Date of Award

8-1-2016

Degree Name

Master of Science

Department

Civil Engineering

First Advisor

DeVantier, Bruce

Abstract

The present study focuses on the sediment deposition and consequent dredging issues in Lower Ohio River at the Olmsted Locks and Dam area-River mile (RM)-964.4 during the ongoing in-the-wet construction methodology. The study reach is between Locks and Dam 53 (RM 962.6) at upstream, and RM 970 at downstream. One dimensional (1-D) HEC-RAS numerical modeling in conjunction with Arc-GIS was employed. Stream flow measurements, velocity, incoming sediment concentration, bed gradation, and annual hydrographic survey data acquired from public archives of USGS and USACE Louisville District were used as inputs. The model was subjected to the 1-D quasi-unsteady and completely unsteady sediment transport module, available in the latest HEC-RAS 5.0 Beta release. Calibration and validation of the hydrodynamic and sediment models were performed using measured water surface elevation, velocity, and sediment loads at measured sections. Post-model calibration and validation, deposition to excavated cross-sections for future dam shells at Olmsted was predicted, which warrants dredging. The study attempted to analyze the sediment transport trend with the focus on depositionat Olmsted Locks and Dam area using the sensitivity analysis approach of transport capacity functions. Moreover, the capability of 1-D HEC-RAS quasi-unsteady and completely unsteady models were assessed in prediction of sediment deposition in the construction area (dam shells excavation area). A temporal deposition prediction model was developed that can potentially replace the current ad-hoc approach used to determine the dredging schedule. Likewise, a representative environmental risk associated with sedimentation in the study area was examined. The model can potentially be used as a decision support tool to analyze the long term impact of sedimentation in the vicinity of Olmsted Locks and Dam if further updates on the river bathymetry, and specific field data are supplemented to the model.

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Current SIUC affiliates may also access this paper off campus by searching Dissertations & Theses @ Southern Illinois University Carbondale from ProQuest. Others should contact the interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.