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I. EXISTENCE

1. Examples

Example 1. (Noisy Feedbacks)

Box N: Input = y(t), output = x(t) at time t > 0 related by

x(t) = x(0) +
∫ t

0

y(u) dZ(u) (1)

where Z(u) is a semimartingale noise.

Box D: Delays signal x(t) by r (> 0) units of time. A proportion σ

(0 ≤ σ ≤ 1) is transmitted through D and the rest (1 − σ) is used for
other purposes.

Therefore
y(t) = σx(t− r)

Take Ż(u) := white noise = Ẇ (u)
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Then substituting in (1) gives the Itô integral equation

x(t) = x(0) + σ

∫ t

0

x(u− r)dW (u)

or the stochastic differenial delay equation (sdde):

dx(t) = σx(t− r)dW (t), t > 0 (I)

To solve (I), need an initial process θ(t), −r ≤ t ≤ 0:

x(t) = θ(t) a.s., − r ≤ t ≤ 0

r = 0: (I) becomes a linear stochastic ode and has closed form solution

x(t) = x(0)eσW (t)−σ2t
2 , t ≥ 0.

r>0: Solve (I) by successive Itô integrations over steps of length r:

x(t) = θ(0) + σ

∫ t

0

θ(u− r) dW (u), 0 ≤ t ≤ r

x(t) = x(r) + σ

∫ t

r

[θ(0) + σ

∫ (v−r)

0

θ(u− r) dW (u)] dW (v), r < t ≤ 2r,

· · · = · · · 2r < t ≤ 3r,

No closed form solution is known (even in deterministic case).
Curious Fact!

In the sdde (I) the Itô differential dW may be replaced by the
Stratonovich differential ◦dW without changing the solution x. Let x

be the solution of (I) under an Itô differential dW . Then using finite
partitions {uk} of the interval [0, t] :

∫ t

0

x(u− r) ◦ dW (t) = lim
∑

k

1
2
[x(uk − r) + x(uk+1 − r)][W (uk+1)−W (uk)]

3



where the limit in probability is taken as the mesh of the partition
{uk} goes to zero. Compare the Stratonovich and Itô integrals using
the corresponding partial sums:

limE

( ∑

k

1
2
[x(uk − r) + x(uk+1 − r)][W (uk+1)−W (uk)]

−
∑

k

[x(uk − r)][W (uk+1)−W (uk)]
)2

= lim E

(∑

k

1
2
[x(uk+1 − r)− x(uk − r)][W (uk+1)−W (uk)]

)2

= lim
∑

k

1
4
E[x(uk+1 − r)− x(uk − r)]2 E[W (uk+1)−W (uk)]2

= lim
∑

k

1
4
E[x(uk+1 − r)− x(uk − r)]2 (uk+1 − uk)

= 0

because W has independent increments, x is adapted to the Brownian
filtration, u 7→ x(u) ∈ L2(Ω,R) is continuous, and the delay r is positive.
Alternatively

∫ t

0

x(u− r) ◦ dW (u) =
∫ t

0

x(u− r) dW (u) +
1
2

< x(· − r,W > (t)

and < x(· − r,W > (t) = 0 for all t > 0.

Remark.

When r > 0, the solution process {x(t) : t ≥ −r} of (I) is a mar-
tingale but is non-Markov .
Example 2. (Simple Population Growth)

Consider a large population x(t) at time t evolving with a con-
stant birth rate β > 0 and a constant death rate α per capita. Assume
immediate removal of the dead from the population. Let r > 0 (fixed,
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non-random= 9, e.g.) be the development period of each individual
and assume there is migration whose overall rate is distributed like
white noise σẆ (mean zero and variance σ > 0), where W is one-
dimensional standard Brownian motion. The change in population
∆x(t) over a small time interval (t, t + ∆t) is

∆x(t) = −αx(t)∆t + βx(t− r)∆t + σẆ∆t

Letting ∆t → 0 and using Itô stochastic differentials,

dx(t) = {−αx(t) + βx(t− r)} dt + σdW (t), t > 0. (II)

Associate with the above affine sdde the initial condition (v, η) ∈ R ×
L2([−r, 0],R)

x(0) = v, x(s) = η(s), −r ≤ s < 0.

Denote by M2 = R × L2([−r, 0],R) the Delfour-Mitter Hilbert space of
all pairs (v, η), v ∈ R, η ∈ L2([−r, 0],R) with norm

‖(v, η)‖M2 =
(
|v|2 +

∫ 0

−r

|η(s)|2 ds

)1/2

.

