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Abstract
This paper develops two families of power method (PM) distribu-

tions based on polynomial transformations of the (1) Uniform, (2) Tri-
angular, (3) Normal, (4) D-Logistic, and (5) Logistic distributions. One
family is developed in the context of conventional method of moments
and the other family is derived through the method of L-moments. As
such, each of the five conventional moment-based PM classes has an
analogous L-moment based class. A primary focus of the development
is on PM polynomial transformations of order three. Specifically, sys-
tems of equations are derived for computing polynomial coefficients for
user specified values of skew (L-skew) and kurtosis (L-kurtosis). Bound-
ary regions for determining feasible combinations of skew (L-skew) and
kurtosis (L-kurtosis) are also derived for determining if a set of solved
coefficients yields a valid PM probability density function. Further,
the conventional moment-based family of PM distributions is compared
with its L-moment based analog in terms of estimation, power, outliers,
and distribution fitting. The results of the comparison demonstrate
that the L-moment based PM family is superior to the conventional
moment-based family in each of the categories considered.
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1 Introduction

The power method (PM) polynomial transformation is a traditional moment-
matching procedure used for simulating univariate and multivariate non-normal
distributions (see [1]-[4]). The power method has been used in studies that have
included such topics or techniques as: ANCOVA [5]-[6], asset pricing theories
[7], item response theory [8], microarray analysis [9], multivariate analysis [10],
nonparametric statistics [11], price risk [12], regression [13], structural equation
models [14], and toxicology research [15]. The PM is also useful for simulating
correlated non-normal distributions with specific types of structures. Some
examples include continuous non-normal distributions correlated with ranked
variables, systems of linear statistical models, and distributions with specified
intraclass correlations (see [4]).

The basic univariate third-order PM transformation originally proposed by
Fleishman [1] proceeds by taking the sum of a linear combination of a standard
normal random variable (Z), its square, and its cube as

p(Z) = c1 + c2Z + c3Z
2 + c4Z

3. (1)

The coefficients (ci) in (1) can be determined by simultaneously solving Head-
rick’s Equations (2.18)–(2.21) ([4], p.15) for specified values of conventional
skew (γ3) and kurtosis (γ4). On solving these equations the values of ci are
substituted into (1) to produce p(Z), which has zero mean, unit variance, and
the desired values of γ3 and γ4.

Although the traditional PM is often used, it has the limitations associ-
ated with conventional moments insofar as estimates of γ3 and γ4 that can
be substantially biased, have high variance, or can be influenced by outliers
(e.g. [16], p.4). However, some of these limitations were addressed by Headrick
[16] where the standard normal-based PM in (1) was derived in the context
of L-moment theory [17]. The primary advantage of the L-moment based PM
transformation is that estimates of L-skew (τ3) and L-kurtosis (τ4) are nearly
unbiased for any sample size and have smaller variance than their conventional
moment based counterparts of γ3 and γ4.

Another limitation associated with the third-order PM in (1) is that it does
not span the entire region of all possible combinations of γ3 and γ4 defined in
the plane as (e.g. [4], p.26)

γ4 ≥ γ2
3 − 2, (2)

where the normal distribution is scaled such that γ4 = 0. For example, the
polynomial transformation in (1) will not produce PM distributions with valid
probability density functions for γ4 < 0 ([4], p.21).

In view of the above, one of the primary goals of this paper is to develop a
conventional moment-based family of PM distributions that expands the PM’s
coverage in γ3 and γ4 plane defined by (2). More specifically, in the context
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of symmetric third-order polynomials, the kurtosis boundary will be extended
from 0 < γ4 < 43.2, which is associated with (1), to −1.2 < γ4 < 472.5, which
is based on five distributions: (1) Uniform, (2) Triangular, (3) Normal, (4)
D-Logistic, and (5) Logistic. Further, another goal of this paper is to obviate
the limitations associated with estimates of γ3 and γ4 in the contexts of bias
and efficiency by deriving the L-moment based family of PM distributions that
is analogous to the proposed conventional moment based family. In so doing,
the L-moment based family of PM distributions has distinct advantages over
the conventional PM family in these contexts. In particular, these advantages
become more substantial when distributions with more extreme departures
from normality (e.g. distributions with heavy tails) are considered.

The remainder of this paper is outlined as follows. In Section 2, the es-
sential requisite information and general notation are provided for both con-
ventional and L-moment based PM polynomials. The five conventional and
L-moment based systems of equations for computing polynomial coefficients
for each class considered are subsequently developed as well as the derivation of
the boundary conditions to determine if any particular PM transformation has
an associated valid pdf. In Section 3, the conventional moment and L-moment
based families are compared in terms of estimation, power, outliers, and dis-
tribution fitting to demonstrate the superior characteristics that L-moments
have in these contexts.

2 Methodology

2.1 Preliminaries

Let W be a continuous random variable with zero mean, unit variance, proba-
bility density function (pdf), and cumulative distribution function (cdf) defined
as

fW (w) = φj(w) (3)

FW (w) = Φj(w) (4)

where the pdf φj(w) is symmetric (γ3 = 0) and has specific forms of: φ1(w) ≡
Uniform, γ4 = −1.2; φ2(w) ≡ Triangular, γ4 = −0.6; γ3(w) ≡ Normal,
γ4 = 0.0; φ4(w) ≡ D-Logistic, γ4 = +0.6; and φ5(w) ≡ Logistic, γ4 = +1.2.
The functional forms, graphs, moments, and Gini’s indices associated with
these five pdfs are given in Figure 1 and Table 1. Note that the D-Logistic
(Triangular) distribution can be defined as the sum of two independent Logistic
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(Uniform) random variables. The specific forms of the cdf in (4) are

Φ1(w) = (w +
√

3)
/

(2
√

3) ,−
√

3 < w < +
√

3 (5)

Φ2(w) =

{
(w +

√
6)2 /12

(
√

6− w)2 /12
,−
√

6 < w < +
√

6 (6)

Φ3(w) =
1√
2π

∫ w

−∞
exp{−u

2

2
}du,−∞ < w < +∞ (7)

Φ4(w) = 1− (exp{−dw}(exp{−dw} − 1 + dw))

(1− exp{−dw})2
,−∞ < w < +∞ (8)

Φ5(w) = 1
/

((1 + exp{−(π/
√

3)w})) ,−∞ < w < +∞ (9)

where d =
√

2π
/√

3 in (8).

