Date of Award


Degree Name

Master of Science



First Advisor

Whitledge, Gregory

Second Advisor

Garvey, James


Invasive bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), hereafter, bigheaded carp, pose a major threat to the Great Lakes ecosystem as they advance toward Lake Michigan via the Illinois River. However, a series of navigation dams may deter their upstream movement. Starved Rock Lock and Dam (SRLD) is the most downstream gated dam on the Illinois River, therefore presenting the first navigation challenge for upstream migrating bigheaded carp. Before 2015, five acoustic receivers near SRLD detected successful upstream passage of only two of 900 tagged bigheaded carp. I further investigated the permeability of SRLD to bigheaded carp migration as a function of temperature, gage height, and dam operation. In 2015, I added 12 receivers around SRLD and acoustically tagged an additional 118 bigheaded carp downstream of SRLD. I also investigated the timing of bigheaded carp arriving downstream of SRLD using a generalized linear model. The explanatory variables influencing bigheaded carp arrival were average water temperature, average tailwater elevation, and the change in average water temperature. During 2015-2016, acoustic receivers recorded a total of 11 upstream passage events through SRLD, with nine through the dam gates, one through the lock chamber, and one undetermined. Passage through the dam gates occurred most frequently at high water levels when the dam gates were completely out of the water. The probability of upstream migrating bigheaded carp approaching SRLD was positively correlated with rising temperature and high gage. No upstream migrants approached SRLD between mid-September and late March. Overall, dam gates were more susceptible to upstream passage than the lock chamber, and environmental factors accurately predicted the arrival of bigheaded carp at SRLD. Modifying gate use during times of bigheaded carp arrival will likely prevent upstream passage through SRLD and other lock and dam structures.




This thesis is only available for download to the SIUC community. Others should
contact the interlibrary loan department of your local library.