Date of Award

8-1-2013

Degree Name

Master of Science

Department

Biomedical Engineering

First Advisor

Filip, Peter

Abstract

Poly[lactic co-glycolic] acid (PLGA) is a biocompatible polymer commonly used in the field of tissue engineering, but its mechanical properties tend to be less than ideal for most orthopedic applications. Five PLGA composites, reinforced with 0 to 1% nonfunctionalized single-walled carbon nanotubes, were prepared and tested for tensile strength. In order to achieve consistent nanotube dispersions, sodium dodecyl sulfate was incorporated as a surfactant. The polymer scaffold fabrication methods were successful at creating suitable samples for tensile testing. After the tests were performed, scanning electron microscope images were taken to examine the fractured edges and determine the cause of failure. Analysis of fractured surfaces indicated good nanotube dispersions in all composite samples, and an increase in tensile strength, with respect to the control (0.532 MPa), was found for composites at the 0.07% nanotube and 0.09% nanotube concentrations (0.570 MPa and 0.643 MPa respectively). Total length at failure decreased as carbon nanotube concentration increased. This experiment showed a promising trend toward increasing the mechanical properties of PLGA/carbon nanotube composites and represented a prospective foundation for future research.

Share

COinS
 

Access

This thesis is only available for download to the SIUC community. Others should
contact the interlibrary loan department of your local library.