Date of Award

8-1-2012

Degree Name

Master of Science

Department

Zoology

First Advisor

Brooks, Marjorie

Abstract

Amphibian populations are rapidly declining worldwide. Although individual factors may have large local influences, worldwide declines are attributed to interacting global stressors including rising temperatures and environmental pollutants. Globally, water temperatures closely track rising air temperatures and increase the metabolic rates of aquatic ectotherms, changing the rates of uptake, biotransformation, and excretion of contaminants, such as metals. To test how interactions of multiple, chronic stressors affect amphibian growth, I exposed Cope's gray treefrogs (Hyla chrysoscelis) in an outdoor mesocosm facility to three temperature regimes (ambient, ambient +1.5 oC, ambient +2.5 oC) in filtered lake water amended with mixtures of cadmium, copper, and lead ranging from 3.7 to 26.7 risk quotients (relative to the chronic concentration criteria protective of freshwater organisms). Temperature shifts and sublethal metals concentrations significantly affected the energetics of tadpoles as assessed by non-parametric and parametric analyses. Regression analyses indicated no significant relationship between temperature and time to forelimb emergence at the three lowest metals concentrations, but the relationship was parabolic at the three highest concentrations, indicating a differential effect of temperature across a gradient of water quality. The concept that tadpoles increase developmental rates to escape unfavorable aquatic conditions was supported at each temperature by shortened time to forelimb emergence (Gosner Stage 42) at the second highest metals concentration. This response, however, was overwhelmed by the energetic costs associated with the highest concentration and the highest temperature. Moreover, these parabolic relationships match predictions based on species specific thermal windows and pejus temperatures. My findings indicate that global warming may affect contaminated waters to a greater extent than pristine aquatic ecosystems, and that the primary effect may be diminished pejus and critical thermal maximum temperatures, and a narrowing of the species' thermal window.

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Others should
contact the interlibrary loan department of your local library.