
Southern Illinois University Carbondale
OpenSIUC

Theses Theses and Dissertations

5-2017

Modeling Naturally Occurring Wildfires Across the
US Using Niche Modeling
Brandon Polk
Southern Illinois University Carbondale

Follow this and additional works at: http://opensiuc.lib.siu.edu/theses
Related Files
Appendices.zip (12972 kB)

This Open Access Thesis is brought to you for free and open access by the Theses and Dissertations at OpenSIUC. It has been accepted for inclusion in
Theses by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Polk, Brandon, "Modeling Naturally Occurring Wildfires Across the US Using Niche Modeling" (2017). Theses. 2163.
http://opensiuc.lib.siu.edu/theses/2163

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/etd?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cgi/viewcontent.cgi?filename=0&article=3176&context=theses&type=additional
http://opensiuc.lib.siu.edu/theses/2163?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F2163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


 
 

 
 
MODELING NATURALLY OCCURRING WILDFIRES ACROSS THE US USING NICHE 

MODELING 
 
 

 
by 
 

Brandon Polk 
 
 

B.S., Southern Illinois University, 2014 
 

 
 
 

 
 

A Thesis 
Submitted in Partial Fulfillment of the Requirements for the 

Master of Science 
 
 
 
 
 
 
 

 
Department of Geography and Environmental Resources 

in the Graduate School 
Southern Illinois University Carbondale 

May 2017 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
THESIS APPROVAL 

 
 

MODELING NATURALLY OCCURRING WILDFIRES ACROSS THE US USING NICHE 
MODELING 

 
 
 
 

By  
 

Brandon Polk 
 
 
 
 

A Thesis Submitted in Partial 
 

Fulfillment of the Requirements 
 

for the Degree of  
 

Master of Science 
 

in the field of Geographic Information Science 
 
 
 

Approved by: 
 

Dr. Justin Schoof, Chair 
 

Dr. Guangxing Wang 
 

Dr. Jonathan Remo 
 

Dr. Ruopu Li 
 
 

 
 

Graduate School 
Southern Illinois University Carbondale 

November 2, 2016 



i 
 

AN ABSTRACT OF THE THESIS OF 
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TITLE:  MODELING NATURALLY OCCURRING WILDFIRES ACROSS THE US 
USING NICHE MODELING 
 
MAJOR PROFESSOR:  Dr. Guangxing Wang 
 

Wildfires can cause significant damage to an area by destroying forested and 

agricultural areas, homes, businesses, and leading to the potential loss of life.  Climate 

change may further increase the frequency of wildfires. Thus, developing a quick, 

simple, and accurate method for identifying key drivers that cause wildfires and 

modeling and predicting their occurrence becomes very important and urgent.  Various 

modeling methods have been developed and applied for this purpose. The objective of 

this study was to identify key drivers and search for an appropriate method for modeling 

and predicting natural wildfire occurrence for the United States. In this thesis, various 

vegetation, topographic and climate variables were examined and key drivers were 

identified based on their spatial distributions and using their correlations with natural 

wildfire occurrence. Five models including General Linearized Models (GLM) with 

Binomial and Poisson distribution, MaxEnt, Random Forests, Artificial Neural Networks, 

and Multiple Adaptive Regression Splines, were compared to predict natural wildfire 

occurring for seven different climate regions across the United States. The comparisons 

were conducted using three datasets including LANDFIRE consisting of thirteen 

variables including characteristics of vegetation, topography, and disturbance, BIOCLIM 

data containing climate variables such as temperature and precipitation, and composite



 

ii 
 

data that combine the most important variables from LANDFIRE and BIOCLIM 

after the multicollinearity test of the variables done using variance inflation factor (VIF). 

This results of this study showed that niche modeling techniques such as 

MaxEnt, GLM with logistic regression (LR), and binomial distribution were an 

appropriate choice for modeling natural wildfire occurrence.  MaxEnt provided highly 

accurate predictions of natural wildfire occurrence for most of seven different climate 

regions across the United States. This implied that MaxEnt offered a powerful solution 

for modeling natural wildfire occurrence for complex and highly specialized systems. 

This study also showed that although MaxEnt and GLM were quite similar, both models 

produced very different spatial distributions of probability for natural wildfire occurrence 

in some regions. Moreover, it was found that natural wildfire occurrence in the western 

regions was more influenced by precipitation and drought conditions while in the 

eastern regions the natural wildfire occurrence was more affected by extreme 

temperature.
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CHAPTER 1 

INTRODUCTION 

1.1 Statement of Problem 

Wildfires can cause significant damage to an area.  Wildfires typically destroy 

forested and agricultural areas but left unchecked they can destroy homes and 

businesses, and even a potential loss of life.  Climate change may lead to an increased 

frequency of wildfires in the United States (Yonggiqang 2013).  As the population 

continues to grow, wildfires may affect more people in the future, even if climate change 

does not impact the frequency of wildfires.  A quick, simple, and accurate method for 

modeling wildfire occurrence would aid in land use planning.   

Wildfire hazard potential maps are available in the United States from the Forest 

Service’s Rocky Mountain Research Station https://www.firelab.org/project/wildfire-

hazard-potential.  The LANDFIRE data is paired with wildfire presence points and 

FSIM, a large fire simulator (Thompson 2013).  This approach may not be the most 

appropriate for modeling wildfires, due to the accuracy of simulators.  Additionally, the 

causes of wildfire are different.  Most wildfires are related to human development while 

some are naturally occurring wildfires (Genton 2006).      

  A method that can be used to develop probability maps and identify key drivers 

for any type of raster data would be beneficial.  The LANDFIRE data only exists for the 

United States so a simple method that works with any type of raster data would also be 

beneficial for international countries, particularly countries without the financial 

resources to have a significant wildfire monitoring agency.   As the causes of wildfires 

are different, a method that enables probability maps based on different causes of 
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wildfires could also be beneficial.  For example, a map depicting the probability of 

wildfires due to cigarettes or campfires may be beneficial for more effective 

management practices.  Wildfire probability maps and drivers for naturally occurring 

wildfires may be beneficial for understanding wildfires in context of climate change. 

Perhaps a Bayesian approach that can be paired with any type of raster data 

would be beneficial.  Overly complex models often require highly specialized talent and 

additional resources that many local agencies do not have. This would simple enough 

that most agencies could develop their own predictive maps based on conditions that 

the agency deems important.  Using GIS technology and open source programming 

languages like R, this approach can be made even easier and is cost efficient.   

1.2 Purpose Statement 

This study will identify key drivers of natural wildfires (grasslands and forest fires) 

and create naturally occurring wildfire probability maps in the United States for the 

NOAA Climate Regions.  While several techniques and models exist, niche modeling 

has been successfully applied to mapping potential wildfire occurrence.  Niche 

modeling techniques include both regression based techniques and machine learning 

techniques.  This study will compare two niche modeling techniques, General 

Linearized Models (GLM) and a machine learning technique called MaxEnt to assess 

their performance.  Additionally, other algorithms will be run to compare how similar 

they are to Logistic Regression (LR), Poisson distributions, and MaxEnt models. 

LR is commonly used for prediction of wildfire occurrence.  The reason that LR 

is popular is that LR can accept continuous/discrete data and produces good results 

quickly.  This means that LR can be used on a large percentage of real world data, 
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including wildfires.  MaxEnt is a machine learning algorithm that can identify key 

drivers and obtains a specific probability distribution function, namely the one with the 

maximum amount of Shannon’s information entropy.  Like LR, MaxEnt is simple to use, 

able to accept continuous and discrete data, and produces accurate results quickly.  In 

addition, it does not assume normality for the independent variables.  Rather, a 

maximum entropy model produces a normally distributed joint distribution.  As Geman 

2015 states, “The joint distribution g(~x) of asset returns is multivariate Gaussian N (µ, 

∑). Assuming normality is equivalent to assuming g(~x) has maximum (Shannon) 

entropy among all multivariate distributions with the given first- and second-order 

statistics µ and ∑”. 

Recent studies have shown that the MaxEnt software is a very effective tool 

when compared to other models, including LR.  MaxEnt has already shown to perform 

very well against LR in two wildfire studies (Massada 2012, De Angelis 2015). This 

study will use the BIOMOD2 package 

https://cran.rproject.org/web/packages/biomod2/index.html to evaluate the predictive 

performance of LR and MaxEnt using the same dataset and sampling design. 

Another important difference concerns multicollinearity between driver variables.  

Multicollinearity does not hinder model performance in MaxEnt, but does hinder model 

interpretation (Estrada-Pena et al 2013). For this study, correlated variables will be 

removed to reduce errors in model interpretation and should enable a fairer comparison 

against LR.  Even though MaxEnt is a machine learning algorithm and LR is a 

statistical technique, the above considerations will provide an adequate comparison.   
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1.3 Research Questions 

1.)  Does the MaxEnt model predict natural wildfire distributions successfully in 

each of the NOAA Climate Regions?   

2.)  How does this model compare with logistic regression and other models? 

3.)  What are the main drivers (predictor variables) of natural wildfires in each of 

the NOAA Climate Regions? 

1.4 Definition of Terms 

There are many definitions of entropy, depending on the context in which it is 

used.  In the physical sense, entropy can be described as the logarithm of the amount 

of combinations of atoms that makes up a macroscopic object.  For the purpose of this 

study, it would be better to think of entropy as the amount of unknown information within 

a system.  Shannon’s entropy is the entropy of a probability distribution and is the 

expected value of the information of the probability distribution. The principle of 

maximum entropy states that, subject to precisely stated prior data, the probability 

distribution which best represents the current state of knowledge is the one with largest 

entropy.  MaxEnt refers to the software developed by Steven Phillips which uses 

Jayne’s principle of maximum entropy to calculate the probability distributions of 

geographic phenomena using occurrence data (a simple csv file with x and y coordinate 

information) and background data (any kind of continuous or discrete variable that can 

be put into a raster format).  Jayne’s principle of maximum entropy has also been 

called MaxEnt.  To avoid a confusion of terms, MaxEnt will refer to the software while 

the principle of maximum entropy will refer to the principle developed by Jaynes. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Theoretical Perspective  

Wildfires (and other geographic phenomena) are typically modeled using digital 

information to analyze data in what is called a geographic information system (GIS).  

To this end, an understanding of how information systems evolve is helpful.  Entropy 

can be used to describe the log of the combination of atoms that describe a 

macroscopic state within a thermodynamic system, but it can also be used to describe 

the weight of uncertainty within an information system.  Both refer to unknown 

processes occurring within the system. 

Given the constraints, a system will seek the state with the maximum amount of 

entropy possible. This has due with the efficiency of a system (or machine).  The more 

inefficient the system is (or the less knowledge we have about the information system), 

the more entropy is generated.  Only a machine (system, Laplace’s Demon) that is 

100% efficient is reversible, because no entropy is generated.  Carnot’s cycle, 

equivalent to the 2nd Law of Thermodynamics, shows this.  More constraints provide 

less degrees of freedom for the input of an open system and represents a greater 

amount of knowledge about the system.   

