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II. MARKOV BEHAVIOR AND THE GENERATOR
Consider the sfde

dz(t) = H(t,x¢)dt + G(t,x) AW (t), t > O}
(XIIT)

xg=n€C:=C([-r, O],Rd)

with coefficients H : [0, T|xC — R?, G :[0,T]xC — R™™ m-dimensional
Brownian motion W and trajectory field {"x;:t > 0,7 € C}.

1. Questions
(i) For the sfde (XIII) does the trajectory field z; give a diffusion
in C (or M;)?
(i) How does the trajectory z; transform under smooth non-linear
functionals ¢ : C — R?
(iii) What “diffusions” on C (or M) correspond to sfde’s on R%?
We will only answer the first two questions. More details in

[Mo], Pitman Books, 1984, Chapter III, pp. 46-112. Third question
is OPEN.



Difficulties

(i)

(iv)

Although the current state z(t) is a semimartingale, the trajec-
tory z, does not seem to possess any martingale properties when
viewed as C-(or M,)-valued process: e.g. for Brownian motion
W (H=0,G=1):

[EW:|Fi)I(s) = W(t) = Wi, (0), s € [=r,0]

whenever t; <t —r.

Lack of strong continuity leads to the use of weak limits in C
which tend to live outside C.

We will show that z; is a Markov process in C. However al-
most all tame functions lie outside the domain of the (weak)
generator.

Lack of an Ito formula makes the computation of the generator
hard.

Hypotheses (M)

(i)
(i)

F; = completion of o{W(u):0<u<t}, t>0.

H, G are jointly continuous and globally Lipschitz in second vari-
able uniformly wrt the first:

[H (t,m) = H(t,n2)| + |G(E,m) — Gt m2) || < Llim = n2lle

for all t € [0,7] and 7,7, € C.

2. The Markov Property

sfde:

1zt .= solution starting off at 0 € L?(Q,C;F,) at t = t; for the

ngtn gy = | MO+ i Huwa du+ f Glua)dWw), >4
n(t —t), th—r<t<t.
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This gives a two-parameter family of mappings
Tih: L2(Q,Cy Fy) — L2(Q,C5 F,), t1 < to,
TH () =2}, 6 c L*(Q,C;Fy)). (1)
Uniqueness of solutions gives the two-parameter semigroup property:

ty 0 _ 70
Ty, o1y, =T

to)

t < to. 2)

([Mo], Pitman Books, 1984, Theorem II (2.2), p. 40.)

Theorem I1.1 (Markov Property)([Mo], 1984).
In (XIII) suppose Hypotheses (M) hold. Then the trajectory field {"xz; : t >

0,n € C} is a Feller process on C' with transition probabilities
p(tl,T],tQ,B) = P(nl'g EB) ty <ty, B€ BorelC, necd.

ie.
P(z, € B|Fy,) = p(t1, 34, (), t2, B) = P(4, € Blzy,) as.

Further, if H and G do not depend on t, then the trajectory is time-homogeneous:

p(t17777t27'>:p(07nat2_t17')’ Ogtl §t27 UEC

Proof.
[Mo], 1984, Theorem III.1.1, pp. 51-58. [Mo], 1984, Theorem
I11.2.1, pp. 64-65. 0



3. The Semigroup

In the autonomous sfde

do(t) = H(zy) dt + G(zy) dW (t) t>0}
(XIV)

ro=neC

suppose the coefficients H : ¢ — RY, G : C — R¥™™ are globally
bounded and globally Lipschitz.

C, := Banach space of all bounded uniformly continuous functions
¢: C — R, with the sup norm

|9llc, :=sup [o(n)], ¢ € Cp.
neC

Define the operators P, : Cy, — Cy,t > 0, on C;, by

Py(¢)(n) := E¢("xy) t>0,neC.

A family ¢, t > 0, converges weakly to ¢ € C, as t — 0+ if tli%1+ <

b, p >=< ¢,u > for all finite regular Borel measures p on C. Write
¢i=w— tli%l+ ¢;. This is equivalent to

di(n) — ¢(n) as t — 04, for all n € C

{ll¢¢llc, = t >0} is bounded .

