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 Microbial actions on coal have long been identified as a source of methane in coalbeds. 

Andrew Scott (1995) was the first to propose imitating the natural process of biogenic 

gasification, possibly leading to recharging coalbed methane (CBM) reservoirs, or setting up 

natural gas reservoirs in non-producing coalbeds. This study was aimed at identifying the 

changes in coal properties that affect gas deliverability in coal-gas reservoirs, when treated with 

microbial consortia to generate/enhance gas production. The experimental work tested the 

sorption and diffusion properties for the coal treated and, more importantly, the variation in the 

relevant parameters with continued bio-conversion since these are the first two phenomena in 

CBM production. 

 During the first phase, single component sorption-diffusion experiments were carried out 

using pure methane and CO2 on virgin/baseline coals, retrieved from the Illinois basin. Coals 

were then treated with nutrient amended microbial consortia for different periods. Gas production 

was monitored at the end of thirty and sixty days of treatment, after which, sorption-diffusion 

experiments were repeated on treated coals, thus establishing a trend over the sixty-day period. 

The sorption data was characterized using Langmuir pressure and volume constants, obtained by 

fitting it over the Langmuir isotherm. The diffusion coefficient, D, was estimated by establishing 
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the variation trend as a function of pore pressure. The pressure parameter was considered critical 

since, with continued production of methane, the produced gas diffuses into the coal matrix, 

where it gets adsorbed with increasing pressure. During production, the pressure decreases and 

the process is reversed, gas diffusing out of the coal matrix and arriving at the cleat system.  

 The results indicated an increase in the sorption capacity of coal as a result of 

bioconversion. This was attributed to increased pore surface areas as a result of microbial 

actions. However, significant hysteresis was observed during desorption of methane and was 

attributed to preferential desorption from sorption sites in the pathways leading to pore cavities. 

This is corroborated by the increased rates of diffusion, especially for methane, which exhibited 

rates higher than that for CO2. This contradicted the results for untreated/baseline coal, which 

were in agreement with previous studies. Effort was made to explain this anomaly by the non-

monotonic dependence of effective diffusion coefficient on the size of the diffusing particles, 

where in coalbed environments, CO2 has smaller kinetic diameter than methane. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introductory Statement 

Underground coal mining in the United States utilizes two methods of operation, 

longwall and room and pillar. Recovery by the former method is typically ~70% and a mere 50% 

by the latter (Spearing, 2014). According to EIA (2012), the two mining methods together 

accounted for over 430 million short tons of coal mined in the US in 2012. As cited by Ruppert 

et al. (2002), there are over 60 coalbeds and zones in major coal producing regions in the United 

States, holding more than 1.6 trillion short tons of coal, with only one-tenth of it recoverable 

economically. Hence, the coal left behind in the mines and unmineable coal present an 

opportunity for application of unconventional technologies to economically extract and utilize 

the energy from this resource. Furthermore, as cited by EIA (2012), 1.6 trillion cubic feet (TCF) 

of natural gas was produced from virgin coal in the US in 2012. From two of the US coal basins, 

coalbed methane (CBM) has been ongoing for more than three decades, with large areas nearing 

complete depletion and abandonment. These areas present yet another potential source for 

extraction of energy from coal, but only if appropriate technologies were to become available. 

The role of microbes in producing methane in coal seams from coal as the carbon source 

has long been identified. Taking cue from the widespread application of microbes in the oil 

industry to increase the overall recovery, and the impact that naturally occurring microbes have 

had in producing methane in coal, Scott (1995) introduced the concept of microbially enhanced 

coalbed methane (MECoM). It aimed at replicating the natural process of secondary biogenic 

gasification by treating coal with microbes along with suitable nutrient amendments and trace 

elements. Studies conducted by Strąpoć (2007) and Opara (2012) provided substantial evidence 
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of the potential of generating methane by treating coal fines with bacterial solutions. Jones et al. 

(2010) showed that coal samples from Zavala County in Texas, which had no biogenic methane 

generation in situ, when treated with bacterial solutions, resulted in substantial methane 

generation, rates in excess of 95 μmoles per gram of coal. 

