Date of Award


Degree Name

Doctor of Philosophy



First Advisor

Goodson, Boyd


NMR is a powerful analytical spectroscopic tool used to perform detailed studies of structure and dynamics of molecules in solution. However, despite NMR's excellent spectral sensitivity, most NMR methods suffer from low detection sensitivity. This low detection sensitivity results largely from extremely small (Boltzmann) nuclear spin polarization at thermal equilibrium--in even the strongest of magnets. This dissertation focuses on selected research areas that maybe used to combat the limitations presented by NMR and measure weak spectral responses with atomic-scale precision. In particular, these methods involve the use of laser-polarized xenon, liquid crystals, and polarization transfer (cross-polarization) techniques to enhance NMR sensitivity and/or measure weak interactions. The potential use of these tools to study host-guest interactions is of particular interest. In certain systems the sensitivity problem of conventional NMR/MRI can be overcome by applying optical pumping (OP) methods to enhance nuclear spin polarization. For instance, OP of noble gases (such as xenon) is employed to dramatically increase their nuclear spin polarization by transferring angular momentum of laser light to electronic and then nuclear spins. Next, cryptophane complexes are ideal choices for fundamental studies of prototypical host-guest interactions. Of general interest when studying host-guest interactions is how (1) physical confinement at the nanoscale and (2) interactions between guest and host may affect the properties, dynamics, interactions, and/or reactivity of a trapped molecule and the host/guest complex as a whole. As a more specific example, we are interested in probing host-guest dynamic coupling, which refers to the relative motion of the guest within the host, determined by the relative sizes and geometries--as well as the interactions involved. With the development of new NMR methods and techniques, we hope to gain insight into mechanisms that underlie complex formation by probing the structures, dynamics and energetic contributions involved in ligand binding, where molecular contributions such as: orientational and motional freedom of the guest; and structure, dynamics, and ordering of the host can influence the behavior of inclusion complexes.




This dissertation is only available for download to the SIUC community. Others should contact the
interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.