Distribution µ4 µ6 µ8 µ10 µ12 ∆ /2

Uniform
9

5

27

7

45

5

243

11

25515

455

1√
3

Triangular
12

5

54

7

144

5

1296

11

233280

455

7

5
√

6

Normal
15

5

105

7

525

5

10395

11

4729725

455

1√
π

D-Logistic
18

5

180

7

1512

5

58320

11

59105376

455

3 + π2

3π
√

6

Logistic
21

5

279

7

3429

5

206955

11

343717911

455

√
3

π

Table 1: The relevant moments and Gini’s indices (∆) associated with the pdfs
in Figure 1

Given (3) and (4), the power method (PM) polynomial in (1) can be more
generally expressed as

p(W ) =
m∑
i=1

ciW
i−1 (10)

where setting m = 4 yields a third-order polynomial.
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φ1(w) = 1
/

(2
√

3) ,−
√

3 < w < +
√

3

Uniform

φ2(w) =

{
(1/6)(w +

√
6),−

√
6 < w < 0

(1/6)(
√

6− w), 0 < w <
√

6

Triangular

φ3(w) = (2π)−
1
2 exp{−w2/2},−∞ < w < +∞

Normal

φ4(w) =
d(exp{dw}(2 + exp{dw}(dw − 2) + dw))

(exp{dw} − 1)3
,−∞ < w < +∞

D-Logistic d =
√

2π
/√

3

φ5(w) =
(π
/√

3)(exp{−w(π
/√

3)})
(1 + exp{−w(π

/√
3)})2

,−∞ < w < +∞

Logistic

Figure 1: Probability density functions associated with the Power Method
families of distributions.
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The pdf and cdf associated with p(W ) in (10) are given as in [4] (see p.12)

fp(W )(p(w)) = f̄(w) =

(
p(w),

fW (w)

p′(w)

)
(11)

Fp(W )(p(w)) = F̄ (z) = (p(w), FW (w)) (12)

where f̄ : R → R2 and F̄ : R → R2 are the parametric forms of the pdf
and cdf with the mappings z → (x, y) and z → (x, v) with x = p(w), y =
(fW (w))/p′(w), and v = FW (w), respectively. It is assumed that p′(w) > 0 in
(11), that is, the transformation in (10) must be a strictly increasing monotone
function for a valid PM pdf to exist. Note also that the PM pdf and cdf in
(11) and (12) have the forms of (3) and (4) for the special case of when c2 = 1
and ci 6=2 = 0 in (10).

2.2 The conventional moment third-order power method
family

Given the preliminaries from the previous section, the first task is to determine
the systems of equations for computing the coefficients (ci) associated with
polynomials of the form in (10) with m = 4 for each of the five PM classes.
This can be accomplished by making use of the general equations for the
mean (γ1), variance (γ2), skew (γ3), and kurtosis (γ4) for any third-order PM
distribution given in [4] (see p.15) as

γ1 =0 = c1 + c3 (13)

γ2 =1 = c22 + (µ4 − 1)c23 + µ42c2c4 + µ6c
2
4 (14)

γ3 =(µ4 − 1)c22c3 + (µ6 − 3µ4 + 2)c33 + (µ6 − µ4)6c2c3c4+

(µ8 − µ6)3c3c
2
4 (15)

γ4 =− 3 + µ12c
4
4 + µ4c

4
2 + µ64c

3
2c4 + (µ10 − 2µ8 + µ6)6c

2
3c

2
4

+ (µ8 − 4µ6 + 6µ4 − 3)c43 + 6c22((µ6 − 2µ4 + 1)c23 + µ8c
2
4)

+ 4c2c4(µ10c
2
4 + (µ8 − 2µ6 + µ4)3c

2
3). (16)

Substituting the even moments for the five pdfs φj(w) given in Table 1 yields
the specific forms of (13)–(16), which are given in Figure 2 through Figure 6.
Each of the five systems of equations in these figures consists of four equations
where the first two equations for the mean and variance are set to zero and
one, respectively. The last two equations of the form in (15) and (16) are set
to specified values of skew and kurtosis. Simultaneously solving any particular
set of four equations will yield the coefficients for polynomials of the form in
(10).

In general, if the coefficients with odd subscripts in (10) are zero (i.e. c1 =
c3 = 0), then any PM distribution is symmetric. Further, when solving for
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(1) Conventional Moment PM Uniform System:

γ1 = 0 = c1 + c3

γ2 = 1 = c22 + 4c23
/

5 + 18c2c4/5 + 27c24
/

7

γ3 = 4(75075c22c3 + 14300c33 + 386100c2c3c4 + 482625c3c24)
/

125125

γ4 = 9c42
/

5 + 48c43
/

35 + 108c32c4
/

7 + 3672c23c
2
4

/
77 + 729c44

/
13 + 264c22c

2
3

/
35+

972c2c34
/

11 + 1296c2c23c4
/

35 + 54c22c
2
4 − 3

(2) Boundary Region for valid PM pdfs in the |γ3| and γ4 plane:

(3) Lower (a) and Upper (b) Boundary Region points:

γ̄3 = 0, γ̄4 = −1.2a; γ̄3 = 0, γ̄4 = 0.7692b; γ̄3 = 1.529b, γ̄4 = 1.312

(4) Conditions for valid PM pdfs in the Boundary Region:

0 < c2 < 1; c4 >
1
9

(
√

7
√

3 + 4c22 − 7c2)

Figure 2: The Conventional Power Method (PM) class of distributions based
on the Uniform pdf in Figure 1.
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(1) Conventional Moment PM Triangular System:

γ1 = 0 = c1 + c3

γ2 = 1 = c22 + 7c23 /5 + 24c2c4 /5 + 54c24 /7

γ3 = 21c22c3 /5 + 88c33 /35 + 1116c2c3c4 /35 + 2214c3c24 /35

γ4 = 12c42 /5 + 327c43 /35 + 216c32c4 /7 + 156924c23c
2
4 /385 + 46656c44 /91 +

822c22c
2
3 /35 + 5184c2c34 /11 + 6624c2c23c4 /35 + 864c22c

2
4 − 3

(2) Boundary Region for valid PM pdfs in the |γ3| and γ4 plane:

(3) Lower (a) and Upper (b) Boundary Region points:

