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ABSTRACT: Continuous-span, cast-in-place box girders have been popular 

in modern bridge construction. Secondary moments due to prestressing in 

continuous-span, post-tensioned girders, however, have significantly 

complicated the structural analysis and design of the girders. The equivalent 

load method is a commonly used method in the analysis of continuous-span, 

post-tensioned concrete girders since the method reduces the analysis of a 

prestressed structure to that of a nonprestressed structure in which the 

consideration of secondary moments is not required. The basic concept of the 

equivalent load method is that the effects of prestressing are replaced by 

equivalent loads produced by the prestressed tendon along the span of the 

structure. The approximate equivalent load method significantly simplifies the 

procedure for the computation of equivalent loads for post-tensioned concrete 

girders with parabolic tendons and therefore has commonly been used by 

structural engineers. In this paper, three examples of simply-supported, post-

tensioned concrete girders with various combinations of locations of the 

centroid of tendons (c.g.s.) and the centroid of concrete (c.g.c.) are 

demonstrated to verify the accuracy of the approximate equivalent load method. 

Finally, an example of the analysis of a bridge composed of a continuous-span, 

post-tensioned concrete box girder superstructure and a concrete pier is also 

demonstrated using the approximate equivalent load method. Inconstant cross 

sections (inconstant c.g.c, lines) near the pier of the bridge are considered in this 

example.  

  

KEYWORDS: Box girders; Bridge design; Continuous beams; Piers; Post 

tensioning. 
 

1 INTRODUCTION 
Continuous-span, cast-in-place, post-tensioned box girders have been popular in 

modern bridge construction not only because of their aesthetic appearance, but 

also because they provide the following advantages: (1) Post-tensioned box 

girder bridges allow longer spans to be constructed, which in turn allow the 

number of columns to be economically reduced; (2) the pier bearing assemblies 
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can be eliminated in continuous-span, cast-in-place box girders by utilizing 

monolithic connections between the bridge superstructures and the piers, which 

in turn eliminate the bearing assemblies maintenance problems; and (3) the 

post-tensioning forces enhance the control of cracking in the concrete girders 

[1]. Unlike simple-span, simple-supported, post-tensioned girders that can be 

structurally analyzed using exact methods that are not very time consuming, the 

secondary moments due to prestressing in continuous-span, post-tensioned 

girders have significantly complicated the structural analysis and design of the 

girders. The equivalent load method, therefore, was developed in order to 

simplify the analysis procedure for continuous-span, post-tensioned girders.  

 

2 EXACT METHOD FOR THE COMPUTATION OF AXIAL 

FORCE, SHEAR, AND MOMENT 
Referring to Fig. 1, the parabolic tendon profile along the girder is defined by 

)
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                     (1) 

where:   h  is the sag at the mid-span of the parabolic tendon,  

L    is the span length of the parabolic tendon. 

 

From Eq. (1), Eq. (2) is developed: 
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Figure 1.  Exact method  
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The angle of the slope of the parabolic tendon at section x (the section at a 

distance of x from the left end) can be computed using Eq. (3):   

     ytan 1
x                                                (3) 

The axial force, shear, and moment at section x, therefore, are P∙cosθx, P∙sinθx, 

and P∙cosθx∙(ex), respectively. Note that P is the prestressing force, and ex is the 

vertical distance between the c.g.c line and c.g.s. line at section x. Similarly, 

The axial force, shear, and moment at the left end (at x = 0 m) of the girder, 

therefore, are P∙cosθo, P∙sinθo, and P∙cosθo∙(eo), respectively, where θo is angle 

of the slope of the parabolic tendon at x = 0 m and eo is the vertical distance 

between the c.g.c line and the c.g.s. line at x = 0 m. 

 

3 EQUILALENT LOAD METHOD 
As shown in Fig. 2, the basic concept of the equivalent load method is that the 

effects of prestressing are replaced by equivalent loads produced by the 

prestressing parabolic tendon along the span of the girder. 

 

 
Figure 2.  Exact equivalent load  

 

From Eqs. (1) and (2), Eq. (4) is developed: 

)
L

2
(h4y

2
                                                   (4) 

Moreover, from Eq. (2), one has 

At x = 0, )
L

1
(h4y   

At x = 
2

L
,  0y   

At x = L, )
L

1
(h4y   

Also referring to Fig. 2, the distributed transverse load, w, caused by the 

curvature of the prestressing tendon at the contact face between the tendon and 

the concrete [2,3] is:  
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)P(
])'y(1[

''y
w

2/32
                                       (5) 

where:   P   is the prestressing force. 

Note that at the mid-span (at x = L/2) of the girder, Eq. (5) turns out to be Eq. 

(6):     

      
2L

Ph8
w                           (6) 

 

Also note that at the ends of the girder (at x = 0 or L), Eq. (5) turns out to be Eq. 