The storage and transport of methane in coal are different from typical natural gas 

reservoirs. Methane in coal is primarily stored as adsorbed gas on to the coal micropores, and the 

amount stored depends on coal properties like rank, maceral content, moisture, ash content, 

temperature and pressure of the reservoir. Basically, migration of methane in a CBM reservoir 

starts in the matrix of coal (micropores) by diffusion, controlled by the diffusion coefficient and 

gas concentration gradient. After diffusing through the matrix, gas reaches the naturally 

occurring fractures (cleats) present in coal, where the flow becomes viscous in nature, and is 

controlled by the permeability of coal. Production of gas from CBM reservoirs is therefore, 

determined by two properties of coal, diffusion and permeability. The permeability, in turn, is 

characterized by the cleats present in coal. The rate of gas diffusion in coal, on the other hand, 

depends on the physical properties of coal matrix structure and cleat spacing since gas migrates 

by diffusion in the coal matrix prior to reaching the cleat system. 

1.2 Problem Statement 

Since Andrew Scott’s paper conceptualizing MECoM, there have been a number of 

studies characterizing local microbial communities across different coal types, and studying the 

underlying methanogenic pathways that results in the production of methane. Given that the 

source of this natural gas is coal, there have been no documented studies characterizing the 

change in the properties of coal as a result of continued bio-conversion although consumption of 

coal in the process is believed to impact these properties. This study focuses on the changes in 
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sorption-diffusion characteristics due to bioconversion, which in CBM environments, along with 

permeability, characterize the viability of the process in terms of techno-economic feasibility. 

1.3 Structure of Thesis 

The overall objective of this thesis was to study the changes in the sorption/diffusion 

properties of coal as a result of methanogenesis. The concepts involving transport mechanism 

and reservoir properties have been discussed in detail in Chapter 2, including the basic theories 

involved. Chapter 2 also details the previous studies and relevant literature to provide the 

appropriate background and rationale for the experimental work conducted in this study. 

Chapter 3 presents the experimental design and work carried out to determine the 

sorption capacity of coal, and changes in the gas content during fast and slow diffusion periods 

for various reservoir pressures representative of the actual pressure changes during CBM 

production. The experimental principles, design, and procedure are discussed in this Chapter in 

detail. 

Chapter 4 presents a detailed analysis of experimental results of the study. This chapter 

also lays out different scientific theories validating the observed results. Some correlation with 

past work has also been carried out, proving the applicability of the Klinkenberg diffusion model 

under certain conditions. Finally, conclusions based on the experimental results and simulation, 

along with several recommendations for future work, are presented in Chapter 5. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

2.1 Formation of Coal and its Basic Characteristics 

The precursor of coal is peat, formed from the burial of swampy plants over millions of 

years. Over time, due to the action of high temperatures and pressures, peat undergoes 

progressive coalification to form different types of coal, classified in order of increasing ranks as 

lignite, sub-bituminous, bituminous, anthracite and graphite, higher rank representing greater 

degree of coalification. The carbon content of coal increases with rank. Peat has a carbon content 

of ~ 55 % by weight, whereas anthracite presents itself with more than 91.5 % carbon. A 

negative correlation exists for percentages of hydrogen and oxygen with increasing ranks. 

Hydrogen decreases from 10 % to 3.75 % and oxygen from 35 to less than 2.5 % between peat 

and anthracite respectively (Ward, 1984). Figure 2.1 presents a pictorial representation of the 

gradual process of coalification, and the associated bio-geochemical changes that occur. 

The constituents of coal are divided into two primary fractions: the macerals, which are 

the organic, fossilized plant remains; and the mineral matter, which is the inorganic fraction 

made up of a variety of minerals. In addition to the organic and inorganic fraction, the third part, 

accounting for the remaining fraction of coal is the moisture content. 

The macerals are further classified into three distinct groups, namely the vitrinite, exinite 

and inertinite (Thomas, 2002). Vitrinite, due to its origin in the woody plant materials, mainly 

lignin, is also termed as huminite. It is the most prevalent group, accounting for ~80% of the 

macerals in coal. Exinite is derived from lipids and waxy plant substances, and is alternatively 
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termed as liptininte. Intertinite originates from the oxidized plant materials, like char, attributed 

to wood fires that occurred during dry periods, during the formation of peat (Lin, 2010). 

