine.
Mice were group housed on a 12:12 h light: dark
cycle, and food and water were available ad libitum.
A timeline of the experimental design is presented
in Fig. 1. From 2–6 months of age, a randomly
assigned cohort of A�PP/PS1 mice were given
twice weekly i.p. injections of LY379268 (3.0 mg/kg
b.w.) in normal saline (n = 7). C57BL/6J (n = 8) and
another cohort of A�PP/PS1 (n = 8) mice received
twice weekly i.p. injections of normal saline as
vehicle controls. All mice received a total of 32
injections of LY379268 or normal saline from 2–6
months of age. The dosing strategy was based on
previously published in vivo studies [26, 30, 31].
All mice underwent cognitive assessment, in vivo
glutamate recordings, and IHC analysis except
for one C57BL/6J mouse where the MEA failed
during glutamate recordings. Immediately following
anesthetized glutamate recordings, mice were
euthanized with an overdose of isoflurane followed
by decapitation. Mouse genotypes were confirmed
by collecting a 5 mm tail snip that was analyzed by
TransnetYX®, Inc (Cordova, TN).

Based on our previous studies, a power calculation
supports n = 10 mice per group to detect differences
with 95% confidence (� = 0.05) and 0.8 power [20].
We included 15 mice per treatment group to account
for potential loss of A�PP/PS1 mice that is typi-
cally observed with age. Mice were then divided
into 3 cohorts (n = 5 mice per treatment group) to
reduce the time between MWM and electrochem-
ical measurements. After the second cohort was
completed, the MWM data was pooled and ana-
lyzed to determine if the study warranted inclusion
of the third cohort to enable achieving the null
hypothesis addressing procognitive effects with sys-
temic LY379268 administration. No procognitive

effects were observed during data analysis of the
first two cohorts thereby inhibiting achievement
of our null hypothesis, and we subsequently dis-
continued the study prior to beginning the third
cohort.

Chemicals

All chemicals were prepared and stored according
to manufacturer recommendations unless other-
wise noted. L-glutamate oxidase (EC 1.4.3.11) was
obtained from Cosmo Bio Co. (Carlsbad, CA) and
diluted in distilled, deionized water to make a 1 U/�l
stock solution for storage at 4◦C. Sodium phosphate
monobasic monohydrate, sodium phosphate dibasic
anhydrous, 1,3 phenylenediamine dihydrochloride
(mPD), sodium chloride, calcium chloride dehy-
drate, and H2O2 (30% in water) were obtained
from Thermo Fisher Scientific (Waltham, MA). L-
glutamic acid sodium salt, bovine serum albumin
(BSA), glutaraldehyde, KCl, dopamine hydrochlo-
ride (DA), L-ascorbic acid (AA), were obtained from
Sigma-Aldrich Co. (St. Louis, MO). LY379268 was
obtained from Tocris Bioscience (Bristol, United
Kingdom), while Amylo-Glo® RTD™ was obtained
from Biosensis (Temecula, CA).

Morris Water Maze (MWM) training and probe
challenge

At approximately 12 months of age, mice under-
went cognitive assessment using the MWM spatial
learning and memory recall paradigm. For this test,
mice were trained to utilize visual cues placed around
the room to repeatedly swim to a static, hidden
escape platform (submerged 1 cm below the opaque
water surface) regardless of starting quadrant [10,
32]. The MWM paradigm consisted of 5 consecutive
training days with three, 90 s trials/day and a mini-
mum inter-trial-interval of 20 min. Starting quadrant
was randomized for each trial. After two days with-
out testing, the escape platform was removed and
all mice entered the pool of water from the same
starting position for a single, 60 s probe challenge
to test long-term memory recall. The ANY-maze
video tracking system (Stoelting Co., Wood Dale, IL;
RRID:SCR 014289) was used to record mouse nav-
igation during the training and probe challenge. The
three trials for each training day were averaged for
each mouse for analysis.
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Enzyme-based microelectrode arrays

Enzyme-based MEAs with platinum (Pt) record-
ing surfaces were fabricated, assembled, coated, and
calibrated for in vivo mouse glutamate measure-
ments as previously described [33–35]. One of the
R2 MEA Pt sites was coated with BSA, glutaralde-
hyde, L-glutamate oxidase solution that aides in
enzyme adhesion to enzymatically degrade gluta-
mate to �-ketoglutarate and H2O2, the electroactive
reporter molecule. The second Pt recording site
(self-referencing or sentinel site) was coated with a
BSA and glutaraldehyde solution, which is unable
to enzymatically generate H2O2 from L-glutamate.
A potential of +0.7V versus an Ag/AgCl reference
electrode was applied to the Pt recording surfaces
resulting in oxidation of the H2O2 reporter molecule.
The subsequent current generated from the two elec-
tron transfer was amplified and digitized by the
Fast Analytical Sensing Technology (FAST) 16mkIII
(Quanteon, LLC; Nicholasville, KY) electrochem-
istry instrument.

