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I. EXISTENCE
1. Examples
Example 1. (Noisy Feedbacks)

Boz N: Input =y(t), output = z(¢) at time ¢t > 0 related by

£(t) = 2(0) + / y(u) dZ(u) (1)

where Z(u) is a semimartingale noise.

Bor D: Delays signal z(t) by r(> 0) units of time. A proportion o
(0 < o < 1) is transmitted through D and the rest (1 — o) is used for
other purposes.

Therefore
y(t) = ox(t —r)

Take Z(u) := white noise = W (u)



Then substituting in (1) gives the It integral equation

2(t) = 2(0) + o /Ot 2(u— r)dW ()
or the stochastic differenial delay equation (sdde):
dr(t) = ox(t — r)AW (),  t>0 ()
To solve (I), need an initial process 6(t), —r <t < 0:
xz(t) =0(t) a.s., —r<t<0
r = 0: (I) becomes a linear stochastic ode and has closed form solution

2(t) = 2(0)e?V O >0,

r>0: Solve (I) by successive It6 integrations over steps of length r:
t
x(t) = 6(0) +a/ O(u—r7r)dW(u), 0<t<r
0

t (v—r)
(t) = a(r) + a/ 16(0) + a/o O(u — ) dW (w)] dW (v), ¥ < t < 2r,

R 27"<t§3r7

No closed form solution is known (even in deterministic case).
Curious Fact!

In the sdde (I) the Ito differential aiw may be replaced by the
Stratonovich differential ocdW without changing the solution z. Let x
be the solution of (I) under an It differential di. Then using finite
partitions {u;} of the interval [0,¢] :

/0 x(u—r)o dW(t) = limz %[w(uk — 1)+ x(ugp1r — )] [W(ugs1) — Wug)]
2
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where the limit in probability is taken as the mesh of the partition
{ui} goes to zero. Compare the Stratonovich and It6 integrals using
the corresponding partial sums:

limE(Z %[x(uk — 1) 4+ (g1 — 7)][W(ugs1) — Wug)]
k

= Yol = IV () ~ W) )

k

= hmE(Z %[x('U/kH_l —r) —x(ur — r)|[W(ug+1) — W(Uk>]>
3
= limz iE[x(ukH — 1) — x(up — )2 E[W (ups1) — Wug))?
k

- limz }lE[x(ukJrl —7) —z(up — 7)) (Ups1 — ug)
k

=0

because W has independent increments, z is adapted to the Brownian
filtration, u — x(u) € L%(Q, R) is continuous, and the delay r is positive.
Alternatively

t t 1
/Ox(u—r)o dW(u):/Ox(u—r)dW(u)+§<x(~—r,W>(t)
and < z(-—r,W > (t) =0 for all ¢+ > 0.

Remark.

When r > 0, the solution process {z(t) : t > —r} of (I) is a mar-
tingale but is non-Markov.

Example 2. (Simple Population Growth)

Consider a large population z(t) at time ¢ evolving with a con-
stant birth rate 8 > 0 and a constant death rate o per capita. Assume
immediate removal of the dead from the population. Let r > 0 (fixed,
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non-random= 9, e.g.) be the development period of each individual
and assume there is migration whose overall rate is distributed like
white noise ¢W (mean zero and variance o > 0), where W is one-
dimensional standard Brownian motion. The change in population
Az(t) over a small time interval (¢,¢ + At) is

Ax(t) = —ax(t) At + fa(t — r)At + c WAL
Letting At — 0 and using It6 stochastic differentials,
dx(t) = {—ax(t) + fz(t —r)} dt + odW (t), t>0. (IT)

Associate with the above affine sdde the initial condition (v,n) € R x
LZ([_ra 0]7 R)

z(0) =v, x(s)=mn(s), —-r<s<0.
Denote by M, = R x L?([-r,0],R) the Delfour-Mitter Hilbert space of
all pairs (v,n), v € R, n € L*([-r,0],R) with norm

I, = (10 + " ()P ds)l/Q.