γ̄3 = 0, γ̄4 = −0.60a; γ̄3 = 0, γ̄4 = 5.615b; γ̄3 = 2.484b, γ̄4 = 6.924

(4) Conditions for valid PM pdfs in the Boundary Region:

0 < c2 < 1; c4 >
1
36

(
√

21
√

8 + 13c22 − 21c2)

Figure 3: The Conventional Power Method (PM) class of distributions based
on the Triangular pdf in Figure 1.
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(1) Conventional Moment PM Normal System:

γ1 = 0 = c1 + c3

γ2 = 1 = c22 + 2c23 + 6c2c4 + 15c24

γ3 = 8c33 + 6c22c3 + 72c2c3c4 + 270c3c24

γ4 = 3c42 + 60c22c
2
3 + 60c43 + 60c32c4 + 936c2c23c4 + 630c22c

2
4 + 4500c23c

2
4+

3780c2c34 + 10395c44 − 3

(2) Boundary Region for valid PM pdfs in the |γ3| and γ4 plane:

(3) Lower (a) and Upper (b) Boundary Region points:

γ̄3 = 0, γ̄4 = 0a; γ̄3 = 0, γ̄4 = 43.2b; γ̄3 = 4.363b, γ̄4 = 36.34

(4) Conditions for valid PM pdfs in the Boundary Region:

0 < c2 < 1; c4 >

√
5 + 7c22
5
√

3
− 2c2

5

Figure 4: The Conventional Power Method (PM) class of distributions based
on the Normal pdf in Figure 1.
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(1) Conventional Moment PM D-Logistic System:

γ1 = 0 = c1 + c3

γ2 = 1 = c22 + 13c23 /5 + 36c2c4 /5 + 180c24 /7

γ3 = 39c22c3 /5 + 592c33 /35 + 4644c2c3c4 /35 + 29052c3c24 /35

γ4 = 18c42 /5 + 1527c43 /7 + 720c32c4 /7 + 10909512c23c
2
4 /385 + 59105376c44 /455

+6c22(68c23 /35 + 1512c24 /5) + 4c2c4(5346c23 /7 + 58320c24 /11)− 3

(2) Boundary Region for valid PM pdfs in the |γ3| and γ4 plane:

(3) Lower (a) and Upper (b) Boundary Region points:

γ̄3 = 0, γ̄4 = 0.60a; γ̄3 = 0, γ̄4 = 193.5b; γ̄3 = 6.652b, γ̄4 = 127.0

(4) Conditions for valid PM pdfs in the Boundary Region:

0 < c2 < 1; c4 >
1

120
(
√

560 + 665c22 − 35c2)

Figure 5: The Conventional Power Method (PM) class of distributions based
on the D-Logistic pdf in Figure 1.
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(1) Conventional Moment PM Logistic System:

γ1 = 0 = c1 + c3

γ2 = 1 = c22 + 16c23
/

5 + 42c2c4/5 + 279c24
/

7

γ3 = 48c22c3
/

5 + 1024c33
/

35 + 7488c2c3c4/35 + 67824c3c24
/

35

γ4 = 21c42
/

5 + 6816c22c
2
3

/
35 + 3840c43

/
7 + 1116c32c4

/
7 + 51264c2c23c4

/
7+

20574c22c
2
4

/
5 + 40384224c23c

2
4

/
385 + 827820c2c34

/
11 + 343717911c44

/
455− 3

(2) Boundary Region for valid PM pdfs in the |γ3| and γ4 plane:

(3) Lower (a) and Upper (b) Boundary Region points:

γ̄3 = 0, γ̄4 = 1.2a; γ̄3 = 0, γ̄4 = 472.5b; γ̄3 = 8.913b, γ̄4 = 283.9

(4) Conditions for valid PM pdfs in the Boundary Region:

0 < c2 < 1; c4 >
1
93

(
√

7
√

31 + 32c22 − 21c2)

Figure 6: The Conventional Power Method (PM) class of distributions based
on the Logistic pdf in Figure 1.
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coefficients, it is only necessary to consider positive values of γ3 as simultaneous
sign reversals between c1 and c3 will change the direction of γ3 (i.e. from
posistive to negative) but will have no effect on γ2 or γ4. For further details
on other properties associated with PM distributions e.g. modes, median,
trimmed means, etc., see [4] (pp. 9–15).

As indicated in the previous section, the polynomial transformation in (10)
must be an increasing function in W for a PM distribution to have a valid pdf
based on (11). Thus, it becomes necessary to determine the parameter space
of γ3 and γ4 and the conditions that a set of solved coefficients must satisfy
to yield a valid pdf for each of the five classes of PM distributions considered.
This can be achieved by substituting the five sets of moments given in Table
1 into the following general expressions (see [4], p.18)

γ̄3 =(2µ2
6)−1(3(3/2)

1
2 ((c2(3c2 − µ45c2 + ((3c2 − µ45c2)2 − µ64(c22 − 1))

1
2 )/µ6)

1
2

(2µ6(µ8 − µ6) + c22((9− 13µ4)µ2
6 + µ6(5µ4 − 2µ8 − 3) + µ8(3− 5µ4)−

c2((25µ2
4 − 4µ6 − 30µ4 + 9)c22 + 4µ6)

1
2 (µ8(5µ4 − 3) + µ6 − 3µ2

6))) (17)

γ̄4 =(1/(µ4 − 1)2)(12µ4 − 3µ2
4 − 4µ6 + µ8 − 6 + c42(3 + 10µ2

4 + µ3
4 + 2µ6−

µ4(6µ6 + 11) + µ8) + (1/µ6)(2c32(3c2 − 5c2µ4 + ((3c2 − 5c2µ4)2−

4(c22 − 1)µ6)
1
2 )(6µ3

4 − 5µ6 − 2µ2
4(µ6 + 3) + µ4(3 + 3µ6 − 2µ8) + 3µ8))+

(1/2µ2
6)(3c2 − 5c2µ4 + ((3c2 − 5c2µ4)2 − 4(c22 − 1)µ6)