Let W : R+ × Ω → R be defined on the canonical filtered proba-
bility space (Ω,F , (Ft)t∈R+ , P ) where

Ω = C(R+,R), F = Borel Ω, Ft = σ{ρu : u ≤ t}

ρu : Ω → R, u ∈ R+, are evaluation maps ω 7→ ω(u), and P = Wiener
measure on Ω.
Example 3. (Logistic Population Growth)

A single population x(t) at time t evolving logistically with de-
velopment (incubation) period r > 0 under Gaussian type noise (e.g.
migration on a molecular level):

ẋ(t) = [α− βx(t− r)] x(t) + γx(t)Ẇ (t), t > 0
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i.e.
dx(t) = [α− βx(t− r)] x(t) dt + γx(t)dW (t) t > 0. (III)

with initial condition

x(t) = θ(t) − r ≤ t ≤ 0.

For positive delay r the above sdde can be solved implicitly using
forward steps of length r, i.e. for 0 ≤ t ≤ r, x(t) satisfies the linear sode
(without delay)

dx(t) = [α− βθ(t− r)] x(t) dt + γx(t)dW (t) 0 < t ≤ r. (III ′)

x(t) is a semimartingale and is non-Markov (Scheutzow [S], 1984).
Example 4. (Heat bath)

Model proposed by R. Kubo (1966) for physical Brownian mo-
tion. A molecule of mass m moving under random gas forces with
position ξ(t) and velocity v(t) at time t; cf classical work by Einstein
and Ornestein and Uhlenbeck. Kubo proposed the following modifi-
cation of the Ornstein-Uhenbeck process

dξ(t) = v(t) dt

mdv(t) = −m[
∫ t

t0

β(t− t′)v(t′) dt′] dt + γ(ξ(t), v(t)) dW (t), t > t0.





(IV )

m =mass of molecule. No external forces.
β = viscosity coefficient function with compact support.
γ a function R3 ×R3 → R representing the random gas forces on

the molecule.
ξ(t) = position of molecule ∈ R3.
v(t) = velocity of molecule ∈ R3.
W = 3− dimensional Brownian motion.

([Mo], Pitman Books, RN # 99, 1984, pp. 223-226).
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Further Examples

Delay equation with Poisson noise:

dx(t) = x((t− r)−) dN(t) t > 0

x0 = η ∈ D([−r, 0],R)

}
(V )

N := Poisson process with iid interarrival times ([S], Hab. 1988).
D([−r, 0],R) = space of all cadlag paths [−r, 0] → R, with sup norm.

Simple model of dye circulation in the blood (or pollution) (cf.
Bailey and Williams [B-W], JMAA, 1966, Lenhart and Travis ([L-T],
PAMS, 1986).

dx(t) = {νx(t) + µx(t− r))} dt + σx(t) dW (t) t > 0

(x(0), x0) = (v, η) ∈ M2 = R× L2([−r, 0],R),

}
(V I)

([Mo], Survey, 1992; [M-S], II, 1995.)
In above model:
x(t) := dye concentration (gm/cc)
r = time taken by blood to traverse side tube (vessel)
Flow rate (cc/sec) is Gaussian with variance σ.
A fixed proportion of blood in main vessel is pumped into side

vessel(s). Model will be analysed in Lecture V (Theorem V.5).
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dx(t) = {νx(t) + µx(t− r))} dt + {
∫ 0

−r

x(t + s)σ(s) ds} dW (t),

(x(0), x0) = (v, η) ∈ M2 = R× L2([−r, 0],R), t > 0.





(V II)

([Mo], Survey, 1992; [M-S], II, 1995.)

Linear d-dimensional systems driven by m-dimensional Brown-
ian motion W := (W1, · · · , Wm) with constant coefficients.

dx(t) = H(x(t− d1), · · · , x(t− dN ), x(t), xt)dt

+
m∑

i=1

gix(t) dWi(t), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd)





(V III)

H := (Rd)N ×M2 → Rd linear functional on (Rd)N ×M2; gi d× d-matrices
([Mo], Stochastics, 1990).