(7):     
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Therefore, at the mid-span, the w value derived from Eq. (5) equals that shown 

in Eq. (6). The w value at a section becomes smaller when the section is 

approaching the end of the girder. At the ends, the w values are the smallest, as 

shown in Eq. (7). However, the deviations of the w values along the span are 

small since the ratio of h/L is small in post-tensioned girders.  

Moreover, referring to Fig. 3, the vertical component of the transverse load 

due to prestressing force P is smaller than, but is close to, the transverse load 

(that is, w cos θx ≈ w) for small values of θx. 
 

 
Figure 3.  Vertical component of the transverse load due to prestressing in a parabolic tendon 

 

Based on the above discussion, an approximate equivalent transverse load [4,5,6] 

as shown in Fig. 4 has been commonly used for the analysis of post-tensioned 

girders. Using the approximate equivalent load to compute the axial force, shear, 

and moment for a post-tensioned girder is called the “approximate equivalent 

load method” in this paper. 
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2L

Ph8
w   

Figure 4.  Approximate equivalent load 

 

4 ACCURACY VERIFICATION OF THE APPROXIMATE 

EQUIVALENT LOAD METHOD 
Three examples are demonstrated for the computation of the axial force, shear, 

and moment along the span of post-tensioned concrete girders in order to 

investigate the accuracy of the approximate equivalent load method. These three 

examples include (1) a girder with a constant c.g.c line and a concentric c.g.s. at 

both ends, (2) a girder with an abrupt change of c.g.c. line and a concentric c.g.s. 

at both ends, and (3) a girder with an abrupt change of c.g.c. line and an 

eccentric c.g.s. at one end. 

  
Example 1: The simply-supported, post-tensioned concrete girder shown in Fig. 

5 has a constant c.g.c. line. The parabolic c.g.s. line and the c.g.c. line are 

concentric at both ends of the girder (that is, the c.g.s. line is located at the same 

position of the c.g.c. line at both ends of the girder). The prestressing force is P 

= 3000 kN. Compute the axial force, shear, and moment along the span of the 

girder using (1) the exact method and (2) the approximate equivalent load 

method. Also, compare the results derived from both methods.  

  

Exact method: Referring to Figs. 1 & 5, the angle of the slope of the c.g.s. line 

at the left end (at x = 0 m) of the girder can be computed using Eqs. (2) & (3): 

ytan 1
o  

= 
m12

)m375.0(4
tan 1  = 7.1250° 

Therefore, the axial force and shear at the left end of the girder are P∙cosθo = 

2976.8 kN and P∙sinθo = 372.1 kN, respectively. Also, since the c.g.s. and the 

c.g.c. are concentric at both ends (i.e., there is no eccentricity between the two 

lines at both ends), eo = 0. Furthermore, since P∙cosθo∙(eo) = 0, there is no 

moment at the left end of the girder. 
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Figure 5.  Girder with a constant c.g.c. and a concentric c.g.s. at both ends  

 

Similarly, referring to Figs. 1 & 5, the angle of the slope of the c.g.s. line at a 

distance of x = 3 m from the left end of the girder can be computed using Eqs. 

(2) & (3): 

ytan 1
3  

= 








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1
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)m3(2
)m375.0(4tan

2

1 = 3.5763° 

Thus, the axial force and shear of the section at x = 3 m are P∙cosθ3 = 2994.2 kN 

and P∙sinθ3 = 187.1 kN, respectively. Also, the eccentricity between the c.g.s. 

and c.g.c. for the section at x = 3 can be computed using Eq. (1): 
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
  

The moment of the section at x = 3 m can thus be computed as P∙cosθ3∙(e3) = 

842 kN∙m. Finally, using the same computation procedure, the axial force, shear, 

and moment at the mid-span (x = 6 m), x = 9 m, and the right end (x = 12 m) of 

the girder can be obtained, respectively. 

 

Approximate equivalent load method: Referring to Fig. 4, the approximate 

equivalent load due to the prestressing of the parabolic tendon is uniformly 
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distributed along the entire length of the girder and can be computed using Eq. 

(6): 

m/kN5.62
)m12(

)m375.0)(kN3000(8

L

Ph8
w

22
  

The horizontal component of the prestressing force at the ends of the girder is 

approximately assumed to be:  

kN3000PcosPcosP 12o   

Also, the vertical component of the prestressing force at the ends of the girder is 

approximately assumed to be:  

kN375)m6)(m/kN5.62()
2

L
(wsinPsinP 12o   

The approximate equivalent loads acting on the girder result in the shear and 

moment diagrams shown in Fig. 6. 

 

 
Figure 6.  Approximate equivalent load method for Example 1 

 

The results obtained from the exact method and the approximate equivalent load 

methods are summarized in Table 1. The differences between these two results 

are all within 1% of each other.  
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Table 1. Shear, moment, and axial force along the girder in Example 1 
force  x = 0 m x = 3 m x = 6 m x = 9 m x = 12 m 

shear (exact) 372.1 kN 187.1 kN 0 kN 187.1 kN 372.1 kN 
shear (approximate) 375.0 kN 187.5 kN 0 kN 187.5 kN 375.0 kN 

moment (exact) 0 kN∙m 842 kN∙m 1125 kN∙m 842 kN∙m 0 kN∙m 
moment (approximate) 0 kN∙m 844 kN∙m 1125 kN∙m 844 kN∙m 0 kN∙m 

axial force (exact) 2977 kN 2994 kN 3000 kN 2994 kN 2977 kN 
axial force (approximate) 3000 kN 3000 kN 3000 kN 3000 kN 3000 kN 

 

Example 2: The simply-supported, post-tensioned concrete girder shown in Fig. 