1
2 )2(3µ10(µ4 − 1)+

4µ2
6 + 6µ8 − µ6µ8 − 3µ4(µ6 + 2µ8))) + (1/16µ4

6)((3c2 − 5c2µ4+

((3c2 − 5c2µ4)2 − 4(c22 − 1)µ6)
1
2 )4(µ12(µ4 − 1)2 + µ6(12(µ4 − 1)µ8−

6µ10(µ4 − 1)− 4µ2
6 + µ6(µ8 + 3))))− 2c22(6µ2

4 − 3µ4 − µ6 − 3µ4µ6 + µ8+

(1/4µ2
6)((3c2 − 5c2µ4 + ((3c2 − 5c2µ4)2 − 4(c22 − 1)µ6)

1
2 )2(3µ10(µ4 − 1)+

3µ4(10µ6 + µ2
6 − 4µ8) + (µ6 − 3)(µ6 − µ8) + µ2

4(7µ8 − 6− 22µ6))))−

(1/µ6)(2c2(3c2 − 5c2µ4 + ((3c2 − 5c2µ4)2 − 4(c22 − 1)µ6)
1
2 )× (3µ2

4 − 6µ6+

2µ4(µ6 − µ8) + 3µ8 − (1/4µ2
6)((3c2 − 5c2µ4 + ((3c2 − 5c2µ4)2−

4(c22 − 1)µ6)
1
2 )2(µ10(1 + µ4 − 2µ2

4) + 6µ2
4µ8 + 3µ6(µ8 − 2µ6)+

µ4(3µ6 + 2µ2
6 − 6µ8 − 2µ6µ8)))))) (18)

to determine the boundary regions of skew and kurtosis (denoted as γ̄3 and
γ̄4), which are graphed in Figures 2–6. Further, the general conditions that
the coefficients must satisfy to produce a valid PM pdf are given as in [4] (see
p.17) are (a) 0 < c2 < 1 and (b)

c4 >
(

3c2 − µ45c2 + ((3c2 − µ45c2)
2 + µ64(1− c22))

1
2

)
/(2µ6) (19)
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where the specific conditions associated with (19) are also given in Figures 2–6
for each of the five classes of PM distributions.

In summary, Figure 2 through Figure 6 provide the systems of equations for
solving polynomial coefficients, the boundary regions for valid PM pdfs, bound-
ary points of maximum skew and minimum (maximum) kurtosis for symmetric
distributions, and the conditions that solved coefficients must satisfy to pro-
duce a valid PM pdf. We subsequently give a brief introduction to L-moments
and then provide the analogous details for the L-moment based third-order
PM family of distributions as given in Figures 2–6 for the conventional family.

2.3 The L-moment third-order power method family

L-moments are defined as linear combinations of probability weighted moments
βi. In the context of the five classes of PM distributions considered herein, the
βi can be derived based on the general forms of (3), (4), and (10) as ([16])

βi =

∫
p(w){FW (w)}ifW (w)dw (20)

where i = 0, . . . , 3. The first four L-moments are expressed as ([18, pp. 20-22])

λ1 =β0 (21)

λ2 =2β1 − β0 (22)

λ3 =6β2 − 6β1 + β0 (23)

λ4 =20β3 − 30β2 + 12β1 − β0. (24)

The coefficients associated with βi in (21)–(24) are determined from shifted
orthogonal Legendre polynomials and are computed as shown in [10, p.20] or
in [15].

The L-moments λ1 and λ2 in (21) and (22) are measures of location and
scale and are the arithmetic mean and one-half of Gini’s index of spread,
respectively. Higher order L-moments are transformed to dimensionless quan-
tities referred to as L-moment ratios defined as τr = λr/λ2 for r ≥ 3, and
where τ3 and τ4 are the analogs to the conventional measures of skew and
kurtosis. In general, L-moment ratios are bounded in the interval −1 < τr < 1
as is the index of L-skew (τ3) where a symmetric distribution implies that all
L-moment ratios with odd subscripts are zero. Other smaller boundaries can
be found for more specific cases. For example, the index of L-kurtosis (τ4) has
the boundary condition for continuous distributions of (see [19])

5τ 2
3 − 1

4
< τ4 < 1. (25)

In the context of the PM, integrating (20) using the pdf and cdf associated
with (3) and (4) yields the βi for each of the five classes of PM distributions
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and subsequently substituting the βi into (21)–(24) and simplifying yields the
corresponding L-moment based systems of equations given in Figure 7 through
Figure 11. Analogous to the conventional moment-based systems in Figure 2
through Figure 6, each of the five systems have four equations expressed in
terms of four variables c1, . . . , c4. The first two equations are standardized by
setting λ1 = 0 and λ2 to its respective value of one-half of Gini’s index given
in Table 1. The last two equations are set to user specified values of τ3 and
τ4. Similar to the conventional moment PM systems, if the negative of τ3 is
desired, then inspection of these five systems indicates that only simultaneous
sign reversals are required between c1 and c3.

One of the advantages that the L-moment based PM systems have over the
conventional PM systems is that they need not be numerically solved as the
solutions to the coefficients are unique whenever they exist. Thus, closed-form
expressions for the coefficients are also given in Figures 7–11.

The boundary conditions for valid third-order PM pdfs based on (11) can
be generally determined by solving the quadratic equation p′(w) = 0 as

w =
−c3 ± (c23 − 3c2c4)

1
2

3c4
. (26)

In general a set of solved coefficients with produce a valid pdf if the discrimi-
nant c23 − 3c2c4 in (26) is negative. That is, the complex solutions for w must
have non-zero imaginary parts. As such, setting c23 = 3c2c4 will yield the
point where the discriminant vanishes and thus real-valued solutions exist to
p′(w) = 0.

There are more specific conditions associated with the coefficients that can
be derived for evaluating if any given third-order PM distribution also has a
valid pdf. For example, consider the uniform-based PM in Figure 7. If we set
λ2 = 1/

√
3 and subsequently solve for c4 gives

c4 =
5

9
− 5c2

9
. (27)

Substituting the right-hand side of (27) into the expressions for τ3 and τ4 in

Figures 7 and setting c3 = (3c2c4)
1
2 , because we only need to consider positive

values of L-skew, yields

τ3 =
2
√
c2(1− c2)√

5
(28)

τ4 =
2

7
(1− c2). (29)

Inspection of (28) indicates that for real values of τ3 to exist then we must have
c2 ∈ [0, 1] and thus from (27) c4 ∈ [0, 5/9]. Using (28) and (29), the graph of
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(1) L-moment PM Uniform System:

