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Abstract

This paper derives closed-form solutions for the fifth-ordered power method poly-
nomial transformation based on the method of percentiles (MOP). A proposed MOP
univariate procedure is described and compared with the method of moments (MOM)
in the context of distribution fitting and estimating skew, kurtosis, fifth- and sixth-
ordered functions. The MOP methodology is also extended from univariate to multi-
variate data generation. The MOP procedure has an advantage over the MOM because
it does not require numerical integration to compute intermediate correlations. In addi-
tion, the MOP procedure can be applied to distributions where mean and(or) variance
do(does) not exist. Simulation results demonstrate that the proposed MOP procedure
is superior to the MOM in terms of estimation, relative bias, and relative error.

keywords: intermediate correlation; Monte Carlo; power method; percentile; multivari-
ate; simulation

1. Introduction

The power method (PM, Fleishman, 1978; Headrick, 2010) is a traditional procedure used
for simulating continuous non-normal distributions. Some applications of the power method
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have included such topics as ANOVA (e.g., Berkovits, Hancock, & Nevitt, 2000; Lix &
Fouladi, 2007), asset pricing theories (Affleck-Graves & MacDonald, 1989), business-cycle
features (Hess & Iwata, 1997), cluster analysis (Steinley & Henson, 2005), item parameter
estimation (Kirisci, Hsu, & Yu, 2001), item response theory (Harwell, Stone, Hsu, & Kirisci,
1996; Stone, 2003), factor analysis (Benson & Fleishman, 1994; Flora & Curran, 2004), price
risk (Mahul, 2003), structural equation models (Hau & Marsh, 2004; Henson, Reise, & Kim,
2007), and toxicology (Hothorn & Lehmacher, 2007).

The PM transformation can be generally expressed as (Headrick, 2010, p.12-13)

q(Z) =
m∑
i=1

ciZ
i−1, (1)

where q(Z) is a polynomial used to perform the transformation on Z, ci is a constant coeffi-
cient defining the nature of the transformation, and Z is a standard normal random variable
with probability density function (PDF) φ(z) and cumulative distribution function (CDF)
Φ(z). Setting m = 4 (or m = 6) in Equation (1) gives the third-order (or fifth-order) class
of PM distributions.

The values of ci associated with (1) can be determined from either the method of mo-
ments (MOM; e.g., Headrick, Kowalchuk, & Sheng, 2008; Kowalchuk & Headrick, 2010), or
the method of percentiles (MOP; e.g., Hoaglin, 1983; Hoaglin, Mosteller, & Tukey, 1985).
Specifically, the conventional MOM determines the values of ci from the specified α3 (skew),
α4 (kurtosis), α5, and α6. On the other hand, the MOP obtains the values of ci given the
specified γ3 (left-right tail-weight ratios), γ4 (tail-weight factors), γ5, and γ6.

Conventional moment-based PM have unfavorable attributes to the extent that the esti-
mates of conventional skew and kurtosis associated with heavy tailed or skewed distributions
can be substantially biased, have high variance, or can be influenced by outliers (e.g., Head-
rick, 2011; Headrick & Pant, 2012a, 2012c, 2013; Hodis, Headrick, & Sheng, 2012; Karian
& Dudewicz, 2003). On the other hand, the MOP, which is based on the methodology de-
scribed in Karian and Dudewicz (e.g., Karian & Dudewicz, 2003, 2011) in the context of the
generalized lambda distribution (GLD), has demonstrated to be an attractive and compu-
tationally efficient alternative to the MOM in terms of distribution fitting and computing
the GLD shape parameters. Further, it has been demonstrated that the MOP is superior to
the MOM over a broad range of combinations of skew and kurtosis for fitting theoretical or
empirical distributions (Karian & Dudewicz, 2003; Koran, Headrick, & Kuo, 2015; Kuo &
Headrick, 2014).

In addition to obtaining more favorable unbiased estimation, the MOP is more attractive
than the MOM due to information that is not available. Specifically, the conventional MOM
relies on knowledge of the skew and kurtosis of the distribution, which may not be included
in public reports. That is, proportions and percentiles may be more commonly included
in public reports (e.g., Idaho Standards Achievement Tests). Moreover, the MOM can not
generate distributions where the mean or variance do not exist (e.g, Cauchy, t distribution
with 1 or 2 degrees of freedom).

In view of the above, the present aim is to obviate the problems associated with the
MOM in the context of fifth-ordered PM transformation of the form in Equation (1) by
characterizing these distributions through the MOP. Specifically, the purpose of this paper
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is to develop the methodology and a procedure for simulating distributions with specified γ3-
γ6. In terms of simulating multivariate distributions, the Spearman correlation will be used
in lieu of the Pearson correlation using the equation in Headrick (2010), p.114, Eq. 4.34. In
summary, the advantages of the proposed MOP procedure are that (i) the MOP parameters
(γ3-γ6) exist for any distribution, whether the mean and/or the variance exist or not (e.g.,
Dudewicz & Karian, 1999); (ii) there is less relative bias and has less relative standard
error when juxtaposed with the MOM procedure; (iii) there are closed-form solutions for
the ci constants, and (iv) there is a straightforward equation for the purpose of simulating
correlated non-normal distributions.

The remainder of the paper is outlined as follows. In Section 2, a summary of the univari-
ate PM distributions based on the MOM is provided. In Section 2.1, the requisite information
associated with the MOP is provided. Further, the systems of equations for determining the
closed-form solutions of the ci constants associated with Eq. (1) are subsequently derived for
simulating univariate non-normal distributions with specified values of γ1-γ6. In section 3, a
comparison of the MOM and the MOP is provided by fitting several theoretical distributions
and the SPSS data from IBM Corp. (2011). In Section 4, the methodologies for simulating
correlated non-normal distributions with specified Pearson correlations for the MOM and
Spearman correlations for the MOP are provided. In Section 5, the steps for implementing
the proposed MOP procedure are described. A numerical example and results of a simula-
tion are also provided to confirm the derivations and compare the proposed procedure with
the MOM procedure. In Section 5.2, the results of the simulation are discussed.