Linear systems driven by (helix) semimartingale noise (N, L),
and memory driven by a (stationary) measure-valued process ν and a
(stationary) process K ([M-S], I, AIHP, 1996):

dx(t) =
{∫

[−r,0]

ν(t)(ds)x(t + s)
}

dt

+ dN(t)
∫ 0

−r

K(t)(s)x(t + s) ds + dL(t) x(t−), t > 0

(x(0), x0) = (v, η) ∈ M2 = Rd × L2([−r, 0],Rd)





(IX)

Multidimensional affine systems driven by (helix) noise Q ([M-
S], Stochastics, 1990):

dx(t) =
{∫

[−r,0]

ν(t)(ds)x(t + s)
}

dt + dQ(t), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd)





(X)
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Memory driven by white noise:

dx(t) =
{∫

[−r,0]

x(t + s) dW (s)
}

dW (t) t > 0

x(0) = v ∈ R, x(s) = η(s), −r < s < 0, r ≥ 0





(XI)

([Mo], Survey, 1992).
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Formulation

Slice each solution path x over the interval [t − r, t] to get segment xt

as a process on [−r, 0]:

xt(s) := x(t + s) a.s., t ≥ 0, s ∈ J := [−r, 0].

Therefore sdde’s (I), (II), (III) and (XI) become

dx(t) = σxt(−r)dW (t), t > 0

x0 = θ ∈ C([−r, 0],R)



 (I)

dx(t) = {−αx(t) + βxt(−r)} dt + σdW (t), t > 0

(x(0), x0) = (v, η) ∈ R× L2([−r, 0],R)



 (II)
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dx(t) = [α− βxt(−r)]xt(0) dt + γxt(0) dW (t)

x0 = θ ∈ C([−r, 0],R)



 (III)

dx(t) =
{∫

[−r,0]

xt(s) dW (s)
}

dW (t) t > 0

(x(0), x0) = (v, η) ∈ R× L2([−r, 0],R), r ≥ 0





(XI)

Think of R.H.S.’s of the above equations as functionals of xt

(and x(t)) and generalize to stochastic functional differential equation

(sfde)

dx(t) = h(t, xt)dt + g(t, xt)dW (t) t > 0

x0 = θ



 (XII)

on filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual con-

ditions:

(Ft)t≥0 right-continuous and each Ft contains all P -null sets in

F.

C := C([−r, 0],Rd) Banach space, sup norm.

W (t) = m–dimensional Brownian motion.
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L2(Ω, C) := Banach space of all (F , BorelC)-measurable L2 (Bochner

sense) maps Ω → C with the L2-norm

‖θ‖L2(Ω,C) :=
[∫

Ω

‖θ(ω)‖2C dP (ω)
]1/2

Coefficients:

h : [0, T ]× L2(Ω, C) → L2(Ω,Rd) (Drift)

g : [0, T ]× L2(Ω, C) → L2(Ω, L(Rm,Rd) (Diffusion).

Initial data:

θ ∈ L2(Ω, C,F0).

Solution:

x : [−r, T ]×Ω → Rd measurable and sample-continuous, x|[0, T ] (Ft)0≤t≤T -

adapted and x(s) is F0-measurable for all s ∈ [−r, 0].

Exercise: [0, T ] 3 t 7→ xt ∈ C([−r, 0],Rd) is (Ft)0≤t≤T -adapted.

(Hint: Borel C is generated by all evaluations.)
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Hypotheses (E1).

(i) h, g are jointly continuous and uniformly Lipschitz in the second

variable with respect to the first:

‖h(t, ψ1)− h(t, ψ2)‖L2(Ω,Rd) ≤ L‖ψ1 − ψ2‖L2(Ω,C)

for all t ∈ [0, T ] and ψ1, ψ2 ∈ L2(Ω, C). Similarly for the diffusion

coefficent g.

(ii) For each (Ft)0≤t≤T -adapted process y : [0, T ] → L2(Ω, C),

the processes h(·, y(·)), g(·, y(·)) are also (Ft)0≤t≤T - adapted.

Theorem I.1. ([Mo], 1984) (Existence and Uniqueness).

Suppose h and g satisfy Hypotheses (E1). Let θ ∈ L2(Ω, C;F0).

Then the sfde (XII) has a unique solution θx : [−r,∞) × Ω → Rd starting

off at θ ∈ L2(Ω, C;F0) with t 7−→ θxt continuous and θx ∈ L2(Ω, C([−r, T ]Rd)) for

all T > 0. For a given θ, uniqueness holds up to equivalence among all (Ft)0≤t≤T -

adapted processes in L2(Ω, C([−r, T ],Rd)).

Proof.

[Mo], Pitman Books, 1984, Theorem 2.1, pp. 36-39. ¤
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Theorem I.1 covers equations (I), (II), (IV), (VI), (VII), (VIII),

(XI) and a large class of sfde’s driven by white noise. Note that

(XI) does not satisfy the hypotheses underlying the classical results

of Doleans-Dade [Dol], 1976, Metivier and Pellaumail [Met-P], 1980,

Protter, Ann. Prob. 1987, Lipster and Shiryayev [Lip-Sh], [Met],

1982. This is because the coefficient

η →
∫ 0

−r

η(s) dW (s)

on the RHS of (XI) does not admit almost surely Lipschitz (or even

linear) versions C → R! This will be shown later.

