Date of Award

5-1-2011

Degree Name

Doctor of Philosophy

Department

Physics

First Advisor

Ali, Naushad

Abstract

Magnetic, magnetocaloric, magnetotransport and magnetoelastic properties of Ni-Mn-X (X = In, and Ga) Heusler alloys and La-Fe-Si based rare earth compounds have been synthesized and investigated by x-ray diffraction, magnetization, strain, and electrical resistivity measurements. The phase transitions, magnetic, magnetocaloric, magnetotransport and magnetoelastic properties strongly depend on the composition of these systems. In Ni50Mn50-xInx with x = 13.5, magnetocaloric and magnetotransport properties associated with the paramagnetic martensitic to paramagnetic austenitic transformation were studied. It was shown that magnetic entropy changes (SM) and magnetoresistance (MR) associated with this transformation are larger and the hysteresis effect is significantly lower when compared to that associated with paramagnetic-ferromagnetic transitions or ferromagnetic-antiferromagnetic/paramagnetic transitions in other systems. The Hall resistivity and the Hall angle shows unusual behavior in the vicinity of the martensitic phase transition for Ni50Mn50-xInx with x = 15.2. The observed Hall resistivity and Hall angle are 50 μ*cm and , respectively. It was observed that the presence of Ge, Al and Si atoms on the In sites strongly affects the crystal structure, and the electric and magnetic behaviors of Ni50Mn35In15. It was found that the partial substitution of In atoms by Si in Ni50Mn35In15 results in an increase in the magnetocaloric effect, exchange bias and shape memory effect. In Ni50Mn35In15-xSix, the peak values of positive SM for magnetic field changes H = 5 T were found to depend on composition and vary from 82 Jkg-1K-1 for x = 1 (at T = 275 K) to 124 Jkg-1K-1 for x = 3 (at T = 239 K). The partial substitution of Ni by Co in Ni50Mn35In15 significantly improves the magnetocaloric effect and MR in the vicinity of martensitic transition. In addition, significantly large inverse SM and MR were observed at the inverse martensitic phase transitions of the Ga-based magnetic shape memory Heusler alloys Ni50-xCoxMn32-yFeyGa18. The phase transition temperatures and magnetic properties were found to be correlated with the degree of tetragonal distortion in these samples. In LaFe11.57Si1.43Bx the crystal cell parameters and Curie temperatures were found to increase linearly with increasing B concentration up to ~ 0.1 % and 9 %, respectively. It was found that the characteristics of the magnetocaloric effect of LaFe11.57Si1.43 can be adjusted by a change in B concentration in the LaFe11.57Si1.43Bx system. A study of the influence of a small substitution of Ni, Cu, Cr, and V for Fe in LaFe11.4Si1.6 revealed that the magnetic, magnetocaloric, and magnetovolume coupling constant is related to an increase in the average Fe-Fe interatomic distances, leading to a change in the d-d exchange interaction.

Share

COinS
 

Access

This dissertation is only available for download to the SIUC community. Others should contact the
interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.