-7

Let W : Rt x Q — R be defined on the canonical filtered proba-
bility space (Q, F, (F;)ier+, P) Where

Q=CR"R), F= Borel Q, F, =0{p, :u <t}

pu : Q@ — R,u € RT, are evaluation maps w — w(u), and P = Wiener
measure on f.
Example 3. (Logistic Population Growth)

A single population z(t) at time ¢ evolving logistically with de-
velopment (incubation) period r > 0 under Gaussian type noise (e.g.
migration on a molecular level):

#(t) = [a — Ba(t — r) 2(t) + yzOW (), t>0

5



1.e.
dr(t) = [a — Bx(t — r)| z(t) dt + yx(t)dW (t) t > 0. (II1)

with initial condition
z(t)y=0(t) —r<t<N0.

For positive delay r the above sdde can be solved implicitly using
forward steps of length r, i.e. for 0 <t <r, x(t) satisfies the linear sode
(without delay)

dz(t) = [a— Ot — )] x(t) dt + yx(t)dW (t) 0<t <. (I11)

z(t) is a semimartingale and is non-Markov (Scheutzow [S], 1984).
Example 4. (Heat bath)

Model proposed by R. Kubo (1966) for physical Brownian mo-
tion. A molecule of mass m moving under random gas forces with
position £(¢) and velocity »(t) at time ¢; cf classical work by Einstein
and Ornestein and Uhlenbeck. Kubo proposed the following modifi-
cation of the Ornstein-Uhenbeck process

dé(t) = v(t

(t) dt
! / / / (IV)
mdv(t) = —m[/t Bt —tHo(t) dt'] dt + v(&(t),v(t)) dW (t), t > to.

m =mass of molecule. No external forces.
B = viscosity coefficient function with compact support.

v a function R3 x R? — R representing the random gas forces on
the molecule.

£(t) = position of molecule € R3.
v(t) = velocity of molecule € R3.

W = 3— dimensional Brownian motion.
([Mo], Pitman Books, RN # 99, 1984, pp. 223-226).
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Further Examples

Delay equation with Poisson noise:

dz(t) = a((t — r)=)dN(t) t> o}

(V)
xo =n € D([-r,0],R)

N := Poisson process with iid interarrival times ([S], Hab. 1988).
D([-r,0],R) = space of all cadlag paths [-r,0] — R, with sup norm.

Simple model of dye circulation in the blood (or pollution) (cf.
Bailey and Williams [B-W], JMAA, 1966, Lenhart and Travis ([L-T],
PAMS, 1986).

do(t) = {va(t) + px(t — 7))} dt + ox(t) dW(t) t> 0}
(V1)

(2(0),20) = (v,1) € My = R x L*([-r,0],R),

([Mo], Survey, 1992; [M-S], II, 1995.)
In above model:
z(t) := dye concentration (gm/cc)
r = time taken by blood to traverse side tube (vessel)
Flow rate (cc/sec) is Gaussian with variance o.

A fixed proportion of blood in main vessel is pumped into side
vessel(s). Model will be analysed in Lecture V (Theorem V.5).



0
dz(t) = {va(t) + px(t —r))} dt + {/ z(t+ s)o(s)ds}dW(t),
(2(0),20) = (v,n) € My = R x L*([-r,0],R), t > 0.
([Mo], Survey, 1992; [M-S], II, 1995.)

(VII)

Linear d-dimensional systems driven by m-dimensional Brown-
ian motion W := (Wy,---,W,,) with constant coefficients.

dz(t) = H(x(t —dy), - ,x(t —dn),z(t), x¢)dt
+) giz(t)dWi(t), t>0 (VIII)

(x(0),2z0) = (v,n) € My := R? x L*([-r,0],R%)
H := (RHN x M, — R? linear functional on (R*)¥ x My; g; d x d-matrices
[Mo], Stochastics, 1990).

