Published in Singh, H., Niu, H., Qin, X., Shao, H., Kwon, C.Y., Fan, G., Kim, S.S., & Ngo, C. (2008). Supporting uncompressed HD video streaming without retransmissions over 60GHz wireless networks. IEEE Wireless Communications and Networking Conference, 2008. WCNC 2008, 1939 - 1944. doi: 10.1109/WCNC.2008.345. ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.


Uncompressed HD (high-definition) video delivery over wireless personal area networks (WPANs) is a challenging problem because of the limited bandwidth and variations in channel. The most straight forward technique to recover from channel errors is to retransmit corrupted packets. However, retransmissions introduce significant delay/jitter and require additional bandwidth. Therefore, retransmissions may be unsuitable for uncompressed video streaming. In this paper, we develop, simulate, and evaluate an millimeter- wave (mmWave) system for supporting uncompressed video streams up to 3-Gbps without any retransmissions. New features of the mmWave system incorporates: (i) UEP (unequal error protection) where different video bits (MSBs and LSBs) are protected differently, (ii) a multiple-CRC to determine whether MSB or/and LSB portions are in error, (iii) RS code swapping (RSS), an error concealment scheme which can conceal some errors in video pixels. Simulations using real uncompressed HD images indicate that the proposed mmWave system can maintain good average PSNR (peak-signal-to-noise-ratio) under poor channel conditions, achieving what is generally accepted as a good picture quality with PSNR values greater than 40 dB. Moreover, the proposed system results in less fluctuating PSNR values.