mPD electropolymerization

After enzyme coating, all Pt recording surfaces
were electroplated with 5 mM mPD in 0.05 M phos-
phate buffered saline (PBS). FAST electroplating
software applied a triangular wave potential with an
offset of –0.5V, peak-to-peak amplitude of 0.25V, at a
frequency of 0.05 Hz, for 20 min. This created a size
exclusion layer that restricts the passage of AA, DA,
uric acid and 3,4-dihydroxyphenylacetic acid to the
Pt recording surface [32].

Calibration

Each MEA underwent an in vitro calibration prior
to implantation to create a standard curve for the con-
version of current to glutamate concentration. The Pt
recording sites and a glass Ag/AgCl reference elec-
trode (Bioanalytical Systems, Inc., West Lafayette,
IN) were placed in a continuously stirred solution
of 40.0 mL of 0.05 M PBS maintained at 37◦C with
a recirculating water bath (Stryker Corp., Kalama-
zoo, MI). Final beaker concentrations of 250 �M
AA, 10, 20, 30, and 40 �M L-glutamate, 2 �M DA,
and 8.8 �M H2O2 were used to assess MEA per-
formance. A total of 24 MEAs (8 unique) were
used in the present study. The average ± standard
error of the mean (SEM) for glutamate sensi-
tivity was 5.9 ± 0.1 pA/�M (R2 = 0.998 ± 0.001),

selectivity ratio of 400 ± 99 to 1, and limit of detec-
tion of 0.18 ± 0.03 �M based on a signal-to-noise
ratio of 3.

Microelectrode array/micropipette assembly

A glass micropipette (1.0 mm outer diameter,
0.58 mm internal diameter; World Precision Instru-
ments, Inc., Sarasota, FL) was used to locally
apply solutions to the mouse hippocampal sub-
fields. Glass micropipettes were pulled using a
vertical micropipette puller (Sutter Instrument Co.,
Novato, CA) and the tip was “bumped” to cre-
ate an internal diameter of 12–15 �m. The tip of
the micropipette was positioned between the pair
of recording sites and mounted 100 �m above the
MEA surface. The micropipettes were filled with
sterile filtered (0.20 �m) 70 mM KCl (70 mM KCl,
79 mM NaCl, and 2.5 mM CaCl2, pH 7.4). Fluid
was pressure-ejected from the glass micropipette
using a Picospritzer III (Parker-Hannafin, Cleveland,
OH), with pressure (5–15 psi) adjusted to consis-
tently deliver volumes between 100–200 nl over 1-2 s
intervals. Ejection volumes were monitored with a
stereomicroscope (Luxo Corp., Elmsford, NY) fitted
with a calibrated reticule [36].

Reference electrode

An Ag/AgCl reference electrode was prepared by
stripping ∼5 mm of the Teflon off the silver wire
(200 �m bare, 275 �m coated; A-M Systems, Carls-
berg, WA) from both ends. One stripped end was
soldered to a gold-plated test connector (Newark ele-
ment14, Chicago, IL) and the other end was coated
with AgCl by placing the tip of the stripped sliver
wire (cathode) into a 1 M HCl plating bath saturated
with NaCl containing a stainless steel wire (anode)
and applying +9 V DC using a power supply to the
cathode versus the anode for 15 min.