2. Methodology

2.1 The PM transformation based on the MOM

The requirement that p(Z) in (1) be a strictly monotone increasing function implies that an
inverse function (p−1) exists and thus Fp(z)(z) = Φ(z), where Fq(z)(z) is the general form of the
CDF for both the MOM and the MOP. Differentiating both sides with respect to p(z) yields
dFp(z)(z)/dp(z) = fp(z)(z), where fq(z)(z) is the general form of the PDF for both the MOM
and the MOP. Hence, fp(z)(z) = dFp(z)(z)/dp(z) = (dFp(z)(z)/dz)/(dp(z)/dz) = φ(z)/p′(z).
Whence, the PDF integrates to one because φ(z) is the standard normal PDF and will be
nonnegative for z ∈ (−∞,+∞), and where limz→±∞ φ(z)/q′(z) = 0 for the transformations
in (1).

The constants c1-c6 associated with (1) that determine the shape of a distribution are
computed using a moment-matching approach that involves the conventional measures of
the mean (α1), variance (α2), skew (α3), kurtosis (α4), fifth-(α5) and sixth-(α6) ordered
moments. Specifically, the values of c1-c6 in (1) are determined by simultaneously solving
Equations (37) to (42) provided in Appendix A for specified values of α1-α6 (Headrick &
Kowalchuk, 2007, Eqs. (A1)-(A6)). Note that α1 − α6 are standardized cumulants and are
scaled such that the normal distribution would have values α3 = α4 = α5 = α6 = 0. Hence,
the solution values of c1-c6 produce a distribution with zero mean, unit variance, and the
desired values of α3-α6.
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2.2 The PM transformation based on the MOP

The percentiles (θp) associated with a conventional based PM PDF can be obtained by
making use of the standard normal CDF, Φ(z). As such, the location, scale, and shape
parameters are defined as (Karian & Dudewicz, 2011, p.172-173)

γ1 = θ0.50 (2)

γ2 = θ0.90 − θ0.10 (3)

γ3 =
θ0.50 − θ0.10
θ0.90 − θ0.50

(4)

γ4 =
θ0.75 − θ0.25

γ2
, (5)

where (2)-(5) are the (i) median, (ii) inter-decile range, (iii) left-right tail-weight ratio (a
skew function) and (iv) tail-weight factor (a kurtosis function), respectively. The parameters
in (2)-(5) are defined to have the restrictions

−∞ < γ1 < +∞, γ2 ≥ 0, γ3 ≥ 0, 0 ≤ γ4 ≤ 1, (6)

and where a symmetric distribution implies that γ3 = 1.
More recently, Headrick (2014) extended (2)-(5) to a more general fifth-ordered percentile

based system:

γ1 = θ0.50 (7)

γ2 = θ0.90 − θ0.10 (8)

γ3 =
θ0.70 − θ0.50
θ0.50 − θ0.30

(9)

γ4 =
θ0.625 − θ0.375
θ0.70 − θ0.30

(10)

γ5 =
θ0.50 − θ0.10
θ0.90 − θ0.50

(11)

γ6 =
θ0.75 − θ0.25

γ2
. (12)

The derivation of the general percentile based system PM begins by substituting the standard
normal distribution percentiles (zp) into the quantile functions:

γ1 = q(z0.50) (13)

γ2 = q(z0.90)− q(z0.10) (14)

γ3 =
q(z0.70)− q(z0.50)
q(z0.50)− q(z0.30)

(15)

γ4 =
q(z0.625)− q(z0.375)
q(z0.70)− q(z0.30)

(16)

γ5 =
q(z0.50)− q(z0.10)
q(z0.90)− q(z0.50)

(17)
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γ6 =
q(z0.75)− q(z0.25)
q(z0.90)− q(z0.10)

, (18)

where z0.50 = 0, z0.625 = 0.3186 · · · , z0.70 = 0.5244 · · · , z0.75 = 0.6744 · · · , z0.90 = 1.281 · · ·
from the standard normal distribution. Note from symmetry that z0.10 = −z0.90 and z0.25 =
−z0.75. The explicit forms of (13)-(18) are

γ1 = q(z0.50) (median) (19)

γ2 = 2z0.90(c2 + z20.90c4 + z40.90c6) (20)

γ3 = 1 +
2z0.70(c3 + z20.70c5)

c2 + z0.70(−z30.70 + z0.70(c4 − z0.70c5 + z20.70c6))
(21)

γ4 =
c2z0.625 + c4z

3
0.625 + c6z

5
0.625

z0.70c2 + z30.70c4 + z50.70c6
(22)

γ5 = 1− 2z0.90(c3 + z20.90c5)

c2 + z0.90(c3 + z0.90(c4 + z0.90(c5 + z0.90c6)))
(23)

γ6 =
z0.75c2 + z30.75c4 + z50.75c6
z0.90c2 + z30.90c4 + z50.90c6

. (24)

Simultaneously solving for the coefficients in (19)-(24) gives the convenient closed-form
expressions

c1 =γ1 (25)

c2 =(z30.75γ2(−z50.625 + γ4 + z20.75(z
3
0.625 − z30.70γ4)) + z30.90γ2(z

5
0.625 − z50.70γ4 + z20.90(−z30.625 + z30.70γ4))γ6

/(2z0.90(z0.90 − z0.75)z0.75(z0.90 + z0.75)(z0.625(−z20.90 + z20.625)(−z20.75 + z20.625)

+ (z0.90 − z0.70)z0.70(z0.90 + z0.70)(−z20.75 + z20.70)γ4) (26)

c3 =
1

2z30.90(1 + γ3)
(

z0.70γ2(−1 + γ3)(−z50.625 + z50.70γ4)

−z50.625 + z50.70γ4 + z20.90(z
3
0.625 − z30.70γ4)

+
z20.70γ2(z0.90(1 + γ3)(−1 + γ5) + z0.70(−1 + γ3)(1 + γ5))

(z20.90 − z20.70)(1 + γ5)

+ (z20.90(z0.90 − z0.625)z0.625(z0.90 + z0.625)(−z20.70 + z20.625)γ2(−1 + γ3)(z
5
0.75(−z30.625 + z30.70γ4)

+ z30.75(z
5
0.625 − z50.70γ4 + z30.90(−z50.625 + z50.70γ4 + z20.90(z

3
0.625 − z30.70γ4))γ6))

/(z0.75(−z20.90 + z20.75)z0.70(−z0.625(−z20.90 + z20.625)(−z20.75 + z20.625)