 The incombustible fraction of coal constitutes the inorganic minerals. The major minerals 

in coal include clay, carbonates, iron disulphides, oxides, hydroxides, sulphides, etc (Thomas, 

2002). The origin of these minerals are either detriral, i.e., rock particles originating from pre-

existing rock through process of weathering and erosion, and being transported through 

Figure 2.1: The geochemical-biochemical transformation of plant substances as 

occurring over coalification stages, re-constructed after Moore (2012). 

Peatification 

Dehydration 

Bituminization 

Debituminisation 

Graphitization 

a) Plant materials in peat are humified and macerated; 

b) Compaction of material begins; 

c) Primary biogenic methane develops in along with accumulation of peat. 

a) Significant loss of water with orders of magnitude loss of porosity; 

b) Organic material enters lignite through sub-bituminous rank range; 

c) Holding capacity of methane increases allowing storage of secondary 

biogenic gas; 

d) Continued development of biogenic gas provided conditions are right. 

a) Mobilization of hydrocarbons; 

b) Initiation of generation of thermogenic methane, occurring any time and 

throughout the subbituminous A to high volatile A bituminous stages; 

c) Maximum gas holding capacity increases substantially, although 

mobilization of bitumens may clog pores, decreasing capacity. 

a) Maximum generation of thermogenic methane and other oil 

substances; 

b) Exits the oil window; 

c) Moisture value reach the minimum. 

a) The organic material is composed entirely of Carbon; 

b) Capacity to hold gas continues to increase; 

c) Methane production can continue into the anthracite rank range, but by 

the time organic matter is graphitized methane is virtually zero and 

remnants of gas have been driven off; 

d) Moisture increases slightly as a result of increase in porosity. 
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sedimentary processes into depositional systems (Marshak, 2012); or authigenic, i.e., the rock 

particles are found at the place of its formation or origin. The minerals are formed during 

sedimentation by precipitation or recrystallization, and were induced into coal either during the 

deposition of peat or during later coalification process (Simmons, 1897). 

The third component of coal is its moisture content. In situ coal is typically saturated with 

water to different extents. Apart from groundwater, there is moisture held within coal itself, 

known as the inherent moisture. The moisture in coal occurs in four different forms: surface 

moisture, which is held on the surface of the coal particles or macerals; hydroscopic moisture, 

that is held by the capillary force within the microfractures of coal; decompositional moisture, 

which is incorporated in the decomposed organic compounds of coal; and mineral moisture 

comprised part of the crystal structure of hydrous silicates, such as clays (Ward, 1984). 

In essence, coal is an aggregate of heterogeneous substances, composed of organic and 

inorganic materials. The complexity of the mixture of the organic molecules in coal is well 

represented in figure 2.2, which represents the chemical structure of bituminous coal. The 

molecular formula for the same is C661H561N4O74S6 and the molecular weight is 10,023 grams 

per mole (Lin, 2010). 

2.2 Coalbed Methane 

Gas that is retained in deep coals is termed as coalbed methane. As the name suggests, 

coalbed gas predominantly contains methane, along with carbon dioxide, carbon monoxide, 

nitrogen and ethane. The gases are by-products of the physical and chemical reactions that occur 

during the process of coalification from peat to anthracite (Van Krevelen, 1993). Different from 

conventional natural gas in sandstone reservoirs, where gas is stored mainly as free gas in the 
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pore spaces, gas in coalbed exists primarily in adsorbed phase on the internal surface area of the 

coal (Gray, 1987). Gas in coal is kept in place by the pressure of water that the coal is saturated 

with. Gas production from coal via wells is facilitated by gradual reduction of water pressure by 

pumping out of formation water, resulting in desorption of methane from the coal surface, its 

migration towards the wellbore and flow to the surface.  All coals have methane, and the amount 

of methane generated over time exceeds the storage capacity of coalbed reservoirs (Tissot and 

Welte, 1984). The gas generated in addition to the storage capacity of the coalbed is lost to the 

surface through fractures, fissures, or charged to the adjacent carbonate/sandstone formations 

through permeable connections (Rogers, 1994). Thus, it is important to provide the pertinent 

background about the mechanisms of formation and storage of gas, and its flow in coal 

reservoirs. This includes not only the formation of coalbed gases, but the structure of coal, 

storage of gases in coal, sorption isotherms and diffusion of gas in coal, the last two phenomena 

being the primary thrust areas of this study. 