The less the constraints on the system, the greater the amount of entropy 

(chaos/unknown information) the system can produce.  A system with very few 

constraints would be the most chaotic because, from an information perspective, very 

little would be known about the system.  If nothing is known about a system, then this 

becomes an example of Laplace’s Principle of Indifference.   The most uniform 



 

6 
 

distribution (equal probability to all events) is assigned to the whole distribution because 

maximum ignorance is assumed. 

It is impossible to know everything about a system.  If everything is known about 

the system, then no unknown processes or events can occur.  From air mixing around, 

for example, we can see that the system is heading towards uniformity even though 

there is increasing disorder in the system.  We do not need to know all the processes 

that are occurring to know that the system is seeking uniformity.   

 The point is, if it is justifiable to assign the most uniform distribution to unknown 

processes (Laplace’s principle) and it is assumed that these processes seek the most 

uniform distribution (2nd Law) then it is justifiable to assign the most uniform distribution 

to unknown information, even when systems have known information.  This is exactly 

what the MaxEnt algorithm does.  It finds the most uniform distribution of information, 

given the constraints or known information (Grendar 2001). In 1957, E.T. Jaynes 

addressed this in a seminal work for information theory. (Jaynes 1957)    

2.2 Fire Studies and Models 

Is niche modeling an appropriate approach for modeling wildfire suitability?  

After all, there are several methods for modeling wildfires throughout the world.  One 

commonly used simulator is the PHOENIX RapidFire software.  PHOENIX RapidFire is 

a wildfire simulator that is designed for large, fast moving fires in Australia that 

incorporates fuel types, topography, and weather to produce results. The model has 

also been applied successfully to other areas, such as the southern portion of France, 

which has a high amount of Wildland-Urban Interface (Pugnet 2013).  RapidFire is a 



 

7 
 

simulator, designed to predict the spread of wildfires and is not useful for predicting the 

occurrence of wildfires. 

Regression models have been used in many different countries.  One study 

compared three types of regression models (multiple linear regression, log-linear 

regression, and gamma-generalized linear regression) in the Tahe forest region of the 

Daxing’an Mountains in China, considering nine different meteorological variables (Guo 

2015).  Another study used LR in the Heilongjiang Province, China and specifically 

states the reason is because it was “reasonably flexible and accepts a mixture of 

continuous and categorical variables, as well as non-normally distributed variables 

(Chang 2013).  The study evaluated performance through the Relative Operator 

Characteristic (ROC) which was 0.906.  Regression models can be helpful in prediction 

of wildfire occurrence, and is considered a niche modeling technique. 

More recently, machine learning algorithms have been used for the prediction of 

wildfire occurrence, and machine learning techniques are also considered a type of 

niche modeling technique.  One study compared three types of machine learning 

algorithms (Random Forests (RF), Support Vector Machines, and Boosted Regression 

Trees) against LR in the forested areas of Spain (Rodrigues 2013). The results could 

show that all three of the machine learning algorithms considered produced higher 

scores than LR, though RF had the highest scores.   

There are many GIS applications useful for modeling different aspects of 

wildfires.   FARSITE is widely used by the U.S. Forest Service, National Park Service, 

and other federal and state agencies for simulating the spread of wildfires.  It can 

simulate wildfire growth based on topography, fuel, wind, and meteorological variables 
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(Finney 2004).  In addition to other features, FARSITE accounts for spotting.  Due to 

its complexity, generally those who have extensive training in wildfire behavior are the 

only ones able to utilize its capabilities for making fire and land management decisions.  

Like PHOENIX RapidFire, it is a simulator and not helpful for the prediction of wildfire 

occurrence. 

 FlamMap, described in An Overview of FlamMap Fire Modeling Capabilities is 

also used by several agencies including the U.S. Forest Service and the National Park 

Service (Finney 2006). FlamMap is an application that is complementary to FARSITE.  

Because it models fires assuming static environmental conditions, it is unable to 

perform temporal projections.  Even though FlamMap is somewhat less complex than 

FARSITE, it is still highly complex software.  Like FARSITE, only officials with proper 

fire training and experience are recommended to use FlamMap in order to make fire 

and land management decisions.   

There are other types of wildfire modeling.  FOFEM (First Order Fire Effects 

Model) is designed for predicting tree mortality, fuel consumption, smoke production, 

and soil heating caused by wildfires (Lutes 2014). The software has many features, 

including the ability to produce graphs and reports for the above categories, default fuel 

loadings for different cover types, and batch processing.  If modeling the effects of 

wildfire is important to land use planning, then FOFEM may currently be the most 

appropriate software available. 

FEAT/FIREMON Integrated (FFI): Ecological Monitoring is an ecological 

monitoring system that is used to fulfill monitoring requirements and is designed to 

assist officials with the collection, storage, and analysis of ecological information (Lutes 
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2012). It includes software components for data entry, data storage, summary reports, 

and analysis tools.  FFI also has extensive Microsoft SQL support for database entry.  

An optional GIS module allows the tools to be incorporated into ArcGIS. 

Despite the wealth of wildfire applications available, there is not an application 

that is specifically designed to produce accurate wildfire distributions quickly and easily. 

Because of this, many planners have used techniques designed for general inference.  

Therefore, niche modeling techniques like LR are commonly used.  This researcher 

has drawn the conclusion that niche modeling techniques are a good choice for 

producing probability maps quick and simple, given the literature review.   

2.3 Principle of Maximum Entropy Overview and History 

MaxEnt has strong roots in Information Theory and is based on the principle of 

maximum entropy, a fundamental concept concerning the evolution of information.  In 

the 1940’s, Claude Shannon developed a formula for calculating the amount of 

information or uncertainty within a system, apparently unaware of Boltzmann’s formula 

for entropy.  Tribus (1971) accounts Shannon to have stated “My greatest concern was 

what to call it. I thought of calling it ‘information’, but the word was overly used, so I 

decided to call it ‘uncertainty’. When I discussed it with John von Neumann, he had a 

better idea. Von Neumann told me, ‘You should call it entropy, for two reasons. In the 

first place your uncertainty function has been used in statistical mechanics under that 

name, so it already has a name. In the second place, and more important, nobody 

knows what entropy really is, so in a debate you will always have the advantage.”  

 Later, Jaynes released an important article that linked Shannon’s information 

entropy to thermodynamic entropy (Jaynes 1957). According to Jaynes, thermodynamic 
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entropy should be seen as a specific application of Shannon’s information entropy.  

Thermodynamic entropy is interpreted as being proportional to the amount of further 

Shannon information needed to completely define the physical state.  Shannon’s 

information entropy can be used to describe the weight of information in the system.    

Jaynes also describes the principle of maximum entropy as an extension to 

Laplace’s principle of insufficient reason, which teaches that there is no justification for 

assigning a particular probability distribution over another if given the same amount of 

information.  What Jaynes realized was that Laplace was assuming maximum 

ignorance and therefore was assigning the most uniform distribution, which is the 

distribution with the highest amount of entropy.  He postulated that the justification for 

assigning a particular probability distribution was that the distribution had the highest 

amount of entropy.   

Laplace’s principle describes a system assuming maximum ignorance but what 

if, like most real world systems, there is some known information about the system but 

also some unknown information? Jaynes extended Laplace’s principle by using the 

known information to constrain the unknown information.  The unknown information is 

then assigned the most uniform distribution possible, given the constraints.  As this 

distribution, would be the most uniform, it would also be the distribution with the 

maximum amount of entropy and is therefore justified.   

This principle has been utilized for a wide range of scientific fields including 

image processing and enhancement, biology, and natural language processing.  For 

example, one medical study showed that the principle of maximum entropy can 

significantly reduce echo-planar correlated spectroscopic imaging, which can help to 
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reduce scan time and is very important if a patient is in critical condition (Burns 2013). 

The studies presented here will focus on the contribution the principle has made to 

geographic information science with a focus on natural hazards. 

2.3.1 Applications of MaxEnt to GIS 

In 2004, Steven Phillips developed GIS software for prediction of species 

distributions called MaxEnt from a machine learning perspective (Phillips 2006). As 

MaxEnt was originally applied to species distribution models and machine learning 

techniques were often outside the realm of ecologists, he teamed with several authors 

to describe MaxEnt from a statistical point of view (Elith 2011). The software quickly 

rose to become one of the most popular species distribution models because of its 

accuracy and its efficiency.  Merow (2013) said that there were over 1000 articles 

written concerning MaxEnt and species distribution models between 2006 and 2013 and 

that the reason for its popularity is that it typically outperforms other models and is very 

easy to use.  

Since MaxEnt is a binary classification technique, the software has been used 

successfully to model other forms of geographic phenomena than species distributions.  

There are many recent studies utilizing MaxEnt for obtaining probability distributions for 

different forms of natural hazards including landslides, viral and bacterial outbreaks, and 

wildfires.  MaxEnt has also been applied to land use planning and human settlement, 

land classification, and streambank erosion potential.  One study, for example, used 

MaxEnt to evaluate optimal transitional areas due to altitude for human settlement in the 

Qinghai–Tibet Plateau (Cao 2013). The software could find suitable areas along the 

Huangshui River.  Another study used MaxEnt to model streambank erosion potential 



 

12 
 

with an Area Under the Curve (AUC) of .994 (averaged over 30 iterations) and show 

that slope, soil type, and bank stress index were the most important variables 

contributing 32.7, 29.2, and 20.6 respectively (Pitchford 2015). Many studies have used 

MaxEnt to map bacterial and viral outbreaks.  Goka (2013), for example, utilized the 

MaxEnt software to identify key drivers of avian influenza in Japan. It was determined 

that the dabbling duck population has a significant role in the spread of influenza in 

Japan. 

MaxEnt has been successfully applied to evaluating landslide risk.  Converntino 

(2013) could show that areas that have medium-high elevation and slope, small-

medium hillslope-to-channel distance, or medium erodibility are more susceptible to 

landslides in the future in the Arno Basin.  A similar study evaluated landslide risk in 

Korea using different variables (Kim 2015).  It could show that urban and agricultural 

areas are at higher risk than other land use types.    

2.3.2 Applications of MaxEnt to Wildfires Distributions and A Review of Potential 

Drivers 

The MaxEnt software has been successfully applied to wildfire distributions in 

many parts of the world.  In the study by Arpaci (2014), MaxEnt is compared against 

another machine learning algorithm, RF, in a section of the Alps mountains using 

multiple meteorological variables to derive fire weather indices. MaxEnt is shown to 

perform quite well when compared to RF.  The results also showed that both models 

tended to agree about the most important drivers but diverged when considering drivers 

of lesser importance.   
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In the study of De Angelis (2015), MaxEnt was compared against the traditional 

General Linearized Models (GLM) with binomial distribution and logistic link (same as 

LR) in Switzerland. Comparisons between the models were made using meteorological 

variables, fire weather indices, and a combination of both.  The study considered both 

anthropogenic and naturally occurring wildfires.  The top ten models (over several 

iterations) were MaxEnt.  This study gives evidence that MaxEnt outperforms LR, in 

application. 

In the study of Peters (2013), the Wildland Urban Interface (WUI), the Modified 

Palmer Drought Index (PMDI), and the integrated moisture index were examined for 

their potential to predict wildfire occurrences in by using a MaxEnt model. Of the 

variables considered, the WUI and the PMDI were influential variables.  It is also 

revealed from the study that, approximately in August, (Figure 5 of the study) WUI 

contributes significantly less to wildfire occurrences while PMDI becomes the 

overwhelming factor, representing roughly 85% of variable contribution.  Also, the 

figure showed that when PMDI variable contribution was high, WUI variable contribution 

was low.   

