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Abstract 

Whole body studies using long-lived growth hormone receptor gene disrupted or knock out (GHR-

KO) mice report global GH resistance, increased insulin sensitivity, reduced insulin-like growth 

factor 1 (IGF-1), and cognitive retention in old-age, however, little is known about the 

neurobiological status of these mice.  The aim of this study was to determine if glutamatergic and 

inflammatory markers that are altered in aging and/or age-related diseases and disorders, are 

preserved in mice that experience increased healthspan.  We examined messenger ribonucleic acid 

(mRNA) expression levels in the brain of 4-6, 8-10, and 20-22 month GHR-KO and normal aging 

control mice.  In the hippocampus, glutamate transporter 1 (GLT-1) and anti-inflammatory nuclear 

factor kappa-light-chain-enhancer of activated B cells (NFκB)-p50 were elevated in 8-10 month 

GHR-KO mice compared to age-matched controls.  In the hypothalamus, NFκB-p50, NFκB-p65, 

IGF-1 receptor (IGF-1R), glutamate/aspartate transporter (GLAST), and 2-amino-3-(5-methyl-3-

oxo 2,3-dihydro-1,2 oxazol-4-yl) propanoic acid receptor subunit 1 (GluA1) were elevated in 8-

10 and/or 20-22 month GHR-KO mice when comparing genotypes.  Finally, interleukin 1-beta 

(IL-1β) mRNA was reduced in 4-6 and/or 8-10 month GHR-KO mice compared to normal 

littermates in all brain areas examined.  These data support the importance of decreased brain 

inflammation in early adulthood and maintained homeostasis of the glutamatergic and 

inflammatory systems in extended longevity.   
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Introduction 

Specific areas of the brain are essential for several processes that play a key role in extended 

longevity, including hippocampus (cognition), hypothalamus (insulin-glucose homeostasis and 

energy expenditure), and striatum (motor learning and movements).  These regions are 

interconnected through neuronal pathways, have an extensive glutamatergic component, and their 

dysfunction can lead to accelerated aging as well as several age-related diseases and disorders 

including dementia, Alzheimer’s disease, diabetes, and Parkinson’s diseases1–13.  Many of these 

illnesses occur as the result of a slow build-up of harmful material that occurs over several years.  

For instance, there is a build-up of plaques, tangles, and inflammation coupled with 

neurodegeneration in the glutamate rich hippocampal region in Alzheimer’s disease.  Diabetes 

may be the result of chronic inflammation, likely in the hypothalamus, which is responsible for 

insulin-glucose homeostasis and has an abundance of glucose-sensing neurons that are primarily 

glutamatergic in nature12,14,15.  Taken together these data support the necessity for preservation of 

neuronal function in key brain areas resulting in increased healthspan.   

 

Two of the main interrelated systems thought to be involved in age-and metabolic- related 

cognitive disorders are the glutamatergic and inflammatory systems.  Glutamate (Glu) is the 

predominant excitatory neurotransmitter in the mammalian central nervous system and its 

dysregulation has been associated with decreased cognition, increased inflammation, and several 

age-related neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases1,3,4,10,16–22.  

In the brain, glial cells, composed of astrocytes and microglia, are the primary contributors to 

clearance of Glu from the extracellular space through surface expression of excitatory amino acid 
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transporters (EAAT).  One such transporter, GLT-1 in rodents (EAAT2 in humans), is responsible 

for up to 90% of Glu clearance from the extracellular space in the brain, and has been shown to 

decrease in abundance and function with age, leading to increased extracellular Glu and 

excitotoxicity19.  Additionally, glia are the main producers of inflammatory (pro- and anti- 

inflammatory) mediators in the brain and play an important role in innate immunity.  For instance, 

activated microglia enhance production of inflammatory cytokines, such as IL-1β23–25, and 

decrease anti-inflammatory cytokines, such as IκB kinase β (IKKβ), NFκB-p50, NFκB-p6526,27.  