+ z0.70(−z20.90 + z20.70)(−z20.75 + z20.70)γ4) (z50.625 − z50.70γ4 + z20.90(−z30.625 + z30.70γ4))))
(27)

c4 =(γ2(z
5
0.75(−z0.625 + z0.70γ4) + z0.75(z

5
0.625 − z50.70γ4) + z0.90(−z50.625 + z50.70γ4 + z40.90(z0.625 − z0.70γ4))γ6))

/(2z0.90(z0.90 − z0.75)z0.75(z0.90 + z0.75)(z0.625(−z20.90 + z20.625)(−z20.75 + z20.625)

+ (z0.90 − z0.70)z0.70(z0.90 + z0.70)(−z20.75 + z20.70)γ4)) (28)

c5 =
1

2z50.90(1 + γ3)
γ2(

z0.70(−1 + γ3)(−z50.625 + z50.70γ4)

z50.625 − z50.70γ4 + z20.90(−z30.625 + z30.70γ4)

− z30.90(1 + γ3)(−1 + γ5) + z30.70(−1 + γ3)(1 + γ5)

(z20.90 − z20.70)(1 + γ5)

− (z20.90(z0.90 − z0.625)z0.625(z0.90 + z0.625)(−z20.70 + z20.625)(−1 + γ3)(z
5
0.75(−z30.625 + z30.70γ4)
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+ z30.75(z
5
0.625 − z50.70γ4) + z30.90(−z50.625 + z50.70γ4 + z20.90(z

3
0.625 − z30.70γ4))γ6))

/(z0.75(−z20.90 + z20.75)z0.70(−z0.625(−z20.90 + z20.625)(−z20.75 + z20.625)

+ z0.70(−z20.90 + z20.70)(−z20.75 + z20.70)γ4)(z
5
0.625 − z50.70γ4 + z20.90(−z30.625 + z30.70γ4))))

(29)

c6 = (z0.75γ2(−z30.625 + z30.70γ4 + z20.75(z0.625 − z0.70γ4)) + z0.90γ2(z
3
0.625 − z30.70γ4+

z20.90(−z0.625 + z0.70γ4))γ6)/(2z
2
0.90(z0.90 − z0.75)z0.75(z0.90 + z0.75)(z0.625(−z20.90 + z20.625)(−z20.75 + z20.625)

+ (z0.90 − z0.70)z0.70(z0.90 + z0.70)(−z20.75 + z20.70)γ4)). (30)

Estimates of γ1-γ6 based on the percentiles in (13)-(18) for a sample of size N can be
determined by finding the j and j+1 integer values, and their corresponding expected values
of the order statistics E[q(Z)j:N ] and E[q(Z)j+1:N ], by making use of the following equation
(Headrick & Pant, 2012b; Johnson, Kotz, & Balakrishnan, 1994)

E[q(Z)j:N ] =
N !

(j − 1)!(N − j)!

∫ +∞

−∞
q(z)φ(z){Φ(z)}j−1{1− Φ(z)}N−jdz (31)

such that

E[q(Z)j:N ] ≤ q(zp) ≤ E[q(Z)j+1:N ] (32)

and subsequently solve the equation

q(zp) = (u)E[q(Z)j:N ] + (1− u)E[q(Z)j+1:N ] (33)

for 0 ≤ u ≤ 1. Thus, an empirical estimate of q(zp) can then be obtained based on the order
statistics of a sample of size n as q(zp) ' q(Zp) = (u)q(Z)j:N + (1− u)q(Z)j+1:N .

3. Comparison of the MOM and the MOP on Distribution Fitting

3.1 Theoretical distributions

One of the theoretical advantages of the MOP has over the MOM is that the MOP is not
limited to the existence of moments (cumulants). Some theoretical distributions, such as
the Cauchy and the t distribution with 2 degrees of freedom, do not have either mean or
variance. Under this circumstance, the MOM does not work since it requires the first and
the second cumulants to fit a distribution. Table 1 summarizes the results of fitting various t
distributions by using the MOM and the MOP transformation methods. It is noted that the
t distribution needs to have degrees of freedom greater than four in order to have finite first
four moments (α1-α4) to exist. Therefore, the MOM fails to fit the t1 and the t3 distributions
since it can not obtain valid α1-α4.

On the other hand, the t1 and the t3 distributions can be fitted fairly well by using
the MOP technique since their percentiles always exit, regardless of the existence of their
moments or cumulants. In addition to the special cases of the t distributions (i.e., t1 and
t3), Table 1 also shows the superior of the MOP over the MOM in terms of fitting the t

6



distributions where the moments are all finite. Specifically, the MOP approximation fits the
t7 distribution better than the MOM. In addition to the graphical illustrations, Euclidean
distances (ED) are provided to compare the accuracy of the data fitting for the MOP and
the MOM. The expression of ED is defined as: D =

√∑
(O − E)2, where O is the observed

proportion in each interval (i.e., θ10, θ25, θ50, θ75, θ90) and E is the expected proportion in each
interval for both the MOP and the MOM. The smaller Euclidean distances of the MOP, as
shown in Table 1, also indicate the more accurate data fit of the MOP over the MOM.

Finally, in addition to the t distributions, the χ2
2 and the F distributions were also fit

by using both the MOM and the MOP approximations. The results summarized in Tables
2 and 3 show that the MOP had an overall smaller Euclidean distances than the MOM,
indicating that the MOP has advantages over the MOM.
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Table 1: The MOM and MOP Power Method PDF Approximations (Dashed Lines) to t Distribu-
tions

t1 (Cauchy)

MOM MOP

Not applicable

t3

MOM MOP

Not applicable

t7

MOM MOP

ED = 0.030058243 ED ≈ 0
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Table 2: The MOM and MOP Power Method PDF Approximations (Dashed Lines) to Chi-Squared
Distributions

χ2
3

MOM MOP

ED = 0.002596424 ED = 2.82843E-05

χ2
6

MOM MOP

ED = 0.000352704 ED = 1E-05

9



Table 3: The MOM and MOP Power Method PDF Approximations (Dashed Lines) to F Distri-
butions

F6,100

MOM MOP

ED = 0.000149887 ED ≈ 0

F9,100

MOM MOP

ED = 7.27324E-05 ED = 1E-06

3.2 Empirical distribution

Presented in Figure 1 are the fifth ordered MOM and the MOP pdfs superimposed on the
histogram of the SPSS customer dbase data from IBM Corp. (2011). This is a data file that
concerns a company’s efforts to use the information in its data warehouse to make special
offers to customers who are most likely to reply. Specifically, these data are the amount each
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customer spent on their primary credit card in the last month. The parameters (α3−6 and
γ3−6) associated with Figure 1 were based on a sample size of N = 5, 000 participants. Note
that to fit the PM distributions to the data, a linear transformation has to be imposed on
q(z) = Aq(z)+B for the MOM procedure. Specifically, in the context of the MOM, A = s/σ,
B = m − Aµ. On the other hand, the MOP does not require a linear transformation to fit
empirical data.