In vivo anesthetized recordings

Beginning one week after MWM, mice were anes-
thetized using 1.5–2.0% isoflurane (Abbott Lab,
North Chicago, IL) in a calibrated vaporizer (Vapor-
izer Sales & Service, Inc., Rockmart, GA) and
prepared for in vivo electrochemical recordings [32].
The mouse was placed in a stereotaxic frame fit-
ted with a mouse anesthesia mask (David Kopf
Instruments, Tujunga, CA) and body temperature
was maintained at 37◦C with a water pad (Brain-
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tree Scientific Inc., Braintree, MA) connected to
a recirculating water bath. A craniotomy was per-
formed to access the dentate (DG; AP: –2.0, ML:
±1.0, DV: –2.2 mm), CA3 (AP: –2.0, ML: ±2.0,
DV: –2.2 mm), and CA1 (AP: –2.0, ML: ±1.0, DV:
–1.7 mm) from Bregma [37]. A Ag/AgCl reference
wire was positioned beneath the skull and rostral to
the right hemisphere craniotomy. Constant voltage
amperometry (4 Hz) was performed by using a poten-
tial of +0.7 V versus the Ag/AgCl reference electrode
applied by the FAST16mkIII electrochemical instru-
ment. MEAs were allowed to reach a stable baseline
for 60 min before a 10-s basal glutamate determi-
nation and pressure ejection studies commenced.
The FAST software saves amperometric data, time,
and pressure ejection events for all recording sites.
Calibration data, in conjunction with a MAT-
LAB (MathWorks, Natick, MA; RRID:SCR 001622)
graphic user interface program was used to calculate
basal glutamate, stimulus-evoked glutamate release,
and glutamate uptake rate. Five reproducible sig-
nals were evoked in each hippocampal subfield and
averaged into a representative signal for treatment
comparisons.

Immunohistochemical staining and
semi-quantification

Following in vivo electrochemistry, the brains
were removed and post-fixed in 4% paraformalde-
hyde for 48 h and then transferred into 30%
sucrose in 0.1 M PB for at least 24 h prior to
sectioning. A cryostat (Model HM525 NX, Ther-
moFisher Scientific) was used to obtain 20 �m
sections of the hippocampus. Serial sections (every
6th) underwent IHC using chicken polyclonal glial
fibrillary acidic protein (GFAP) antibody (Biosen-
sis; 1:1000; RRID:AB 2492333) and Amylo-Glo®

RTD™ amyloid plaque stain reagent (Biosensis;
1:100; TR-300-AG) or glutamate transporter 1 (Glt-
1) antibody (ThermoFisher Scientific; 1:100; RRID:
AB 10980198). Slides were treated with 10% H2O2
in 20% methanol for 10 min and then transferred
to a 70% ethanol solution for 5 min followed by
a 2 min wash in PBS. Sections were incubated for
10 min in Amylo-Glo® RTD™ and rinsed in 0.9%
saline for 5 min without shaking followed by rins-
ing (3 2 min) in PBS. Sections were permeabilized
in phosphate buffered saline with 0.25% TritonX-
100 (PBST) followed by washes (3 × 10 min) in
sodium borohydride in PBS (1 mg/ml) for antigen

retrieval. To control for nonspecific binding, sections
were washed (3 × 10 min) with PBST and incu-
bated in 10% normal goat serum for 1 h followed by
overnight incubation (4◦C) with primary antibody.
The next day, sections were washed (3 × 10 min)
in PBST and incubated at room temperature for
1 h with AlexaFlour 594 goat anti-chicken (Ther-
moFisher Scientific; 1:1000; RRID:AB 2534099) or
AlexaFlour 594 goat anti-rabbit (ThermoFisher Sci-
entific; 1:1000; RRID: AB 2534079). Afterwards,
sections were washed (3 × 10 min) in PBST and cov-
erslipped using Fluoromount-G (SouthernBiotech;
Birmingham, AL). To control for staining inten-
sity, all sections were allowed to develop overnight
and imaged the following day. Staining intensity
of hippocampal plaque formation was determined
using National Institutes of Health Image J Soft-
ware (v. 1.48; RRID:SCR 003070) to measure a
gray scale value within the range of 0–256, where
0 represents white and 256 represents black. Indi-
vidual templates for the DG, CA3, and CA1 were
created and used on all brains similarly. Images
were captured with an Olympus 1 × 71 microscope
equipped with an Olympus-DP73 video camera
system, and a Dell Optiplex 7020 computer. Measure-
ments were performed blinded, and approximately
five sections were averaged to obtain one value per
subject. Staining density was obtained when back-
ground staining was subtracted from mean staining
intensities on every sixth section through the hip-
pocampus.

Data analysis

Prism (GraphPad Software, Inc., La Jolla, CA;
RRID:SCR 002798) software was used for statistical
analyses. For glutamate measurements and IHC, hip-
pocampal subregions were examined independently
because of different cell types and afferent inputs.
Mouse weights and MWM training were analyzed
using a two-way analysis of variance (ANOVA),
while a one-way ANOVA was used for the probe
challenge, glutamate measures, and GFAP IHC.
When the ANOVA indicated a statistically signifi-
cant main effect, a Fisher’s LSD post-hoc test was
used to determine treatment differences. A two-tailed
unpaired t-test was used for amyloid plaque analy-
sis. Outliers were identified with a single Grubbs’
test (alpha = 0.05) per group. Data are represented as
mean ± SEM and statistical significance was defined
as p < 0.05.
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Fig. 2. Mouse weight gain. Analysis of the percentage of mouse
weight gain from the first week of treatment through 12 months of
age. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.0001 A�PP/PS1 vehicle (n = 8)
versus C57BL/6J vehicle (n = 8); §p < 0.05 A�PP/PS1 vehicle ver-
sus A�PP/PS1 LY379268 (n = 7).