During aging, microglia have an increased inflammatory response and may contribute to the onset 

of chronic neurodegenerative diseases27–29
.  Furthermore, IGF-1 plays a role in information 

processing in the brain that may be independent of circulating IGF-130.  These data support an 

interrelated mechanism whereby increased neuronal extracellular Glu and elevated 

neuroinflammation may be responsible for the cognitive decline associated with aging.   

 

The aim of this study was to determine if glutamatergic and inflammatory markers that are known 

to be altered with normal aging and/or age-related diseases and disorders are preserved in mice 

that experience successful aging.  We used long-lived GHR-KO mice that live 35-70% longer than 

their normal littermates.  GHR-KO mice are GH resistant with low levels of IGF-1 (which may 

offer protection for disease associated neuronal loss31 and be involved in extended life-span32), 

and have improved insulin signaling, decreased pro-inflammatory and increased anti-

inflammatory activity in the periphery, and decreased oxygen consumption and energy cost of 

locomotor activity, all of which may contribute to their increased longevity33–37.  Additionally, 

GHR-KO mice are GH resistant, which may alter neurotransmission and the levels of other 

hormones, thereby delaying brain aging and cognitive decline30.  We examined the hypothalamus, 
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hippocampus, and striatum in 4-6 month, 8-10 month, and 20-22 month GHR-KO mice that 

experience successful aging compared to normal aging littermate control mice by assessing mRNA 

expression levels of brain markers involved in age and metabolic disorders including inflammatory 

and glutamatergic markers.  Anti-inflamatory markers included IKKβ, NFκB-p50, and NFκB-p65, 

whereas the pro-inflammatory marker IL-1β was examined. Growth factor markers including IGF-

1 and its receptor. Finally, glutamatergic transporters (vesicular Glu transporter (VGLUT) 1, 

VGLUT3, GLAST, Glu type I transporter (GLT-1)) and receptor subunits (N-methyl D-aspartate 

receptor subunit 2b (GluN2B) and GluA1) were measured.   

Methods 

Animals 

4-6, 8-10, and 20-22 month old female GHR-KO and normal littermate control mice were obtained 

from a colony at Southern Illinois University School of Medicine originally developed from 

breeders provided by Dr. John J. Kopchick and used for all experiments35,38.  Protocols for animal 

use were approved by the Laboratory Animal Care and Use Committee at Southern Illinois 

University School of Medicine.  Animals were housed according to approved guidelines, and food 

and water were available ad libitum.   

RNA purification and PCR analysis 

All animals were decapitated under isoflurane anesthetic and their brains were rapidly removed.  

The hippocampus, hypothalamus, and striatum were dissected on wet ice and tissue was 

immediately frozen on dry ice.  Samples were stored at -70 °C until RNA extraction.  RNA was 

purified using the miRNeasy Mini Kit (Qiagen®, Boston, MA, USA) following the manufacturer’s 

protocol for purification of total RNA from animal tissue.   The quantity of total RNA was 
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determined using an ND-1000 Spectrophotometer (NanoDrop®, Wilmington, DE, USA) and 

complimentary DNA (cDNA) was synthesized from 2 µg of total RNA using a cDNA Synthesis 

Kit (Bio-Rad, Hercules, CA, USA) following the manufacturer’s protocol. 

Real-time polymerase chain reaction (RT-PCR) was performed on individual samples as 

previously described 39.   Briefly, each reaction contained 12.5 µL iQ SYBR Green Supermix (Bio-

Rad, Hercules, CA, USA), 0.4 µL each of backward and forward primer (see Table 1), and 2 µL 

diluted cDNA (3 H2O: 1 cDNA).  The reaction included 2 minutes at 94ºC (denaturing), 30 seconds 

at 62ºC (annealing), and 30 seconds at 72ºC (extension).  Β-2-microglobulin was used as the 

housekeeping gene control, based on prior studies involving altered inflammatory states, and was 

used to determine relative expression of the mRNA of interest as previously described39.   