Batllori (2013) used MaxEnt to model wildfires using BIOCLIM variables, 

however the study did not compare the model to any other model, such as LR. The 

article also discusses a key finding, which suggests that areas that show marginal 

increases in moisture content may show a greater risk.  The variables identified in this 

study will be one of the datasets used. 

Massada (2012) compared Random Forests, Generalized Linear Models, and 

MaxEnt using several predictor variables related to topography, human settlement, and 
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infrastructure. Human settlement and infrastructure were the strongest predictors of 

wildfire ignitions, though land cover and topography seemed to be strong predictors of 

naturally occurring wildfires.  MaxEnt was shown to be the most effective, though not 

by much.  The authors also state that there was relatively low variability between the 

predictor variables in the dataset which may account for similar results among the 

models.  Human structure and infrastructure could be difficult to obtain and would take 

some time to collect for the conterminous United States.  They will not be included in 

this study because this study is only considering naturally occurring wildfires.   

Massada (2012) used MaxEnt to model the variability of wildfires with a set of 

explanatory variables that characterized ignition sources, flammable vegetation (i.e. 

fuels), climate and topography.  A full model and a model representing non-

anthropogenic wildfires were built.  The results showed that there was a wide range of 

responses to the exploratory variables in different areas throughout the western United 

States.  The six most important variables were temperature of the driest month, the 

remoteness of the area at a 10,000 ha scale, precipitation of the coldest month, ratio of 

surface to area at the 1 ha scale, gross primary productivity at the 100-ha scale, and 

percentage land cover of fuels at the 100-ha scale.  These variables may be 

considered in a future study but collecting this dataset currently would be quite time 

consuming.     

Like the previous study, Chen (2015) tried to identify drivers of wildfires in 

Northeastern China. In this study, weather over the last three days before ignition 

(temperature, relative humidity, wind speed, rainfall), forest fuel type of ignition, and 

topography (altitude, slope and aspect) were analyzed.  The Variance Inflation Factor 
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(VIF) was also used in this study to determine correlations between the variables and 

remove highly correlated variables.  Among the variables considered, number of 

strikes on the day of the ignition, rainfall in the 3 days before, and the intensity of the 

lightning current seemed to be the most important.  That these three variables are the 

main drivers of lightning caused fires should not be surprising, though they may not be 

helpful in any long term land use planning.   Average wind speed, slope, and altitude 

did not seem to have much impact in the study area.   

LANDFIRE is a collection of several geospatial datasets representing vegetation, 

wildland fuel, and fire regimes across the United States.  The LANDFIRE dataset is a 

collection of fine scale (30 meters) raster data for several variables related to vegetation 

and topography.  LANDFIRE data can be used in multiple applications, including the 

applications presented in this study (Opperman 2013).  There is also several optional 

tools that can be downloaded and loaded into ArcMap for LANDFIRE data including the 

Wildland Fire Assessment Tool, the LANDFIRE Total Fuel Change Tool, the Multi-

Raster Classification Tool, and the LANDFIRE Data Access Tool.  Thirteen variables 

from the LANDFIRE dataset will be tested for multicollinearity and used in this study, 

described in the “Independent Variables” subsection of the “Methodology” section. 

One last note considering the literature review.  It is important to note that it is 

not being suggested that MaxEnt is always the most accurate method.  For example, 

Ordóñez (2012) used Generalized Linear Spatial Models (GLSM) and originally 

considered multiple variables. The AUC was used to determine important factors and 

were tested for correlation.  The dataset was reduced to six factors including 

percentage of agricultural land, number of dry storm days, mean altitude, number of 
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lightning strikes with a particular cell, percentage of woodland, number of lightning 

strikes within a broadleaf woodland.  A GLM of these variables produced a 73% AUC.  

The data was then used on a General Linear Spatial Model (GLSM) and produced a 

very high AUC of 99%.  GLSMs are also a good modeling choice.  Of course, it is one 

study and the ROC may give different results.  In any event, MaxEnt typically 

outperforms logistic regression and several other models but GLSMs may possibly 

outperform MaxEnt.  It is also important to note that this study will evaluate model 

performance based primarily on the ROC, vs the AUC. 

In general, if sufficient information is available on absence then a 

presences/absence technique is recommended (Elith 2012).  Wildfire data, like a lot of 

real world data, often does not contain information about absence so a presence only 

technique would be beneficial.  A good method that can generate accurate pseudo 

absence data would also be beneficial.  Often, errors are introduced in creating the 

data, due to sampling techniques and whether the data points represent true absence. 
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CHAPTER 3 

METHODS 

3.1 Formulas 

The formula for LR is 

 

              log � �
���� = 
�� +� ��
�

�

���
+ �       

(1) 

 

 where µ is the probability of class 1 (meaning occurrence) and 1 - µ is the probability of 

class 0, βo is the model intercept, βj are the regression coefficients, p is the number of 

independent variables X and ε represents the residuals or errors. 

 

The MaxEnt formula is an extension of Bayes’ rule and takes the form: 

 

Pr(y=1|z) = f1(z)Pr(y=1) / f(z)                                       (2)  

 

Where 1 means presence of natural wildfire, z represents a vector of environmental 

variables (rasters), and f(z) is the probability density of covariates across the location.   

Since Pr(y=1) is the term that is lacking, prevalence is not available from presence only 

data. We need prevalence to calculate conditional probability precisely.  A logistic 

transformation is done, and calibrates the intercept so that the implied probability of 
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presence at sites with typical conditions, given the parameter τ.  If we knew the exact 

value of τ it would solve the non-identifiability of prevalence. 

 

 

The MaxEnt formula ends up being an extension of Bayes Rule 

 

Pr(y = 1|z) = τ*e ŋ(z)−r / (1-τ + τ*e ŋ(z)−r)                                      (3) 

 

where n(z) is a linear score, r is the relative entropy of MaxEnt’s estimate of f1(z) from 

f(z), and τ is the probability of presence at sites with ‘‘typical’’ conditions for the species 

(Elith 2011).  

From equation 1, we see that a simple approach to estimate Pr(y = 1|z) would be to 

simply multiply en(z) by a constant that estimates prevalence; this approach has the 

disadvantage that en(z) can be arbitrarily large, which implies that we may get an 

estimate of Pr(y = 1|z) that exceeds 1.  Exponential models can be especially badly 

behaved when applied to new data, for instance, when extrapolating to new 

environments. To avoid these problems, and to side-step the non-identifiability of the 

species prevalence, Pr(y = 1), MaxEnt’s logistic output transforms the model from an 

exponential family model to a logistic model (Elith 2011). 

 

3.2 Study Area:  

The study area will be the United States, divided according to NOAA climate 

regions, for the year 2010.  This year was chosen because fairly reliable data exists 
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for all of the possible drivers.  The climate regions of the landscape were chosen 

 

Figure 1:NOAA CLIMATE REGIONS 

because it divides regions according to fairly homogenous climates.  Figure 1 shows 

the study area, as broken up according to the NOAA climate regions.  The Northeast 

and East North Central regions are not included due to the limited data and low 

frequency of occurrence. 

 

The Southeast Region compromises the states of Alabama, Florida, Georgia, 

North Carolina, South Carolina, and Virginia.  Multiple wildfires occur in this area in 

both forested and non-forested areas.  In terms of area burned, this region contains 

4 of the top ten wildfire states (North Carolina, Alabama, Georgia, and Florida). 

 The Central Region compromises the states of Illinois, Indiana, Kentucky, 
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Missouri, Ohio, Tennessee, and West Virginia.  While the area has some large 

forested areas, including Shawnee National Forest, not a lot of forest fires occur in 

the area.  Naturally occurring grassland wildfires, however, happen and most often 

impact agriculture.  Missouri is 5th in the nation in terms of number of reported fires, 

while other states have significantly less reported fires.  In terms of acres burned, 

Illinois Indiana, Ohio, and West Virginia are almost negligible.  Missouri had the most 

acreage burned by wildfires for the region as well, at about 30,000 acres. 

The South Region compromises the states of Arkansas, Kansas, Louisiana, 

Mississippi, Oklahoma, and Texas.  Many wildfires occur in the region.  Texas has 

highest amount of fires in the nation and is seventh highest in the amount of acres 

burned.  Mississippi come in as tenth in the nation in the amount of fires burned.  

Oklahoma comes in ninth in terms of acres burned.  The region saw over 450,000 

acres burned in 2015. 

The Southwest Region is comprised of the states of Arizona, Colorado, New 

Mexico, and Utah.  This region sees extensive wildfire damage.  Every one of these 

states is in the top ten most wildfire prone states.   

The West Region is comprised of the states of California and Nevada.  This 

region sees extensive wildfire damage.  California is the most wildfire prone state in 

the nation, while Nevada is the tenth most wildfire prone.  California comes in 

second in the number of fires, and third in the number of acres burned. 

The Northwest Region contains the states of Washington, Oregon, and Idaho.  

Like the Southwest and West, this region has extensive damage related to wildfires.  

All of the states in this region are in the top ten most wildfire prone states.  
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Washington is second in the nation in number of acres burnt by wildfire.  Idaho and 

Oregon are fourth and fifth, respectively. 

The West North Central Region is comprised of the states of Montana, 

Nebraska, North Dakota, South Dakota, and Wyoming.  Montana is the 6th in the 

nation in terms of the amount of acres burned, and 7th in the nation in terms of the 

frequency of fires.  Nebraska does not have many wildfires.  All other states in the 

region have low to moderate amount of fires. http://www.iii.org/fact-

statistic/wildfires. 

 

3.3 Variables and Datasets 

The dependent variable will be the probability for ignition of naturally occurring 

wildfires, including grassland and forested fires.  The data were obtained from the 

U.S.G.S, available at http://wildfire.cr.usgs.gov/firehistory/data.html and from all 

available reporting agencies.  It is important to note that, like many other sources of 

data, the accuracy cannot be verified to 100 percent accuracy.  This is especially 

true in species distribution modeling (Graham 2008).  The same could be said about 

the source of ignition for wildfires. 

The independent variables are comprised of similar variables identified in 

literature.   The goal is to find variables that are easy to obtain or derive and have 

been identified as appropriate to use at a regional scale. Five BIOCLIM variables 

including Temp Seasonality, Mean temp of wettest month (quarter), Mean temp of 

warmest month (quarter), Total Annual Precipitation and Precipitation of driest 

month/quarter, https://www.climond.org/BioclimRegistry.aspx were used in Batllori 
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2013 will be considered.  BIOCLIM has been applied successfully to other forms of 

niche modeling such as species distribution modeling prior to being applied to 

forested wildfires, so there is good reason to indicate they may be good drivers for 

niche modeling of grassland wildfires as well.  LANDFIRE data has also been 

applied successfully to model wildfires. LANDFIRE consists of 4 forest variables 

(Forest Canopy Bulk Density, Forest Canopy Base Height, Forest Canopy Cover, 

Forest Canopy Height), 3 general vegetation variables (Existing Vegetation Cover, 

Existing Vegetation Height, Existing Vegetation Type), 3 topographic variables 

(Aspect, Elevation, Slope), and 3 disturbance variables (Disturbance, Fuel 

disturbance and Vegetation Disturbance). It is logical to assume that the vegetation 

dataset can also help to predict grassland wildfires.  It can be obtained at 

http://www.landfire.gov/version_comparison.php.  The BIOCLIM data can be derived 

through R, using rasters that represent tmax, tmin, tmean, and precipitation data for 

the given temporal period.  Information on creating BIOCLIM in the “climates” 

package available for R can be seen at 

https://rforge.net/doc/packages/climates/bioclim.html, or there is already available 

data at http://www.worldclim.org/download.  The already available data was used for 

this study. The first set of models will be composed of the BIOCLIM data.   The 

second set of models will be composed of the LANDFIRE data. 

