Date of Award

5-1-2017

Degree Name

Doctor of Philosophy

Department

Electrical and Computer Engineering

First Advisor

Kagaris, Dimitri

Abstract

A fundamental problem in multithreaded parallel programs is the partial serialization that is imposed due to the presence of mutual exclusion variables or critical sections. In this work we investigate a model that considers the threads consisting of an equal number L of functional blocks, where each functional block has the same duration and either accesses a critical section or executes non-critical code. We derived formulas to estimate the average time spent in a critical section in presence of synchronization barrier and in absence of it. We also develop and establish the optimality of a fast polynomial-time algorithm to find a schedule with the shortest makespan for any number of threads and for any number of critical sections for the case of L = 2. For the general case L > 2, which is NP-complete, we present a competitive heuristic and provide experimental comparisons with the ideal integer linear programming (ILP) formulation.

Available for download on Saturday, August 03, 2019

Share

COinS
 

Access

This dissertation is only available for download to the SIUC community. Others should contact the
interlibrary loan department of your local library or contact ProQuest's Dissertation Express service.