Data analysis 

All data were generated from individual mice.  Mean and standard error of the mean (SEM) were 

determined for each group (n = 5-9 mice per group).  A Two-way analysis of variance (ANOVA) 

with a Fisher’s least significant difference (LSD) post hoc test was used to determine age-related 

changes in mRNA levels within genotypes and age-matched alterations between genotypes.  

Statistical significance was determined at p < 0.05.   

Results 

Altered mRNA Expression Levels in the Hippocampus 

Inflammatory Markers 

We observed significant age-related decreases in IKKβ in the hippocampus of control and GHR-

KO mice (F(2,36)=17.28; p<0.0001).  In control mice, there was a significant decrease in mRNA 
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expression in 8-10 (p<0.001) and 20-22 month (p<0.0001) mice compared to 4-6 month mice 

(Figure 1A).  In the GHR-KO mice, 20-22 month mice were significantly decreased compared to 

4-6 (p<0.001) and 8-10 month (p<0.05) mice (Figure 1A).  There was no difference in IKKβ 

between age-matched genotypes (Figure 1A).  There was significant age-related decreases (F(2, 

36)=3.782; p=0.0323) and a trend in genotypic differences (F(1,36)=3.712; p=0.0620) and no 

overall interaction in NFκB-p50 mRNA expression in the hippocampus. NFκB-p50 was decreased 

in 8-10 month control mice compared to 4-6 month control mice (p<0.05) and in 20-22 month 

GHR-KO mice compared to 8-10 month GHR-KO mice (p<0.05; Figure 1B).  Additionally, 8-10 

month GHR-KO mice had significantly elevated NFκB-p50 mRNA levels compared to age-

matched controls (p<0.01; Figure 1B).  There were no significant age- or genotype- related 

changes in NFκB-p65 in the hippocampus (Figure 1C).  We observed significant age-related 

alterations in IL-1β mRNA expression in the hippocampus (F(2,33)=4.492; p=0.0188).  IL-1β was 

significantly decreased in 4-6 month GHR-KO mice compared to 8-10 (p<0.01) and 20-22 month 

(p<0.05) GHR-KO mice (Figure 1D) and in 4-6 month old mice when comparing genotypes 

(p<0.05).  There were no age-related changes in IL-1β mRNA expression in the hippocampus of 

control mice (Figure 1D). 

Growth Factors 

There were no age- or genotype- related changes in IGF-1 in the hippocampus (Figure 1E).  

However, IGF-1R mRNA expression was significantly decreased with age (F(2,36)=6.568; 

p=0.0037).  20-22 month control mice expressed less IGF-1R compared to 4-6 (p<0.01) and 8-10 

month (p<0.01) control mice (Figure 1F).  There were no genotype-related changes in IGF-1R in 

the hippocampus (Figure 1F).   
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Glutamatergic Markers 

We observed altered VGLUT1 with age (F(2,38)=8.136; p=0.0011) in the hippocampus.  The 

expression of VGLUT1 was significantly decreased in 8-10 (p<0.01) and 20-22 month (p<0.001) 

normal control mice compared to 4-6 month mice (Figure 1G).  There were no age-related changes 

in GHR-KO mice or genotype-related alterations in VGLUT1 (Figure 1G).  There was significance 

difference between genotypes in GLT-1 mRNA expression in the hippocampus (F(1,37)=7.481; 

p=0.0095).  GLT-1 was significantly (p<0.05) elevated in 8-10 month GHR-KO mice compared 

to age-matched control mice (Figure 1I). There were no age-associated alterations in GLT-1 

expression levels (Figure 1I).  GluN2B was significantly altered with age (F(2,39)=5.970; 

p=0.0055) in the hippocampus, with 8-10 (p<0.05) and 20-22 month olds (p<0.01) being 

significantly decreased in normal aging control mice (Figure 1K).  There were no age-related 

changes in GHR-KO mice or genotype-related alterations in GluN2B (Figure 1K).  GluA1 was 

also significantly altered with age (F(2,34)=6.080; p=0.0055) with 20-22 month control and GHR-

KO mice being significantly decreased (p<0.05 and p<0.01, respectively) compared to 4-6 month 

mice of the same genotype (Figure 1L).  No genotype-associated changes were observed in GluA1 

levels (Figure 1L).  No age- or genotype- related changes were observed in VGLUT3 or GLAST 

(Figure 1H and 1J, respectively). 