RESULTS

LY379268 mouse weights

For each mouse, weight was determined twice
weekly during the four-month treatment with
LY379268 or control and then again during the
MWM (12 months of age). The average weight dur-
ing the first week of treatment served as the initial
weight for the percent change calculations shown
in Fig. 2. A main effect of treatment groups was
observed (F2,20 = 6.19; p = 0.01). A post-hoc analysis
revealed that A�PP/PS1 vehicle mice had a signifi-
cantly higher percentage of weight gain compared
to C57BL/6J vehicle mice throughout the duration
of the treatment. By 12 months of age, A�PP/PS1
control mice gained significantly more weight com-
pared to both C57BL/6J vehicle and the A�PP/PS1
LY379268 experimental group. No differences were
observed between C57BL/6J vehicle and A�PP/PS1
LY379268 treated mice.

LY379268 cognitive assessment

Six months post treatment, cognitive performance
was assessed on all mice using the MWM learn-
ing and memory recall behavioral paradigm. Over
the five-day training session, a significant main

effect of the corrected integrated path length (CIPL;
Fig. 3A; F4,80 = 73.12, p < 0.0001) and cumulative
distance from the platform (Fig. 3B; F4,80 = 72.14,
p < 0.0001) was observed indicating all treatment
groups had learned the location of the hidden
escape platform. Additionally, a main effect of
treatment groups was also observed for the CIPL
(F2,20 = 4.03, p = 0.03) and cumulative distance from
the platform (F2,20 = 4.08, p = 0.03). A post-hoc anal-
ysis revealed on the first training day, A�PP/PS1
vehicle mice found the location of the escape plat-
form slower compared to C57BL/6J vehicle and
A�PP/PS1 LY379268 mice. No differences were
observed over subsequent training days. After the
5 training days and 2 rest days, the hidden escape
platform was removed and mice were subjected to a
60 s probe challenge. Representative track plots are
shown in Fig. 3C. During the probe challenge, an
increased trend of platform crossings was observed in
C57BL/6J vehicle mice compared to both A�PP/PS1
mouse groups. When examining the cumulative
distance from the platform, the main effect of treat-
ment groups approached significance (F2,20 = 3.115;
p = 0.06) with C57BL/6J vehicle searching in closer
proximity to the former platform location com-
pared to both A�PP/PS1 mouse groups. Furthermore,
C57BL/6J mice spent more time moving towards
the former platform location (F2,20 = 3.933; p = 0.03)
compared with A�PP/PS1 vehicle (p = 0.02) and
A�PP/PS1 LY379268 (p = 0.02) treated mice. These
data support that four months of LY379268 treat-
ment had minimal improvement in learning, but did
not improve long-term memory recall in A�PP/PS1
mice.

LY379268 glutamate measures

We used an enzyme-based MEA to measure
basal glutamate and glutamate dynamics indepen-
dently from the DG, CA3, and CA1. Representative
traces from each hippocampal subregion for all treat-
ment groups are presented in Fig. 4. A main effect
of treatment group on basal glutamate (Fig. 5A)
was observed in the DG (F2,19 = 3.637, p = 0.04)
and CA1 (F2,17 = 3.919, p = 0.04), but not the
CA3 (F2,19 = 2.607, p = 0.10). A post hoc analy-
sis indicated that basal glutamate was significantly
elevated in A�PP/PS1 LY379268 mice compared
to C57BL/6J control mice in the DG and CA1.
To stimulate glutamate release, consistent volumes
of 70 mM KCl (100–200 nl) were pressure ejected
across all treatment groups in the DG (F2,19 = 0.3314,
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Fig. 3. MWM training and probe challenge. During the 5-day MWM training, each day consisted of 3 trials that were averaged into a single
data point for the CIPL (A) and cumulative distance from the platform (B) for each treatment group. C) Representative track plots are shown
for each treatment group. D) The percentage of time each treatment group spent in the individual quadrants. E) The number of annulus 40
entries for each treatment group. F) The total time each treatment group spent moving towards the platform. A, B) ∗∗∗p < 0.001 A�PP/PS1
vehicle (n = 8) versus C57BL/6J vehicle (n = 8) mice, §p < 0.05 A�PP/PS1 vehicle versus A�PP/PS1 LY379268 (n = 7) mice. D) ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001 versus target quadrant.
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Fig. 4. Representative glutamate traces. Representative traces of glutamate release from 70 mM KCl stimulation. Columns indicate treatment
groups while rows indicate hippocampal subfields. The inset trace at the top of each panel depicts the reproducibility of the glutamate signals.
The single response shown beneath is a magnified view of the first inset signal (dashed box) designed to give a clearer presentation of glutamate
dynamics. Concentration and time axes are consistent in all panels for comparative interpretation.