7 has an abrupt change of c.g.c. line at the mid-span. The left half of the girder 

is composed of a solid concrete cross-section and the parabolic tendon segment 

I with h = 0.375 m, as shown in Fig. 7, while the right half of the girder is 

composed of a hollow concrete cross-section and the parabolic tendon segment 

II with h = 0.40342 m, as shown in Fig. 7. The c.g.s. line is located at the same 

position of the c.g.c. line at both ends of the girder. The prestressing force is P = 

3000 kN. Compute the axial force, shear, and moment along the span of the 

girder using (1) the exact method and (2) the approximate equivalent load 

method. Also, compare the results derived from both methods. 
 

Exact method: See the procedure shown in Example 1 for the computation of 

the axial force, shear, and moment at the left end (x = 0 m) and at x = 3 m of the 

girder, respectively. Also, referring to Figs. 1 & 7, the angle of the slope of the 

c.g.s. line at the midspan (x = 6 m) of the girder can be computed using Eqs. (2) 

& (3): 

In the parabolic tendon segment I (in which h = 0.375 m) just to the left of x = 

6m,  

ytan 1
6  

= 









m12

1

)m12(

)m6(2
)m375.0(4tan

2

1 = 0° 

In the parabolic tendon segment II (in which h = 0.40342 m) just to the right of 

x = 6 m,  

ytan 1
6  

= 









m12

1

)m12(

)m6(2
)m40342.0(4tan

2

1 = 0° 

Therefore, the axial force and shear at the mid-span of the girder are P∙cosθ6 = 

3000 kN and P∙sinθ6 = 0 kN, respectively. Also, since the eccentricity between 

the c.g.s. and the c.g.c. at the section just to the left of x = 6m is 0.375 m, the 

moment at the section can thus be computed as P∙cosθ6∙(e6) = (3000 km)(0.375 

m) = 1125 kN∙m. Furthermore, since the eccentricity between the c.g.s. and the 

c.g.c. at the section just to the right of x = 6m is 0.40342 m, the moment at the 

section can thus be computed as P∙cosθ6∙(e6) = (3000 km)(0.40342 m) = 1210 

kN∙m.  

Similarly, referring to Fig 7, the angle of the slope of the c.g.s. line at a distance 
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of x = 9 m from the left end of the girder can be computed using Eqs. (2) & (3): 

ytan 1
9  

= 









m12

1

)m12(

)m9(2
)m40342.0(4tan

2

1 = 3.8466° 

 
Figure 7.  Girder with an abrupt change of c.g.c. line and a concentric c.g.s. at both ends  
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Thus, the axial force and shear of the section at x = 9 m are P∙cosθ9 = 2993.2 kN 

and P∙sinθ9 = 201.3 kN, respectively. Also, the eccentricity between the c.g.s. 

and c.g.c. for the section at x = 9 can be computed using Eq. (1): 

m30257.0
m12

m9

)m12(

)m9(
)m40342.0(4)

L

x

L

x
(h4ye

2

2

2

2
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






  

The moment of the section at x = 9 m can thus be computed as P∙cosθ9∙(e9) = 

906 kN∙m. 

Finally, referring to Fig. 7, the angle of the slope of the c.g.s. line at the right 

end (x = 12 m) of the girder can be computed using Eqs. (2) & (3): 

ytan 1
12  

= 









m12

1

)m12(

)m12(2
)m40342.0(4tan

2

1 = 7.6588° 

Therefore, the axial force and shear at the right end of the girder are P∙cosθ12 = 

2973.2 kN and P∙sinθo = 399.8 kN, respectively. Also, since the c.g.s. and the 

c.g.c. are concentric at both ends (i.e., there is no eccentricity between the two 

lines at the right end), e12 = 0. Furthermore, since P∙cosθ12∙(e12) = 0, there is no 

moment at the right end of the girder. 

