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1. Regular Linear SFDE’s-Ergodic The-

ory.

Linear sfde’s on R? driven by m-dimensional

Brownian motion W := (Wy, -+, W,,).

dx(t) = H(x(t —dy), - ,x(t —dn),x(t), x¢)dt)

+Y g dwie), t>0
1=1

(2(0),20) = (v,n) € My := R% x L*([-r,0], RY)

/

(I) is defined on

(Q, F, (Fi)ier, P) = canonical complete filtered

Wiener space.

Q) := space of all continuous paths w: R —
R™, w(0) = 0, in Euclidean space R™, with com-
pact open topology;

F :=(completed) Borel o-field of Q;



F; .= (completed) sub-o-field of F generated

by the evaluations w — w(u), u<t, te€R.
P := Wiener measure on (.
dW;(t) = Ito stochastic differentials.

Several finite delays 0 <d; <dy < --- <dy <7
in drift term; no delays in diffusion coefficient.

H: (RHYN T L2([-r,0],RY) — R? is a fixed con-
tinuous linear map, g;, i = 1,2,...,m, fixed (deter-

ministic) d x d-matrices.

2. Plan

Use state space M, := R¢ x L?([-r,0],R%). For

(I) consider the following themes:

I) Existence of a “perfect” cocycle on M,-a mod-

ification of the trajectory field (z(t),x;) € M;.



IT) Existence of almost sure Lyapunov exponents

) 1
tli)rglo n log |[(x(t), x¢)]| ar,

Multiplicative ergodic theorem and hyperbol-

icity of cocycle.

IIT) “Random Saddle-Point Property” in hyper-

bolic case.

3. Regularity

Say SFDE (I) is reqular (wrt. M,) if tra-
jectory {(z(t),x;) : (x(0),z9) = (v,n) € M2} admits
a measurable modification X : Rt x My x Q — M,

such that X(-,-,w) is continuous for a.a. w € Q.

Theorem 1.([Mo], 1990))

(1) is regular with respect to state space Ms = RY x

L2([-r,0],R%). There is a measurable version X : Rt x
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My x Q — My of the trajectory field {(x(t),z:) : t €

R*, (2(0),z9) = (v,n) € My} of (I) with the following

properties:

(1)

(i)

(iii)

For each (v,n) € My andt € RT, X (¢, (v,n),-) =
(x(t), ) a.s., is Fy-measurable and belongs to
L?(Q, Ms; P).

There exists )y € F of full measure such that,
for all w € Qq, the map X(-,-,w) : RT x My —

M, is continuous.

For each t € R and every w € Qp, the map
X(t,-,w) : My — Ms is continuous linear; for
each w € gy, the map RT 5t — X(t,-,w) €
L(Ms>) is measurable and locally bounded in the
uniform operator norm on L(Msy). The map
[r,00) 5t — X(t,-,w) € L(M3) is continuous

for all w € ().



(iv) For each t > r and all w € €, the map

X(t,-,w) : M2 — MQ

1s compact.

Compactness of semi-flow for t > r will be
used to define hyperbolicity for (1) and the asso-

ciated exponential dichotomies.

Example: dxz(t) = z(t — 1) dW (t) is not regular (singu-
lar).

4. Lyapunov Exponents. Hyperbolicity

Version X of the trajectory field of (I) (in
Theorem 1) is a multiplicative L(M-)-valued lin-
ear cocycle over the canonical Brownian shift

6:R x Q— Q on Wiener space:

O(t,w)(u) =w(t+u) —w(t), uteR, well
6



Ie.

Theorem 2([Mo|, 1990)

There is an F-measurable set Q of full P-measure

such that 0(t,-)(Q) C Q for all t > 0 and
X(tz, ° Q(tl,w)) o X(tl, -,w) = X(tl + tQ, -,w)

for all w € Q and t1, to > 0.



The Cocycle Property

X(t1,-,w) X(t2,-,0(t1,w))

X(tl + t27 (van)aw)

0(t1, ) 0(t2, )
@ TNR) ICESND)
t=20 t=1 t =11 + 12

Vertical solid lines represent random fibers:
copies of M,. (X,0) is a “vector-bundle mor-

phism”.