Linear systems driven by (helix) semimartingale noise (N, L),

and memory driven by a (stationary) measure-valued process v and a
(stationary) process K ([M-S], I, AIHP, 1996):

da(t) = { /[ GO 9}

+dN(t) /O K(t)(s) x(t + ) ds + dL(t) z(t—), t>0

(2(0),z0) = (v,n) € My = RY x LQ([—T, 0],Rd)

J

Multidimensional affine systems driven by (helix) noise @ ([M-
S], Stochastics, 1990):

dx(t) = v(t)(ds)x s)pdt+d , 0
O={ v }asiq, > } "
(2(0),z0) = (v,n) € My := R* x L*([-r,0],RY)
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Memory driven by white noise:
dx(t) = / t+des}th t>0
vy ={ [ st awis fawi -
z(0)=veR, z(s)=n(s), -r<s<0, r>0

([Mo], Survey, 1992).



Formulation

Slice each solution path z over the interval [t —r,t] to get segment z;

as a process on [—r,0]:

ze(s) =xz(t+s) a.ss.,t>0,s€J:=[-r0].

Therefore sdde’s (I), (II), (III) and (XI) become

dx(t) = oxy(—r)dW(t), t>0
} (1)
xg=0¢€ C([-r0],R)
dz(t) = {—ax(t) + Ba¢(—r)} dt + cdW(t), t>0
} (I1)
(2(0),z0) = (v,1) € R x L*([~r,0],R)
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di(t) = o — Bire (—)Jae (0) dit + 7o (0) AW (1)
} (I11)
zg =6 € C([-r,0],R)
dz(t) = x¢(s)dW (s) o dW 0
O={ [, @@V} ave > .

(2(0),20) = (v,n) € R x L*([-r,0],R), r>0

Think of R.H.S.’s of the above equations as functionals of x;

(and z(t)) and generalize to stochastic functional differential equation

(sfde)

dx(t) = h(t,zy)dt + g(t,z¢)dW(t) t>0
} (XII)

1'0:9

on filtered probability space (Q,F, (F;)i>0, P) satisfying the usual con-

ditions:

(Fi)i>0 right-continuous and each F; contains all P-null sets in

C := C([-r,0],R%) Banach space, sup norm.

W (t) = m—dimensional Brownian motion.
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L2(Q, C) := Banach space of all (F, BorelC)-measurable L? (Bochner

sense) maps Q — C with the L2-norm

16]| 200y = [ /Q “%H%dp(w)} 12

Coefficients:

h:[0,T] x L*(Q,C) — L*(2,RY)  (Drift)

g:10,T) x L*(Q,0) — L*(Q, LR™,R%)  (Diffusion).

Initial data:

0 € L2(Q,C,F).

Solution:

x: [-r, T]xQ — R? measurable and sample-continuous, z|[0,T] (F;)o<¢<7-

adapted and z(s) is Fy-measurable for all s € [-r,0].

Ezercise: [0,T] >t~ x, € C([-r,0],RY) is (F)o<i<r-adapted.

(Hint: Borel C is generated by all evaluations.)

12



Hypotheses (E;).

(i) h,g are jointly continuous and uniformly Lipschitz in the second

variable with respect to the first:

1A(t, 1) — h(t, ¥2)llL20,re) < LlY1 — ¥2llL20,0)

for all ¢t € [0,7] and 1,¢, € L?(Q,C). Similarly for the diffusion

coefficent g.
(ii) For each (F)o<:<r-adapted process y : [0,T] — L*(Q,0),

the processes h(-,y(-)),g(-,y(:)) are also (F;)o<i<7- adapted.

Theorem 1.1. ([Mo], 1984) (Existence and Uniqueness).
Suppose h and g satisfy Hypotheses (E1). Let 6 € L?>(Q,C; Fy).

Then the sfde (XII) has a unique solution %z : [~r,00) x  — R? starting
off at § € L?(Q,C; Fo) with t — %z continuous and °x € L?(Q, C([—r, TIR?)) for
all T > 0. For a given 6, uniqueness holds up to equivalence among all (F;)o<t<7-
adapted processes in L?(Q, C([—r, T], R%)).

Proof.