λ1 = 0 = c1 + c3

τ3 =
2
√

3c3
5c2 + 9c4

λ2 =
1√
3

=
5c2 + 9c4

5
√

3

τ4 =
18c4

35c2 + 63c4

(2) Boundary Region for valid PM pdfs in the |τ3| and τ4 plane:

(3) Lower (a) and Upper (b) Boundary Region points:

τ̄3 = 0, τ̄4 = 0a; τ̄3 = 0, τ̄4 = 0.2857b; τ̄3 = 0.4472b, τ̄4 = 0.1428

(4) Conditions for valid PM pdfs in the Boundary Region:

0 < c2 < 1; 0 < c4 <
5
9

; c23 − 2c2c4 < 0

(5) Closed-form solutions for coefficients:

c1 = −c3

c3 =
5τ3
2
√

3

c2 =
1
2

(2− 7τ4)

c4 =
35τ4
18

Figure 7: The L-moment Power Method (PM) class of distributions based on
the Uniform pdf in Figure 1.
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(1) L-moment PM Triangular System:

λ1 = 0 = c1 + c3

τ3 =
71
√

3
2c3

98c2 + 216c4

λ2 =
7

5
√

6
=

49c2 + 108c4
35
√

6

τ4 =
583c2 + 6696c4

6468c2 + 14256c4

(2) Boundary Region for valid PM pdfs in the |τ3| and τ4 plane:

(3) Lower (a) and Upper (b) Boundary Region points:

τ̄3 = 0, τ̄4 = 0.0901a; τ̄3 = 0, τ̄4 = 0.4697b; τ̄3 = 0.5176b, τ̄4 = 0.2799

(4) Conditions for valid PM pdfs in the Boundary Region:

0 < c2 < 1; 0 < c4 <
49
108

(5) Closed-form solutions for coefficients:

c1 = −c3

c3 = τ3
98
71

√
2
3

c2 =
98(31− 66τ4)

2455

c4 =
26411τ4
22095

− 28567
265140

Figure 8: The L-moment Power Method (PM) class of distributions based on
the Triangular pdf in Figure 1.
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(1) L-moment PM Normal System:

λ1 = 0 = c1 + c3

τ3 =
2c3
√

3
π

2c2 + 5c4

λ2 =
1√
π

=
4c2 + 10c4

4
√
π

τ4 =
20
√

2(c2δ1 + c4δ2)
(2c2 + 5c4)π

− 3
2

(2) Boundary Region for valid PM pdfs in the |τ3| and τ4 plane:

(3) Lower (a) and Upper (b) Boundary Region points:

τ̄3 = 0, τ̄4 = 0.1226a; τ̄3 = 0, τ̄4 = 0.5728b; τ̄3 = 0.5352b, τ̄4 = 0.3472

(4) Conditions for valid PM pdfs in the Boundary Region:

0 < c2 < 1; 0 < c4 <
2
5

; c23 − 2c2c4 < 0

(5) Closed-form solutions for coefficients:

c1 = −c3; c2 =
−16δ2 +

√
2(3 + 2τ4)π

8(5δ1 − 2δ2)
; c3 = τ3

√
π

3
; c4 =

40δ1 −
√

2(3 + 2τ4)π
20(5δ1 − 2δ2)

δ1 =
3 tan−1

√
2√

2
− 3π

4
√

2
; δ2 =

15 tan−1
√

2
2
√

2
− 15π

8
√

2
+

1
4

Figure 9: The L-moment Power Method (PM) class of distributions based on
the Normal pdf in Figure 1.
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(1) L-moment PM D-Logistic System:

λ1 = 0 = c1 + c3

τ3 =

√
3
2c3(45− 75π2 + 16π4)

90c4π3 + 25c2π(3 + π2)

λ2 =
3 + π2

3
√

6π
=

18c4π2 + 5c2(3 + π2)
15
√

6π

τ4 =
21c2π4(−35 + 4π2) + 15c4(63− 637π4 + 72π6)

98π2(18c4π2 + 5c2(3 + π2))

(2) Boundary Region for valid PM pdfs in the |τ3| and τ4 plane:

(3) Lower (a) and Upper (b) Boundary Region points:

τ̄3 = 0, τ̄4 = 0.1472a; τ̄3 = 0, τ̄4 = 0.6314b; τ̄3 = 0.5452b, τ̄4 = 0.3893

(4) Conditions for valid PM pdfs in the Boundary Region:

0 < c2 < 1; 0 < c4 <
5
18

+
5

6π2
; c23 − 2c2c4 < 0

(5) Closed-form solutions for coefficients:

c1 = −c3

c3 =
25
√

2
3π(3 + π2)τ3

45− 75π2 + 16π4

c2 =
5(3 + π2)(315− 3185π4 − 588τ4π4 + 360π6)

4725 + 1575π2 − 47775π4 − 6115π6 + 1296π8

c4 = − 35π2(3 + π2)(−210τ4 − 105π2 − 70τ4π2 + 12π4)
3(4725 + 1575π2 − 47775π4 − 6115π6 + 1296π8))

Figure 10: The L-moment Power Method (PM) class of distributions based on
the D-Logistic pdf in Figure 1.
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(1) L-moment PM Logistic System:

λ1 = 0 = c1 + c3

τ3 =
2
√

3c3
(c2 + 3c4)π

λ2 =
√

3
π

=
√

3(c2 + 3c4)
π

τ4 =
c2π

2 + 3c4(30 + π2)
6(c2 + 3c4)π2

(2) Boundary Region for valid PM pdfs in the |τ3| and τ4 plane:

(3) Lower (a) and Upper (b) Boundary Region points:

τ̄3 = 0, τ̄4 = 0.1667a; τ̄3 = 0, τ̄4 = 0.6733b; τ̄3 = 0.5513b, τ̄4 = 0.4200

(4) Conditions for valid PM pdfs in the Boundary Region:

0 < c2 < 1; 0 < c4 <
1
3

; c23 − 2c2c4 < 0

(5) Closed-form solutions for coefficients:

c1 = −c3
c3 =

τ3π

2
√

3

c2 =
1
30

(30 + π2 − 6π2τ4)

c4 =
1
90

(6π2τ4 − π2)

Figure 11: The L-moment Power Method (PM) class of distributions based on
the Logistic pdf in Figure 1.
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the region for valid pdfs is given in Figure 7 along with minimum and maximum
values of τ3 and τ4. The derivations of the other four PM boundary regions
and boundary points are analogous to the uniform-based PM transformation.
The boundary regions, boundary points, and specific conditions for coefficients
to ensure a valid PM pdf for the other four classes of distributions are given
in Figures 8–11.