The a.s. Lyapunov exponents

lim %logHX(t, (0(w), 7)), @) || ar,

t—oo

(for a.a. w € Q, (v,n) € L?(9, Ms)) of the system
(I) are characterized by the following “spectral
theorem”. FEach 6(t,-) is ergodic and preserves
Wiener measure P. The proof of Theorem 3 be-
low uses compactness of X(¢,-,w) : My — My, t > 1,
together with an infinite-dimensional version of

Oseledec’s multiplicative ergodic theorem due to

Ruelle (1982).

Theorem 3. ([Mo], 1990)

Let X : R x My x Q — My be the flow of (I) given

in Theorem 1. Then there exist

(a) an F-measurable set Q* C Q) such that P(2*) =

1 and 6(¢t,-)(Q2*) C Q* for all t > 0,
9



(b) a fixed (non-random) sequence of real numbers
{Ai}i2y, and

(c) a random family {F;(w) : i > 1,w € Q*} of
(closed) finite-codimensional subspaces of M,

with the following properties:

(i) If the Lyapunov spectrum {\;}:°; is infi-
nite, then \;11 < A\; for all ¢+ > 1 and zliglo A\, =
—o0; otherwise there is a fixed (non-random) in-
teger N > 1 such that A\y = —00 < Ay_1 <
cee < Ay < A

(ii) each map w — F;(w), i > 1, is F-measurable
into the Grassmannian of Ms;

(iii) Eiy1(w) C Fi(w) C -+ C Fy(w) C Ei(w) =
My, 1>1, we Q*;

(iv) for each i > 1, codim F;(w) is fixed inde-

pendently of w € Q0*;

10



(v) for each w € Q* and (v,n) € E;(w)\FE;11(w),

1
lim - log [ X(t, (v, n),w)llar, = As, i 2 15

t—o0

(vi) Top Exponent:

1
A1 = lim 7 log | X (t,-,w)| L,y  for all w € QF;

t—o0

(vii) Invariance:
X(t,-w)(Ei(w)) € Ei(0(t,w))

for all we Q*, t>0, 1> 1.
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B,

My —

N

Spectral Theorem

X(t , W)

\

/
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Proof of Theorem 3 is based on Ruelle’s dis-
crete version of Oseledec’s multiplicative ergodic
theorem in Hilbert space (|[Ru], Ann. of Math.
1982, Theorem (1.1), p. 248 and Corollary (2.2),
p. 253):

Theorem 4 (|Ru], 1982)

Let (2, F,P) be a probability space and 7 : Q —
) a P-preserving transformation. Assume that H is a
separable Hilbert space and T : Q0 — L(H) a measurable
map (w.r.t. the Borel field on the space of all bounded
linear operators L(H)). Suppose that T(w) is compact
for almost all w € Q, and Elog™ | T(-)|| < co. Define the

family of linear operators {T"(w) : w € Q, n > 1} by
T"(w) =T (r" (w)) o T(r(w)) o T(w)

forw e Q, n>1.
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Then there is a set )y € F of full P-measure such
that () C Qo, and for each w € Q, the limit

lim [T"(w)* o T™(w)]*/ ™ := A(w)

n—oo

exists in the uniform operator norm and is a positive com-
pact self-adjoint operator on H. Furthermore, each A(w)

has a discrete spectrum

6/¢L1(w) > euz(w) > eus(w) > 6M4(w) > ...

where the p;’s are distinct. If {p;}$2, is infinite, then
pi | —oo; otherwise they terminate at pun(,y = —oo. If
pi(w) > —oo, then e*“) has finite multiplicity m;(w)
and finite-dimensional eigen-space F;(w), with m;(w) =

dimF;(w). Define
L

Fi(w) = My, FE;(w):= [EBj;lle(w)} ,  Foo(w) := ker A(w).
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and

1 i , f e E; E;
iy Liog el = { #4012 BN )
n—oo n —00 if x € ker Aw).

Proof.

[Ru], Ann. of Math., 1982, pp. 248-254.
[]

The following “perfect” version of Kingman’s
subadditive ergodic theorem is also used to con-
struct the shift invariant set Q* appearing in The-

orem 3 above.
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Theorem 5([M], 1990)(“Perfect” Subadditive
Ergodic Theorem)

Let f : RT xQ — RU{—00} be a measurable process

on the complete probability space (€, F, P) such that

(1) E sup f+(u7°) < oo, B/ sup f+(1_u79(u7)) < 00;
0<u<1 0<u<1

(11) f(t1+t2,w) < f(tl,w)+f(t2, Q(tl,W)) forallty,to > 0
and every w € €.