Figure 2.2: Molecular structure of bituminous coal, Shinn 1984. 
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2.3 Origin of Coalbed Gases 

Presence of methane in coal has come a long way from initially being a hazardous nuance 

in mining operations to a commercially viable source of natural gas. The origin of methane in 

coal seams can be distinctly related to two processes: thermogenic and biogenic. Thermocatalyic 

conversion of coal is initiated at a temperature greater than 70oC. At such temperatures, when 

coal attains a rank of ~0.6% vitrinite reflectance (high volatile bituminous), and with continued 

application of heat and overlying pressure over time, thermogenic gases like carbon dioxide 

(CO2), water (H2O), methane (CH4), ethane (C2H6), hydrogen sulphide (H2S) and other higher 

hydrocarbons devolatilize (Stach et al., 1982; Faiz and Hendry, 2006; Moore, 2012). Carbon 

dioxide is generated in large quantities by the thermal decarboxylation or devolatization of coal 

prior to the main stage of the thermogenic methane production (Karweil, 1969; Hunt, 1979; 

Tissot and Welte, 1984). However, carbon dioxide is highly soluble in water and very reactive. 

There are also other sources of carbon dioxide, such as, (1) thermal destruction of carbonates 

(Hunt, 1979), (2) carbonate dissolution linked to silicate hydrolysis (Smith and Ehrenberg, 

1989), (3) migration from magma chambers or crust (Smith et al., 1985; Kotarba, 1988), and (4) 

bacterial degradation of organic matter. 

Biogenic methane, as the name suggests, has its origin in the biosphere of the subsurface, 

specifically consisting of various forms of microbes. Primary biogenic methane and CO2 are 

formed microbially during the initial stages of peat formation at shallow depths. Biogenic action 

from microbes is believed to have generated in excess of 6% CO2 in the northwest San Juan 

basin (Ayers, 1991). Due to the large porosity and lower burial rates, primary biogenic methane 

is volatilized over time, or dissolved in water and expelled during compaction (Rice, 1993). Late 

stage biogenic methane, also known as secondary biogenic methane, is formed post-compaction 



9 
 

 
 

in all ranks of coal due to combination of active groundwater flow recharging the underground 

systems with suitable microbes, along with uplift of the basin helping in the meteoric recharge 

(Rice, 1993; Faiz et al., 2006). 

2.4 Biogenic Methane 

The final product of degradation of organic material under anoxic conditions in the 

absence of inorganic oxidants, such as, sulphate, nitrate and ferric ions is biogenic methane 

(Conrad, 2005). During formation of coal, primary biogenic gas is microbially produced during 

the early coalification process at shallow depths. However, due to low burial rates, the primary 

biogenic gas is expelled out of the system (Faiz and Hendry, 2006). Although the produced 

biogenic gases are lost in due course, isotopic analysis of coalbed methane invariably points 

towards a biogenic origin of methane in a number of different settings. The isotopic signature of 

Carbon (C), typically used to identify the source of methane, is indicated by the  notation, 

relative to a Pee Dee Belemnite (PDB) standard (Craig, 1953).  Biogenic methane generation 

occurs at low temperatures, and is thus associated with lower energies than for thermogenic gas 

generation. The microbes, with lower energy available to them, preferentially breaks down the 

lighter isotopes of C, i.e., the 12C having lower bond energies. Thus, biogenically derived 

methane is isotopically light. The 13C value for biogenic methane ranges between -40 to -110% 

PDB, depending on the isotopic composition of the original substrate, partial pressure of 

hydrogen in the system, methanogenic pathways, and the species of microbes involved (Games 

and Hayes, 1978; Jenden and Kaplan, 1986; Valentine et al., 2004; Conrad, 2005). Some studies 

have suggested inaccurate estimation of the origin of methane for 13C values between -40 and -

55%. In such cases, the 13C values are analyzed in conjunction with Deuterium (isotope of 
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Hydrogen) value, D for methane and gas dryness index (Whiticar, 1996). Figure 2.3 presents 

the isotopic analysis of methane from four basins in US and Australia. 

