Date of Award

5-1-2012

Degree Name

Doctor of Philosophy

Department

Mathematics

First Advisor

Mohammed, Salah

Abstract

We consider a stochastic functional differential equation with infinite memory driven by a fractional Brownian motion with Hurst parameter $H>1/2$. We prove an existence and uniqueness result of the solution to the stochastic differential equation. We investigate the dependence of the solution on the initial condition and the existence of finite moments of the solution. Furthermore we generalize these results to wider classes of stochastic differential equations. The stochastic integral with respect to fractional Brownian motion is defined as a pathwise Riemann-Stieltjes integral.

Share

COinS
 

Access

This dissertation is only available for download to the SIUC community. Others should contact the
interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.