Visual inspection of the approximation in Figure 1 indicate that the MOP technique
provides a more accurate fit to the actual data over the MOM. Further, Euclidean distances
were calculated in each interval to compare the accuracy of the data fitting for the MOP and
the MOM. The results summarized in Table 4 indicate that the MOP has a more accurate
data fit because the ED of the MOP is less than that of the MOM.

Figure 1: Histograms and estimates based on the MOM and the MOP for the credit card spent
data in customer dbase data (IBM SPSS20).

Table 4: Percentiles, expected proportions, observed proportions and the Euclidean distances
(ED) for the MOP and the MOM approximations associated with the SPSS customer dbase data
(N = 5, 000) from IBM Corp. (2011).

Percentile Expected Prop.
Obs Prop. Obs Prop.

(MOM) (MOP)

10 0.10 0.1146 0.1000

25 0.25 0.3454 0.2560

50 0.50 0.5382 0.5000

75 0.75 0.7166 0.7520

90 0.90 0.8822 0.9000

D = 0.110481 D = 0.0063246
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4. Multivariate Distributions

4.1 Pearson correlations for the system of the MOM

Suppose a T -variate distribution based on conventional PM polynomials are desired. The PM
equation for solving intermediate Pearson correlations (rjk) for specified Pearson correlations
(ρjk) for distributions j and k is (Headrick, 2010, p.30, Eq. 2.59)

ρjk = 3c5jc1k + 3c5jc3k + 9c5jc5k + c1j(c1k + c3k + 3c5k) + c2jc2krjk + 3c4jc2krjk + 15c6jc2krjk

+ 3c2jc4krjk + 9c4jc4krjk + 45c6jc4krjk + 15c2jc6krjk + 45c4jc6krjk + 225c6jc6krjk + 12c5jc3kr
2
jk

+ 72c5jc5kr
2
jk + 6c4jc4kr

3
jk + 60c6jc4kr

3
jk + 60c4jc6kr

3
jk + 600c6jc6kr

3
jk + 24c5jc5kr

4
jk

+ 120c6jc6kr
5
jk + c3j(c1k + c3k + 3c5k + 2c3kr

2
jk + 12c5kr

2
jk). (34)

Note that the purpose of the intermediate Pearson correlations (rjk) in Equation (34) is to
adjust for the effect of the transformation, such that the transformed T -variate distribution
will have the specified Pearson correlations (ρjk). c′jis and c′kis (i = 1, . . . , 6) coefficients are
obtained from specifying αji and αki for distributions j and k, respectively.

4.2 Spearman correlations for the system of the MOP

We assume that the variates Yj = q(Zj) and Yk = q(Zk) in (1) produce valid pdfs and
are thus increasing monotonic transformations in Zj and Zk. This implies that the rank
orders of Yj (R(Yj)) and Zk (R(Zk)) are identical and thus will have rank correlations of
ρR(Yj),R(Zj) = ρR(Yk),R(Zk) = 1.

Given these assumptions, suppose it is desired to simulate a T -variate distribution from
the quantile functions in Equation (1) with a specified T × T Spearman correlation matrix
(εjk, j, k = 1, . . . , T ) and where each distribution has specified γ3-γ6. The Spearman corre-
lation between distributions j and k, εjk, can be obtained from the derivation of ρR(Zj),R(Zk)

given in Moran (1948). That is, because (1) is a strictly increasing monotonic transformation,
εjk = ρR(Zj),R(Zk) and thus the intermediate correlations rjk can be obtained by numerically
solving the equation (Headrick, 2010, Eq. 4.34)

εjk =
6

π

[
(
N − 2

N + 1
) sin−1(

rj,k
2

) +
1

N + 1
sin−1(rj,k)

]
. (35)

5. The Procedure for Simulation and Monte Carlo Study

5.1 Simulation data

To implement the method for simulating normal and nonnormal distributions with specified
γ3-γ6 and Spearman correlations, we suggest the following steps:

1. Specify the values of γ3-γ6 for the T transformations of the forms in (1) i.e. p1(Z1), . . . , pT (ZT )
and obtain the constants of c1-c6 for each polynomial by solving equations (25)-(30)
using the specified values of γ1-γ6 for each distribution. Specify a T × T matrix of
Spearman correlations between pj(Zj) and pk(Zk), where j < k ∈ {1, 2, . . . , T}.
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2. Compute the intermediate correlations (IC) rj,k by substituting the solutions of the
constants from Step 1 into (35) and then solve for rj,k. Repeat this step separately for
all T (T − 1)/2 pairwise combinations of correlations.

3. Assemble the ICs into a T × T matrix and decompose this matrix using a Cholesky
factorization. Note that this step requires the IC matrix to be positive definite.

4. Use the results of the Cholesky factorization from Step 3 to generate T standard normal
variables (Z1, . . . , ZT ) correlated at the intermediate levels as follows

Z1 = a11V1

Z2 = a12V1 + a22V2
...

Zj = a1jV1 + a2jV2 + . . .+ aijVi + . . .+ ajjVj
...

ZT = a1TV1 + a2TV2 + . . .+ aiTVi + . . .+ ajTVj + . . .+ aTTVT , (36)

where V1, . . . , VT are independent standard normal random variables and where aij
represents the element in the i-th row and the j-th column of the matrix associated
with the Cholesky factorization performed in Step 3.

5. Substitute Z1, . . . , ZT from step 4 into T equations of the form in (1), as noted in step
1, to generate the PM distributions with the specified values of γ3-γ6 and Spearman
correlations.