Altered mRNA Expression Levels in the Hypothalamus 

Inflammatory Markers 

We observed significant age-related decreases in IKKβ in the hypothalamus (F(2.39)=7.003; 

p=0.0025) with 20-22 month control mice having significantly lower IKKβ mRNA expression 
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compared to 4-6 (p<0.001) and 8-10 month (p<0.05) mice of the same genotype (Figure 2A).  

There were no significant changes related to age in GHR-KO mice or between genotypes in the 

hypothalamus (Figure 2A).  There were no significant age-related changes in NFκB-p50 in the 

hypothalamus of control or GHR-KO mice (Figure 2B).  However, NFκB-p50 was significantly 

elevated (F(1,39)=13.31; p=0.0008) in 8-10 and 20-22 month (both p<0.01) GHR-KO mice 

compared to age-matched controls (Figure 2B).  NFκB-p65 expression levels were altered in 

regards to age (F(2,37)=3.624; p=0.0365) and genotype (F(1,37)=5.590; p=0.0234), but with no 

overall interaction (F(2,37)=1.784; p=0.1821).  NFκB-p65 was decreased in the hypothalamus of 

8-10 month control mice compared to 4-6 month control mice (p<0.01; Figure 2C).  Additionally, 

NFκB-p65 was elevated in 20-22 month GHR-KO mice compared to age-matched controls 

(p<0.05; Figure 2C).  There were no significant age-related changes in IL-1β in the hypothalamus 

of control or GHR-KO mice (Figure 2D).  However, IL-1β was significantly decreased 

(F(1,37)=14.51; p=0.0005) in 4-6 and 8-10 month (both p<0.05) GHR-KO mice compared to age-

matched controls (Figure 2D).   

Growth Factors 

There were no age- or genotype- related changes in IGF-1 in the hypothalamus (Figure 2E).  There 

were also no age-related changes in IGF-1R in the hypothalamus (Figure 2F).  However, IGF-1R 

mRNA expression was significantly altered in relation to genotype (F(1,39)=4.873; p=0.0332).  

20-22 month old GHR-KO mice expressed more IGF-1R compared to age-matched control mice 

(p<0.01; Figure 2F). 

Glutamatergic Markers 
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We observe altered age- (F(2,34)=5.451; p=0.0088) and genotype- (F(1.34)=8.598; p=0.0060) 

related changes in VGLUT1 in the hypothalamus, with no significant interaction (Figure 2G).  8-

10 month GHR-KO mice had significantly elevated VGLUT1 expression when compared to 4-6 

(p<0.05) and 20-22 month (p<0.001) GHR-KO mice (Figure 2G).  Additionally, VGLUT1 in 8-

10 month GHR-KO mice was significantly increased compared to age-matched control mice 

(p<0.001; Figure 2G).  There was a significant difference in GLAST expression in the 

hypothalamus between genotypes (F(1,39)=5.545; p=0.0237) with 20-22 month GHR-KO mice 

being significantly increased compared to age-matched control mice (p<0.05; Figure 2J).  No age-

related differences were observed in GLAST expression levels.  Finally, there were age- 

(F(2,38)=4.107; p=0.0243) and genotype- (F(1,38)=12.44; p=0.0011) related changes in GluA1 

expression levels in the hypothalamus with no significant interaction (Figure 2L).  There was a 

significant decrease in GluA1 expression in 20-22 month control mice compared to 4-6 month 

control mice (p<0.01), but not in GHR-KO mice (Figure 2L).  Additionally, both 8-10 (p<0.05) 

and 20-22 month old GHR-KO (p<0.01) mice had elevated GluA1 expression in the hypothalamus 

compared to age-matched controls (Figure 2L).  There were no age- or genotype- related changes 

in expression levels of VGLUT3, GLT-1, or GluN2B in the hypothalamus (Figures 2H, 2I, and 

2K, respectively). 