Presence of biogenic methane in a number of bituminous coal basins in Australia, 

Germany, Poland and US indicates a second source, in addition to the primary biogenic methane. 

Methane from this source is called the secondary biogenic methane. Methane present in high 

rank coals is formed in association with meteoric water flow into permeable coals after burial, 

coalification and subsequent uplift and erosion along basin margins (Scott, 1994). This mineral 

water influx is believed to recharge the native microbial community in the coal seams which, in 

turn, produce gases. 

Figure 2.3: Isotopic analysis of CBM from different basins in US and Australia, Faiz and 

Hendry, 2006. 
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2.5 Microbially Enhanced Coalbed Methane 

Microbially enhanced coalbed methane, or MECoM, as it is known, imitates the natural 

process of the formation of secondary biogenic gas (Scott, 1994).  Scott suggested introduction 

of nutrients, trace elements and/or anaerobic bacterial consortia into coalbed methane wells to 

stimulate CBM production. Anaerobic bacterial consortia could be collected from produced 

formation waters or whole core samples. Once collected, these bacteria can be grown in 

laboratory cultures to evaluate and determine factors enhancing, and/or limiting their ability to 

convert coal to methane. 

There have been a number of studies since 1994, aimed at producing methane from bio-

treated coal. It was identified that a group of hydrolytic bacteria initially acts on substrates, i.e., 

coal, and the products of hydrolysis result in the formation of smaller aliphatic and aromatic 

compounds. These products of hydrolysis are further broken down into simpler compounds by 

fermentative bacteria or, different forms of syntrophic acetogens, bacteria that generates acetate 

as a product of anaerobic respiration, depending on localized chemical environment. The 

products of these syntrophic acetogens and fermentative bacteria provide the substrate for the 

anaerobic archaea, called methanogens, which produce methane. Figure 2.4 illustrates the 

process of conversion of coal to methane. The different methanogenic pathways are discussed in 

Section 2.5.1. More recent studies were aimed at producing methane from coal. Strapoc et al. 

(2007) and Jones et al. (2010) reported methane generation rates between 10 to 8000 standard 

cubic feet (scf) per ton of coal per year. Jones et al used coal from Zavala County in Texas. The 

coal was endemic and had no biogenic gas in situ. Some studies also used patented methods in 

which the nutrient amendments and other materials added to the test system were themselves a 

significant source of methane. Studies by Opara et al. (2012) had methane generation rates 
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similar to the studies by Strapoc and Jones, with nearly zero to a small percentage (1-3%) of the 

gases generated from direct conversion of different nutrients. 

2.5.1 Methanogenic Pathways: 

There are two main methanogenic pathways: the conversion of CO2 and H2, formate or 

alcohols; and conversion of methylated compounds or acetate to methane (Worm et al, 2010). 

The first methanogenic pathway accounts for ~one third of the methane. The methane produced 

from freshwaters and bioreactors uses the hydrogen or formate as the substrate. The substrate 

also acts as the electron donor. The CO2 here acts as the carbon source and the electron acceptor. 

Most methanogens can use hydrogen as the electron donor. The second methanogenic pathway 

Figure 2.4: Anaerobic degradation of organic matter and the formation of biogenic 

methane, reconstructed from Formolo (2010). 
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uses the acetate or methylated compounds as both the electron donor and the carbon source 

(Vandecasteele, 2008). 

Conversion of CO2 is the only methanogenic pathway having a net negative electron 

flow. Moreover, only a handful of electron donors, including hydrogen, formate and alcohols, 

have been identified as suitable for this pathway. 