To demonstrate the steps above and evaluate the proposed procedure, a comparison
between the MOP and the MOM procedures is subsequently described. Specifically, the
distributions in Figure 2 are used as a basis for a comparison using the specified correlation
matrices in Table 5. Tables 6-8 give the solved IC matrices for the MOM and the MOP
procedures with samples of sizes 25 and 750, respectively.
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Figure 2: Two symmetric (a)-(b) and two asymmetric distributions (c)-(d) with their MOM and
MOP parameters.
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In terms of the simulation, a Fortran algorithm was written for both methods to gen-
erate 25,000 independent sample estimates for the specified parameters of: (i) conventional
moments (α3-α6) and Pearson correlation; and (ii) moments for MOP (γ3-γ6) and Spear-
man correlation. All estimates were based on sample sizes of N = 25 and N = 750. The
formulae used for computing estimates of α3-α6 were based on Fisher’s k-statistics i.e. the
formulae currently used by most commercial software packages such as SAS, SPSS, Minitab,
and so forth. The formulae used for computing estimates of γ3-γ6 were based on (13)-(18).
Note that the estimates of percentiles were based on (31). The estimates for the Pearson
and Spearman correlations were both transformed using Fisher’s z transformation. Bias-
corrected accelerated bootstrapped average (median) estimates, confidence intervals (CIs),
and standard errors were subsequently obtained for the estimates associated with the pa-
rameters using 10,000 resamples via the commercial software package Spotfire S+ TIBCO
Software (2008). The bootstrap results for the estimates of the medians and CIs associated
with the Pearson and Spearman correlations were transformed back to their original matri-
ces (i.e. estimates for the Pearson and Spearman correlations). Further, if a parameter (P )
was outside its associated bootstrap CI, then an index of relative bias (RB) was computed
for the estimate (E) as: RB= (((E − P ))/P ) × 100. Note that the small amount of bias
associated with any bootstrap CI containing a parameter was considered negligible and thus
not reported. The results of the simulation are reported in Tables 12-15 and are discussed
in the next section.

Table 5: Specified correlation matrix for the distributions in Figure 2 (a)-(d).

1 2 3 4

1 1

2 0.75 1

3 0.70 0.60 1

4 0.55 0.40 0.65 1

Table 6: Intermediate correlations for the MOM procedure.

1 2 3 4

1 1

2 0.8329812 1

3 0.777728 0.7039272 1

4 0.657191 0.502905 0.722099 1
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Table 7: Intermediate correlations for the MOP procedure (N = 25).

1 2 3 4

1 1

2 0.787157463 1

3 0.738500867 0.638650356 1

4 0.587658483 0.431321177 0.688961108 1

Table 8: Intermediate correlations for the MOP procedure (N = 750).

1 2 3 4

1 1

2 0.766121007 1

3 0.717483143 0.618734137 1

4 0.568694702 0.41634356 0.668342174 1

Table 9: Cholesky decompositions for the MOM procedure.

a11 = 1 a12 = 0.832981 a13 = 0.777728 a14 = 0.657191

0 a22 = 0.553301 a23 = 0.101381 a24 = −0.080467

0 0 a33 = 0.620372 a34 = 0.353242

0 0 0 a44 = 0.660943

Table 10: Cholesky decompositions for the MOP procedure (N = 25).

a11 = 1 a12 = 0.787157 a13 = 0.738501 a14 = 0.587658

0 a22 = 0.616752 a23 = 0.092961 a24 = −0.050683

0 0 a33 = 0.667813 a34 = 0.388861

0 0 0 a44 = 0.707726

Table 11: Cholesky decompositions for the MOP procedure (N = 750).

a11 = 1 a12 = 0.766121 a13 = 0.717483 a14 = 0.568695

0 a22 = 0.642696 a23 = 0.107446 a24 = −0.0301004

0 0 a33 = 0.6882394 a34 = 0.382930

0 0 0 a44 = 0.727355
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Table 12: Skew (α3), Kurtosis (α4), fifth order (α5), sixth order (α6) results for the MOM procedure
(N = 25).

Dist Parameter Estimate Standard Error 95% Bootstrap CI Relative Bias % Relative SE %

1

α3 0 0.0044 0.0030 −0.0010 0.0104 − −
α4 0 0.0018 0.0058 −0.0089 0.0139 − −
α5 0 −0.0087 0.0132 −0.0340 0.0173 − −
α6 0 −0.0415 0.0353 −0.1107 0.0270 − −

2

α3 0 0.0110 0.0101 −0.0071 0.0329 − −
α4 25 4.4700 0.0273 4.4137 4.5210 −82.1200 0.6096

α5 0 0.0173 0.1441 −0.1030 0.4631 − −
α6 6000 38.1600 0.5528 37.0926 39.2513 −99.3640 1.4486

3

α3 2 1.5440 0.0052 1.5337 1.5541 −22.8000 0.3381

α4 7 3.3490 0.0224 3.3029 3.3905 −52.1571 0.6677

α5 20 5.7420 0.0962 5.5600 5.9334 −71.2900 1.6759

α6 150 10.9600 0.3819 10.2336 11.7427 −92.6933 3.4845

4

α3 3 1.7390 0.0080 1.7232 1.7547 −42.0333 0.4585

α4 21 5.6180 0.0303 5.5613 5.6809 −73.2476 0.5399

α5 150 12.2400 0.1583 11.8814 12.5125 −91.8400 1.2933

α6 2000 42.3800 0.6683 41.1088 43.7196 −97.8810 1.5769
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Table 13: Skew (α3), Kurtosis (α4), fifth order (α5), sixth order (α6) results for the MOM procedure
(N = 750).

Dist Parameter Estimate Standard Error 95% Bootstrap CI Relative Bias % Relative SE %

1

α3 0 0.0000 0.0006 −0.0012 0.0010 − −
α4 0 −0.0005 0.0011 −0.0029 0.0016 − −
α5 0 0.0013 0.0025 −0.0035 0.0063 − −
α6 0 −0.0074 0.0061 −0.0189 0.0052 − −

2

α3 0 0.0090 0.0100 −0.0092 0.0295 − −
α4 25 18.61 0.1145 18.3819 18.8304 −25.5600 0.6153

α5 0 1.4340 2.1510 −2.7690 5.5213 − −
α6 6000 1709 37.54 1638.34 1785.575 −71.5167 2.1966

3

α3 2 1.981 0.0023 1.9769 1.9857 −0.9500 0.1143

α4 7 6.697 0.0176 0.0176 6.7340 −4.3286 0.2631

α5 20 19.97 0.1942 19.5671 20.3388 − −
α6 150 109.6 2.3150 105.9363 115.3542 −26.9333 2.1122

4

α3 3 2.868 0.0059 2.8567 2.88 −4.4000 0.2048

α4 21 18.22 0.0763 18.0683 18.3680 −13.2381 0.4190

α5 150 110.5 1.2480 108.5032 113.0405 −26.3333 1.1294

α6 2000 1140 20.5200 1101.571 1181.889 −43.0000 1.8000
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Table 14: Left-right tail-weight ratio (γ3) and tail-weight factor (γ4), fifth order (γ5), sixth order
(γ6) results for the MOP procedure (N = 25).