When the coeffcients h, g factor through functionals

H : [0, T ]× C → Rd, G : [0, T ]× C → Rd×m

we can impose the following local Lipschitz and global linear growth

conditions on the sfde

dx(t) = H(t, xt) dt + G(t, xt) dW (t) t > 0

x0 = θ



 (XIII)

with W m-dimensional Brownian motion:

Hypotheses (E2)
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(i) H, G are Lipschitz on bounded sets in C: For each integer n ≥ 1

there exists Ln > 0 such that

|H(t, η1)−H(t, η2)| ≤ Ln‖η1 − η2‖C

for all t ∈ [0, T ] and η1, η2 ∈ C with ‖η1‖C ≤ n, ‖η2‖C ≤ n. Similarly

for the diffusion coefficent G.

(ii) There is a constant K > 0 such that

|H(t, η)|+ ‖G(t, η)‖ ≤ K(1 + ‖η‖C)

for all t ∈ [0, T ] and η ∈ C.

Note that the adaptability condition is not needed (explicitly)

because H, G are deterministic and because the sample-continuity and

adaptability of x imply that the segment [0, T ] 3 t 7→ xt ∈ C is also

adapted.

Exercise: Formulate the heat-bath model (IV) as a sfde of the form

(XIII).(β has compact support in R+.)

Theorem I.2. ([Mo], 1984) (Existence and Uniqueness).

Suppose H and G satisfy Hypotheses (E2) and let θ ∈ L2(Ω, C;F0).
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Then the sfde (XIII) has a unique (Ft)0≤t≤T -adapted solution θx : [−r, T ]×

Ω → Rd starting off at θ ∈ L2(Ω, C;F0) with t 7−→ θxt continuous and θx ∈

L2(Ω, C([−r, T ],Rd)) for all T > 0. For a given θ, uniqueness holds up to equiva-

lence among all (Ft)0≤t≤T -adapted processes in L2(Ω, C([−r, T ],Rd)).

Furthermore if θ ∈ L2k(Ω, C;F0), then θxt ∈ L2k(Ω, C;Ft) and

E‖θxt‖2k
C ≤ Ck[1 + ‖θ‖2k

L2k(Ω,C)]

for all t ∈ [0, T ] and some positive constants Ck.
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Proofs of Theorems I.1, I.2.(Outline)

[Mo], pp. 150-152. Generalize sode proofs in Gihman and Sko-

rohod ([G-S], 1973) or Friedman ([Fr], 1975):

(1) Truncate coefficients outside bounded sets in C. Reduce to glob-

ally Lipschitz case.

(2) Successive approx. in globally Lipschitz situation.

(3) Use local uniqueness ([Mo], Theorem 4.2, p. 151) to “patch up”

solutions of the truncated sfde’s.

For (2) consider globally Lipschitz case and h ≡ 0.

We look for solutions of (XII) by successive approximation in

L2(Ω, C([−r, a],Rd)). Let J := [−r, 0].

Suppose θ ∈ L2(Ω, C(J,Rd)) is F0-measurable. Note that this is

equivalent to saying that θ(·)(s) is F0-measurable for all s ∈ J, because

θ has a.a. sample paths continuous.

We prove by induction that there is a sequence of processes

kx : [−r, a]× Ω → Rd, k = 1, 2, · · · having the

Properties P (k):
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(i) kx ∈ L2(Ω, C([−r, a],Rd)) and is adapted to (Ft)t∈[0,a].

(ii) For each t ∈ [0, a], kxt ∈ L2(Ω, C(J,Rd)) and is Ft-measur-able.

(iii)

‖k+1x− kx‖L2(Ω,C) ≤ (ML2)k−1 ak−1

(k − 1)!
‖2x− 1x‖L2(Ω,C)

‖k+1xt − kxt‖L2(Ω,C) ≤ (ML2)k−1 tk−1

(k − 1)!
‖2x− 1x‖L2(Ω,C)





(1)

where M is a “martingale” constant and L is the Lipschitz constant

of g.

Take 1x : [−r, a]× Ω → Rd to be

1x(t, ω) =
{

θ(ω)(0) t ∈ [0, a]
θ(ω)(t) t ∈ J

a.s., and

k+1x(t, ω) =





θ(ω)(0) + (ω)
∫ t

0

g(u, kxu)dW (·)(u) t ∈ [0, a]

θ(ω)(t) t ∈ J

(2)

a.s.