[Mo], Pitman Books, 1984, Theorem 2.1, pp. 36-39. O
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Theorem 1.1 covers equations (I), (II), (IV), (VI), (VII), (VIII),
(XI) and a large class of sfde’s driven by white noise. Note that
(XI) does not satisfy the hypotheses underlying the classical results
of Doleans-Dade [Dol], 1976, Metivier and Pellaumail [Met-P], 1980,
Protter, Ann. Prob. 1987, Lipster and Shiryayev [Lip-Sh], [Met],

1982. This is because the coefficient

0
7 / n(s) VW (s)

on the RHS of (XI) does not admit almost surely Lipschitz (or even

linear) versions C — R! This will be shown later.

When the coeffcients h, g factor through functionals
H:[0,T]xC—RY G:[0,T] xC — R>™

we can impose the following local Lipschitz and global linear growth

conditions on the sfde

dx(t) = H(t,xe)dt + G(t,z) dW(t) t>0
} (XIII)

o = 0
with W m-dimensional Brownian motion:

Hypotheses (E»)
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(i) H,G are Lipschitz on bounded sets in C: For each integer n > 1

there exists L,, > 0 such that

[H (t,m) = H(t,n2)| < Lallm —ne2llc

for all t € [0,T] and ny,m, € C with ||n1]lc < n, ||n2]lc < n. Similarly

for the diffusion coefficent G.

(ii) There is a constant K > 0 such that

[H ()| + G < K1+ nllo)

for all t € [0,7] and 7 € C.

Note that the adaptability condition is not needed (explicitly)
because H,G are deterministic and because the sample-continuity and
adaptability of = imply that the segment [0,7] > t — 2, € C is also

adapted.

FEzercise: Formulate the heat-bath model (IV) as a sfde of the form

(XIIT).(B has compact support in R*.)

Theorem I.2. ([Mo], 1984) (Existence and Uniqueness).
Suppose H and G satisfy Hypotheses (E3) and let 6 € L?(Q,C;Fp).
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Then the sfde (XIII) has a unique (F;)o<¢<7-adapted solution ®x : [—r, T] x
Q) — R? starting off at § € L?(Q,C;Fy) with t — %x; continuous and %z €
L3(Q,C([-r,T],RY)) for all T > 0. For a given 6, uniqueness holds up to equiva-

lence among all (F;)o<¢<r-adapted processes in L?(2, C([—r,T], R%)).
Furthermore if 0 € L?*(Q,C; Fy), then %z, € L?*(Q,C; F;) and

Bl < Cull + 10175 0,0)]

for all t € [0,T] and some positive constants Cl,.
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Proofs of Theorems 1.1, I.2.(Outline)

[Mo], pp. 150-152. Generalize sode proofs in Gihman and Sko-
rohod ([G-S], 1973) or Friedman ([Fr], 1975):

(1) Truncate coefficients outside bounded sets in C. Reduce to glob-

ally Lipschitz case.
(2) Successive approx. in globally Lipschitz situation.

(3) Use local uniqueness ([Mo], Theorem 4.2, p. 151) to “patch up”

solutions of the truncated sfde’s.

For (2) consider globally Lipschitz case and h = 0.

We look for solutions of (XII) by successive approximation in
L2(Q,C(|=r,a],RY). Let J = [—r,0].

Suppose 0 € L?(Q,C(J,RY)) is Fo-measurable. Note that this is
equivalent to saying that 6(-)(s) is Fy,-measurable for all s € J, because

6 has a.a. sample paths continuous.

We prove by induction that there is a sequence of processes

Fr:l-ra]l x Q— R k=1,2,--- having the

Properties P(k):
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(i) *z e L*(Q,C([-r,a],RY)) and is adapted to (F;)ie(o,q-

ii) For each t € [0,a], *z; € L?*(Q,C(J,R%)) and is F-measur-able.
Y

(iii)
gkt
¥ — Faf| 20,0y < (ML?)F lmﬂ% — 2]l 2.0
[F+ gy — b < (MI2)E1 e
t xtHLZ(Q,C) > ( ) (k — 1)! H x l’HL?(Q,C)

(1)

where M is a “martingale” constant and L is the Lipschitz constant

of g.
Take 'z : [—r,a] % O — R? to be

1 _ [ 0(w)(0) tel0,d]
o= { o)) ted

a.s., and

t . » )
Bt w) = { 0(w)(0) + (W)/O g(u, "z, )dW () (u) te€]0,d] o)

Ow)(t)  teld

a.s.