Altered mRNA Expression Levels in the Striatum 

Inflammatory Markers 

There were no age- or genotype- related changes in mRNA expression levels in any of the anti-

inflammatory markers examined (Figures 3A, 3B, and 3C, respectively).  However, we observed 

genotype-related changes in pro-inflammatory IL-1β (F(1,29)=4.265; p=0.0480), which was 
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significantly decreased in 8-10 month GHR-KO mice compared to age matched controls (p<0.05; 

Figure 3D).   

Growth Factors 

As was the case in the hippocampus and hypothalamus, we did not observe any significant 

differences in IGF-1 mRNA expression levels in the striatum (Figure 3E).  However, we did 

observe age-related changes in IGF-1R expression in the striatum (F(2,37)=7.834; p=0.0015).  

IGF-1R expression was significantly decreased in 20-22 month mice compared to both 4-6 and 8-

10 month old mice for both genotypes (GHR-KO: p<0.01 and p<0.05, respectively; control: 

p<0.05 and p<0.05, respectively). 

Glutamatergic Markers 

We observed age- (F(2,28)=18.92; p<0.0001) and genotype- (F(1,28)=8.343 and p<0.0074) 

associated changes in VGLUT1 mRNA expression levels in the striatum.  VGLUT1 in 8-10 month 

control mice was significantly elevated compared to 4-6 (p<0.0001) and 20-22 month (p<0.0001) 

control mice and compared to age-matched GHR-KO mice (p<0.0001; Figure 3G).  There was a 

significant effect of age (F(2,31)=5.356; p=0.0100) on GLT-1 expression in the striatum with 

levels in 20-22 month control mice being significantly elevated compared to 4-6 (p<0.05) and 8-

10 month (p<0.001) mice of the same genotype (Figure 3I).  Additionally, we observed age-related 

changes in GluA1 expression in the striatum (F(2,34)=13.28; p<0.0001).  GluA1 levels in 20-22 

month control mice were significantly elevated compared to 8-10 month control mice (p<0.05; 

Figure 3L).  GluA1 expression was also elevated in 20-22 month GHR-KO mice compared to 4-6 
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(p<0.0001) and 8-10 month old (p<0.0001) GHR-KO mice.  There were no significant changes in 

striatal VGLUT3, GLAST, or GluN2B (Figures 3H, 3J, and 3K, respectively). 

Discussion 

Neurobiological components and functions have been extensively examined as they relate to aging 

diseases and disorders.  However, few studies have examined the brain in relation to increased 

healthspan.  and little is known about the neurological factors that might influence cognitive 

function and how they change with aging.  However, Masser and colleagues recently reported on 

an existing correlation between mRNA expression and cognitive function in rats40.  The aim of 

this study was to determine if glutamatergic and inflammatory markers, that are known to be 

altered in aging and/or age-related diseases and disorders, are preserved in GHR-KO mice that 

experience successful aging.  The majority of age- and genotype- related differences were detected 

in the hippocampus and hypothalamus of the 20-22 month old mice.   

We focused on the NFκB family due to its involvement in learning and synaptic plasticity41–43, 

which is often affected in aging and age-related disorders.  Inactive NFκB is usually expressed 

with three subunits (IKKβ, p50, and p65).  In the active state, IKKβ is ubiquinated, p50 and p65 

form dimers and bind to NFκB sites in the promoter region of target genes, thereby activating 

transcription and/or expression.  In the hippocampus, we observed significantly elevated NFκB-

p50 mRNA levels in 8-10 month old GHR-KO mice compared to littermate controls, but no other 

genotype-associated changes in IKKβ, NFκB-p50, or NFκB-p65 at any of the ages studied.  This 

may be indicative of a mechanism whereby NFκB-p50 is involved in the sustained cognition in 

GHR-KO mice.  In the hippocampus, NFκB p65/p50 heterodimers are localized to the cytoplasm 

and synapses and are activated by excitation, such as that produced by glutamate43–45.  
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Interestingly, Boersma and colleagues46 postulate that transcriptional regulation via NFκB is 

required for the induction of changes in excitatory synapses and spine density, but not for 

maintenance.  Furthermore, deletion of either the NFκB-p50 or NFκB-p65 gene in mice has been 

associated with decreased cognition43,46,47.   