Studies have shown that moisture content may not be an important 

consideration.  Peters 2013 did not determine the Integrated Moisture Index (IMI) to 

be an important variable. Vasilko 2009 revealed that 10-h fuel moisture has a 

negative effect on wildfire ignition, along with elevation and aspect (LR, the exception, 
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showed positive influence with aspect).  

  Batllori 2013 looked at moisture content as a driver of wildfire occurrence in 

relation to climate change extensively. The study considered two future scenarios 

(warmer/wetter and warmer/ drier).  While it was shown that, in general, “fire 

probabilities were high, and the lowest values were confined to the wettest and driest 

areas” it was also shown that “the warmer–drier syndrome led to an overall decrease 

in fire activity across 56% of the Mediterranean biome by the end of the century 

(2070-2099), whereas warmer–wetter conditions led to an overall increase across 

65% of the biome”.  It may be that there is a threshold for moisture.  Areas that 

have lower moisture content but receive marginal increases in moisture content in the 

future could be at greater risk of wildfire occurrence.   

3.4 Model framework 

Several models will be run in order to provide an assessment of drivers of 

naturally occurring wildfires in the United States.  Differing datasets will be obtained 

for each climate division.  A thirty-meter dataset is very large given the size of the 

study area.  Given hardware restrictions, the dataset will have to be aggregated.  

This will reduce the file size and allow the rasters to fit into memory within R.  While 

the amount of information will be reduced, it will be sufficient for analysis.  The 

variance inflation factor will be used to test for multicollinearity and remove correlated 

variables to reduce the potential set of drivers before the models are run.  A second 

correlation test will be done before running the final model.  

A third set of models will be developed, after testing for correlation, from a 

composite of the other two models.  Each region will therefore have at least 3 
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models for GLM, MaxEnt, and a couple of other niche models to provide an adequate 

comparison. 

 

3.5 Instruments 

The ArcGIS software and the R programming language will be the primary 

instruments through which modeling is conducted.  ArcGIS provides a number of 

toolboxes that can be used to perform spatial analysis and develop spatial datasets.  

The software also allows for easy manipulation of spatial data, and for easy 

development of custom geoprocessing tasks, and has a well-designed interface for 

cartographic design.  It will be used to perform spatial projections, as well as some 

data conversions. The R programming language is designed for statistical analysis and 

modeling.  It will be used to model both LR (generalized linear model with binomial 

distribution and logit link) and MaxEnt models.   

 

3.6 Data pre-processing Procedures   

The first step is to obtain the data from the various sources and clean it.  There 

were two types of data, occurrence data and background data.  The occurrence data 

will be cleaned first.  As only naturally occurring wildfires within the temporal span are 

being considered, all other types of fire will be removed.  The occurrence data is then 

sectioned according to the climate regions.  These spatial points are then projected 

into an equal area projection for adequate spatial analysis (Albers North American 

Equal Area Conic was chosen).   
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 The x and y coordinates from the projected occurrence data will need to be 

obtained and put into a CSV file with three columns delimited by commas.  The first 

two columns contain the x and y coordinates while third column includes the response 

variable being studied as a heading (in this case wildfires) and presences/absence 

location as attributes.  If (as the case is with this dataset) the response variable is 

presence only, this column will only have the number 1 in the column.  This describes 

how the CSV file needs to be set up for use in the BIOMOD2 package.  The CSV file 

needs to be set up slightly different if using the MaxEnt software.  

A shapefile was created with the correct projection that contains points for all 

naturally occurring wildfires within the temporal span of the study (2010).  A custom 

Python script was then developed to get the x and y coordinates from the attribute table 

of the shapefile, create a DBF file for each region and then write the points to a CSV 

file.   

The background data needed to be edited and manipulated in order to be 

accepted into a MaxEnt model. The LANDFIRE and BIOCLIM rasters will have to be 

extracted by a masked feature (the extent of the division) for proper analysis.  In 

ArcGIS, this can be accomplished by using the environmental variable “Snap to Raster”, 

and defining the “Extent” of the raster while running the “Extract by Mask” tool.  Like 

the occurrence data, all of the background rasters need to be projected to the same 

(equal area) projection.  If using the MaxEnt software, it can accept ASCII or BIL raster 

file format.  Using R along with various packages including RGDAL and BIOMOD2, just 

about any raster format can be used.  The TIF file format was used for this study.  
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After these steps have been taken, both the occurrence points and the 

background rasters are in the same projection, all of the background have the same 

extent and resolution.  The occurrence data is a csv format and the background data is 

in the correct format.  The data can now input into BIOMOD2 for analysis.  Three 

different sets of models are run, described in the “Model Framework” section.   

 

3.7 Modeling Procedures 

To obtain results from the software, all the user must do is input a csv file 

containing the x and y coordinates of the dependent variable, the folder containing the 

raster files representing the independent variables, and optionally, set user defined 

options.  The MaxEnt software automatically develops 10,000 pseudo-absence points 

for the input data.  When using a MaxEnt model with popular statistical and machine 

learning software like R, however, absence data must be developed by the user.  

Software packages like “BIOMOD2” make creating absence data easy, and can be 

used to format the data to run with several machine learning techniques including LR, 

Random Forests (RF), Artificial Neural Networks(ANN), Multiple Adaptive Regression 

Splines (MARS) MaxEnt, and others.   

Since LR will be compared against MaxEnt, the BIOMOD2 package will be used.  

The BIOMOD2 package allows for the creation of absence data easily, using different 

sampling strategies.  As the BIOMOD2 package includes a function that formats the 

data to be modeled for GLMs, Artificial Neural Networks, Random Forests, MaxEnt, and 

other machine learning and statistical techniques, it will be used to compare the LR 

model to the MaxEnt model.  The package includes global default settings and allows 
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for individual settings for different models.  It allows comparison of many different types 

of models easily.  One setting that was changed for GLM’s was that the Bayesian 

Information Criterion was used instead of the default Akaike Information Criterion.  This 

is because MaxEnt is a Bayesian approach and if GLM’s are like MaxEnt then they 

should use the same information criterion for the same dataset. A total of 45 runs are 

produced, 9 for each of the 5 types of models.  Three different models are run, using 3 

different permutations of the pseudo-absence data and evaluation metrics (obtained 

from splitting the data) is reported.   Models are run using 10,000 absence points, as 

this is the standard MaxEnt output and will enable a fairer comparison.   An R script 

was developed to automate the modeling process.  Model projections that are done in 

BIOMOD2 are often converted into a scale between zero and a thousand and is done 

for memory saving purposes.  According to the BIOMOD2 manual, “0 - 1 probabilities 

are converted into a 0 - 1000 integer scale. This implies a lot of memory saving. User 

that want to come back on a 0 - 1 scale latter will just have to divide all projections by 

1000”.    

 

3.8 Variable and Model Evaluation 

All the regions were tested for multicollinearity using the Variance Inflation Factor 

(VIF).  Seven variables from the LANDFIRE dataset were used for each region after 

testing for multicollinearity.  If a variable was shown to have collinearity, it was 

removed.  A multicollinearity test was also done on the composite model to ensure no 

significant correlations existed when the variables from each dataset were combined.  



 

28 
 

Each of the aforementioned datasets was randomly split into a sub-set (70%) of 

dataset for model development and a sub-set of dataset for model validation for each of 

the regions except for the central region in which the data splitting was conducted 

based on 50% and 50%.  When the testing data was used, ROC was primarily 

discussed for model performance for each region because it is the main metric used for 

model evaluation for MaxEnt and is also typically used for performance of GLM models.  

The ROC value illustrates the performance of a binary classification system by plotting 

the true positive rate (sensitivity) against the false positive rate (specificity) at different 

thresholds.  Other metrics including the True Skill Statistic (TSS) and Kappa were 

included in the appendices.  The LANDFIRE and BIOCLIM datasets were used to 

identify important drivers to develop the composite model. All the variables were 

assumed to be continuous unless they were noted. 

The coefficient of correlation, R, between a variable and natural wildfire occurring 

was used to quantify the strength of the variable. In some cases, R2 values are also 

given to show the importance of a variable.  Moreover, the values of correlation R 

between the predicted and observed probabilities for natural wildfire occurring were also 

utilized for evaluate the performance of model runs for each of the regions when the 

testing data were used. Models were run on modern hardware (I7 Skylake, 16GB DDR4 

RAM) using several statistical packages. A significant level of 0.05 was used.  
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CHAPTER 4 

RESULTS 

All the VIF values of predictor variables were less than 10 in the final models, 

statistically indicating no significant multicollinearity.  The used variables included 

slope, aspect, elevation, existing vegetation type, disturbance, canopy bulk density, and 

canopy height, temperature seasonality, mean temperature of wettest quarter, mean 

temperature of warmest quarter, annual precipitation and precipitation of driest quarter.  

A couple of models showed some collinearity for 5 BIOCLIM variables used.  A 

multicollinearity test was also done for the composite model to ensure no significant 

correlations existed when the variables from each dataset were combined. In this study, 

many probability maps for predicting natural wildfire occurrence were generated from 

the model runs, but only few of them were provided in the thesis as examples and most 

of the maps are available in the Appendices. 

 

4.1 Southeast Region 

 

BIOCLIM  

 The ROC values of probability maps for predicting natural wildfire occurring 

from BIOCLIM dataset were consistently above 0.75, except for ANN model that 

produced a score of 0.57. Temperature seasonality was shown to be a most 

important factor in all the models. Mean temperature of wettest quarter also seemed 

to be of moderate importance so it was also included. Figure 1 in Appendix A depicts 

the BIOCLIM model. 
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LANDFIRE 

The ROC values of the probability maps for predicting natural wildfire occurring 

from LANDFIRE data were similar to those from BIOCLIM data.  There was a similar 

range of 0.75 to 0.9, though one model produced a ROC value of 0.6.   According to 

the importance, the variables were ranked as aspect, slope, elevation, and canopy 

bulk density, which were used for running the composite model.  Figure 2 in 

Appendix A depicts the LANDFIRE model. 

 

COMPOSITE DATASET 

The VIF values of all the variables were smaller than 10 with mean 

temperature of warmest quarter having the highest value of 8.2.  Visually, 

temperature seasonality appeared to be the most significant variable to predict the 

probability of natural wildfire occurring. This was also validated by a greatest R value 

of 0.8 between the predicted and observed probabilities.  Most of the probability 

maps showed that Florida was at higher risk than all other states in this region.  Only 

did a few of the ANN model runs show that temperature seasonality had less 

importance with R values of about 0.6.  This indicated that extreme temperatures 

were more important for predicting natural wildfire occurrence than other variables.  