Since 0 € L?(Q,C(J,R%)) and is F,-measurable, then 'z € L2(Q, C([-r, a], R?))
and is trivially adapted to (F;)icp,q- Hence 'z, € L?(Q,C(J,R?)) and is

F,-measurable for all ¢ € [0,a]. P(1) (iii) holds trivially.
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Now suppose P(k) is satisfied for some k£ > 1. Then by Hypothesis
(E1)(i), (i1) and the continuity of the slicing map (stochastic memory),

it follows from P(k)(ii) that the process
0,a] 3 u— g(u,*z,) € L*(Q, LR™, RY))

is continuous and adapted to (F,)icp0,a)- P(k+1)(i) and P(k+1)(ii) follow
from the continuity and adaptability of the stochastic integral. Check
P(k +1)(ii7), by using Doob’s inequality.

For each k > 1, write

Now L%(Q,C([-r,a],R%)) is closed in L?(Q, C([-r,a],RY)); so the series
Z(i—l—lx _ ZIL’)
=1
converges in L%(Q,C([-r,a], R?)) because of (1) and the convergence of
= gvic1 @' 1z
(=i

=1

Hence {*z}¢°, converges to some x € L% (2, C([-r,a], RY)).
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Clearly z|J = 6 and is Fy-measurable, so applying Doob’s in-

equality to the Ito integral of the difference
ur— g(u, ) — g(u, z.)

gives

)

/0 9(u, Far,) W () (u) / 9(u,2) AW () (u)

E( sup
te[0,a)

< ML2a||k:v - IL‘||%2(Q7C)

— 0 as k — oo.

Thus viewing the right-hand side of (2) as a process in L?(Q2, C ([-7,a],R%))
and letting k¥ — oo, it follows from the above that =z must satisfy the

sfde (XII) a.s. for all ¢ € [-r,d].

For uniqueness, let & € L%4(Q, ([-r,a],R%)) be also a solution of

(XII) with initial process §. Then by the Lipschitz condition:

t
o = il rcy < MI? |l = dulaqo.c

for all ¢t € [0,a]. Therefore we must have x; — #; = 0 for all ¢ € [0,a]; so

r =217 in L*(Q,C([-r,a],RY)) a.s. O
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Remarks and Generalizations.

(i) In Theorem 1.2 replace the process (t,W(t)) by a (square inte-
grable) semimartingale Z(¢) satisfying appropriate conditions.([Mo],

1984, Chapter II).

(ii) Results on existence of solutions of sfde’s driven by white noise
were first obtained by It6 and Nisio ([I-N], J. Math. Kyoto

University, 1968) and then Kushner (JDE, 197).

(iii) Extensions to sfde’s with infinite memory. Fading memory case:
work by Mizel and Triitzer [M-T],JIE, 1984, Marcus and Mizel
[M-M], Stochastics, 1988; general infinite memory: It6 and Nisio

[I-N], J. Math. Kyoto University, 1968.

(iii) Pathwise local uniqueness holds for sfde’s of type (XIII) under
a global Lipschitz condition: If coeffcients of two sfde’s agree
on an open set in C, then the corresponding trajectories leave
the open set at the same time and agree almost surely up to
the time they leave the open set ([Mo], Pitman Books, 1984,

Theorem 4.2, pp. 150-151.)
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(iv) Replace the state space C by the Delfour-Mitter Hilbert space

My :=R% x L?([-r,0],RY) with the Hilbert norm

el = ('“'2 i /_OT in(s)? ds)1/2

for (v,n) € My (T. Ahmed, S. Elsanousi and S. Mohammed,

1983).

(v) Have Lipschitz and smooth dependence of ?z, on the initial pro-

cess 6 € L*(Q,0) ([Mo], 1984, Theorems 3.1, 3.2, pp. 41-45).

22