Since θ ∈ L2(Ω, C(J,Rd)) and is F0-measurable, then 1x ∈ L2(Ω, C([−r, a],Rd))

and is trivially adapted to (Ft)t∈[0,a]. Hence 1xt ∈ L2(Ω, C(J,Rd)) and is

Ft-measurable for all t ∈ [0, a]. P (1) (iii) holds trivially.

18



Now suppose P (k) is satisfied for some k > 1. Then by Hypothesis

(E1)(i), (ii) and the continuity of the slicing map (stochastic memory),

it follows from P (k)(ii) that the process

[0, a] 3 u 7−→ g(u, kxu) ∈ L2(Ω, L(Rm,Rd))

is continuous and adapted to (Ft)t∈[0,a]. P (k+1)(i) and P (k+1)(ii) follow

from the continuity and adaptability of the stochastic integral. Check

P (k + 1)(iii), by using Doob’s inequality.

For each k > 1, write

kx = 1x +
k−1∑

i=1

(i+1x− ix).

Now L2
A(Ω, C([−r, a],Rd)) is closed in L2(Ω, C([−r, a],Rd)); so the series

∞∑

i=1

(i+1x− ix)

converges in L2
A(Ω, C([−r, a],Rd)) because of (1) and the convergence of

∞∑

i=1

[
(ML2)i−1 ai−1

(i− 1)!

]1/2

.

Hence {kx}∞k=1 converges to some x ∈ L2
A(Ω, C([−r, a],Rd)).
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Clearly x|J = θ and is F0-measurable, so applying Doob’s in-

equality to the Itô integral of the difference

u 7−→ g(u, kxu)− g(u, xu)

gives

E

(
sup

t∈[0,a]

∣∣∣∣
∫ t

0

g(u, kxu) dW (·)(u)−
∫ t

0

g(u, xu) dW (·)(u)
∣∣∣∣
2)

< ML2a‖kx− x‖2L2(Ω,C)

−→ 0 as k →∞.

Thus viewing the right-hand side of (2) as a process in L2(Ω, C ([−r, a],Rd))

and letting k → ∞, it follows from the above that x must satisfy the

sfde (XII) a.s. for all t ∈ [−r, a].

For uniqueness, let x̃ ∈ L2
A(Ω, ([−r, a],Rd)) be also a solution of

(XII) with initial process θ. Then by the Lipschitz condition:

‖xt − x̃t‖2L2(Ω,C) < ML2

∫ t

0

‖xu − x̃u‖2L2(Ω,C) du

for all t ∈ [0, a]. Therefore we must have xt − x̃t = 0 for all t ∈ [0, a]; so

x = x̃ in L2(Ω, C([−r, a],Rd)) a.s. ¤
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Remarks and Generalizations.

(i) In Theorem I.2 replace the process (t,W (t)) by a (square inte-

grable) semimartingale Z(t) satisfying appropriate conditions.([Mo],

1984, Chapter II).

(ii) Results on existence of solutions of sfde’s driven by white noise

were first obtained by Itô and Nisio ([I-N], J. Math. Kyoto

University, 1968) and then Kushner (JDE, 197).

(iii) Extensions to sfde’s with infinite memory. Fading memory case:

work by Mizel and Trützer [M-T],JIE, 1984, Marcus and Mizel

[M-M], Stochastics, 1988; general infinite memory: Itô and Nisio

[I-N], J. Math. Kyoto University, 1968.

(iii) Pathwise local uniqueness holds for sfde’s of type (XIII) under

a global Lipschitz condition: If coeffcients of two sfde’s agree

on an open set in C, then the corresponding trajectories leave

the open set at the same time and agree almost surely up to

the time they leave the open set ([Mo], Pitman Books, 1984,

Theorem 4.2, pp. 150-151.)
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(iv) Replace the state space C by the Delfour-Mitter Hilbert space

M2 := Rd × L2([−r, 0],Rd) with the Hilbert norm

‖(v, η)‖M2 =
(
|v|2 +

∫ 0

−r

|η(s)|2 ds

)1/2

for (v, η) ∈ M2 (T. Ahmed, S. Elsanousi and S. Mohammed,

1983).

(v) Have Lipschitz and smooth dependence of θxt on the initial pro-

cess θ ∈ L2(Ω, C) ([Mo], 1984, Theorems 3.1, 3.2, pp. 41-45).
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