Figure 12 through Figure 16 provide examples of the graphs of PM pdfs
based on selected values of τ3 and τ4 from each of five classes of distributions.
The solved coefficients for each PM distribution are provided as well as their
corresponding values of conventional skew (γ3), kurtosis (γ4), and coefficients.
These distributions are subsequently used in the simulation portion of the
study, which is presented in the next section.

3 A comparison between the Conventional mo-

ment and L-moment families

3.1 Estimation

One of the advantages that sample L-moment ratios (t3,4) have over conven-
tional moment based estimators, such as skew (g3) and kurtosis (g4), is that
t3,4 are less biased (e.g. [18]). This advantage can be demonstrated in the
context of the PM by considering the simulation results associated with the
indices for the percentage of relative bias and standard error reported in Fig-
ure 12 through Figure 16. More specifically, a Fortran algorithm was coded
to generate twenty-five thousand independent sample estimates of g3,4 and t3,4
based on the parameters and coefficients listed in Figures 12–16. The estimates
of g3,4 were computed based on Fisher?s k-statistics and the estimates of t3,4
were based on the formulae given in Headrick ([4], Eqs. 6, 8). Both small
(n = 50) and large (n = 1000) sample sizes were considered. Bootstrapped
average estimates, confidence intervals, and standard errors were obtained for
g3,4 and t3,4 using ten-thousand resamples via the commercial software pack-
age Spotfire S+ [20]. Further, the percentage of relative bias (RBias) for
each estimate was computed as: RBias %(gj)= 100× (gj − γj)/γj and RBias
%(tj)= 100× (tj − τj)/τj.

The results in Figures 12–16 demonstrate the substantial advantage that
L-moment ratios have over conventional moment estimates in terms of both
relative bias and error and for all classes of PM distributions considered. For
example, in the context of the logistic based PM (n = 1000), the conventional
estimates of g3 and g4 generated in the simulation were, on average, 30% and
67% less than their respective parameters. On the other hand, the amounts
of relative bias associated with the L-moment ratios are essentially negligible.
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L-moment

Parameters and Coefficients:

τ3 = 0.20
τ4 = 0.10

c1 = −0.2887, c2 = 0.6500, c3 = 0.2887, c4 = 0.1944

Estimate 95% Bootstrap C.I. Standard Error Relative Bias %
t3 = 0.2012 0.2005, 0.2018 0.0003 0.60
t4 = 0.1038 0.1032, 0.1044 0.0003 3.80

Conventional Moment

Parameters and Coefficients:

γ3 = 0.811
γ4 = −0.201

c1 = −0.2765, c2 = 0.6226, c3 = 0.2765, c4 = 0.1862

Estimate 95% Bootstrap C.I. Standard Error Relative Bias %
g3 = 0.8231 0.8201, 0.8261 0.0015 1.54
g4 = −0.0397 −0.0488,−0.0315 0.0044 80.2

Figure 12: Simulation results of an example that compares the Conventional
and L-moment Uniform PM classes. The estimates were based on sample sizes
of n = 50.



2180 F. A. Hodis, T. C. Headrick, and Y. Sheng

L-moment

Parameters and Coefficients:

τ3 = 0.20
τ4 = 0.25

c1 = −0.2254, c2 = 0.5788, c3 = 0.2254, c4 = 0.1911

Estimate 95% Bootstrap C.I. Standard Error Relative Bias %
t3 = 0.1970 0.1959, 0.1980 0.0005 −1.50
t4 = 0.2515 0.2508, 0.2522 0.0004 0.60

Conventional Moment

Parameters and Coefficients:

γ3 = 1.235
γ4 = 2.627

c1 = −0.2042, c2 = 0.5243, c3 = 0.2042, c4 = 0.1731

Estimate 95% Bootstrap C.I. Standard Error Relative Bias %
g3 = 1.140 1.134, 1.147 0.0032 −7.69
g4 = 2.492 2.467, 2.514 0.0120 −5.10

Figure 13: Simulation results of an example that compares the Conventional
and L-moment Triangular PM classes. The estimates were based on sample
sizes of n = 50.
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L-moment

Parameters and Coefficients:

τ3 = 0.15
τ4 = 0.30

c1 = −0.1535, c2 = 0.6059, c3 = 0.1535, c4 = 0.1576

Estimate 95% Bootstrap C.I. Standard Error Relative Bias %
t3 = 0.1426 0.1410, 0.1442 0.0008 −4.93
t4 = 0.2948 0.2939, 0.2958 0.0005 −1.73

Conventional Moment

Parameters and Coefficients:

γ3 = 1.546
γ4 = 12.64

c1 = −0.1316, c2 = 0.5196, c3 = 0.1316, c4 = 0.1352

Estimate 95% Bootstrap C.I. Standard Error Relative Bias %
g3 = 0.9860 0.9695, 1.002 0.0082 −36.2
g4 = 5.365 5.302, 5.432 0.0327 −57.6

Figure 14: Simulation results of an example that compares the Conventional
and L-moment Normal PM classes. The estimates were based on sample sizes
of n = 50.
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L-moment

Parameters and Coefficients:

τ3 = 0.20
τ4 = 0.40

c1 = −0.1912, c2 = 0.4779, c3 = 0.1912, c4 = 0.1891

Estimate 95% Bootstrap C.I. Standard Error Relative Bias %
t3 = 0.1993 0.1987, 0.1999 0.0003 −0.35
t4 = 0.3991 0.3988, 0.3994 0.0002 −0.22

Conventional Moment

Parameters and Coefficients:

γ3 = 3.234
γ4 = 80.70

c1 = −0.1389, c2 = 0.3473, c3 = 0.1389, c4 = 0.1374

Estimate 95% Bootstrap C.I. Standard Error Relative Bias %
g3 = 2.621 2.587, 2.654 0.0172 −5.50
g4 = 43.10 42.53, 43.67 0.2948 −46.6

Figure 15: Simulation results of an example that compares the Conventional
and L-moment D-Logistic PM classes. The estimates were based on sample
sizes of n = 1000.
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L-moment

Parameters and Coefficients:

τ3 = −0.30
τ4 = 0.45

c1 = 0.2721, c2 = 0.4407, c3 = −0.2721, c4 = 0.1864

Estimate 95% Bootstrap C.I. Standard Error Relative Bias %
t3 = −0.2989 −0.2997,−0.2983 .0004 −0.37
t4 = 0.4484 0.4480, 0.4488 .0002 −0.36

Conventional Moment

Parameters and Coefficients:

γ3 = −6.099
γ4 = 232.3

c1 = −0.1718, c2 = 0.2784, c3 = 0.1718, c4 = 0.1178

Estimate 95% Bootstrap C.I. Standard Error Relative Bias %
g3 = −4.269 −4.318,−4.217 0.0257 −30.0
g4 = 76.58 75.57, 77.62 0.5151 −67.0

Figure 16: Simulation results of an example that compares the Conventional
and L-moment Logistic PM classes. The estimates were based on sample sizes
of n = 1000.
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Further, the standard errors associated with t3,4 are relatively much smaller
than the corresponding standard errors for g3,4.