We also evaluated a pro-inflammatory cytokine, IL-1β, due to its link to glutamatergic 

neurotransmission.  Glu is the predominant excitatory neurotransmitter in the mammalian central 

nervous system and under normal conditions, it plays an important role in several brain functions 

including learning and memory, energy expenditure, and insulin-glucose homeostasis, and other 

higher-level functions7.  However, when Glu is present in excess, it can lead to neuroinflammation, 

excitotoxicity, and cell death.  We observed significantly reduced IL-1β mRNA in 4/6 and/ or 8-

10 month GHR-KO mice compared to normal littermates in all three brain areas examined.  This 

elevated IL-1β mRNA expression in the brains of control mice may lead to an increase in 

extracellular Glu by increasing the velocity of the cystine-Glu exchanger (xCT) as has been 

observed by Hewett’s group17.  We also observed significantly decreased GLT-1 expression in the 

hippocampus of middle-aged control mice compared to age-matched GHR-KO mice.  

Interestingly, previous studies have shown that elevated IL-1β decreases Glu uptake via decreasing 

the surface expression of GLT-1 on astrocytes, possibly leading to increased extracellular Glu48.  

Taken together, these data provides a mechanism whereby decreased IL-1β early in life could 

provide protection from Glu-related cognitive decline later in life.   

Contrary to previous reports on IGF-1 plasma and liver levels observed in GHR-KO mice38,49, we 

did not observe any age- or genotype- associated alterations in IGF-1 mRNA expression in any of 

the three brain regions examined.  This finding is also supported by recent data that showed 
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circulating IGF-1 levels did not alter hippocampal Igf1 or its receptor50.  However, our data is 

consistent with observations from another long-lived mouse, the Ames dwarf, where no difference 

was observed in hippocampal IGF-1 mRNA in aged Ames mice compared to age-matched 

controls51.  Interestingly, Sun and colleagues51 observed an increase in IGF-1 protein levels in the 

hippocampus of the Ames mice, which may be a result of the ability of IGF-1 to cross the blood 

brain barrier and contribute to brain IGF-1 protein levels52.  Additionally, we observed an increase 

in IGF-1R expression in the hypothalamus of 20-22 month GHR-KO mice compared to age-

matched controls.  In the brain, IGF-1 promotes neurogenesis and long-term memory consolidation 

in the hippocampus which requires limbic activation of IGF-1R, specifically the hypothalamus and 

amygdala27,30.  Our data support a role for late-life IGF-1R involvement in cognitive retention and 

successful aging.   

 

Finally, we examined glutamatergic markers in the brain of GHR-KO mice.  It is well known that 

elevated Glu levels in the hippocampus can lead to excitotoxicity, neurodegeneration, and 

decreased cognition associated with aging and age-related disorders.  This elevation could be due 

to an increase in Glu release through increased packaging or stimulated release, a decrease in Glu 

clearance (fewer transporters), or a combination of the two.  GLT-1 was significantly decreased in 

the hippocampus in 8-10 month control mice compared to age-matched GHR-KO mice.  However, 

sustained Glu neurotransmission in the hippocampus throughout life may be required for cognitive 

retention in old age.  In support of this, hippocampal mRNA levels of VGLUT3 and GluN2B 

decreased with age in control mice, but sustain levels in GHR-KO mice, contrary to what was 

previously reported on GluN1 mRNA levels in the hippocampus of GHR-KO mice53.  In the 

hypothalamus, mRNA levels of GluA1 was significantly decreased with age in control mice, 
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sustained in GHR-KO mice, and significantly elevated in 20-22 month GHR-KO mice when 

comparing the two genotypes, suggesting that Glu may play a role in insulin-glucose homeostasis.  