Climate change will lead to increase of temperature and thus probably increase the 

risk of natural wildfire occurrence in this state in the future. MaxEnt model resulted in 

the greatest R value of 0.916, while the ANN model led to the smallest R value of 

0.733.  A couple of the ANN model runs were unable to converge.  Figure 3 of 

Appendix A depicts the composite model. 
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4.2 Central Region 

 

BIOCLIM 

 In central region, mean temperature of wettest quarter and temperature 

seasonality were most important drivers based on BIOCLIM dataset and were kept in 

the composite model.  MaxEnt produced higher ROC scores (around 0.869) of the 

probability maps for natural wildfire occurrence in this region than other models, and 

several RF model runs performed rather poorly with the score values as low as 0.47. 

This may be due to the relatively small number of data points used, 8 points for 

calibration and 8 points for testing based on a 50/50 data split, in the region. 

 

LANDFIRE 

 Based on the results of probability maps for natural wildfire occurring from the 

runs of MaxEnt, GLM, ANN and RF model, it was found that canopy height, canopy 

bulk density and existing vegetation type were most important drivers and kept for the 

composite model.  Overall, this dataset produced higher ROC values than the 

BIOCLIM dataset and MaxEnt led to the highest ROC values of probability maps for 

natural wildfire occurring.  Although some models had extremely low ROC values, 

most of them were larger than 0.7. 

 

COMPOSITE DATASET 

As MaxEnt is similar to the GLM model with a Poisson distribution and logistic 

regression (LR), the probability maps of natural wildfire occurrence were created and 
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compared in this region among MaxEnt, GLM – LR with Poisson and binomial 

distribution respectively. As examples, the probability maps generated using GLM - 

LR with binomial distribution are shown in Figure 2.  Figure 3 presents the probability 

maps of natural wildfire occurring using GLM – LR with Poisson distribution and 

Figure 4 depicts the probability maps using MaxEnt model runs. The comment 

features are that there were higher and lower probabilities in the south and north 

parts respectively. The differences in the spatial distribution of the probability could 

also be seen between the models and even within each of the models. For all the 

model runs, mean temperature of wettest quarter was used as a continual variable.  

It was noticed that in central region, some of the spatial distributions of probability for 

natural wildfire occurring (Figures 2, 3 and 4) were dominated by the spatial patterns 

of mean temperature of wettest quarter used in the model runs in which clear borders 

existed (Figure 5).  In addition, ANN model runs also led to the spatial distribution of 

the probability that had clear delineations.  

Theoretically, both MaxEnt and GLM can utilize both discrete and continuous 

variables as predictors. This can be regarded as an advantage of MaxEnt and GLM 

because other models including RF and ANN can use continuous variables only. The 

existence of distinct borders in the above probability maps may be due to the spatial 

resolution of the dataset.  At this spatial resolution, the raster of mean temperature 

of wettest quarter may be more appropriately represented as a categorical variable.  

Figure 6 shows the predicted probability map for natural wildfire occurring using 

MaxEnt model when mean temp of wettest quarter was represented as a categorical 

variable. In Figure 6, it was found that the different spatial patterns of the probability 
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from those in Figures 2, 3, and 3 were created and the distinct borders disappeared. 

However, the problem is that the categorization led to the loss of variance for this 

variable.   

Moreover, the ROC values of the probability maps for natural wildfire occurring 

from all the model runs varied from 0.47 to 0.95.  Mean temperature of wettest 

quarter is not as pronounced in the POISSON models and, expectedly, produced 

much lower R values.  ROC scores for the POISSON model were also rather varied, 

with ranges between .546 and .867.  R valued indicated that mean temperature of 

wettest quarter has stronger influence than the other values, but not significant 

influence.  This suggests that the variable is significant but that the relationship is not 

linear, given the likeness to mean temperature of wettest quarter visually.  
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Figure 2: The probability maps of natural wildfire occurring based on General Linearized 

Model (GLM) with binomial distribution and logistic regression using 50% of data split for 

Central Region (Note: nine combinations of three model runs: RUN1, RUN2 and RUN3 

with three absence data sets: PA1, PA2 and PA3, consisting of 10,000 background points 

randomly selected). 
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Figure 3: The probability maps of natural wildfire occurring based on General Linearized 

Model (GLM) with Poisson distribution and logistic regression model using 50% of data 

split for Central Region (Note: nine combinations of three model runs: RUN1, RUN2 and 

RUN3 with three absence data sets: PA1, PA2 and PA3, consisting of 10,000 

background points randomly selected.  The final model did not complete). 
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Figure 4: The probability maps of natural wildfire occurring using MaxEnt model with 50% 

of data split for Central Region (Note: nine combinations of three model runs: RUN1, 

RUN2 and RUN3 with three absence data sets: PA1, PA2 and PA3, consisting of 10,000 

background points randomly selected). 
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Figure 5:  Spatial distribution of mean temperature of wettest quarter for central region. 

The clear delineations or border lines existed in the raster, which led to the similar spatial 

patterns of probability for natural wildfire occurrence when the models were run. 
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Figure 6: The probability map of natural wildfire occurring using MaxEnt model with 50% 

of data split for Central Region and representing mean temperature of wettest quarter 

as a categorical variable with 10,000 background points randomly selected. 

 

4.3 South Region 

 

BIOCLIM 

In south region, it was found that there was a strong correlation between annual 

precipitation and precipitation of driest quarter.  Literature review stated that the 

variables were uncorrelated with each other, but this may be due to different study 

areas.  Moreover, in this region the VIF values ranged from 23 to 26 when annual 

precipitation was involved.  This might indicate that moisture plays a strong role in the 

region.   When annual precipitation was removed and the models were run again, the 



 

39 
 

VIF values obtained were all less than 2.5.  In addition, both the smallest and largest 

ROC values of 0.769 and 0.930 respectively came from the probability maps of natural 

wildfire occurring and were created by ANN model runs.  MaxEnt and MARS runs 

consistently resulted in the ROC values of larger than 0.85.  All the model runs tended 

to agree that mean temperature of warmest quarter and precipitation of driest quarter 

had the strongest influence on the probability of natural wildfire occurring, and were kept 

for the composite model.   

 

LANDFIRE 

 The results of LANDFIRE dataset indicated that elevation was a significant driver 

of natural wildfire occurring for South Region with R values greater than 0.8 between 

the predicted and observed probabilities for MaxEnt, ANN and MARS model. One 

MaxEnt model run led to the highest R value of 0.94.  The R values for RF and GLM 

models were lower than those for MaxEnt, ANN, and MARS, but still showed moderate 

importance with a range of R values between 0.3 and 0.7. Canopy height was also 

moderate important and retained for the composite model.  The ROC values of the 

probability maps for all of the model runs were above 0.8, except for GLM, which 

consistently scored from 0.6 to 0.7. 

   

COMPOSITE DATASET 

 The VIF values for all the variables involved in the composte data were smaller 

than 4.4.  The ROC values of the predicted probability maps for natural wildfire 

occurring for the composite model ranged from 0.743 created by a GLM model run to 



 

40 
 

0.940 by a RF model run.  MaxEnt and MARS both consistently scored the ROC 

values of 0.83 or above.  All the model runs tended to show that precipitation of driest 

quarter was the most important predictor and showed significant influence on the 

probability of natural wildfire occurring.  This may indicate that moisture plays a 

stronger role than other variables in the the region. The R values between the predicted 

and observed probabilities ranged from 0.628 to 0.940 across the model runs.  The 

examples of the probability maps for natural wildfire occurring from the runs of MaxEnt 

model, GLM with LR and binormial distribution and GLM with LR and Poisson 

distribution are shown in Figures 7, 8 and 9. Although it seemed that overall GLM with 

LR and binormial distribution led to the highest probability, then GLM with LR and 

Poisson distribution and MaxEnt model, the spatial patterns of the probabilities were 

similar. That is, the higher and lower probabilities existed in the northeast and south 

parts respectively.    
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Figure 7: The probability maps of natural wildfire occurring using MaxEnt model for South 

Region (Note: nine combinations of three model runs: RUN1, RUN2 and RUN3 with three 

absence data sets: PA1, PA2 and PA3, consisting of 10,000 background points randomly 

selected). 
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Figure 8: The probability maps of natural wildfire occurring using General Linearized 

Model (GLM) - with binomial distribution and logistic regression for South Region (Note: 

nine combinations of three model runs: RUN1, RUN2 and RUN3 with three absence data 

sets: PA1, PA2 and PA3, consisting of 10,000 background points randomly selected).   
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Figure 9: The probability maps of natural wildfire occurring using General Linearized 

Model (GLM) -  with Poisson distribution and logistic regression for South Region (Note: 

nine combinations of three model runs: RUN1, RUN2 and RUN3 with three absence data 

sets: PA1, PA2 and PA3, consisting of 10,000 background points randomly selected).   

 

4.4 SOUTHWEST REGION 

 

BIOCLIM 

 When BIOCLIM dataset was used, the ROC values of probability maps of natural 

wildfire occurring from all the model runs had a range of 0.747 to 0.872 and most of 

them 0.8 or above.  The only variable that showed significant influence was 
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precipitation of driest quarter and thus it was kept for the composite model.  When 

precipitation of driest quarter was used, the obtained R values varied from 0.515 to 

0.891. Examples of the probability maps from the runs of GLM - with binomial 

distribution and logistical regression are displayed in Figure 10. Overall, the north and 

central areas of this region had higher probabilities than other parts.  

 

LANDFIRE 

The ROC scores of the probability maps for natural wildfire from LANDFIRE 

dataset were similar to those from BIOCLIM dataset, with the lowest value of 0.785 by 

an ANN model run and the highest value of 0.853 by a RF model run.  Determining 

predictor variables was slightly more difficult using this dataset than using BIOCLIM 

dataset.  Most of the ANN model runs tended to show that canopy bulk density was a 

significant driver with the R values of around 0.8 with a couple of ANN model runs 

resulting in the R values of around 0.3 for canopy bulk density. Most of the RF model 

runs led to the R values ranging from 0.45 to 0.55 for canopy bulk density, implying 

moderate importance.  The only other variable with significant R values was elevation.  

These two variables were thus selected for the composite model.  Figure 11 displays 

the probability maps of natural wildfire occurring using MaxEnt model and LANDFIRE 

dataset for Southwest Region.  The probability maps of natural wildfire occurring 

looked similar to those in Figure 10 by BIOCLIM dataset, but overall the probability 

values were greater in Figure 10 than Figure 11.   
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COMPOSITE DATASET 

 Three variables used in composite model were precipitation of driest quarter, 

canopy bulk density, and elevation.  Their VIF values were smaller than 2.76, 

indicating no significant collinearity.  The ROC scores of probability maps of natural 

wildfire occurring were similar to those using LANDFIRE and BIOCLIM datasets, with a 

range of 0.747 by an ANN model run and the high ROC values and agreement among 

three datasets provided the great potential to predict the probabilities of natural wildfire 

occurring using the models in this region.  The results of R values indicated that with 

the highest R value of 0.745, precipitation of driest quarter had a stronger influence on 

the predictions of probability for natural wildfire occurring than canopy bulk density and 

elevation.  Elevation had influence only for some of the model runs.  

