Copyright 2008 American Geophysical Union
Published in Journal Of Geophysical Research, Vol. 113, D21108 (November 2008) at 10.1029/2008JD010251


Consequences of possible changes in annual total precipitation are dictated, in part, by the timing of precipitation events and changes therein. Herein, we investigated historical changes in precipitation seasonality over the US using observed station precipitation records to compute a standard seasonality index (SI) and the day of year on which certain percentiles of the annual total precipitation were achieved (percentile day of year). The mean SI from the majority of stations exhibited no difference in 1971–2000 relative to 30-year periods earlier in the century. However, analysis of the day of year on which certain percentiles of annual total precipitation were achieved indicated spatially coherent patterns of change. In some regions, the mean day of the year on which the 50th percentile of annual precipitation was achieved differed by 20–30 days between 1971–2000 and both 1911–1940 and 1941–1970. Output from the 10-Atmosphere-Ocean General Circulation Models (AOGCM) simulations of 1971–2000, 2046–2065, and 2081–2100 was used to determine whether AOGCMs are capable of representing the seasonal distribution of precipitation and to examine possible future changes. Many of the AOGCMs qualitatively captured spatial patterns of seasonality during 1971–2000, but there was considerable divergence between AOGCMs in terms of future changes. In both the west and southeast, 7 of 10 AOGCMs indicated later attainment of the 50th percentile accumulation in 2047–2065, implying a possible reversal of the twentieth-century tendency toward relative increases in precipitation receipt during winter and early spring over the southeast. However, this is also a region characterized by considerable interannual variability in the percentile day of year during the historical period.