 

Approximate equivalent load method: Referring to Fig. 4, the approximate 

equivalent load due to the prestressing of the parabolic tendon segment I (shown 

in Fig. 7) is uniformly distributed along the left part of the girder and can be 

computed using Eq. (6): 

m/kN5.62
)m12(

)m375.0)(kN3000(8

L

Ph8
w

22
I

I
I   

Similarly, the approximate equivalent load due to the prestressing of the 

parabolic tendon segment II (shown in Fig. 7) is uniformly distributed along the 

right part of the girder and can be computed using Eq. (6): 

m/kN237.67
)m12(

)m40342.0)(kN3000(8

L

Ph8
w

22
II

II
II   

Also, since the angles of the slopes of the c.g.s. line at both ends (at x = 0 m and 

12 m) of the girder are small, the horizontal components of the prestressing 

force at the ends of the girder are approximately assumed to be:  

kN3000PcosPcosP 12o   

Furthermore, the vertical components of the prestressing force at the ends of the 

girder are approximately assumed to be:  
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At x = 0 m, kN375)m6)(m/kN5.62()
2

L
(wsinP I

Io   

At x = 12 m, kN4.403)m6)(m/kN237.67()
2

L
(wsinP II

II12   

In addition, since the elevation change of the c.g.c. at x = 6 m is 2.842 cm 

(shown in Fig. 7), the moment (the equivalent load) induced by the abrupt 

change of the c.g.c. line at x = 6 m can be computed as: 
 

85)m02842.0)(kN3000(M6  kN∙m (in the counterclockwise direction) 
 

The approximate equivalent loads acting on the girder result in the shear and 

moment diagrams shown in Fig. 8. 
 

 
Figure 8.  Approximate equivalent load method for Example 2 

 

The results obtained from the exact method and the approximate equivalent load 

methods are summarized in Table 2. The differences between these two results 

are all within 1% of each other.  
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Table 2. Shear, moment, and axial force along the girder in Example 2 

force  x = 0 m x = 3 m just to the 

left of  

x = 6 m 

just to the 

right of  

x = 6 m 

x = 9 m x = 12m 

shear  

(exact) 

372.1 kN 187.1 kN 0 kN 0 kN 201.3 kN 399.8 kN 

shear 

(approximate) 
375.0 kN 187.5 kN 0 kN 0 kN 201.7 kN 403.4 kN 

Moment 

(exact) 

0 kN∙m 842 kN∙m 1125 kN∙m 1210 kN∙m 906 kN∙m 0 kN∙m 

moment 

(approximate) 
0 kN∙m 844 kN∙m 1125 kN∙m 1210 kN∙m 908 kN∙m 0 kN∙m 

axial force 

(exact) 

2977 kN 2994 kN 3000 kN 3000 kN 2993 kN 2973 kN 

axial force 

(approximate) 
3000 kN 3000 kN 3000 kN 3000 kN 3000 kN 3000 kN 

 
Example 3: The simply-supported, post-tensioned concrete girder shown in Fig. 

9 has an abrupt change of c.g.c. line at x = 3 m from the left end of the girder. 

The portion of the girder from the left end to the section at x = 3 m is composed 

of the solid concrete cross-section, as shown in Fig. 8, while the portion from 

the section at x = 3 m to the right end of the girder is composed of the hollow 

concrete cross-section, as shown in Fig. 8. The c.g.s. line is located at the same 

position of the c.g.c. line at the left end of the girder, while there is an 

eccentricity of 2.842 cm between the c.g.s. and the c.g.c. at the right end of the 

girder. The prestressing force is P = 3000 kN. Compute the axial force, shear, 

and moment along the span of the girder using (1) the exact method and (2) the 

approximate equivalent load method. Also, compare the results derived from 

both methods. 
 
Exact method: See the procedure shown in Example 1 for the computation of 

the axial force and shear at x = 0 m, 3 m, 6 m, 9 m, and 12 m, respectively. The 

computed axial forces and shears are shown in Fig. 9. Referring to Fig. 9, the 

moment at each section can thus be computed as: (1) at the left end of the girder 

(x = 0 m), moment = P∙cosθo∙(eo) = (2976.8 kN)∙(0) = 0; (2) at the section just to 

the left of x = 3 m,  moment = P∙cosθ3∙(e3) = (2994.2 kN)∙(0.28125 m) = 842 

kN∙m; (3) at the section just to the right of x = 3m, moment = (2994.2 

kN)∙(0.30967 m) = 927 kN∙m; (4) at x = 6 m, moment = (3000 kN)∙(0.40342 m) 

= 1210 kN∙m; (5) at x = 9 m, moment = (2994.2 kN)∙(0.30967 m) = 927 kN∙m; 

and (6) at the right end of the girder (x = 12 m), moment = (2976.8 

kN)∙(0.02842 m) = 84.6 kN∙m. 
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Figure 9.  Girder with an abrupt change of c.g.c. line and an eccentric c.g.s. at one end  

 

Approximate equivalent load method: See the procedure shown in Example 1 

for the computation of the approximate equivalent uniformly distributed load 

acting along the span of the girder and the approximate equivalent vertical and 

horizontal loads (the approximate vertical and horizontal components of the 

prestressing force) acting at the ends of the girder, as shown in Fig. 10. 
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In addition, since the elevation change of the c.g.c. at x = 3 m is 2.842 cm 

(shown in Fig. 9), the moment (the equivalent load) induced by the abrupt 

change of the c.g.c. line at x = 3 m can be computed as: 
 

85)m02842.0)(kN3000(M3  kN∙m (in the counterclockwise direction) 
 

Moreover, since there is an eccentricity of e12 = 2.842 cm between the c.g.s. and 

the c.g.c. at the right end (x = 12 m) of the girder, the moment (the equivalent 

load) induced by the eccentricity at x = 12 m can be computed as: 
 

85)m02842.0)(kN3000(M12  kN∙m (in the clockwise direction) 
 

The approximate equivalent loads acting on the girder result in the shear and 

moment diagrams shown in Fig. 10. 

