Date of Award

8-1-2012

Degree Name

Master of Science

Department

Mechanical Engineering

First Advisor

Mondal, Kanchan

Abstract

The focus of this research was to investigate the role of carbon nanotubes as active catalysts in the Fischer-Tropsch reaction to derive liquid fuels from synthesis gas. Carbon nanotubes (CNTs) have unique structural and mechanical properties that make them ideal catalyst supports, but they also exhibit catalytic potential as well. This study implored the use of multi-walled CNTs on different substrates and single-walled CNTs grown from various precursors to analyze the effectiveness of the CNTs in FT synthesis. Multi-walled nanotubes (MWNTs) were tested on two different substrates: alumina pellets and inconel. The MWNTs on the alumina substrate yielded nearly all alkane and alkene products, with very little aromatic products. The amount of converted syngas reached 97% but had a high liquid product selectivity to methane, at roughly 57%. The MWNTs on inconel substrate produced nearly 80% aromatic products in one stage of the experiment, while the other three stages produces almost all alkane products with little oxygenates. Much of the liquid product yield (upwards of 73%) was between C10 and C21, which is ideal for diesel fuel. Single-walled nanotubes (SWNTs) were also tested in the FTS. All of the SWNTs were tested under a series of 6 temperatures, 300psig, and a syngas ratio of 1:1. Iron, nickel, and cobalt, which have all been proven as effective FT catalysts, were tested in trace amounts with CNTs. Fe-SWNTs (ferrocene assisted SWNTs) yielded a product of 100% C7 and C8 carbon species at two of the temperatures while 3 of the temperatures held a combination of longer chained alkanes, of C18 and longer. However, the last temperature converted 100% of the feedgas into methane and CO2. The product selectivity to CH4 and CO2 posed a problem with the Fe-SWNTs catalyst, where in all temperatures the selectivity exceeded 80%. Ni-SWNTs (nickellocene assisted SWNTs) yielded slightly better results with a higher selectivity to C2-C7, but no selectivity to longer chained hydrocarbons. Co-SWNTs (cobaltocene assisted SWNTs) tested under the same parameters yielded similar results as the Fe-SWNTs, with a very high selectivity to CH4 and CO2. Only at temperatures of 300 and 250°C were there any selectivity to compounds other than CH4 and CO2, but less than 10% selectivity to those alkanes (C2+). The final experiment consisted of a catalyst prepared from a feed solution containing a mixture of ferrocene and nickellocene. The Fe+Ni-SWNT catalyst underwent the same conditions as the other SWNT catalysts, this combination yielded favorable results with over 98% conversion of syngas over all temperatures and a high selectivity to shorter chain length hydrocarbons, namely alkanes of chain lengths between C2 and C7. Although the higher temperatures did show a selectivity to methane (roughly 45%), the CO2 selectivity was rather low, below 10% (except at 450°C, which pushed 20%).

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Others should
contact the interlibrary loan department of your local library.