3.2 Power

Hosking [21] suggested that L-skew (τ3) and L-kurtosis (τ4) are more accurate
indicators of the power associated with goodness-of-fit tests in terms of de-
tecting deviations from normality than the usual measures of skew (γ3) and
kurtosis (γ4). This advantage can also be demonstrated in the context of PM
transformations. Specifically, listed in Table 2 are values of γ4 and τ4 for the
normal distribution and twenty-one other various symmetric non-normal dis-
tributions based on the Normal, D-logistic, and Logistic PM transformations.
To make the comparison, an algorithm was coded in Fortran to draw twenty-
five thousand independent samples of size n = 20 from each of the twenty-two

Case PM Polynomial Kurtosis (γ4) L-kurtosis (τ4) Power
1 Normal 0 0.1226 0.05
2 Normal 1 0.1586 0.094
3 Logistic 2 0.1779 0.131
4 D-Logistic 3 0.1858 0.155
5 Normal 4 0.2195 0.229
6 D-Logistic 5 0.2040 0.201
7 Logistic 6 0.2073 0.203
8 Logistic 7 0.2120 0.215
9 Normal 8 0.2715 0.378
10 Normal 9 0.2824 0.411
11 Logistic 10 0.2238 0.246
12 D-Logistic 12 0.2438 0.302
13 D-Logistic 14 0.2522 0.323
14 Normal 16 0.3485 0.604
15 Normal 18 0.3656 0.651
16 D-Logistic 20 0.2739 0.378
17 Logistic 25 0.2604 0.336
18 Normal 30 0.4623 0.866
19 D-Logistic 35 0.3160 0.487
20 Normal 40 0.5447 0.968
21 D-Logistic 45 0.3394 0.545
22 Logistic 50 0.2978 0.431

Table 2: Power of the Anderson-Darling test for normality (α = 0.05) for
various symmetric power method (PM) distributions. Each entry of power is
based on a sample size of n = 20. See Figure 17.
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Figure 17: Power of the Anderson-Darling test for the kurtosis and L-kurtosis
values associated with the symmetric power method distributions in Table 2.
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distributions. The Anderson-Darling (AD) test [22] was computed to test for
normality (α = 0.05) on each sample. The power results associated with the
AD test are given in Table 2 and represent the proportion of rejections across
the twenty-five thousand replications.

Figure 17 gives the plots of the power of the AD test against kurtosis (γ4)
and L-kurtosis (τ4). Inspection of Figure 17 indicates that, with the exception
of small departures from normality, the relationship between γ4 and power to
be erratic whereas the relationship between τ4 and power is very well defined.
Thus, τ4 is the more appropriate index for distinguishing between distributions
as it relates to the power of the AD test. Similar results were also reported in
[21] in the context of the Shapiro-Wilk test for normality.

3.3 Outliers

Another advantage that L-moments have over conventional moments is that
they are relatively insensitive to extreme scores or outliers (e.g. [17]). This
can be demonstrated by considering the two skewed and heavy-tailed standard
normal PM distributions given in Table 3. Specifically, five samples of size
n = 5000 were drawn from each of these two distributions and the estimates of
skew (L-skew) and kurtosis (L-kurtosis) were computed on all the data points
and again after the single largest data point was removed from each of the
data sets. The estimates are listed in Table 3 where an entry enclosed in
parentheses represents an estimate for a data set after the largest data point
had been removed. Presented in Panel A (Panel B) of Figure 18 is a plot that
summarizes the ten data sets in the skew (L-skew) and kurtosis (L-kurtosis)
plane. A circle in the plane represents a data set with all values included and
a square represents a data set with its largest value removed.

Given a sample size of n = 5000, one might expect that both conventional
moments and L-moments would be relatively insensitive to the removal of a
single data point. However, inspection of Figure 18 indicates that there is no
discernable pattern that would allow one to predict what the effect might be
on the conventional measures of skew or kurtosis. For example, removing the
largest data point from the second sample associated with the first population
had the effect of reducing skew by 9.94% and reducing kurtosis by 13.92%. On
the other hand, removing the largest data point from the first sample associated
with the second population had the effect of reducing skew by 41.35% and
reducing kurtosis by 43.63%. More generally, the effect of deleting the single
largest value from a data set can produce large, moderate, or small changes in
skew and kurtosis.

In terms of L-skew and L-kurtosis, inspection of Figure 18 indicates that
there is a clear predictive pattern of what the effects are from removing the
largest data point – a consistent slight shift down and to the left in the plane
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Skew Kurtosis L-skew L-kurtosis
Parameters Sample g3 g4 t3 t4

Population A 1 1.849 18.334 .1635 .3600
γ3 = 2.0 (1.428) (12.552) (.1591) (.3570)
γ4 = 20

2 1.991 15.616 .1738 .3673
τ3 = .182804 (1.793) (13.443) (.1704) (.3651)
τ4 = .359955

3 2.006 15.936 .1878 .3530
(1.671) (11.414) (.1838) (.3503)

4 1.854 20.929 .1852 .3590
(1.362) (13.986) (.1807) (.3558)

5 1.999 25.008 .1744 .3630
(1.281) (13.434) (.1691) (.3593)

Population B 1 2.808 48.603 .3118 .4997
γ3 = 3.5 (1.647) (27.398) (.3054) (.4956)
γ4 = 40

2 3.684 33.757 .3517 .4808
τ3 = .330319 (3.194) (25.328) (.3472) (.4778)
τ4 = .499842