 

 
Figure 10.  Approximate equivalent load method for Example 3 

 
The results obtained from the exact method and the approximate equivalent load 

methods are summarized in Table 3. The differences between these two results 

are all within 1% of each other.  
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Table 3. Shear, moment, and axial force along the girder in Example 3 

force  x = 0 m just to the 

left of  

x = 3 m 

just to the 

right of  

x = 3 m 

x = 6 m x = 9 m x = 12m 

shear  

(exact) 

372.1 kN 187.1 kN 187.1 kN 0 kN 187.1 kN 372.1 kN 

shear 

(approximate) 
375.0 kN 187.5 kN 187.5 kN 0 kN 187.5 kN 375.0 kN 

moment 

(exact) 

0 kN∙m 842 kN∙m 927 kN∙m 1210 kN∙m 927 kN∙m 84.6 kN∙m 

moment 

(approximate) 
0 kN∙m 844 kN∙m 929 kN∙m 1210 kN∙m 929 kN∙m 85 kN∙m 

axial force 

(exact) 

2977 kN 2994 kN 2994 kN 3000 kN 2994 kN 2977 kN 

axial force 

(approximate) 
3000 kN 3000 kN 3000 kN 3000 kN 3000 kN 3000 kN 

 

5 CONTINUOUS-SPAN, POST-TENSIONED BOX GIRDER 

BRIDGE ANALYSIS EXAMPLE USING THE 

APPROXIMATE EQUIVALENT LOAD METHOD 

5.1 Bridge geometry 
The following information is given for this post-tensioned box girder bridge 

analysis example: (1) The bridge has a continuous two-span, cast-in-place, box 

girder superstructure; (2) The longitudinal frame system of the bridge is shown 

in Fig. 11; (3) The span length of the two spans are 160 feet (48.768 m) and 150 

feet (45.720 m), respectively; (4) The prestressing force acting along the tendon 

in the superstructure is 7730 kips (34,383 kN). (5) The cross section of the pier 

is shown in Fig. 12; and (6) The transverse cross section of the box girder is 

shown in Fig. 13 (a) and (b).  

Fig. 13 (a) shows that the soffit (the bottom slab of the box girder) is 

typically 6 inches (152 mm) thick and flared to 12 inches (305 mm) thick at the 

section near the pier. Fig. 13 (b) shows the transverse cross section of the box 

girder at the pier.  

 

 
Figure 11.  Longitudinal frame system of the bridge  
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Figure 12.  Cross section of the pier 

 

 
Figure 13.  Transverse cross section of the box girder 

 

The elevation (yb) of the c.g.c. reduces as the thickness of the soffit increases as 

shown in Table 4. The longitudinal cross section of the box girder at the pier is 
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shown in Fig 14. Referring to Fig. 14, the reason for increasing the thickness of 

the soffit near the pier is to lower the c.g.c. of the superstructure in this area, and 

thus, increase the eccentricity between the c.g.s. and the c.g.c. of the 

superstructure near the pier. The high tensile stresses that are usually present at 

the top fibers of the superstructure near the pier can thus be reduced by 

increasing the eccentricity between the c.g.s. and the c.g.c. in this area [7].  

  

Table 4. Section properties of the transverse cross sections of the box girder 

soffit yt 
a yb

 b Ig
 c Ag

 d 

typical  

6 in. (152 mm) 

2.87 ft 

(87.5 cm) 

3.63 ft  

(110.6 cm) 

419.8 ft4 

(362 × 106 cm4) 

69.03 ft2 

(64,131 cm2) 

flared 

8 in. (203 mm) 

3.06 ft 

(93.3 cm) 

3.44 ft 

(104.8 cm) 

458.8 ft4 

(396 × 106 cm4) 

73.53 ft2 

(68,312 cm2) 

flared 

10 in. (254 mm) 

3.21 ft 

(97.8 cm) 

3.29 ft 

(100.3 cm) 

489.6 ft4 

(423 × 106 cm4) 

78.03 ft2 

(72,492 cm2) 

flared 

12 in. (305 mm) 

3.34 ft 

(101.8 cm) 

3.16 ft 

(96.3 cm) 

513.5 ft4 

(443 × 106 cm4) 

82.53 ft2 

(76,673 cm2) 

Solid section 3.19 ft 

(97.2 cm) 

3.31 ft 

(100.9 cm) 

768.3 ft4 

(663 × 106 cm4) 

212.6 ft2 

(197,512 cm2) 

ayt = the distance from the neutral axis of a concrete gross section, neglecting steel, to the extreme 

top fiber of the section.  
byb= the distance from the neutral axis of a concrete gross section, neglecting steel, to the extreme 

bottom fiber of the section. 
cIg= the moment of inertia of a gross concrete section about the neutral axis of the section, 

neglecting steel. 
dAg= the gross area of a concrete section. 
 