Dist Parameter Estimate SE 95% Bootstrap CI Relative Bias % Relative SE %

1

γ3 1 0.9962 0.0057 0.9846 1.0075 − −
γ4 0.607626 0.6155 0.0012 0.6132 0.6180 1.2959 0.1955

γ5 1 0.9978 0.0034 0.9911 1.0044 − −
γ6 0.526307 0.5294 0.0008 0.5281 0.5311 0.5877 0.1500

2

γ3 1 1.0000 0.0050 0.9903 1.0097 − −
γ4 0.575777 0.5837 0.0012 0.5815 0.5864 1.3761 0.2118

γ5 1 0.9913 0.0046 0.9822 1.0006 − −
γ6 0.388174 0.3981 0.0009 0.3964 0.3999 2.5571 0.2301

3

γ3 1.802370 1.8120 0.0093 1.7930 1.8301 − −
γ4 0.595945 0.6051 0.0012 0.6075 0.6075 1.5362 0.1991

γ5 0.277596 0.2781 0.0010 0.2762 0.2800 − −
γ6 0.465715 0.4745 0.0011 0.4723 0.4767 1.8863 0.2310

4

γ3 2.38664 2.3680 0.0121 2.3440 2.3914 − −
γ4 0.569775 0.5830 0.0012 0.5807 0.5807 2.3211 0.2063

γ5 0.216156 0.2159 0.0009 0.2139 0.2176 − −
γ6 0.375103 0.3828 0.0011 0.3809 0.3850 2.0520 0.2861
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Table 15: Left-right tail-weight ratio (γ3) and tail-weight factor (γ4), fifth order (γ5), sixth order
(γ6) results for the MOP procedure (N = 750).

Dist Parameter Estimate SE 95% Bootstrap CI Relative Bias % Relative SE %

1

γ3 1 0.9998 0.0009 0.0009 1.0016 − −
γ4 0.607626 0.6078 0.0002 0.6074 0.6082 − −
γ5 1 1.0000 0.0005 0.9992 1.0014 − −
γ6 0.526307 0.5264 0.0002 0.5261 0.5267 − −

2

γ3 1 1.0000 0.0010 0.9982 1.0019 − −
γ4 0.575777 0.5764 0.0002 0.5759 0.5769 0.1082 0.0404

γ5 1 1.0000 0.0009 0.9982 1.0018 − −
γ6 0.388174 0.3886 0.0002 0.3882 0.3890 0.1097 0.0456

3

γ3 1.802370 1.8050 0.0018 1.8016 1.8085 − −
γ4 0.595945 0.5963 0.0002 0.5958 0.5968 − −
γ5 0.277596 0.2776 0.0002 0.2771 0.2780 − −
γ6 0.465715 0.4659 0.0002 0.4655 0.4663 − −

4

γ3 2.38664 2.3870 0.0027 2.3824 2.3926 − −
γ4 0.569775 0.5701 0.0002 0.5696 0.5705 − −
γ5 0.216156 0.2162 0.0002 0.2158 0.2165 − −
γ6 0.375103 0.3758 0.0002 0.3755 0.3763 0.1858 0.0550

Table 16: Pearson correlation (Corr) results for the MOM procedure (N = 25).

Corr Parameter Estimate SE 95% Bootstrap CI Relative Bias % Relative SE

0.75 0.7954 0.0012 0.7944 0.7961 6.0551 0.1507

0.7 0.7222 0.0012 0.7210 0.7233 3.1695 0.1666

0.55 0.5911 0.0013 0.5894 0.5926 7.4662 0.2118

0.6 0.6411 0.0016 0.6392 0.6429 6.8462 0.2469

0.4 0.4469 0.0016 0.4444 0.4494 11.7210 0.3565

0.65 0.6876 0.0020 0.6855 0.6896 5.7774 0.2870
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Table 17: Pearson correlation (Corr) results for the MOM procedure (N = 750).

Corr Parameter Estimate SE 95% Bootstrap CI Relative Bias % Relative SE

0.75 0.7544 0.0003 0.7542 0.7548 0.5930 0.0446

0.7 0.7007 0.0002 0.7005 0.7009 0.1019 0.0307

0.55 0.5520 0.0002 0.5517 0.5523 0.3569 0.0420

0.6 0.6028 0.0003 0.6024 0.6032 0.4631 0.0547

0.4 0.4024 0.0003 0.4019 0.4029 0.5980 0.0819

0.65 0.6518 0.0004 0.6514 0.6523 0.2838 0.0572

Table 18: Spearman correlation (Corr) results for the MOP procedure (N = 25).

Corr Parameter Estimate SE 95% Bootstrap CI Relative Bias % Relative SE

0.75 0.7653 0.0018 0.7646 0.7677 2.0464 0.2398

0.7 0.7143 0.0020 0.7131 0.7169 2.0422 0.2794

0.55 0.5652 0.0018 0.5638 0.5685 2.7585 0.3153

0.6 0.6152 0.0018 0.6138 0.6177 2.5287 0.2898

0.4 0.4121 0.0017 0.4100 0.4162 3.0171 0.4208

0.65 0.6655 0.0016 0.6632 0.6669 2.3913 0.2469

Table 19: Spearman correlation (Corr) results for the MOP procedure (N = 750).