      (1) 

         (2) 

      (3) 

The lack of electrons and availability of electron donors may be the reason for limited 

production of methane via this pathway. Methylated compounds, on the other hand, can be 

simultaneously oxidized to CO2, releasing six electrons, and reduced to methane through the 

reaction with coenzyme B, accepting two electrons. Lack of electron acceptors could be the 

limiting factor in this case. Finally, during the acetoclastic pathway, two electrons are donated 

through the conversion of the carboxylic group into CO2, while a series of reactions between the 

methyl group with coenzymes B, M and tetrahydrosarcinapterin accepts two electrons, resulting 

in net zero free electrons (Ferry, 2011). Various methanogenic reactions are shown in Table 2.1, 

indicating the importance of electron donors and acceptors in the process. 
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Table 2.1:  Most important methanogenic reactions ordered from the most to least 

thermodynamically favored as defined by free energy change (Zinder 1993, Thauer, 1998). 

Electron 

Donor 

Carbon 

Source 

Reaction 

G 

(kJ/mol CH4) 

Formate CO2 4 HCO2
- + H2 + H2O  3HCO3

- -145 

Hydrogen CO2 4H2 + HCO3
- + H+  CH4 + H2O -135 

Alcohol CO2 

2CH3CH2OH + HCO3
-  2CH3COO- + 

H+ + CH4 + H2O 

-116 

Methanol Methanol 4CH3OH  3CH4 + HCO3
- + H2O + H+

 -105 

Methylamine Methylamine 

4(CH3)3NH+ + 9H2O  9CH4 + 3HCO3
- 

+ 4NH4
- + 3H+ 

-76 

Acetate Acetate CH3COO- + H2O  CH4 + HCO3
- -31 
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2.6 Physical Structure of Coal 

Although coal is visibly heterogeneous with varied properties, as discussed in section 2.1, 

there are several regular and repeating features which have definable physical structure. One 

such feature is the pores within the organic matrix. These pores are of varying sizes and shapes, 

1- 10000 nm in size, and affect the electrical, strength, density and molecular transport properties 

of coal (Meyers, 1982). The porosity of coal is generally characterized as a dual-porosity 

structure: micropore and macropore systems, as suggested by Warren and Root (1963). 

Micropores are defined as pores less than 2 nm in size. These occur in coal as a part of the coal 

matrix. Figure 2.5 presents a scanning electron micrograph representing the pores in coal matrix. 

More than 95% of the gas is in coalbeds is stored in adsorbed form on the surface of these pores 

(Gray, 1987). The average micropore diameter has been estimated to be in the range of 1 

nanometer.  The development of micropores is greatly influenced by the geochemical changes 

that occur in coal. The complex chemistry of coal can be divided into the aliphatic and aromatic 

Figure 2.5: Microscopic coal pore structure (Harpalani, 2002). 
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components. There is increase in aromaticity with increasing coal rank. Coal attains a more 

aromatic chemical makeup from about 40% to over 90% in course of transformation from 

subbituminous to anthracite. The aromatic clusters and their realignment are instrumental in 

establishing the micropore network, and in releasing volatiles (Whitehurst, 1978). 

The macropore system consists of naturally occurring network of closely spaced 

fractures, greater than 50 nm in width, surrounding the matrix. This is called the cleat system and 

provides the flow path for gas and water in coal. The spacing of cleats ranges from a fraction of 

an inch to several inches (Rogers, 1994). A fully fractured coal may have the following cleats: 

face cleats, butt cleats, tertiary third order cleats, fourth order cleats, and joints (Close and 

Mavor, 1991). The face cleats are considered the primary cleat structure. They are relatively 

longer and have wider aperture openings compared to the secondary butt cleats, which are 

Figure 2.6: Plan view of a coal core with highlighted (visible) cleat structure.  
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perpendicular to them. The third and fourth order cleats, if present, develop after the face and 

butt cleats, and terminate at the face and butt cleats. These higher order cleats may be 

characterized as being 45o to their primary and secondary cleats. 

Joints are the natural fractures that generally run parallel to the face cleats. The joint faces 

show no slippage relative to each other. The joints generally traverse the coal vertically, crossing 

interbedded inorganic layers and crossing the interface of the bounding rock (Ting, 1977). 