 
Figure 14.  Longitudinal cross section of the box girder at the pier 
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5.2 Cable path 
Placing the c.g.s. at yt = 2.87 ft (875 mm) (the location of the neutral axis of the 

typical cross section as shown in Table 4) in the anchor zone results in a 

uniform stress distribution at the ends of the girder. However, the top tendons 

may be too high to have sufficient top edge clearance. In order to increase edge 

clearance at the top, the c.g.s. is placed at the mid-height of the ends of the 

girder as shown in Fig. 15. 
 

 
Figure 15.  Cable path 

 

Also, in each span, the maximum moment due to the weight of the girder is 

approximately located at a distance of 0.4 L from the abutment, where L is the 

span length. The lowest point of the c.g.s. in each span, therefore, is placed at a 

distance of 0.4 L from the abutment in order to balance the maximum moment 

at the section induced by the weight of the girder. Fig. 15 illustrates the lowest 

points (at 0.4 L from the abutment) and the highest point (at the pier) of the 

c.g.s.   
The inflection points along the cable path are located at a distance of 0.1 L 

from the center line of the pier. This location provides a reasonable radius of 

curvature for placing a semi-rigid duct [1]. Referring to Fig. 16, the location of 

the inflection point of the c.g.s. in each span can be determined using the 

following procedure [5]: (1) draw a line to connect the highest point of the c.g.s. 

in the span (at the center line of the pier) and the lowest point of the c.g.s, in the 

span (at 0.4 L from the abutment, i.e., at 0.6 L from the center line of the pier), 

(2) draw a vertical line at a distance of 0.1 L from the center line of the pier, (3) 

find the location of the inflection point (the intersection of these two lines).  
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Figure 16.  Locations of inflection points 

 

5.3 Equivalent loads produced by prestressing 
As shown in Fig. 17, the tendon profile in each span of the girder is made of 

three parabolas. Therefore, there are a total of six parabolas in this two-span 

girder. 
 

 
Figure 17.  Tendon profile of the girder 

 

Note that due to frictional and anchor set losses, the magnitude of the 

prestressing force acting along the tendon changes from one location to another. 

This example assumes that the difference between the largest and the smallest 

prestressing force acting along the tendon is small (say within 6% of each other), 

the average of these two extreme prestressing forces, therefore, is used as the 

constant prestressing force, 7730 kips (34,383 kN), acting along the entire 

length of the tendon.   

Referring to Fig. 17, the approximate uniformly distributed equivalent load 

due to the prestressing of the tendon can be computed using Eq. (6) for each 
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parabola: 
 

For Parabola 1: )m/kN9.123(ft/kip492.8
)ft128(

)ft25.2)(kips7730(8

L

Ph8
w

22
1

1
I  ↑ 

For Parabola 2: )m/kN9.124(ft/kip556.8
)ft160(

)ft542.3)(kips7730(8

L

Ph8
w

22
2

2
2  ↑ 

For Parabola 3: )m/kN9.623(ft/kip757.42
)ft32(

)ft708.0)(kips7730(8

L

Ph8
w

22
3

3
3   ↓ 

For Parabola 4: )m/kN9.709(ft/kip647.48
)ft30(

)ft708.0)(kips7730(8

L

Ph8
w

22
4

4
4  ↓ 

For Parabola 5: )m/kN1.142(ft/kip735.9
)ft150(

)ft542.3)(kips7730(8

L

Ph8
w

22
5

5
5  ↑ 

For Parabola 6: )m/kN0.141(ft/kip663.9
)ft120(

)ft25.2)(kips7730(8

L

Ph8
w

22
6

6
6  ↑ 

 

In addition, for small values of θ1 and θ2 [where θ1 and θ2 are the angles of the 

slopes of the parabolic tendon at the left end (at Abutment 1) and the right end 

(at Abutment 2), respectively], the horizontal component of the prestressing 

force at the ends of the girder is approximately assumed to be:  

)kN383,34(kips7730PcosPcosP 21   

Also, the vertical component of the prestressing force at the left end (at 

Abutment 1) of the girder is approximately assumed to be:  

)kN2417(kips5.543)m64)(ft/kip492.8(sinP 1  ↓ 

Similarly, the vertical component of the prestressing force at the right end (at 

Abutment 2) of the girder is approximately assumed to be 

)kN2579(kips8.579)m60)(ft/kip663.9(sinP 2  ↓ 

Moreover, since there is an eccentricity of e1 = 0.38 ft (116 mm) between the 

c.g.s. and the c.g.c. at the left end (at Abutment 1) of the girder, the moment 

(the equivalent load) induced by the eccentricity can be computed as: 
 

2937)ft38.0)(kip7730(M1  kip∙ft (3982 kN∙m) (in the counterclockwise 

direction) 
 

Similarly, since there is an eccentricity of e2 = 0.38 ft (116 mm) between the 

c.g.s. and the c.g.c. at the right end (at Abutment 2) of the girder, the moment 

(the equivalent load) induced by the eccentricity can be computed as: 
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2937)ft38.0)(kip7730(M2  kip∙ft (3982 kN∙m) (in the clockwise direction) 
 

The approximate equivalent loads (caused by prestressing) acting on the girder, 

neglecting the changes of the c.g.c. near the pier, are summarized and shown in 

Fig. 18. 
 