p = 0.72), CA3 (F2,19 = 0.7110, p = 0.50), and CA1
(F2,17 = 0.5392, p = 0.59). A main effect of treat-
ment group on stimulus-evoked glutamate release
(Fig. 5B) was observed in the DG (F2,19 = 4.277,
p = 0.03) and CA1 (F2,17 = 3.496, p = 0.05), but not
the CA3 (F2,19 = 0.2301, p = 0.80). A post hoc analy-
sis indicated elicited glutamate release was increased
in the DG of A�PP/PS1 vehicle and LY379268 treat-
ment groups compared to C57BL/6J vehicle mice.
In the CA1, stimulus-evoked glutamate release was
increased in A�PP/PS1 vehicle, but not LY379268
treated mice, compared to C57BL/6J vehicle mice.
Clearance of stimulus-evoked glutamate release was

evaluated by examining the linear portion of the
signal decay that was observed between the T20
and T60 time points [38] as shown in Fig. 5C. In
this regard, a main effect of treatment group was
only observed in the DG (F2,19 = 3.561, p = 0.04).
A post hoc analysis indicated glutamate clearance
was significantly elevated in the A�PP/PS1 vehicle
compared to C57BL/6J vehicle mice. To examine
the extent of change in the amount of glutamate
released with respect to time we analyzed the area
under the curve (AUC). While a trend towards pro-
longed glutamate release was observed in the DG
and CA1 of both A�PP/PS1 Saline and LY379268
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Fig. 5. Stimulus-evoked hippocampal glutamate measures. A) Basal glutamate was determined prior to local application of stimulus in
each hippocampal subfield. B) The average glutamate release from local application of 70 mM KCl was determined by subtracting the
peak amplitude from the basal measure prior to ejection of stimulus. C) Glutamate uptake rate was calculated by determining the change in
amplitude (�M) between 20–60% maximal amplitude divided by the corresponding length of time (s) for this signal decay. D) The change
in extracellular glutamate concentration over time was determined by calculating the AUC for each evoked glutamate signal. ∗p < 0.05
C57BL/6J vehicle (n = 6-7) versus A�PP/PS1 LY379268 treated (n = 6-7) mice.

treated mice, no main effects of treatment groups
were observed (Fig. 5D). These data support that
four months of early intervention with LY379268
was insufficient to reduce the hippocampal gluta-
matergic tone, and caused elevated basal glutamate
compared to C57BL/6J and A�PP/PS1 vehicle mice.
However, caution should be taken when interpret-
ing these results as counterintuitive to the known
pharmacology of LY379268 since the basal gluta-
mate levels in both A�PP/PS1 treatment groups are

in agreement with previously published results using
similarly aged A�PP/PS1 mice [20].

GLT-1 IHC

Glutamate clearance is predominantly mediated
through glial high affinity amino acid transporters,
of which GLT-1 accounts for ∼90% uptake [39].
To determine if differences in stimulus-evoked glu-
tamate release were a result of transporter density,
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Fig. 6. Hippocampal GLT-1 Immunohistochemistry. DG representative images at 40x magnification of GLT-1 in C57BL/6J vehicle (A),
A�PP/PS1 Vehicle (B), and A�PP/PS1 LY379268 (C) treated mice. Scale bar represents 20 �m. Average mean density of GLT-1 staining
(D) in the DG, CA3, and CA1 of C57BL/6J vehicle (n = 8), A�PP/PS1 Vehicle (n = 8), and A�PP/PS1 LY379268 (n = 6) treated mice.

we used IHC to measure changes in GLT-1 expres-
sion. Representative 40x magnification images from
the DG of C57BL/6J vehicle, A�PP/PS1 vehicle,
and A�PP/PS1 LY379268 treated mice are shown.