The probability maps of natural wildfire occurring from all the model runs show 

similar spatial patterns for this region (Figures 10 and 11).  The spatial patterns were 

similar to the spatial distribution of precipitation of driest quarter (Figure 12).  This may 

indicate that moisture plays a strong role in the occurrence of natural wildfires in this 

region. Table 1 shows different evaluation scores for the region including Kappa, True 

Skill Statistic (TSS), Success Ration (SR), False Alarm Ration (FAR), the Critical 

Success Index (CSI), and the Relative Operator Characteristic (ROC). 
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Figure 10: The probability maps of natural wildfire occurring using General Linearized 

Model (GLM) -  with binomial distribution and logistical regression for Southwest Region 

(Note: nine combinations of three model runs: RUN1, RUN2 and RUN3 with three 

absence data sets: PA1, PA2 and PA3, consisting of 10,000 background points randomly 

selected).  
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Figure 11: The probability maps of natural wildfire occurring using MaxEnt model for 

Southwest Region (Note: nine combinations of three model runs: RUN1, RUN2 and 

RUN3 with three absence data sets: PA1, PA2 and PA3, consisting of 10,000 background 

points randomly selected).   
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Figure 12: Spatial distributions of precipitation of driest quarter, indicating that 

precipitation of driest quarter is linked with the probability of naturally occurring wildfire



Table 1: Binary classification metrics representing evaluative performance for 
probability of natural wildfire occurrence from the composite dataset for the 

Southwest Region 
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MAXENT RUN1 PA1 

      
Testing.data Cutoff Sensitivity Specificity 

ROC 0.832 373 78.592 76.567 
TSS 0.551 369 78.592 76.467 
SR 0.6 760 4.741 99.167 
FAR 0.6 760 4.741 99.167 
KAPPA 0.451 469 69.684 82.9 
CSI 0.401 469 69.684 82.9 

        
GLM RUN1 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.821 532.5 78.592 72.7 
TSS 0.512 488 81.753 69.333 
SR 0.532 813 25.287 94.8 
FAR 0.532 813 25.287 94.8 
KAPPA 0.417 659 61.351 84.733 
CSI 0.371 650 62.644 83.933 

        
ANN RUN1 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.829 451.5 80.747 72.667 
TSS 0.534 472 79.31 74 
SR 0.55 850 12.356 97.7 
FAR 0.55 850 12.356 97.7 
KAPPA 0.431 657 66.81 82.9 
CSI 0.388 608 70.402 81.2 

        
RF RUN1 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.841 123 84.052 72.933 
TSS 0.569 118 84.626 72.167 
SR 1 941.5 0.431 100 
FAR 1 941.5 0.431 100 
KAPPA 0.442 256 70.977 81.7 
CSI 0.398 217 75.287 79.367 

        
MARS RUN1 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.83 545.5 78.879 75.267 
TSS 0.54 568 75.718 78.2 



Table 1: Binary classification metrics representing evaluative performance for 
probability of natural wildfire occurrence from the composite dataset for the 

Southwest Region (Continued) 
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SR 0.643 870 2.73 99.633 
FAR 0.643 870 2.73 99.633 
KAPPA 0.442 637 68.966 82.6 
CSI 0.395 637 68.966 82.6 

        
MAXENT RUN2 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.845 364 80.316 75.833 
TSS 0.561 367 80.029 75.967 
SR 1 790 0.144 100 
FAR 1 790 0.144 100 
KAPPA 0.472 470 71.695 83.4 
CSI 0.418 462 72.557 83 

        
GLM RUN2 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.828 587.5 74.713 78.033 
TSS 0.527 586 75 77.7 
SR 0.692 884 2.73 99.7 
FAR 0.692 884 2.73 99.7 
KAPPA 0.449 677 61.638 86.6 
CSI 0.394 640 66.81 83.733 

        
ANN RUN2 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.832 521 75.862 78.3 
TSS 0.541 523 75.718 78.3 
SR 0.556 829 31.322 94.1 
FAR 0.556 829 31.322 94.1 
KAPPA 0.458 603 68.966 83.5 
CSI 0.405 603 68.966 83.5 

   
RF RUN2 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.845 95 86.925 69.1 
TSS 0.56 95 86.925 69.1 
SR 1 919 0.718 100 
FAR 1 919 0.718 100 
KAPPA 0.446 303 66.954 83.867 
CSI 0.397 256 71.839 81.2 

        
MARS RUN2 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.84 579.5 77.011 78.833 



Table 1: Binary classification metrics representing evaluative performance for 
probability of natural wildfire occurrence from the composite dataset for the 

Southwest Region (Continued) 
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TSS 0.557 581 76.868 78.867 
SR 1 874 0.144 100 
FAR 1 874 0.144 100 
KAPPA 0.461 651 69.684 83.567 
CSI 0.408 651 69.684 83.567 

        
MAXENT RUN3 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.833 336.5 78.161 75.7 
TSS 0.538 332 78.161 75.533 
SR 0.68 768 2.73 99.733 
FAR 0.68 768 2.73 99.733 
KAPPA 0.434 418 70.546 81.367 
CSI 0.391 418 70.546 81.367 

        
GLM RUN3 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.821 530.5 76.58 74.467 
TSS 0.509 425 83.621 67.033 
SR 0.647 886 1.58 99.8 
FAR 0.647 886 1.58 99.8 
KAPPA 0.413 660 58.908 85.6 
CSI 0.372 615 66.236 81.867 

   
ANN RUN3 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.828 506.5 74.569 78.233 
TSS 0.525 509 74.138 78.4 
SR 0.552 836 29.454 94.433 
FAR 0.552 836 29.454 94.433 
KAPPA 0.437 637 62.5 85.433 
CSI 0.387 581 66.092 83.533 

        
RF RUN3 PA1       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.835 73 83.908 69.533 
TSS 0.531 68 84.195 68.667 
SR 1 929 0.862 100 
FAR 1 929 0.862 100 
KAPPA 0.442 284 66.379 83.933 
CSI 0.393 254 68.678 82.5 

   
MARS RUN3 PA1       

Testing.data Cutoff Sensitivity Specificity 



Table 1: Binary classification metrics representing evaluative performance for 
probability of natural wildfire occurrence from the composite dataset for the 

Southwest Region (Continued) 
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ROC 0.835 446.5 84.052 69.4 
TSS 0.532 480 81.609 71.5 
SR 0.706 855 3.879 99.6 
FAR 0.706 855 3.879 99.6 
KAPPA 0.436 698 59.914 86.533 
CSI 0.383 576 71.121 80.033 

        
MAXENT RUN1 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.838 314.5 81.609 72 
TSS 0.535 320 80.891 72.6 
SR 1 890 0.144 100 
FAR 1 890 0.144 100 
KAPPA 0.446 500 64.368 85.1 
CSI 0.392 500 64.368 85.1 

   
GLM RUN1 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.825 557.5 73.707 76.9 
TSS 0.505 564 72.989 77.367 
SR 0.619 877 2.155 99.6 
FAR 0.619 877 2.155 99.6 
KAPPA 0.419 653 59.914 85.533 
CSI 0.371 564 72.989 77.367 

        
ANN RUN1 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.829 478.5 77.299 74.967 
TSS 0.521 454 79.598 72.433 
SR 0.566 830 28.879 94.8 
FAR 0.566 830 28.879 94.8 
KAPPA 0.426 673 60.489 85.8 
CSI 0.38 540 69.971 80.333 

        
RF RUN1 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.843 203 73.994 79.933 
TSS 0.539 204 73.994 79.933 
SR 1 930 0.431 100 
FAR 1 930 0.431 100 
KAPPA 0.464 282 68.534 84.433 
CSI 0.409 273 69.109 84 

        
MARS RUN1 PA2      



Table 1: Binary classification metrics representing evaluative performance for 
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Testing.data Cutoff Sensitivity Specificity 

ROC 0.835 508.5 78.017 74.1 
TSS 0.519 509 78.017 74.1 
SR 0.633 874 5.46 99.333 
FAR 0.633 874 5.46 99.333 
KAPPA 0.438 723 54.454 89.4 
CSI 0.389 607 68.678 82.2 

   
MAXENT RUN2 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.84 359.5 79.885 74.933 
TSS 0.547 360 79.885 74.933 
SR 1 895 0.287 100 
FAR 1 895 0.287 100 
KAPPA 0.444 490 67.385 83.5 
CSI 0.396 450 71.552 81.367 

        
GLM RUN2 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.822 561.5 76.006 75.2 
TSS 0.512 561 76.006 75.1 
SR 0.583 886 1.293 99.767 
FAR 0.583 886 1.293 99.767 
KAPPA 0.414 660 60.776 84.9 
CSI 0.368 651 61.925 84.1 

        
ANN RUN2 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.836 430.5 83.046 71.3 
TSS 0.542 434 82.615 71.567 
SR 0.75 863 1.293 99.933 
FAR 0.75 863 1.293 99.933 
KAPPA 0.447 665 69.397 82.667 
CSI 0.399 640 70.977 81.867 

        
RF RUN2 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.845 151 79.023 75.4 
TSS 0.543 99 83.621 70.7 
SR 1 931 0.287 100 
FAR 1 931 0.287 100 
KAPPA 0.46 346 63.506 86.333 
CSI 0.401 327 65.086 85.567 

      



Table 1: Binary classification metrics representing evaluative performance for 
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MARS RUN2 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.836 558.5 76.724 76.733 
TSS 0.534 559 76.724 76.733 
SR 0.692 880 2.73 99.633 
FAR 0.692 880 2.73 99.633 
KAPPA 0.444 630 69.971 82.267 
CSI 0.397 630 69.971 82.267 

        
MAXENT RUN3 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.853 343 82.902 74.733 
TSS 0.575 347 82.471 75 
SR 1 780 0.144 100 
FAR 1 780 0.144 100 
KAPPA 0.471 490 68.534 84.567 
CSI 0.413 490 68.534 84.567 

        
GLM RUN3 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.838 493.5 82.615 71.267 
TSS 0.538 492 82.615 71.133 
SR 0.625 876 1.724 99.767 
FAR 0.625 876 1.724 99.767 
KAPPA 0.442 644 63.218 85.367 
CSI 0.389 626 66.092 83.8 

        
ANN RUN3 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.848 574 75.862 80.333 
TSS 0.56 569 75.862 80.067 
SR 0.62 835 12.069 98.533 
FAR 0.62 835 12.069 98.533 
KAPPA 0.458 677 67.529 84.3 
CSI 0.409 577 75.575 80.367 

        
RF RUN3 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.848 159 78.161 77.1 
TSS 0.551 153 78.592 76.467 
SR 1 893.5 0.575 100 
FAR 1 893.5 0.575 100 
KAPPA 0.478 296 67.241 85.7 
CSI 0.417 296 67.241 85.7      