 
Figure 18.  Approximate equivalent loads neglecting the changes of c.g.c. near the pier 

 

The equivalent loads caused by the changes of the c.g.c. near the pier can be 

computed using the following approach: 

(1) Modify the longitudinal cross section of the box girder near the pier by 

replacing the original flared soffit [where the soffit thickness is gradually 

increased from 6 inches (152 mm) to 12 inches (305 mm)] near the pier as 

shown in Fig. 14 with the substitutive segmental soffits [the thicknesses of 

the three segments are 8 inches (203 mm), 10 inches (254 mm), and 12 

inches (305 mm), respectively] as shown in Fig. 19. 
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Figure 19.  Modified longitudinal cross section of the box girder near the pier 

 

(2) Referring to the section properties as shown in Table 4, locate the c.g.c. lines 

for the cross sections with the four different soffit thickness [they are 6 

inches (152 mm), 8 inches (203 mm), 10 inches (254 mm), and 12 inches 

(305 mm), respectively] near the pier, as well as for the solid cross section 

at the pier. The longitudinal c.g.c. profile near and at the pier can thus be 

constructed and is shown in Fig. 20.   

(3) Referring to the longitudinal c.g.c. profile near and at the pier shown in Fig. 

20, the moments (the equivalent loads) induced by each of the abrupt 

changes of the c.g.c. line can be computed as the following: 
 

At the section between the 6 in. (152 mm) soffit and the 8 in. (203 mm) soffit, 

the induced moment is computed as: 

).mkN1992(ftkip1469)ft87.2ft06.3)(kip7730(M 86   

At the section between the 8 in. (203 mm) soffit and the 10 in. (254 mm) soffit,  

).mkN1573(ftkip1160)ft06.3ft21.3)(kip7730(M 108   

At the section between the 10 in. (254 mm) soffit and the 12 in. (305 mm) soffit,  
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).mkN1363(ftkip1005)ft21.3ft34.3)(kip7730(M 1210   

At the face of the solid section,  

).mkN1573(ftkip1160)ft19.3ft34.3)(kip7730(M solidofface   

 

 

Figure 20.  Locations of the c.g.c. lines near and at the pier 

 
Fig. 21 summarizes the magnitudes and the directions of the induced moments 

at the sections where the abrupt changes of the c.g.c. line occurred.  

The combination of the equivalent loads shown in Figs. 18 and 21 gives the 

total equivalent loads acting on the girder induced by the prestressing force 

acting on the girder. 
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Figure 21.  Equivalent loads induced by the abrupt changes of c.g.c. near the pier 

 

5.4 Structural modeling of the post-tensioned box girder 
The structural modeling of the bridge subjected to the equivalent loads can then 

be built as shown in Fig. 22.  

 

 
Figure 22.  Structural modeling of the bridge 
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Referring to Fig. 22, the section properties of the structural elements are 

summarized in Table 5.  

 

Table 5. Section properties of the structural elements 

Element(s) Section properties 

1, 2, 3, 12, 13, and 14 Fig. 13(a) typical girder section [with a 6 in. (152 mm) soffit] 

4 and 11 Fig. 13(a) flared girder section [with a 8 in. (203 mm) soffit] 

5 and 10 Fig. 13(a) flared girder section [with a 10 in. (254 mm) soffit] 

6 and 9 Fig. 13(a) flared girder section [with a 12 in. (305 mm) soffit]] 

7 and 8 Fig. 13(b) solid girder section 

15 Fig. 12 pier cross section 

 

5.5 Results of the structural analysis of the girder subjected to the 

equivalent loads  
The elastic linear static analysis of the structural modeling (shown in Fig. 22) of 

the bridge subjected to the equivalent loads (the combination of the loads shown 

in Figs. 18 and 21) results in the moment diagram of Span 1 of the bridge 

shown in Fig. 23, and of Span 2 of the bridge shown in Fig. 24.  

Note that the moments shown in Figs. 23 (b) and 24 (b) are directly derived 

from the analysis of the structural model with the step-by-step-incremental [the 

rise of each step is 2 inches (51 mm)] soffit thickness as shown in Fig. 20. The 

final moments shown in Figs. 23 (c) and 24 (c), are then derived from Figs. 23 

(b) and 24 (b), respectively, using the following procedure: 

Referring to Fig. 23(b) and Table 5, since the section of the girder with a 7 

in. (178 mm) flared soffit is located at the intersection of Element 3 [with a 6 in. 