Corr Parameter Estimate SE 95% Bootstrap CI Relative Bias % Relative SE

0.75 0.7502 0.0003 0.7500 0.7505 − −
0.7 0.7004 0.0003 0.7000 0.7007 0.0509 0.0460

0.55 0.5503 0.0003 0.5498 0.5508 − −
0.6 0.6002 0.0003 0.5998 0.6006 − −
0.4 0.3996 0.0003 0.3991 0.4001 − −
0.65 0.6503 0.0003 0.6500 0.6507 − −

5.2 Discussion and conclusion

One of the advantages that the MOP has over the MOM is that it is far less biased when sam-
pling is from distributions with more severe departures from normality. Moreover, inspection
of the simulation results in Tables 12-15 clearly indicate this conclusion. Specifically, the su-
periority that the MOP estimates (γ3-γ6) have over their corresponding MOM counterparts
(α3-α6). For example, with samples size of N = 25, the estimates of skew, kurtosis, fifth and
sixth moments for Distribution 4 (heavy-skewed and heavy-tailed) were, on average, 42.03%
and 73.425%, 91.84%, and 97.88% below their associated population parameters, whereas the
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estimates of γ2 and γ4 were 2.32% and 2.05% over their respective parameters. Tables 12-15
also show that γ3-γ6 are more efficient estimators as their relative standard errors RSE =
(standard error/estimate)×100 are considerably smaller than the MOM estimators of skew
and kurtosis. Presented in Tables 16-19 are the results associated with the conventional
Pearson and the Spearman correlations. Overall inspection of these tables indicates that the
Spearman correlation is superior to the Pearson correlation in terms of RB.

In summary, the proposed MOP procedure is an attractive alternative to the traditional
MOM procedure due to its distinct advantages when distributions with large departures
from normality are used. In addition, it can generate distributions where the mean and/or
the variance does not exist (e.g., Cauchy, t distribution with 1 or 2 degrees of freedom).
Furthermore, in practice situations where only proportions or percentiles are provided to
public, the MOP is more preferable than the MOM since the required moments for MOM
are not available.
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The system of equations of α1−α6 given by Headrick and Kowalchuk
(2007), Eqs. (A9)-(A12)

α1 = c1 + c3 + 3c5 (37)

α2 = c21 + c22 + 2c1(c3 + 3c5) + 6c2(c4 + 5c6) + 3(c23 + 10c3c5 + 5(c24 + 7c25 + 14c4c6 + 63c26)) (38)

α3 = c31 + 3c21(c3 + 3c5) + 3c1(c
2
2 + 6c2(c4 + 5c6) + 3(c23 + 10c3c5 + 5(c24 + 7c25 + 14c4c6 + 63c26)))

+ 3(3c22(c3 + 5c5) + 30c2(c3(c4 + 7c6) + 7c5(c4 + 9c6))

+ 5(c33 + 21c23c5 + 21c3(c
2
4 + 9c25 + 18c4c6 + 99c26) + 63c5(3c

2
4 + 11c25 + 66c4c6 + 429c26))) (39)

α4 = c41 + 4c31(c3 + 3c5) + 6c21(c
2
2 + 6c2(c4 + 5c6) + 3(c23 + 10c3c5 + 5(c24 + 7c25 + 14c4c6 + 63c26)))

+ 12c1(3c
2
2(c3 + 5c5) + 30c2(c3(c4 + 7c6) + 7c5(c4 + 9c6))

+ 5(c33 + 21c23c5 + 21c3(c
2
4 + 9c25 + 18c4c6 + 99c26) + 63c5(3c

2
4 + 11c25 + 66c4c6 + 429c26)))

+ 3(c42 + 20c32(c4 + 7c6) + 30c22(c
2
3 + 14c3c5 + 7(c24 + 9c25 + 18c4c6 + 99c26))

+ 420c2(c
2
3(c4 + 9c6) + 18c3c5(c4 + 11c6) + 3(c34 + 33c24c6 + 429c6(c

2
5 + 5c26) + 33c4(c

2
5 + 13c26)))

+ 35(c43 + 36c33c5 + 54c23(c
2
4 + 22c4c6 + 11(c25 + 13c26)) + 396c3c5(3c

2
4 + 78c4c6 + 13(c25 + 45c26))

+ 99(c44 + 52c34c6 + 78c24(c
2
5 + 15c26) + 780c4(3c

2
5c6 + 17c36) + 195(c45 + 102c25c

2
6 + 323c46))))− 3

(40)

α5 = c51 + 5c41(c3 + 3c5) + 10c31(c
2
2 + 6c2(c4 + 5c6) + 3(c23 + 10c3c5 + 5(c24 + 7c25 + 14c4c6 + 63c26)))

+ 30c21(3c
2
2(c3 + 5c5) + 30c2(c3(c4 + 7c6) + 7c5(c4 + 9c6))

+ 5(c33 + 21c23c5 + 21c3(c
2
4 + 9c25 + 18c4c6 + 99c26) + 63c5(3c

2
4 + 11c25 + 66c4c6 + 429c26)))

+ 15c1(c
4
2 + 20c32(c4 + 7c6) + 30c22(c

2
3 + 14c3c5 + 7(c24 + 9c25 + 18c4c6 + 99c26))

+ 420c2(c
2
3(c4 + 9c6) + 18c3c5(c4 + 11c6) + 3(c34 + 33c24c6 + 429c6(c

2
5 + 5c26) + 33c4(c

2
5 + 13c26)))

+ 35(c43 + 36c33c5 + 54c23(c
2
4 + 22c4c6 + 11(c25 + 13c26)) + 396c3c5(3c

2
4 + 78c4c6 + 13(c25 + 45c26))

+ 99(c44 + 52c34c6 + 78c24(c
2
5 + 15c26) + 780c4(3c

2
5c6 + 17c36) + 195(c45 + 102c25c

2
6 + 323c46))))

+ 15(5c42(c3 + 7c5) + 140c32(c3(c4 + 9c6) + 9c5(c4 + 11c6))

+ 70c22(c
3
3 + 27c23c5 + 27c3(c

2
4 + 11c25 + 22c4c6 + 143c26) + 99c5(3c

2
4 + 13c25 + 78c4c6 + 585c26))

+ 1260c2(c
3
3(c4 + 11c6) + 33c23c5(c4 + 13c6) + 11c3(c

3
4 + 39c24c6 + 39c4(c

2
5 + 15c26)

+ 195c6(3c
2
5 + 17c26)) + 143c5(c

3
4 + 45c24c6 + 255c6(c

2
5 + 19c26) + 15c4(c

2
5 + 51c26)))

+ 63(c53 + 55c43c5 + 110c33(c
2
4 + 26c4c6 + 13(c25 + 15c26)) + 4290c23c5(c

2
4 + 30c4c6 + 5(c25 + 51c26))

