Published in Gowda, C.H., & Viswanathan, R. (1999). Performance of distributed CFAR test under various clutter amplitudes. IEEE Transactions on Aerospace and Electronic Systems, 35(4), 1410-1419. doi: 10.1109/7.805457 ©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.


We evaluate the performances of several distributed constant false-alarm rate (CFAR) tests operating in different background clutter conditions. The analysis considers the detection of Rayleigh target in various clutters with the possibility of differing clutter power levels in the test cells of distributed radars. Numerical results studied for a two-radar system show how the false-alarm rate of the maximum order statistic (MOS) test changes with differences in the clutter power levels of the test cells. The analysis for the detection of Rayleigh target in Rayleigh clutter indicates that, with the power levels of differing test cells, the OR fusion rule can be quite competitive with the new normalized test statistic (NTS). However, for the detection of Rayleigh target in Weibull or K-distributed clutter, the results show that NTS outperforms both the OR and the AND rules under the condition of large signal-to-clutter power ratio and moderate shape parameter values.