Date of Award

8-1-2012

Degree Name

Master of Science

Department

Plant and Soil Science

First Advisor

Choudhary, Ruplal

Abstract

Milk is one of the eight major food allergens. Cow's milk allergy is the most common allergy in children under 2 years of age. About 1.6 to 2.8 percent of children under this age are reported to have cow's milk allergy. Casein, β-lactoglobulin and α-lactalbumin are major milk protein allergens. Nonthermal treatments like high intensity ultrasound, ultraviolet (UV) light and nonthermal plasma treatments have been reported in the literature to be effective in reducing the allergenicity of different food proteins. Hence it was expected for these treatments to reduce cow milk allergenicity. The objective of this study was to investigate the effect of high intensity ultrasound, nonthermal atmospheric plasma and UV-C light treatments in reducing the allergenicity of isolated major milk proteins. Sonics Vibracell VC 505 ultrasonic liquid processor was used to perform high intensity ultrasound treatments. UV light treatments were performed using a DDK Scientific Corporation UV tunnel. A nonthermal atmospheric plasma setup assembled in Department of Microbiology lab was used to perform plasma treatments. Samples were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to estimate the change in protein concentration and enzyme linked immuno sorbent assays (ELISA) to observe the change in IgE binding. A one-way analysis of variance was conducted to evaluate the relationship between treatment time and percent IgE binding at 95% confidence level. Further investigation was conducted with nuclear magnetic resonance (NMR) spectroscopy on treated casein to assess any change in the structure of protein. SDS-PAGE results for ultrasound and plasma treatments didn't show any change in gel band intensities for casein, β-lactoglobulin and α-lactalbumin indicating no significant change in protein concentration. Ci-ELISA analysis showed that there was no significant difference (p>0.05) in IgE binding values for control and treated samples in ultrasound and plasma treatment conditions tested in this study. The intensities of all the three protein bands in SDS-PAGE gel were reduced by UV-C light treatment at 15 min treatment time. In Ci-ELISA, there was a significant difference (p< 0.05) in IgE binding values for control and treated samples and a reduction in allergenicity of proteins (25% reduction for casein and 28% reduction for whey protein fractions) was observed. Further investigations using in vivo clinical trials need to be conducted to confirm this result. NMR results didn't show any noticeable changes in the structures of casein with all three different treatments. In conclusion, UV-C light treatment can reduce the allergenicity of isolated major milk proteins to some extent. High intensity ultrasound and nonthermal atmospheric plasma treatments failed to generate effective results for reducing allergenicity at the conditions tested in this study. Higher intensity and longer treatment conditions might yield better results with ultrasound treatment. Different power and gas flow rates used to generate plasma with direct exposure of proteins might yield better results towards reducing the allergenicity of major milk allergens.

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.