No differences in the average mean density of GLT-
1 for each hippocampal subregion were observed
(Fig. 6D), suggesting differences in stimulus-evoked
glutamate release are not attributed to GLT-1 density.
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GFAP and amyloid plaque IHC

IHC was used to measure changes in GFAP
expression and amyloid plaque pathology throughout
the hippocampus. Representative 10x magnifica-
tion images from the DG of C57BL/6J vehicle
(Fig. 7A-C), A�PP/PS1 vehicle (Fig. 7D-F), and
A�PP/PS1 LY379268 (Fig. 7G-I) treated mice
are shown. Merged images highlight astrogliotic
responses surrounding amyloid plaques in both
cohorts of A�PP/PS1 mice. GFAP average mean
density for each hippocampal subfield are presented
in Fig. 7J. A�PP/PS1 vehicle mice showed a trend
toward elevated astrogliosis compared to C57BL/6J
vehicle mice throughout the hippocampus, particu-
larly in the DG (F2,20 = 2.957; p = 0.075). LY379268
treatment in A�PP/PS1 mice did not significantly
attenuate the astrogliotic response in any hippocam-
pal subregion. Amyloid plaque hippocampal average
mean density and plaque counts per slice for both
cohorts of A�PP/PS1 mice are shown in Fig. 7K-L.
Treatment with LY379268 had no effect on hip-
pocampal amyloid plaque formation.

DISCUSSION

Group II (mGluR2/3) are expressed in the cor-
tex and hippocampus [22] and act as extrasynaptic
autoinhibitory modulators that suppress glutamate
release from presynaptic neurons [40]. As such,
agonists targeting mGluR2/3 receptors are ideal for
therapeutic interventions and have good success at
alleviating anxiety and stress in preclinical models
[21, 41]. However, their role in neurodegenerative
disorders and especially AD pathogenesis is less
understood. Postmortem tissue from AD patients
shows increased hippocampal expression of mGluR2
that is associated with degenerating neurons [42]. But
the reason for this upregulation is unknown. Since we
have previously demonstrated that A�42 elicits glu-
tamate release [36] upregulation of mGluR2 could
be a compensatory mechanism to prevent A�42-
mediated excitotoxicity, as observed in cell culture
[43]. However, other studies support that stimulation
of mGluR2/3 triggers production and release of A�42,
and therefore results in the plaque deposition and
pathogenesis of AD [44]. These limited and conflict-
ing reports indicated additional research was required
to determine the potential therapeutic benefits from
an mGluR2/3 agonist in mouse models of AD.

The mGluR2/3 agonist, LY379268, and dosing
strategy was based upon previously published reports

regarding the efficacy of the compound [26, 45].
LY379268 binds to the orthosteric site on mGluR2/3
receptors with high potency compared to Groups
I and III [40] with minimal adverse events when
administered systemically [31, 46]. Pharmacokinetic
studies have shown that LY379268 crosses the blood-
brain barrier with a peak brain concentration 30 min
after i.p. injection and maintains cerebral receptor
active concentrations for a minimum of 24-h post
injection [26]. This long duration of receptor acti-
vation results in neuroprotective effects lasting up to
28 days post ischemia [26, 27]. Local application of
LY379268 decreases basal and stimulus-evoked glu-
tamate release [24, 25]. And, systemic administration
of LY379268 for 5 consecutive days blocks ketamine-
induced hippocampal glutamate efflux as measured
by enzyme-based amperometric biosensors [45].

LY379268 prevents A�-induced toxicity [43], but
the long-term effects of LY379268 on cognition
and glutamatergic signaling in models of AD have
not been addressed. For the current study, treatment
with LY379268 began prior to the onset of typically
reported AD-related pathology in A�PP/PS1 mice
[28], but during a time point when hippocampal glu-
tamate levels were elevated [10]. This therapeutic
window was chosen to address our hypothesis that
systemic administration of LY379268 could provide
long-term procognitive effects that were mediated by
reduction of the hippocampal glutamatergic tone in
A�PP/PS1 mice. Since we did not observe long-term
procognitive effects with LY379268 administration,
we decided against allocating additional mice to elu-
cidate potential mechanistic changes during acute
treatment for ethical considerations. Although acute
effects of LY379268 systemic administration in AD
mouse models has not been addressed, previous
studies support that 24 h pretreatment attenuates
hippocampal stimulated glutamate release in male
C57BL/6J mice [45]. The inclusion of C57BL/6J
saline mice was used to determine if prodromal inter-
vention with systemic administration of LY379268
resulted in procognitive benefits similar to age-
matched genetic background control mice.