Additionally, VGLUT1 expression was significantly elevated in GHR-KO 8-10 month 

hypothalamus, which coincided with decreased VGLUT1 levels in GHR-KO striatum at the same 

age. In the striatum, we observed age-related changes in VGLUT1, GLT-1, and GluA1 in normal 

aging mice.  In GHR-KO mice the only significant change with age was observed in mRNA 

expression levels of GluA1.  Additionally, when comparing the two genotypes, mRNA levels of 

VGLUT1 in the striatum were decreased in 8-10 month GHR-KO mice.  Taken together, our 

results support that sustained glutamatergic markers throughout aging in the hippocampus, 

hypothalamus, and striatum of GHR-KO mice may play a role in the retained cognition, energy 

expenditure, insulin-glucose homeostasis, the sleep-wake cycle, and neuroendocrine output of the 

pituitary gland previously observed in these mice. 

 

In conclusion, we observed age-related alterations in neuroinflammation, growth factor, and 

glutamatergic markers in normal aging mice that were rescued in GHR-KO mice.  Of major 

importance was the observed decreased IL-1β expression in all three brain areas in 4-6 and/or 8-

10 month GHR-KO mice, sustained glutamatergic neurotransmission/regulation, and sustained 

IGF-1R expression in the hippocampus and hypothalamus in 20-22 month GHR-KO mice.  These 

data support the importance of brain inflammation in early life and maintained homeostasis of the 

glutamatergic, growth factor, and inflammatory systems in successful aging.  Future studies will 

address how these mRNA expression levels relate to protein levels. 
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Table 1: Primers used for mRNA analysis.   
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Figure Legends: 

Figure 1: mRNA levels in hippocampus of GHR-KO (black bars) and normal aging (white bars) 

mice.  mRNA expression levels of IKKβ, NFκB-p50, NFκB-p65, IL-1β, IGF-1, IGF-1R, 

VGLUT1, VGLUT3, GLAST, GLT-1, GluN2B, and GluA1 in the hippocampus of 4-6 month, 8-

10 month, and 20-22 month old mice. Two-way ANOVA with a Fisher’s LSD post-hoc analysis 

(n = 5-9 mice per group).  *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 indicates significance 

between ages within the same genotype.  #p<0.05, ##p<0.01 indicates significance between age-

matched genotypes. 

Figure 2: mRNA levels in hypothalamus of GHR-KO (black bars) and normal aging (white bars) 

mice.  mRNA expression levels of IKKβ, NFκB-p50, NFκB-p65, IL-1β, IGF-1, IGF-1R, 

VGLUT1, VGLUT3, GLAST, GLT-1, GluN2B, and GluA1 in the hypothalamus of 4-6 month, 8-

10 month, and 20-22 month old mice. Two-way ANOVA with a Fisher’s LSD post-hoc analysis 

(n = 5-9 mice per group).  *p<0.05, **p<0.01, ***p<0.001 indicates significance between ages 

within the same genotype.  #p<0.05, ##p<0.01, ###p<0.001 indicates significance between age-

matched genotypes. 

Figure 3: mRNA levels in striatum of GHR-KO (black bars) and normal aging (white bars) mice.  

mRNA expression levels of IKKβ, NFκB-p50, NFκB-p65, IL-1β, IGF-1, IGF-1R, VGLUT1, 

VGLUT3, GLAST, GLT-1, GluN2B, and GluA1 in the striatum of 4-6 month, 8-10 month, and 

20-22 month old mice. Two-way ANOVA with a Fisher’s LSD post-hoc analysis (n = 5-9 mice 

per group).  *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 indicates significance between ages 

within the same genotype.  #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 indicates significance 

between age-matched genotypes. 
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Figure 1, Hascup 
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Figure 2, Hascup 
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Figure 3, Hascup 
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