(Dynkin, [Dy], Vol. 1, p. 50). Proof uses uniform boundedness
principle and dominated convergence theorem.

Theorem II1.2([Mo], Pitman Books, 1984)

(i) {P:}+>0 is a one-parameter contraction semigroup on Cp.



(ii) {P;}i>0 is weakly continuous at t = 0:

Pi(¢)(n) — ¢(n) ast — 0+

{|P:(¢)(n)| : t > 0,n € C}is bounded by ||||c, -

(iii) If r > 0, {P;}+>0 is never strongly continuous on C} under the sup norm.

Proof.

(i)

One parameter semigroup property
Py,oP, =P 44,, 11,t202>0

follows from the continuation property (2) and time-homogeneity
of the Feller process z; (Theorem II.1).

Definition of P;, continuity and boundedness of ¢ and sample-
continuity of trajectory "z; give weak continuity of {P,(¢) : t > 0}
at t=01n Cy.

Lack of strong continuity of semigroup:

Define the canonical shift (static) semigroup
Sy Cp — Cy, t >0,

by
Se(@)(n) :==o(e), ¢€Cp, neC,
where 7 : [-r,00) — R% is defined by

i n)  t=0
0(t) =
n@)  tel-r0).
Then P, is strongly continuous iff S; is strongly continuous. P,
and S; have the same “domain of strong continuity” indepen-
dently of H, G, and W. This follows from the global bound-
edness of # and G. ([Mo], Theorem IV.2.1, pp. 72-73). Key
relation is
tl_if& E|"z; — 7)|E& =0
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uniformly in n € C. But {S;} is strongly continuous on ¢, iff C is
locally compact iff » =0 (no memory) ! ([Mo], Theorems IV.2.1
and 1V.2.2, pp.72-73). Main idea is to pick any sy € [-r,0) and
consider the function ¢, : C — R defined by

n(so) lnlle <1
Po(n) =4 1(s0) Il > 1
Inllc
Let ¢ be the domain of strong continuity of P, viz.
CY:={pecCy:P(p) — ¢ as t — 0+ in Cy}.
Then ¢, € Cy,, but ¢y ¢ CP because r > 0. O

4. The Generator

Define the weak generator A: D(A) c C, — C, by the weak limit
o . Pi(o)(n) — o(n)
A@) () = w — lim “O
where ¢ € D(A) iff the above weak limit exists. Hence D(A) c C}
(Dynkin [Dy], Vol. 1, Chapter I, pp. 36-43). Also D(A) is weakly
dense in C, and A is weakly closed. Further
d
5 1e(0) = A(P(9)) = Pi(A(9)), t>0
for all ¢ € D(A) ([Dy], pp. 36-43).

Next objective is to derive a formula for the weak generator
A. We need to augment C by adjoining a canonical d-dimensional
direction. The generator A will be equal to the weak generator of
the shift semigroup {S;} plus a second order linear partial differential
operator along this new direction. Computation requires the following
lemmas.

Let
F; = {vx{o} TV E Rd}
C®F;={n+vxq:ne€CuveRY, |n+vxl=lnlc+]vl



Lemma II.1.([Mo], Pitman Books, 1984)
Suppose ¢ : C — R is C? and n € C. Then D¢(n) and D?*¢(n) have unique

weakly continuous linear and bilinear extensions

Do(n):CadF;—R, D?p(n): (CPFy) x (CHFy) —R

respectively.
Proof.

First reduce to the one-dimensional case d =1 by using coordi-
nates.

Let a € C* = [C([-r,0],R)]*. We will show that there is a weakly
continuous linear extension @ : C@ F; — R of «; viz. If {¢¥} is a bounded
sequence in C such that ¢*(s) — &(s) as k — oo for all s € [-r,0], where
£ € CaoF, then o(¢¥) — a(¢) as k — co. By the Riesz representation
theorem there is a unique finite regular Borel measure y on [—r, 0] such
that

a(n) = / n(s) du(s)

-7

for all n € C. Define a € [C @ Fy]* by

a(n+uvxgy) = an) +vu({0}), neC, veR.

Easy to check that @ is weakly continuous. (FEzercise: Use Lebesgue
dominated convergence theorem.)