Weight gain was monitored throughout the study
to determine tolerability of LY379268 since previ-
ous studies have shown mGluR2/3 agonists may be
nauseous to rodents [41]. A�PP/PS1 vehicle mice
gained more weight compared to C57BL/6J vehicle
and A�PP/PS1 LY379268 treated mice throughout
the study. Interestingly, by two months on LY379268
treatment, weight gain in A�PP/PS1 mice followed
that of C57BL/6J vehicle mice for the remainder of
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Fig. 7. Hippocampal GFAP and amyloid plaque immunohistochemistry. DG representative images at 10x magnification of GFAP (left panels,
red), amyloid plaques (middle panels, blue), and merged images (right panels) from C57BL/6J vehicle (A-C), A�PP/PS1 vehicle (D-E),
and A�PP/PS1 LY379268 (H-I) treated mice. Scale bar represents 100 �m and arrow heads (F, I) highlight plaques. Average mean density
of GFAP staining (J) and amyloid plaque burden (K) in the DG, CA3, and CA1 of C57BL/6J vehicle (n = 8), A�PP/PS1 vehicle (n = 8)
and A�PP/PS1 LY379268 (n = 7) treated mice. Average hippocampal plaque counts per slice in A�PP/PS1 vehicle (n = 8) and A�PP/PS1
LY379268 (n = 7) treated mice.
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the treatment, and was decreased at 12 months of age
compared to A�PP/PS1 vehicle mice. While periph-
eral glucose was not monitored in this study, insulin
resistance precedes cognitive decline in A�PP/PS1
mice [20, 47, 48] and may explain the increased
b.w. But, the lower b.w. of A�PP/PS1 LY379268
treated mice are not necessarily attributed to a side-
effect of the medication since averages were similar to
C57BL/6J vehicle mice. Rather, LY379268 treatment
may have altered the metabolic profile of A�PP/PS1
mice, because stimulation of mGluR2/3 on pancreatic
�-cells causes insulin release [49].

Hippocampal basal glutamate and stimulus evoked
glutamate release was elevated in A�PP/PS1 mice,
similar to previous observations from our labora-
tory at this age. This elevated extracellular glutamate
in A�PP/PS1 mice may result from the progressive
accumulation of soluble A�42 [50] that can elicit glu-
tamate release [18, 19, 36]. However, treatment with
LY379268 did not attenuate hippocampal basal nor
stimulus-evoked glutamate release, which has been
previously demonstrated with local application stud-
ies [24, 25]. In fact, DG and CA1 basal glutamate was
unexpectedly potentiated with LY379268 treatment,
counterintuitive to its reported pharmacology. These
elevated glutamate levels were not a result of changes
in GLT-1 receptor density which accounts for 90%
of glutamate clearance [39]. Additionally, we cannot
rule out long term mGluR2/3 downregulation after
repeated systemic administration leading to the ele-
vated basal glutamate values. However, as noted in the
results, these A�PP/PS1 basal glutamate values are
similar to those reported elsewhere at 12–15 months
of age [20]. Considering the basal glutamate levels
are statistically similar between A�PP/PS1 treatment
groups, the effects of cohort variance, rather than
long-term LY379268 administration, may also be a
factor.

The elevated basal glutamate levels in A�PP/PS1
LY379268 treated mice may also be attributed to the
cellular distribution of hippocampal mGluR2/3 recep-
tors and their mechanisms of action. Agonism of
presynaptic mGluR2/3 immediately attenuates glu-
tamate release by hyperpolarization of the neuron.
But, agonism of postsynaptic mGluR2/3 is coupled to
downstream regulators that increases surface expres-
sion of �-amino-3-hydroxy-5-methyl-4-isoxazole
propionate (AMPA) and NMDA receptors and sub-
sequent longer term modulation of glutamatergic
neurotransmission [51, 52]. This suggests dual
neuroprotective mechanisms to modulate hyperglu-
tamatergic neurotransmission [53]. These receptors

were not assayed because our main hypothesis was
based on presynaptic modulation of glutamatergic
signaling. Also, LY379268 agonism of glial mGluR3
has a separate function that induces production of
neurotrophic factors [54] lasting 6-72-h post treat-
ment [55, 56]. Although systemic administration of
LY379268 is present in the brain at levels sufficient
to activate mGluR2/3 for at least 24-h post treat-
ment [26], the 6-month off-treatment duration may
have allowed the AD pathophysiology to resume in
A�PP/PS1 mice a few days after LY379268 treat-
ment was discontinued despite long-term modulation
through postsynaptic and glial mechanisms.