Table 1: Binary classification metrics representing evaluative performance for 
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MARS RUN3 PA2       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.85 535.5 80.029 76.433 
TSS 0.564 537 79.885 76.5 
SR 0.625 796 29.885 95.833 
FAR 0.625 796 29.885 95.833 
KAPPA 0.467 693 63.362 86.7 
CSI 0.41 632 70.833 83.067 

        
MAXENT RUN1 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.829 414.5 73.851 79.667 
TSS 0.532 415 73.851 79.667 
SR 0.564 662 33.477 93.933 
FAR 0.564 662 33.477 93.933 
KAPPA 0.452 518 64.799 85.2 
CSI 0.397 509 66.236 84.633 

   
GLM RUN1 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.818 551.5 76.006 75.067 
TSS 0.509 550 76.149 74.833 
SR 0.667 884 2.586 99.7 
FAR 0.667 884 2.586 99.7 
KAPPA 0.407 595 70.977 79.167 
CSI 0.375 595 70.977 79.167 

        
ANN RUN1 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.78 564.5 80.46 68.067 
TSS 0.484 561 80.46 67.9 
SR 0.375 707 59.195 77.133 
FAR 0.375 707 59. 195 77.133 
KAPPA 0.333 575 79.598 68.433 
CSI 0.338 568 80.316 68.1 

        
RF RUN1 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.839 127 81.897 72.867 
TSS 0.546 124 82.04 72.433 
SR 1 927 0.718 100 
FAR 1 927 0.718 100 
KAPPA 0.448 296 68.678 83.033 
CSI 0.398 296 68.678 83.033      



Table 1: Binary classification metrics representing evaluative performance for 
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MARS RUN1 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.828 554.5 76.006 77 
TSS 0.529 555 76.006 77 
SR 0.619 856 5.891 99.133 
FAR 0.619 856 5.891 99.133 
KAPPA 0.45 667 67.385 83.833 
CSI 0.398 667 67.385 83.833 

        
MAXENT RUN2 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.856 351.5 80.316 77.5 
TSS 0.576 347 80.316 77.267 
SR 0.671 719 14.511 98.4 
FAR 0.671 719 14.511 98.4 
KAPPA 0.484 508 68.247 85.7 
CSI 0.425 458 72.126 83.733 

        
GLM RUN2 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.843 495.5 80.316 73.667 
TSS 0.538 491 80.316 73.4 
SR 0.679 865 5.891 99.367 
FAR 0.679 865 5.891 99.367 
KAPPA 0.459 669 59.914 88.067 
CSI 0.398 607 68.822 83.067 

   
ANN RUN2 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.81 599.5 80.747 70.133 
TSS 0.508 597 80.747 70.033 
SR 0.45 715 54.598 83.5 
FAR 0.45 715 54.598 83.5 
KAPPA 0.373 684 74.569 74.7 
CSI 0.357 676 75.575 74.067 

        
RF RUN2 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.859 195 78.879 80.767 
TSS 0.594 171 80.46 78.9 
SR 1 912 0.431 100 
FAR 1 912 0.431 100 
KAPPA 0.486 294 67.529 85.967 
CSI 0.43 218 76.724 81.833      



Table 1: Binary classification metrics representing evaluative performance for 
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MARS RUN2 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.849 537.5 79.023 78.767 
TSS 0.572 531 79.167 78 
SR 0.8 861 2.443 99.867 
FAR 0.8 861 2.443 99.867 
KAPPA 0.473 632 68.247 84.933 
CSI 0.419 573 74.713 81.767 

        
MAXENT RUN3 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.83 381.5 75.144 78.033 
TSS 0.53 376 75.431 77.467 
SR 1 814 0.144 100 
FAR 1 814 0.144 100 
KAPPA 0.451 500 66.092 84.567 
CSI 0.398 500 66.092 84.567 

        
GLM RUN3 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.822 585.5 74.138 77.6 
TSS 0.514 588 73.851 77.767 
SR 0.714 886 2.299 99.767 
FAR 0.714 886 2.299 99.767 
KAPPA 0.434 669 61.494 85.667 
CSI 0.385 642 65.374 83.8 

   
ANN RUN3 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.824 479.5 78.879 73.133 
TSS 0.519 478 78.879 73 
SR 0.569 823 32.471 94.3 
FAR 0.569 823 32.471 94.3 
KAPPA 0.432 646 63.793 84.567 
CSI 0.385 550 70.977 80.4 

        
RF RUN3 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.835 179 77.155 76.933 
TSS 0.54 181 77.011 76.967 
SR 1 923 0.862 100 
FAR 1 923 0.862 100 
KAPPA 0.441 285 67.241 83.433 
CSI 0.392 285 67.241 83.433      



Table 1: Binary classification metrics representing evaluative performance for 
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4.5 WEST REGION 

 

BIOCLIM 

 The ROC values of the probability maps for natural wildfire occurring using 

BIOCLIM dataset varied from 0.749 by an ANN model run to 0.870 by a RF model run.   

The R values ranged from 0.18 to 0.62 for annual precipitation and from 0.35 to 0.95 for 

precipitation of driest quarter, indicating that annual precipitation and precipitation of 

driest quarter had moderate influence on the predictions of the probabilities for natural 

wildfire occurring and were retained for the composite model.   

 

LANDFIRE 

 LANDFIRE dataset did not perform as well as BIOCLIM dataset for predicting the 

probabilities of natural wildfire occurring in this region, with the lowest ROC value of 

0.649 by an ANN model run and the highest ROC value of 0.814 by a RF model run.  

MaxEnt and RF both consistently scored the ROC values of about 0.8.  When 

LANDFIRE dataset was used, canopy height and elevation indicated moderate 

  
MARS RUN3 PA3       

Testing.data Cutoff Sensitivity Specificity 
ROC 0.829 568.5 74.569 77.967 
TSS 0.523 565 74.713 77.633 
SR 0.627 843 4.885 99.267 
FAR 0.627 843 4.885 99.267 
KAPPA 0.446 686 64.943 84.833 
CSI 0.394 634 69.684 81.967 
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influence on the predictions of the probabilities for natural wildfire occurring, and were 

retained for the composite model.   

  

COMPOSITE DATASET 

 Compared to LANDFIRE and BIOCLIM datasets, the combination of the 

datasets, composite model, led to greater ROC values of the probability maps for 

natural wildfire occurring.  The lowest ROC value was 0.795 coming from a GLM 

model run, while the highest ROC value was 0.870 obtained by a RF model run.  The 

RF model runs tended to produce the higher ROC values than other model runs in this 

region.   

The R values for four variables greatly varied among different model runs, 

making it difficult to determine which variables were more strongly linked to natural 

wildfire occurring in this region. Therefore, the average R values across the model runs 

for each of five models were calculated and are shown in Table 2.  The results 

indicated that annual precipitation and elevation were more strongly linked to natural 

wildfire occurring in this study area than other two variables.  As found in South region, 

a further study concerning the role of moisture and elevation may be beneficial in this 

region.  The VIF values with a greatest value of 3.96 indicated that there was little 

collinearity. 

4.6 NORTHWEST REGION 

BIOCLIM 

BIOCLIM dataset led to the lowest ROC value of 0.671 by an ANN model run and the 

highest ROC value of 0.817 by a RF model run for the probability maps for natural 
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wildfire occurring.  Overall, it appeared that RF model runs produced the highest ROC 

scores, then MaxEnt and MARS.  GLM and ANN model runs tended to lead to the 

smallest ROC values. The R values indicated that precipitation of driest quarter and 

temperature seasonality had the strongest influence on the predictions of the 

probabilities for natural wildfire occurring with the greatest R values of 0.716 and  

   

 

Table 2. Average values of coefficients of correlation R across all the model runs for 

West Region  

 

 

 

 

 

 

 MAXENT GLM RF ANN MARS 

TOTAL ANNUAL PRECIPITATION 0.4392 0.2779 0.5410 0.5394 0.3446 

PRECIPITATION OF DRIEST 

MONTH/QUARTER 

0.2729 0.0766 0.4867 0.3016 0.1381 

CANOPY HEIGHT 0.0840 0.0390 0.3233 0.1967 0.0766 

ELEVATION 0.2743 0.3261 0.5894 0.5186 0.3407 
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0.851 respectively, for ANN model runs. Both precipitation of driest quarter and 

temperature seasonality were retained for the composite model.   

 

LANDFIRE 

 The ROC values of the probability maps for natural wildfire occurring from 

LANDFIRE dataset had a range of 0.711 by an ANN model run to 0.796 by a RF model 

run.  Overall, RF, MaxEnt and MARS models runs led similar ROC values that were 

larger than those from GLM and ANN model runs. The R values indicated that elevation 

was more important than the other variables to predict the probabilities of natural 

wildfire occurring.  Only the elevation was thus retained for the composite model.   

 

COMPOSITE DATASET 

Precipitation of driest quarter, temperature seasonality and elevation were 

involved in the composite dataset. In this dataset, ANN model runs produced the lowest 

ROC value of 0.625. GLM model runs consistently led to the ROC values of around 0.7. 

MaxEnt and MARS model runs resulted in the highest ROC values of around 0.75, 

while RF model runs consistently had the ROC values of around 0.80. 

 The R values varied greatly.  The average R values were calculated and 

are listed in Table 3. The overall mean R values were 0.49, 0.43 and 0.27 for elevation,  

temperature seasonality and precipitation of driest quarter respectively. Thus, elevation 

contributed the most to the variation of the predicted probabilities of natural wildfire 

occurring, then temperature seasonality and precipitation of driest quarter. Visually, 

elevation seemed to be the most significant driver because the spatial distributions of 
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the predicted probabilities for natural wildfire occurring using the composite dataset are 

like the spatial patterns of elevation raster. 

 

4.7 WEST NORTH CENTRAL REGION 

BIOCLIM 

 The values of VIF test for BIOCLIM dataset revealed that precipitation of driest 

quarter was a significantly correlated variable with annual precipitation and was 

removed.  There were no significant correlations among the remaining four variables.  

Overall ANN model runs led to the smallest ROC values of the predicted probability 

maps for natural wildfire occurring, with a range of 0.6 to 0.7.  Similar to the results in 

the previous regions, MARS, RF and MaxEnt model runs resulted in similar ROC values 

although MaxEnt had the highest ROC values.  Most of the R values from all the model 

runs for mean temperature of wettest quarter were larger than 0.8, indicating that it had 

strong influence on the predicted probabilities of natural wildfire occurring. Temperature 

seasonality indicated moderate influence. 

 

LANDFIRE 

 Most of the ROC values for the predicted probability maps of natural wildfire 

occurring were greater than 0.8.  There was one GLM model run that produced only a 

ROC value of 0.641.  The odd thing about the dataset was that the clear majority of R 

values indicated that none of the variables were significant and the results from only two 

GLM model runs showed that canopy height and vegetation type were significant, with 

the R values of 0.947 and 0.972 (Table 4).  