Weak extension @ is unique because each function vy can be
approximated weakly by a sequence of continuous functions {¢}:

(ks+1)v, —5+<s<0

1
% S

1
0 —r<s<-—z.

5o = {



N

T _

0

=

Put a = D¢(n) to get first assertion of lemma.

To construct a weakly continuous bilinear extension 3 : (C® Fy) x
(C @ F1) — R for any continuous bilinear form
B:CxC — R, use classical theory of vector measures (Dunford and
Schwartz, [D-S], Vol. I, Section 6.3). Think of g as a continuos linear
map C — C*. Since C* is weakly complete ([D-S], 1.13.22, p. 341),
then g is a weakly compact linear operator ([D-S], Theorem 1.7.6, p.
494): i.e. it maps norm-bounded sets in C into weakly sequentially
compact sets in C*. By the Riesz representation theorem (for vector
measures), there is a unique C*-valued Borel measure A on [-r,0] (of
finite semi-variation) such that

0
36 = | €(s)ans)

for all ¢ € ¢. ([D-S], Vol. I, Theorem VI.7.3, p. 493). By the
dominated convergence theorem for vector measures ([D-S|, Theo-
rem 1V.10.10, p. 328), one could reach elements in F; using weakly
convergent sequences of type {¢}}. This gives a unique weakly con-
tinuous extension 3: C @ F; — C*. Next for each n € C, v € R, extend
B(n + vxqoy) : C — R to a weakly continuous linear map B(n + vx(o) :
C® F, — R. Thus 3 corresponds to the weakly continuous bilinear
extension B(-)(-): [C'® Fy] x [C & Fy] — R of 3. (Check this as exercise).



Finally use 8 = D?¢(n) for each fixed n € C to get the required

bilinear extension D2¢(n). O

Lemma II.2. ([Mo], Pitman Books, 1984)
For t > 0 define W} € C' by

Wi (s):=1q Vi

Liwets) —wo), —t<s<o,
0 —r<s< —t.

Let 3 be a continuous bilinear form on C'. Then

. 1 ~ ~ * *
i | BAC s~ 1, ) - BB(G () 0 W7, Gl 0 W7)] =0

Proof.

Use .

A Bl

The above limit follows from the Lipschitz continuity of # and G and
the martingale properties of the It6 integral. Conclusion of lemma
is obtained by a computation using the bilinearity of 3, Holder’s in-
equality and the above limit.([Mo], Pitman Books, 1984, pp. 86-87.)
0

("zy — i — G(n) o W[ = 0.

Lemma II.3. ([Mo], Pitman Books, 1984)

Let B be a continuous bilinear form on C' and {e;}[", be any basis for R™.
Then

1 mo_
t£%1+ ;Eﬁ(%t — M, Ty — M) = Zﬁ(G(n)(ei)X{o}, G(n)(ei)x{oy)
i—1

for each n € C.
Proof.



By taking coordinates reduce to the one-dimensional case d =

m = 1:
tl_i%lJrEﬁ(Wt*» Wy) = B(X{O}? X{O})

with W one-dimensional Brownian motion. The proof of the above
relation is lengthy and difficult. A key idea is the use of the projective
tensor product C ®, C in order to view the continuous bilinear form 3
as a continuous linear functional on C ®, C. At this level 5 commutes
with the (Bochner) expectation. Rest of computation is effected using
Mercer’s theorem and some Fourier analysis. See [Mo], 1984, pp. 88-
94. O

Theorem I1.3.([Mo], Pitman Books, 1984)

In (XIV) suppose H and G are globally bounded and Lipschitz. Let S :
D(S) C C, — Cyp be the weak generator of {S;}. Suppose ¢ € D(S) is sufficiently
smooth (e.g. ¢ is C?, D¢, D?¢ globally bounded and Lipschitz). Then ¢ € D(A)

and

where {e;}*, is any basis for R™.
Proof.
Step 1.

For fixed n € C, use Taylor’s theorem:

¢("xe) — @(n) = o) — ¢(n) + D(ie) (" — 1) + R(2)

a.s. for t > 0; where

1
R(t) = /0 (1= w)D?@[fy + u("wy — )] ("we — Ty, "we — 7t) du.
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Take expectations and divide by t > 0:

FEL0(721) — o] = {18160 -0 + Dol Bl ~ )] .
4 %ER(t)

for t > 0.