(152 mm) flared soffit] and Element 4 [with a 8 in. (203 mm) flared soffit], the 

moment of the section with a 7 in. (178 mm) flared soffit can be computed as: 

)mkN987,25(ftkip167,19
2

ftkip901,19ftkip432,18



 

Note that 18,432 kip∙ft (24,990 kN∙m) [shown in Fig. 23(b)] is the moment at 

the right end of Element 3 and 19,901 kip∙ft (26,982 kN∙m) [shown in Fig. 

23(b)] is the moment at the left end of Element 4. Also note that the average of 

these two moments is 19,167 kip∙ft (25,987 kN∙m) [shown in Fig. 23(c)], which 

is the moment at the section with a 7 in. (178 mm) flared soffit of Span 1 of the 

bridge.  

Using the same approach, the moments at the sections with a 9 in. (229 mm) 

and a 11" (279 mm) flared soffit, respectively, of Span 1 of the bridge can be 

obtained and are shown in Fig. 23(c).  

Similarly, using the same approach, the moments at the sections with a 7 in. 

(178 mm), a 9 in. (229 mm), and a 11" (279 mm) flared soffit, respectively, of 

Span 2 of the bridge can be obtained and are shown in Fig. 24(c). 
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Figure 23.  Moment diagram of Span 1 of the bridge 
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Figure 24.  Moment diagram of Span 2 of the bridge 
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The moments and their corresponding locations shown in Figs. 23 (c) and 24 (c) 

are tabulated in Tables 6 and 7, respectively. 

 

Table 6. The moments and their locations within the flared-soffit range of Span 

1 of the bridge 
at the section 

where the flared 

soffit begins 

at the section 

with a 7 in. (178 

mm) flared 

soffit 

at the section 

with a 9 in. (229 

mm) flared 

soffit  

at the section 

with a 11 in. 

(279 mm) flared 

soffit 

at the section 

where the flared 

soffit ends 

16,929 kip∙ft 

(22,952 kN∙m ) 

19,167 kip∙ft 

(25,987 kN∙m ) 

22,910 kip∙ft 

(31,061 kN∙m ) 

25,649 kip∙ft 

(34,775 kN∙m ) 

26,689 kip∙ft 

(36,185 kN∙m ) 

 

Table 7. The moments and their locations within the flared-soffit range of Span 

2 of the bridge 
at the section 

where the flared 

soffit begins 

at the section 

with a 7 in. (178 

mm) flared 

soffit 

at the section 

with a 9 in. (229 

mm) flared 

soffit  

at the section 

with a 11 in. 

(279 mm) flared 

soffit 

at the section 

where the flared 

soffit ends 

16,945 kip∙ft 

(22,974 kN∙m ) 

19,161 kip∙ft 

(25,978 kN∙m ) 

22,877 kip∙ft 

(31,017 kN∙m ) 

25,614 kip∙ft 

(34,727 kN∙m ) 

26,661 kip∙ft 

(36,147 kN∙m ) 

 

6 CONCLUSIONS 
The basic concept of the equivalent load method is that the effects of 

prestressing are replaced by equivalent loads produced by the prestressed 

tendon along the span of the structure. The equivalent load method is a 

commonly used method in the analysis of continuous-span, post-tensioned 

concrete girders since the method reduces the analysis of a prestressed structure 

to that of a nonprestressed structure in which the consideration of secondary 

moments due to prestressing is not required. The deviations of the approximate 

equivalent loads from the exact equivalent loads for post-tensioned concrete 

girders with parabolic tendons are small since the ratio of h/L (where h is the 

sag of the tendon and L is the length of the tendon) is small in post-tensioned 

girders. The approximate equivalent load method significantly simplifies the 

procedure for the computation of equivalent loads for post-tensioned concrete 

girders with parabolic tendons and therefore has commonly been used by 

structural engineers. In this paper, three examples of simply-supported, post-

tensioned concrete girders with various combinations of locations of the 

centroid of tendons (c.g.s.) and the centroid of concrete (c.g.c.) are used to 

demonstrate the applications of the exact and the approximate equivalent load 

methods. The results obtained from these two methods are then compared with 

each other. The differences between these two results are all within 1% of each 

other. Finally, an example of the analysis of a continuous-span, post-tensioned 
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concrete box girder bridge superstructure supported by a concrete pier is also 

demonstrated using the approximate equivalent load method. The flared soffits 

of the girder near the pier of the bridge are considered in this example. This 

example demonstrates that the linear-incremental flared soffits near the pier can 

be substituted by the segmental-incremental flared soffits for the purpose of 

building the structural modeling of the bridge. However, due to frictional and 

anchor set losses, the magnitude of the prestressing force acting along the 

tendon changes from one location to another. Therefore, this example limits the 

difference between the largest and the smallest prestressing force acting along 

the tendon being small (say within 6% of each other) in order to use the average 

of these two extreme prestressing forces as the constant prestressing force 

acting along the entire length of the tendon. 
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