Table 3: Average R Values for Northwest Region 
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MAXENT GLM RF ANN MARS 

Precip Driest Qtr 0.219 0.192 0.530444 0.242 0.209111 

Temp seasonality 0.397333 0.235667 0.664222 0.43875 0.453333 

Elevation 0.398222 0.527 0.558111 0.707 0.279778 



Table 4: The coefficients of correlation between the predicted and observed 

probabilities for natural wildfire occurrence from LANDFIRE dataset for West North 

Central Region 
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MAXENT GLM RF ANN MARS 

asp_agg.tif 0.011 0.003 0.167 0.17 0.029 

cbd_agg.tif 0.136 0.003 0.385 0.013 0.075 

ch_agg.tif 0.026 0.208 0.217 0.531 0.044 

dem_agg.tif 0.058 0.036 0.146 0.183 0.114 

dist2010.tif 0.034 0.013 0.049 0.018 0.013 

evt_agg.tif 0.124 0.219 0.131 0.063 0.172 

slp.tif 0.063 0.063 0.22 0.052 0.067       

  
RUN2, PA1 

  

      

 
MAXENT GLM RF ANN MARS 

asp_agg.tif 0.022 0.009 0.157 0.188 0.036 

cbd_agg.tif 0.055 0.017 0.271 0.136 0.056 

ch_agg.tif 0.081 0.371 0.226 0.257 0.06 

dem_agg.tif 0.074 0.033 0.134 0.101 0.023 

dist2010.tif 0.047 0.017 0.066 0.028 0.022 

evt_agg.tif 0.129 0.18 0.111 0.06 0.176 

slp.tif 0.078 0.079 0.219 0.082 0.105 
 
 
       

  
RUN3, PA1 

  

      

 
MAXENT GLM RF ANN MARS 

asp_agg.tif 0.007 0.002 0.161 0.06 0.059 

cbd_agg.tif 0.168 0.008 0.311 0.267 0.072 

ch_agg.tif 0.017 0.196 0.214 0.213 0.041 

dem_agg.tif 0.076 0.04 0.156 0.06 0.027 

dist2010.tif 0.032 0.014 0.063 0.032 0.014 

evt_agg.tif 0.136 0.256 0.141 0.018 0.23 

slp.tif 0.073 0.103 0.244 0.155 0.087 
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RUN1, PA2 

  

      

 
MAXENT GLM RF ANN MARS 

asp_agg.tif 0.011 0 0.166 0.17 0.009 

cbd_agg.tif 0.16 0.007 0.373 0.009 
 

ch_agg.tif 0.016 0.237 0.22 0.313 0.238 

dem_agg.tif 0.085 0.04 0.173 0.224 0.052 

dist2010.tif 0.061 0.015 0.109 0.01 0.02 

evt_agg.tif 0.15 0.209 0.128 0.056 0.147 

slp.tif 0.086 0.121 0.244 0.125 0.108   
RUN2, PA2 

  

      

 
MAXENT GLM RF ANN MARS 

asp_agg.tif 0.004 0 0.113 0.057 0 

cbd_agg.tif 0.154 0.019 0.285 0.144 0.059 

ch_agg.tif 0.041 0.307 0.208 0.279 0.089 

dem_agg.tif 0.077 0.026 0.18 0.148 0.07 

dist2010.tif 0.044 0.014 0.081 0.012 0.018 

evt_agg.tif 0.129 0.243 0.154 0.084 0.175 

slp.tif 0.08 0.098 0.204 0.069 0.069       

  
RUN3, PA2 

  

      

 
MAXENT GLM RF ANN MARS 

asp_agg.tif 0.017 0 0.113 0.066 0.047 

cbd_agg.tif 0.149 0.018 0.29 0.003 0.032 

ch_agg.tif 0.036 0.305 0.262 0.336 0.116 

dem_agg.tif 0.081 0.027 0.166 0.096 0.045 

dist2010.tif 0.043 0.016 0.096 0.017 0.018 

evt_agg.tif 0.152 0.257 0.121 0.038 0.235 

slp.tif 0.071 0.152 0.198 0.106 0.137 
   

RUN1, PA3 
  

      

 
MAXENT GLM RF ANN MARS 

asp_agg.tif 0.008 0 0.139 0.113 0.027 

cbd_agg.tif 0.091 0 0.278 0.094 0.113 

ch_agg.tif 0.03 0.947 0.222 0.258 0.038 

dem_agg.tif 0.086 0 0.151 0.135 0.04 
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ch_agg.tif 0.002 0.39 0.235 0.179 0.103 

dem_agg.tif 0.048 0.035 0.194 0.088 0.045 

dist2010.tif 0.038 0.015 0.078 0.022 0.017 

evt_agg.tif 0.111 0.229 0.171 0.102 0.242 

slp.tif 0.119 0.163 0.242 0.123 0.157       

  
RUN3, PA3 

  

      

 
MAXENT GLM RF ANN MARS 

asp_agg.tif 0.007 0 0.145 0.214 0.029 

cbd_agg.tif 0.07 0 0.285 0.004 0 

ch_agg.tif 0.048 0.079 0.247 0.339 0.182 

dem_agg.tif 0.082 0 0.138 0.209 0.043 

dist2010.tif 0.019 0.001 0.047 0.013 0.017 

evt_agg.tif 0.146 0.972 0.136 0.053 0.25 

slp.tif 0.08 0.048 0.234 0.068 0.11 

 
 
 
 
 
 
 
 
 
 
 
 
 

dist2010.tif 0.021 0.034 0.067 0.021 0.014 

evt_agg.tif 0.159 0.326 0.133 0.044 0.217 

slp.tif 0.086 0.544 0.236 
 
 

0.06 0.084 

  
RUN2, PA3 

  

      

 
MAXENT GLM RF ANN MARS 

asp_agg.tif 0.004 0 0.147 0.113 0.044 

cbd_agg.tif 0.217 0.029 0.29 0.13 0.033 
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COMPOSITE DATASET 

 For this region, two composite datasets were built.  The first dataset consisted 

of all the LANDFIRE variables plus two BIOCLIM variables selected.  The second 

dataset consisted of two significant variables in LANDFIRE dataset and two variables 

selected from BIOCLIM dataset. But, both datasets led to similar probability maps of 

natural wildfire occurring and ROC values of about 0.8. The first dataset had slight 

higher ROC values than the second dataset. The obtained R values indicated that these 

variables had little influence on the probabilities of natural wildfire occurring. This might 

be caused by the fact that Montana is in the region and in which there was extremely 

higher frequency of fires than the other states within this region.   
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CHAPTER 4 

CONCLUSIONS AND DISCUSSIONS 

5.1 Conclusions and Discussions 

In this thesis, one of the research questions was to verify if MaxEnt model can be 

successfully applied to spatially predict natural wildfire occurring in each of the NOAA 

Climate Regions in the U.S. The results of this study showed that in most of the regions 

MaxEnt model led to most accurate probability maps of natural wildfire occurring and in 

other regions this model resulted in the predictions of natural wildfire occurring close to 

those from the most accurate models.   

The second research question was how different five models including MaxEnt, 

GLM, ANN, RF, and MARS, are for predicting the probabilities of natural wildfire 

occurring. The results of this study has shown that the probabilities of natural wildfire 

occurrence produced by GLM and MaxEnt models spatially greatly varied and their 

spatial patterns were similar only in some of the regions.  The similarity may be 

because MaxEnt is equivalent to GLM model with a logistical regression and Poisson 

distribution. More often, there were significant differences of probability maps between 

GLMs and MaxEnt.  In the South Region, for example, the probability maps from 

MaxEnt looked dissimilar from those by GLM model with logistical regression and 

Poisson distribution.   

In some of the regions, although the algorithms and datasets used differed, the 

obtained probability maps of natural wildfire occurrence looked very similar to each 

other. In the South region, for example, ANN, RF, MaxEnt, MARS, and GLM with 
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logistical regression generated very similar probability maps. This might be partly 

because the vegetation variables in LANDFIRE dataset and climate variables in 

BIOCLIM dataset were correlated with each other and partly because the relationships 

of natural wildfire occurrence with the predictor variables were relatively stable.  

 The last research question was what the main drivers (predictor variables) of 

natural wildfire occurring are in each of the NOAA Climate Regions. In the regions 

located in the western portions of the United States, the predicted probabilities of 

natural wildfire occurrence seemed to be more influenced by moisture relevant 

variables.  Previous studies have also indicated that slight increases in moisture could 

lead to the increase of natural wildfire occurrence (Batllori 2013). In the West, South 

West, and South regions, mean temperature of driest quarter was a most significant 

driver that affects the probabilities of natural wildfire occurrence, suggesting that 

drought is the most important consideration for these areas. The roles of precipitation 

and temperature on natural wildfire occurrence need to be studied in more detail.  

Mean temperature of wettest quarter and temperature seasonality significantly 

affected the probability of natural wildfire occurrence in the central and eastern portions 

of the United States.  This suggests that in the areas natural wildfire occurrence was 

more influenced by extreme temperature than other variables.  Global warming due to 

anthropogenic activities is leading to the increase of temperature and its variation, thus, 

taking into account the increase of temperature for modeling natural wildfire occurrence 

in the future studies would be beneficial for the prediction of natural wildfire occurring. 

 The objective of this study was to demonstrate a relatively simple method to 

develop the probability maps of natural wildfire occurring that can be used for land use 
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planning based on MaxEnt and other niche modeling techniques.  To accomplish this, 

this study introduced niche modeling, provided specific instructions on how to use the 

MaxEnt software, and sample scripts for using several types of niche modeling 

techniques through the BIOMOD2 package in R software package.  These results 

have shown that niche modeling is an appropriate and cost efficient alternative to 

having a dedicated wildfire specialist.    

 This study was unique and conducted at a broad scale, the continental United 

States. However, the methods used are also appropriate at finer scales.  More detailed 

analysis should be done for the high risk regions. In this study, only the variables that 

are involved in LANDFIRE and BIOCLIM datasets were considered. In the future 

studies, other variables such as soil moisture should be added. In addition, in this study 

only naturally occurring wildfires were considered. However, most of wildfires are 

caused by human activities. Thus, in the future studies human-induced wildfires such 

campfires, cigarette-induced fires, and other recreational activity caused fires should be 

explored. 

 One of the surprising findings in this study was the results of the Central, 

Southwest, and Northwest regions. In each of the regions, the spatial patterns of the 

obtained probability maps looked similar to those of one BIOCLIM variable.  For the 

Central Region, for example, many probability maps were similar to the map of mean 

temperature of wettest quarter as a continuous variable in terms of spatial patterns, that 

is, distinct borders existed.  The categorization of this continuous variable mitigated the 

distinct borders. A future study quantifying the difference between categorical and 

continual variables in the Southwest, Northwest, and Central regions may be beneficial. 
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5.2 Limitations and delimitations 

Like many GIS studies, this study suffered from the boundary problem.  Also, 

the demarcation of the climate regions may not be the most appropriate way to divide 

the natural landscapes.  This study did not describe the interactions between the 

variables.  It also did not make any temporal projections, though it provided the 

groundwork for a future study of climate drivers and wildfire distributions.  The data 

suffered from the modifiable area unit problem that is common to almost any GIS study.  

There may also be commission and omission errors in the wildfire occurrence data and 

the presences of the ignition points cannot be verified.  As the cause of some fires was 

not known to be human or natural, the fires with unknown causes were not considered.   

LANDFIRE data were aggregated to match the spatial resolution of BIOCLIM data, 

which might have cause uncertainties that have not been studied. 
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