Then there exist a set Q) € F and a measurable f:0—

R U {—oo} with the properties:
(a) P(Q) =1, 6(t,-)(Q) CQ for all t > 0;
(b) F(w) = F(O(t,w)) for all w € Q and all t > 0;
(c) [T e LY (Q,R;P);
(d) Jim (1/0)](t,w) = f(w) for every w € Q.
If  is ergodic, then there exist f* € RU{—o0} and QcF

such that
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) CQ,t>0;

o

(a) P(Q)=1,6(t,-)(

(b) f(w) = f* = Jim (1/t) f(t,w) for every w € 2.

[Mo], Stochastics, 1990, Lemma 7, pp. 115—
117. O]

Proof of Theorem 3 is an application of The-
orem 4. Requires Theorem 5 and the following

sequence of lemmas.

Lemma 1

For each integer k > 1 and any 0 < a < o0,

E sup [¢(t,w) H** < oo;
0<t<a

E sup |lp(ta,0(t1,))|** < oo.
0<t1,t2<a
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Proof.

Follows by standard sode estimates, the co-
cycle property for ¢ and Holder’s inequality. ([Mo],
pp. 106-108). O]

The next lemma is a crucial estimate needed

to apply Ruelle-Oseledec theorem (Theorem 4).

Lemma 2

E sup log* | X (o, -, 0(t1, -))HL(MQ) < 00.
0§t1,t2§r

Proof.
If y(t, (v,n),w) is the solution of the fde (8),

then using Gronwall’s inequality, taking

E sup log™ sup and applying Lemma 1, gives
0<t1,t2<r [ (v,m|I<1

E Sup 10g+ sSup H(y(t27 (Uan)ae(tla'))7yt2('7 (Uan)70(t17')))HM2
0<t1,t2<r I (v,m)[|<1

< Q.
18



Conclusion of lemma now follows by replacing «’

with 6(¢t;,w) in the formula

X(t27 (’U, 77)7 w’)

— (¢(t27w/)(y(t27 (Ua 77)700/))7 ¢t2('7w/) © (idJa ytz(': (Ua 77)7 w/))

and Lemma 1. ]

The existence of the Lyapunov exponents is

obtained by interpolating the discrete limit

~ lim og [ X (kr, (v(w), (@), @) ey, (12

r k—oo

a.a.w € Q, (v,n) € L*(Q, M), between delay pe-
riods of length r. This requires the next two

lemmas.
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Lemma 3

Let h : Q — R be F-measurable and suppose E sup h(0(u, -)
0<u<r

is finite. Then

Q1 = (lim Sh(0(t, ) = 0)

t— 00

is a sure event and 6(t,-)(21) C 4 for all t > 0.

Proof.

Use interpolation between delay periods and
the discrete ergodic theorem applied to the L!
function

h:= sup h(0(u,-).

0<u<r

([Mo], Stochastics, 1990, Lemma 5, pp. 111-
113.) m
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Lemma 4

Suppose there is a sure event 2o such that 6(t,-)(22) C
Oy for allt > 0, and the limit (12) exists (or equal to —oc0)
for all w € Qo and all (v,n) € My. Then there is a sure

event (23 such that 6(t,-)(23) C Q3 and

1 1.1
lim ;logHX(t, ('U,n),w)HMg — ; kli)rgo_logHX(kra (Uan)aw)HMw

t—o00 k

(13)
for all w € Q3 and all (v,n) € M.
Proof:

Take Q3 := QN QN Q. Use cocycle property
for X, Lemma 2 and Lemma 3 to interpolate.

([Mo], Stochastics 1990, Lemma 6, pp. 113-114.)
[]
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Proof of Theorem 3. (Sketch)

Apply Ruelle-Oseledec Theorem (Theorem
4) with

T(w) := X(r,w) € L(My), compact linear for
w e Q;

Q= =),

Then cocycle property for X implies

X(kr,w,-) = T(r* 1 (w)) o T(r"*(w)) 0 - -+ 0 T(7(w)) 0 T'(w)

= T"(w)

for all w € .