As t — 0+, the first term on the RHS converges to S(¢)(n), be-
cause ¢ € D(S).

Step 2.
Consider second term on the RHS of (3). Then

e i
= [H(n)x{03](s), <5<

Since H is bounded, then ||E{}("z, — 7;)}|c is bounded in ¢ > 0 and
n € C (Ezercise). Hence

w- i {100~ }| = Hopx, (¢ 0)

t—0+4

Therefore by Lemma II.1 and the continuity of D¢ at »:

t—0+

lim qu(ﬁt){EE(”azt - ﬁt)] } = lim D¢(n){EE(”$t - ﬁt)} }

Step 3.

12



To compute limit of third term in RHS of (3), consider

1 B . . B
?ED%[% +u(Mwy — 7)) "y — 0, g — 1)

1 i i
— ;ED%(U)(% — ity Ty — Tr)

. . 1 . 1/2
< (B0l + uCon — 0] = D)2 | Bl — el
< K(8* + D)2 D*¢[ii + u("z: — 7)) — D*d(n)|*]/?
— 0
as t — 0+, uniformly for « € [0,1], by martingale properties of the Ito0
integral and the Lipschitz continuity of D?¢. Therefore by Lemma II1.3

1 ! 1
1 — = — 1 — n S —n
Jim ~ER(t) /0 (1) Mim —ED>¢(n)("xe — i, "y — i) du

= % Z D2¢p(n) (G(T])(ei>X{0}7 G(n)(ei)X{O})'

The above is a weak limit since ¢ € D(S) and has first and second
derivatives globally bounded on C. O

5. Quasitame Functions

Recall that a function ¢ : C — R is tame (or a cylinder function)
if there is a finite set {s; < sy < --- < s} in [-r,0] and a C*-bounded
function f: (R%)* — R such that

o(n) = f(n(s1),--- ,n(sk)), n e C.

The set of all tame functions is a weakly dense subalgebra of
Cy, invariant under the static shift S; and generates Borel C. For k > 2
the tame function ¢ lies outside the domain of strong continuity ¢y of
P;, and hence outside D(A) ([Mo], Pitman Books, 1984, pp.98-103; see
also proof of Theorem IV .2.2, pp. 73-76). To overcome this difficulty

we introduce
13



Definition.

Say ¢ : C — R is quasitame if there are C>~-bounded maps h :
(RY)* - R, f;: RY — R? and piecewise C! functions g; : [-r,0] — R,1 <
j < k-1, such that

oo =n( [ At Na@ ds [ fateaa@ dsao) @

for all n e C.
Theorem II1.4. ([Mo], Pitman Books, 1984)

The set of all quasitame functions is a weakly dense subalgebra of Cy, in-
variant under Sy, generates Borel C' and belongs to D(A). In particular, if ¢ is the

quasitame function given by (4), then
A(9)(n) = ) Dih(m(n){f;(n(0))g;(0) = f3(n(=r))g;(=7)

| Lin)g(s)ds)
+ Deh(m(n) (H () + 5 tracel DER(m(n) © (G(n) x G

for all n € C, where

0 0
mio) = ([ hen@ds [ feate) (o) dsn).

—r

Remarks.

(i) Replace C by the Hilbert space M,. No need for the weak ex-
tensions because M, is weakly complete. Extensions of D¢(v,n)
and D?¢(v,n) correspond to partial derivatives in the R-variable.
Tame functions do not exist on M, but quasitame functions do!
(with n(0) replaced by v € R9).
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Analysis of supermartingale behavior and stability of ¢("z;) given
in Kushner ([Ku], JDE, 1968). Infinite fading memory setting
by Mizel and Triitzer ([M-T], JIE, 1984) in the weighted state
space R? x L?((—o0,0],R%; p).

(ii) For each quasitame ¢ on C, ¢("z,) is a semimartingale, and the
Ito6 formula holds:

dp("z,)] = A(¢) (") dt + D(n) (H(n)x10}) AW (t).

15