3 3.095 37.977 .3234 .5090
(2.604) (30.879) (.3186) (.5061)

4 3.509 41.026 .3309 .4988
(3.095) (35.237) (.3262) (.4979)

5 4.014 39.106 .3648 .5013
(3.355) (26.425) (.3597) (.4979)

Table 3: Sample statistics from two populations (A and B) based on samples of
size n = 5000. The samples were drawn from normal-based PM polynomials.
An entry enclosed in parentheses denotes a statistic that was computed on the
data set after the single largest value had been removed (i.e. n = 4999). See
Figure 18.
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Figure 18: Plots of the Skew-Kurtosis and L-skew-L-kurtosis values listed in
Table 3. Black circles denote statistics based on samples of size n = 5000
and red squares denote statistics based on the same samples with their largest
value deleted (n = 4999).
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– i.e. slightly less L-skew and slightly less L-kurtosis. One way of making a
comparison on a percentage basis to what was done above is to convert the
values of L-skew and L-kurtosis in Table 3 to the conventional measures of
skew and kurtosis. This is accomplished by evaluating the third-order system
of equations in Figure 9 using the coefficients that would yield the values of
L-skew and L-kurtosis in Table 3. For example, the values of t3 = .1738
(.1704) and t4 = .3673 (.3651) associated with the second sample in the first
population would convert to the values of g3 = 1.925 (1.887) and g4 = 20.615
(20.274). Thus, removing the largest data point from the second sample of the
first population would have the effect of reducing skew and kurtosis by only
1.97% and 1.65%, respectively. Similarly, removing the largest data point from
the first sample associated with the second population would have the effect
of reducing skew and kurtosis by only 1.64% and 1.53%.

3.4 Distribution Fitting

Presented in Figure 19 are conventional moment and L-moment-based PM
pdfs superimposed on a histogram of body density data taken from adult males
(http://lib.stat.cmu.edu/datasets/bodyfat). The data were measured in grams
per cubic centimeter. The PM pdfs are based on fifth-order polynomials i.e.
m = 6 in (5) as third-order polynomials yielded less accurate fits to the data.
The conventional and L-moment based sample estimates of g3,...,6 and t3,...,6
listed in Figure 19 were based on a sample size of n = 252 participants. The
conventional estimates of g3,...,6 and their coefficients were computed using the
Mathematica source code given in [23]. The L-moment ratios t3,...,6 and their
coefficients were computed using the formulae given in [16] (see Eqs. 6, 8; and
Eqs. 10–15). The sample estimates were subsequently used to solve for the
two sets of coefficients, which produced the PM pdfs based on (11). Note that
the two polynomials were linearly transformed using the location and scale
estimates (m, s; `1, `2) from the data.

Visual inspection of the PM approximations in Figure 19 and the goodness
of fit statistics given in Table 4 indicate that the L-moment-based pdf provides
a more accurate fit to the actual data. The reason for this is partially attributed
to the fact that the conventional moment-based power method pdf does not
have an exact match with g6 whereas the L-moment pdf is based on an exact
match with all of the sample estimates. Note also that the asymptotic p-values
in Table 4 are based on a chi-square distribution with degrees of freedom:
df = 10(classes)−6(estimates)−1(sample size) = 3.
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Conventional moment approximation L-moment approximation

Parameter Estimates Coefficients
m = 1.055574 c1 = −0.006154
s = 0.019031 c2 = 1.071691
g3 = −0.020176 c3 = 0.016487
g4 = −0.309619 c4 = −0.033401
g5 = −0.400378 c5 = −0.003444
g6 = 2.368240 c6 = 0.001831

Parameter Estimates Coefficients
`1 = 1.055574 c1 = −0.013362
`2 = 0.010850 c2 = 1.118827
t3 = 0.003546 c3 = 0.035260
t4 = 0.086880 c4 = −0.079607
t5 = −0.009142 c5 = −0.007300
t6 = 0.038191 c6 = 0.007460

Figure 19: Histograms and fifth-order power method approximations for the
Body Density Data taken from n = 252 adult males.

% Expected Obs(C) Obs(L) Body Density (C) Body Density (L)
10 25.2 25 25 <1.03087 <1.03120
20 25.2 27 25 1.03087–1.03885 1.03120–1.03847
30 25.2 24 26 1.03885–1.04494 1.03847–1.04443
40 25.2 28 24 1.04494–1.05032 1.04443–1.04994
50 25.2 25 29 1.05032–1.05546 1.04994–1.05532
60 25.2 22 23 1.05546–1.06064 1.05532–1.06079
70 25.2 21 22 1.06064–1.06615 1.06079–1.06656
80 25.2 27 28 1.06615–1.07245 1.06656–1.07298
90 25.2 29 26 1.07245–1.08072 1.07298–1.08090
100 25.2 24 24 >1.08072 >1.08090

C: χ2 = 2.365 L: χ2 = 1.651
Pr{χ2

3 ≤ 2.365} = .500 Pr{χ2
3 ≤ 1.651} = .648

Table 4: Chi-square goodness of fit statistics for the conventional (C) moment
and L-moment approximations for the Body Density Data (n = 252) depicted
in Figure 19.
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4 Concluding Comments

This paper presented five classes of PM distributions in the contexts of both
conventional moments and L-moments. The inclusion of the four additional
classes of PM distributions beyond the standard normal based PM substan-
tially broadens the boundary of feasible combinations of skew (L-skew) and
kurtosis (L-kurtosis). Specifically, in the context of symmetric third-order
polynomials, the conventional kurtosis boundary was extended from 0 < γ4 <
43.2 to −1.2 < γ4 < 472.5 where the lower limit is associated with the uni-
form distribution and the upper limit is associated with the logistic-based PM
transformation.

The conventional moment and L-moment families of PM distributions were
also compared in terms of estimation, power, outliers, distribution fitting. In
all four categories, the L-moment based PM family was superior to the con-
ventional moment family. Thus, the L-moment based PM is an attractive
alternative to the traditional or conventional PM. In particular, the L-moment
based procedure has distinct advantages when distributions with large depar-
tures from normality are under consideration. Finally, we would note that
Mathematica 8.0.1 source code is available from the authors for implementing
procedures associated with either the conventional or L-moment families of
PM distributions e.g. solving for coefficients, computing percentage points,
graphing pdfs, and so forth.
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