Besides differences in cellular distributions,
mGluR2/3 are distinctly spread across the central
nervous system, particularly within regions of the
hippocampus. This regional localization, in com-
bination the cellular distribution, helps to explain
the basal glutamate and stimulus-evoked glutamate
release observed in the present study. Hippocam-
pal mGluR2 is localized to the presynaptic axons of
the medial perforant pathway originating from the
entorhinal cortex and terminating in the DG, CA3,
and CA1 [57, 58]. The preterminal localization indi-
cates mGluR2 directly contributes to hyperpolarizing
axons thereby immediately attenuating glutamate
release. Therefore, decreased hippocampal basal glu-
tamate six months post LY379268 treatment would
not be expected and is consistent with our present
findings. However, mGluR3 is localized on glia in the
CA1 and dorsolateral entorhinal cortex [57, 58] that
would lead to production of neurotrophic factors and
potentially cause long-term alterations of membrane
excitability [59]. This would support the attenu-
ated stimulus-evoked glutamate release observed in
the CA1 six months post LY379268 treatment in
A�PP/PS1 mice.

Since mGluR2/3 plays a role in hippocampal spa-
tial working memory tasks [60], drugs stimulating
this class of receptors prevents cognitive deficits
associated with traumatic brain injury [31], alco-
hol exposure [61], and phencyclidine models of
schizophrenia [62]. To test the procognitive effects of
mGluR2/3 activation, LY379268 intervention began
prior to the onset of cognitive deficits that have been
reported as early as 6–8 months [63, 64] and con-
tinue throughout the lifespan of A�PP/PS1 mice
[28]. LY379268 intervention in A�PP/PS1 mice
only improved platform location on the first training
day with subsequent training days similar between
A�PP/PS1 cohorts. This first day MWM perfor-
mance improvement may be due to the anxiolytic
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properties associated with agonism of mGluR2/3 by
LY379268 [65], allowing the A�PP/PS1 mice to
learn the location of the escape platform faster. Sur-
prisingly, memory recall deficits during the probe
challenge were slightly exacerbated by LY379268
treatment as indicated by fewer platform crossings
and cumulative distance from the platform. The ele-
vated extracellular hippocampal glutamate would
cause over activation of the NMDA receptor, which
is important during spatial navigation tasks [66].
This over activation disrupts the signal-to-noise ratio
thereby impairing detection of phasic signaling and
blocking formation of new memories [13].

Similar to our previous research, A�PP/PS1 vehi-
cle mice had pronounced A� plaque deposition
throughout the hippocampus by 12–15 months [20].
In A�PP/PS1 mice, A� plaque accumulation is typ-
ically observed starting at 6 months and increases
with age [67, 68]. Yet, despite initiating LY379268
treatment at 2 months, no effect on hippocampal
A� plaque formation was observed. Studies in iso-
lated nerve terminals support activation of mGluR2/3
releases A�42 suggesting a possible trigger for A�
plaque formation [44]. While our data does not sup-
port increased A� plaque deposition, an increased
release of soluble A�42 may be responsible for
the elevated hippocampal basal glutamate mediated
through the �7nAChR as previously discussed.

Elevated GFAP expression, a marker of reac-
tive astrocytes, was observed in A�PP/PS1 vehicle
treated mice, which is in concordance with our
previous research. Prodromal LY379268 treatment
had a negligible effect on GFAP expression levels
in A�PP/PS1 mice. In both cohorts of A�PP/PS1
mice, GFAP expression was prominent around amy-
loid plaques in agreement with previously published
reports [67]. The astroglial juxtaposition is hypothe-
sized to control A� plaque deposition [69] through a
variety of clearance mechanisms [70].

Conclusion

The data presented here demonstrate that early
intervention with LY379268 does not induce long-
term procognitive effects nor reduce hippocampal
glutamatergic tone in A�PP/PS1 mice. When it
became apparent that the primary objectives of
LY379268 treatment in A�PP/PS1 mice was not
achievable, the study was discontinued for ethical
considerations. The current study does, however,
build upon previous research demonstrating hyper-
glutamatergic hippocampal signaling that begins at

2–4 months of age in A�PP/PS1 mice that may
be mediated by progressive accumulation of solu-
ble A�42. Attenuation of the glutamatergic tone may
serve as a viable therapeutic strategy that ameliorates
cognitive deficits while preventing the excitoxicity
mediated neurodegeneration reported in AD. Unfor-
tunately, the lack of therapeutic efficacy observed
may be indicative of mGluR2/3 regional and cel-
lular distribution and the subsequent mechanisms
to attenuate hyperglutamatergic activity. As such,
future studies will address whether other glutamater-
gic modulating compounds are effective at alleviating
AD pathophysiology in A�PP/PS1 mice.
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