+ 715c3(c
4
4 + 60c34c6 + 90c24(c

2
5 + 17c26) + 1020c4(3c

2
5c6 + 19c36) + 255(c45 + 114c25c

2
6 + 399c46))

+ 2145c5(5c
4
4 + 340c34c6 + 6460c4c6(c

2
5 + 21c26) + 170c24(c

2
5 + 57c26)

+ 323(c45 + 210c25c
2
6 + 2415c46))))− 10 ∗ α3 (41)

α6 = c61 + 6c51(c3 + 3c5) + 15c41(c
2
2 + 6c2(c4 + 5c6) + 3(c23 + 10c3c5 + 5(c24 + 7c25 + 14c4c6 + 63c26)))

+ 60c31(3c
2
2(c3 + 5c5) + 30c2(c3(c4 + 7c6) + 7c5(c4 + 9c6))

+ 5(c33 + 21c23c5 + 21c3(c
2
4 + 9c25 + 18c4c6 + 99c26) + 63c5(3c

2
4 + 11c25 + 66c4c6 + 429c26)))

+ 45c21(c
4
2 + 20c32(c4 + 7c6) + 30c22(c

2
3 + 14c3c5 + 7(c24 + 9c25 + 18c4c6 + 99c26))

+ 420c2(c
2
3(c4 + 9c6) + 18c3c5(c4 + 11c6) + 3(c34 + 33c24c6 + 429c6(c

2
5 + 5c26) + 33c4(c

2
5 + 13c26)))

+ 35(c43 + 36c33c5 + 54c23(c
2
4 + 22c4c6 + 11(c25 + 13c26)) + 396c3c5(3c

2
4 + 78c4c6 + 13(c25 + 45c26))
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+ 99(c44 + 52c34c6 + 78c24(c
2
5 + 15c26) + 780c4(3c

2
5c6 + 17c36) + 195(c45 + 102c25c

2
6 + 323c46))))

+ 90c1(5c
4
2(c3 + 7c5) + 140c32(c3(c4 + 9c6) + 9c5(c4 + 11c6))

+ 70c22(c
3
3 + 27c23c5 + 27c3(c

2
4 + 11c25 + 22c4c6 + 143c26) + 99c5(3c

2
4 + 13c25 + 78c4c6 + 585c26))

+ 1260c2(c
3
3(c4 + 11c6) + 33c23c5(c4 + 13c6) + 11c3(c

3
4 + 39c24c6 + 39c4(c

2
5 + 15c26)

+ 195c6(3c
2
5 + 17c26)) + 143c5(c

3
4 + 45c24c6 + 255c6(c

2
5 + 19c26) + 15c4(c

2
5 + 51c26)))

+ 63(c53 + 55c43c5 + 110c33(c
2
4 + 26c4c6 + 13(c25 + 15c26)) + 4290c23c5(c

2
4 + 30c4c6 + 5(c25 + 51c26))

+ 715c3(c
4
4 + 60c34c6 + 90c24(c

2
5 + 17c26) + 1020c4(3c

2
5c6 + 19c36) + 255(c45 + 114c25c

2
6 + 399c46))

+ 2145c5(5c
4
4 + 340c34c6 + 6460c4c6(c

2
5 + 21c26) + 170c24(c

2
5 + 57c26) + 323(c45 + 210c25c

2
6 + 2415c46))))

+ 15(c62 + 42c52(c4 + 9c6) + 105c42(c
2
3 + 18c3c5 + 9(c24 + 11c25 + 22c4c6 + 143c26))

+ 1260c32(3c
2
3(c4 + 11c6) + 66c3c5(c4 + 13c6) + 11(c34 + 39c4c

2
5 + 39c24c6 + 585c25c6 + 585c4c

2
6 + 3315c36))

+ 945c22(c
4
3 + 44c33c5 + 66c23(c

2
4 + 26c4c6 + 13(c25 + 15c26)) + 1716c3c5(c

2
4 + 30c4c6 + 5(c25 + 51c26))

+ 143(c44 + 60c34c6 + 90c24(c
2
5 + 17c26) + 1020c4(3c

2
5c6 + 19c36) + 255(c45 + 114c25c

2
6 + 399c46)))

+ 20790c2(c
4
3(c4 + 13c6) + 52c33c5(c4 + 15c6) + 26c23(c

3
4 + 45c24c6 + 45c4(c

2
5 + 17c26) + 255c6(3c

2
5 + 19c26))

+ 780c3c5(c
3
4 + 51c24c6 + 323c6(c

2
5 + 21c26) + 17c4(c

2
5 + 57c26))

+ 39(c54 + 85c44c6 + 9690c24c6(c
2
5 + 7c26) + 170c34(c

2
5 + 19c26) + 33915c6(c

4
5 + 46c25c

2
6 + 115c46)

+ 1615c4(c
4
5 + 126c25c

2
6 + 483c46))) + 693(c63 + 78c53c5 + 195c43(c

2
4 + 30c4c6 + 15(c25 + 17c26))

+ 3900c33c5(3c
2
4 + 102c4c6 + 17(c25 + 57c26)) + 2925c23(c

4
4 + 68c34c6 + 3876c4c6(c

2
5 + 7c26)

+ 102c24(c
2
5 + 19c26) + 323(c45 + 126c25c

2
6 + 483c46))

+ 19890c3c5(5c
4
4 + 380c34c6 + 7980c4c6(c

2
5 + 23c26) + 190c24(c

2
5 + 63c26) + 399(c45 + 230c25c

2
6 + 2875c46))

+ 3315(c64 + 114c54c6 + 285c44(c
2
5 + 21c26) + 7980c34(3c

2
5c6 + 23c36) + 275310c4c6(c

4
5 + 50c25c

2
6 + 135c46)

+ 5985c24(c
4
5 + 138c25c

2
6 + 575c46) + 9177(c65 + 375c45c

2
6 + 10125c25c

4
6 + 19575c66))))− 15 ∗ α4 − 10 ∗ α2

3 − 15
(42)

27


	Southern Illinois University Carbondale
	OpenSIUC
	5-2017

	A Characterization of Power Method Transformations through The Method of Percentiles
	Tzu-Chun Kuo
	Todd C. Headrick
	Recommended Citation


	tmp.1494532979.pdf.y3rcM