Lemma 2 implies

Elog™ | T()llLa) < oo
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Theorem 4 gives a random family of compact
self-adjoint positive linear operators {A(w) : w €

Q,} such that

lim [T"(w)* o T (w)]*/ ™ := A(w)

n—oo

exists in the uniform operator norm for w € Qy4, a
(continuous) shift-invariant set of full measure.

Furthermore each A(w) has a discrete spectrum

e,ul(w) > e,uQ(w) > 6#3(‘”) > €H4(W) > ...

where the u’s are distinct, with no accumula-
tion points except possibly —oo. If {u;}52, is infi-
nite, then p; | —oo; otherwise they terminate at
IN(w) = —00. If pi(w) > —oo, then e#i*) has finite
multiplicity m;(w) and finite-dimensional eigen-
space F;(w), with m;(w) := dimF;(w). Define

Ei(w) = My, Eiw):= [0 F;(w)]7,  Eal(w) :=ker A(w).
23



Fyw(W)C: -+ CEiy1(w) CEj(w) - C Ey(w) C Ey(w) = Ms.

Note that codim E;(w) = 317} m;(w) < co. Also

pi(w), it (v,n) € Ei(w)\Eit1(w)
—oo if (v,7n) € ker A(w).

1

108 X6, (0,0, = {

lim
k— oo
The functions

w— pi(w), wemi(w), w— Nw)

are invariant under the ergodic shift o(r,-). Hence
they take the fixed values p;, m;, N almost surely,

respectively.

Lemma 4 gives a continuous-shift-invariant

sure event Q* C Q4 such that

.1 1 . 1
Jim = log [ X(t, (v, n),w)llar, = — lim —log [ X (kr, (v,1), w)|[as,
— & —. )\i7
T
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for (v,n) € Ej(w)\F;11(w), we€ Q*,i>1.

{ A = % .4 > 1} is the Lyapunov spectrum of
(D).

Since Lyapunov spectrum is discrete with no
finite accumulation points, then {); : \; > A} is

finite for all \ € R.

To prove invariance of the Oseledec space

FE;(w) under the cocycle (X,0) use the random
field

.1 .
Allv,n),w) »= lim —log[|X(¢, (v,n),w)llar, (v,n) € Mz, w € &

t—o0o

and the relations

AMX(t, (v,n),w),0(t,w)) = A(v,n),w), we* t>0

([Mo], Stochastics 1990, p. 122). O
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Lyapunov exponents {\;}2, of (I) are non-
random because 0 is ergodic. Say (I) is hyperbolic
if \; #0 for all i > 1. When (I) is hyperbolic the
flow satisfies a stochastic saddle-point property
(or exponential dichotomy) (cf. the deterministic
case with £ =C([-r,0],R?), ¢, =0,i=1, ..., m, in
Hale [H], Theorem 4.1, p. 181).

Theorem 6 (Random Saddles)([Mo], 1990)

Suppose the sfde (1) is hyperbolic. Then there exist

(a) a set Q* € F such that P(Q*) =1, and 0(t, )(Q*) =
Q* for allt € R,

and

(b) a measurable splitting
My =Uw)®Sw), we",
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with the following properties:

(i) U(w), S(w), w € Q*, are closed linear subspaces

(i)

(iii)

(iv)

of My, dimU(w) is finite and fixed independently

of w e Q*.

The mapsw — U(w), w — S(w) are F-measurable

into the Grassmannian of M.

For each w € Q* and (v,n) € S(w) there exists
71 = 11(v,m,w) > 0 and a positive d1, indepen-

dent of (v,n,w) such that
1X(E, (), 0)llae < [0, |ae™, t 2.

For each w € Q* and (v,n) € U(w) there exists
7o = To(v,m,w) > 0 and a positive ds, indepen-

dent of (v,n,w) such that

HX(tv ('Uvn)vw)HMQ > H(Uvn)HM2662t7 t > To.
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(v) For eacht >0 and w € Q*,

X(tw, ) (Uw)) =U(0(t,w)),

X(t,w, )(SW)) € SO(tw)).
In particular, the restriction
X(t,w, ) | Uw) :U(w) = UO(t,w))

is a linear homeomorphism onto.

Proof.

[Mo], Stochastics, 1990, Corollary 2, pp. 127-
130. O
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The Saddle-Point Property
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