Figure 2.6 shows the plan view of a core of coal cut perpendicular to the direction of the 

bedding plane with face and butt cleats highlighted. A simplified structure of coal can be 

represented by a cubic model, as shown in figure 2.7. However, since the horizontal fractures do 

not transmit any fluids, the ‘bundle of matchsticks’ model, as illustrated in figure 2.8, is 

considered to be a more appropriate model when studying flow in coal.  

Figure 2.7: Cubic model of coal, (Kumar, 2007) 
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2.7 Storage of Gases in Coal 

 Coalbed gases are primarily stored in the coals: (a) as gas dissolved in water within the 

reservoir, (b) as free gas within the pores or fractures, (c) as adsorbed molecules within the 

molecular structure of coal, and (d) as adsorbed molecules on the surface of the micropores 

(Rightmire et al., 1984). Gases dissolved in water follow the Henry’s law, which describes the 

solubility of gas in water under pressure. Free gas within pores and fractures are the gas 

molecules which can easily move in the cleat system. This component of gas can be evaluated in 

the same way as traditional natural gas reservoir engineering, by applying the gas equation-of-

state. Gases trapped within the molecular structure, are generally adsorbed to the surface of the 

coal. These gases are generated during the early coalification process, before the capacity of coal 

to retain gases threshold is reached. 

In spite of the different storage sites of coalbed gases, as discussed above, ~95 % of gases 

stored in the coal seams is adsorbed to the internal pore surface area of the coal. These gases 

Figure 2.8: Bundle of matchsticks geometry showing flow through vertical fractures, 

(Kumar, 2007). 
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exist as a monomolecular layer on the internal surface area of coal (Harpalani and McPherson, 

1986). The quantity of gases that can be stored can be very large since the internal surface area 

of coal can be very large, and the gas molecules are packed tightly in the sorbed layer. 

 The sorptive capacity of coal for methane and CO2 is directly proportional to the pore 

pressure and rank, and is inversely proportional to temperature. The relationship between 

pressure and volume of methane adsorbed on the solid surface at a specific temperature, and 

moisture content is best described by an isotherm, and is unique for every specific coal type. The 

various techniques to determine gas storage (sorption) characteristics is discussed in detail in a 

later section. 

2.8 Gas Transport in Coalbed Reservoirs 

Gas transport in coal is commonly understood as three hydrodynamic mechanisms, taking 

the dual porosity nature of coal into account (King, 1985): (1) desorption of gas from the internal 

coal surface, (2) diffusion through the coal matrix bounded by the cleat (Fick’s law) (King et al., 

1986), and (3) laminar flow through macroscopic cleat (Darcy’s law). The migration process of 

methane in the coal seam is shown in the following figure 2.9. 

Figure 2.9: Process of migration of gas in dual porosity coal. 

(Kumar, 2007) 
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2.8.1 Desorption 

Desorption is the process by which methane molecules detach from the micropore 

surfaces of the coal matrix, which is followed by its diffusion through the pore structure and 

entry into the cleat system, where they exist and flow as free gas. When the reservoir pressure is 

reduced, either by dewatering or by gas production, the gas retaining capacity of coal for 

methane decreases and the process of desorption is initiated. Under ideal conditions, sorption of 

methane is considered reversible, that is, desorption follows the adsorption plot, as described by 

the Langmuir isotherm. Hence, the process of desorption can be explained by adsorption 

characteristics for a type of coal (Kumar, 2007). 

2.8.2 Diffusion 

Diffusion is the process where flow occurs as a result of random molecular motion from a 

location of high concentration to a location of lower concentration (Kolesar et al., 1990a, 1990b; 

Smith and Williams, 1984; and Crank, 1975). Diffusion in coal is a combination of Knudsen, 

bulk, and surface diffusions, depending on the coal structure and pressure (Smith and Williams, 

1984).  

When the mean free path of gas molecules is greater than the molecular diameter, or 

when the pressures are very low, Knudsen diffusion takes place, and gas molecules flow from 

higher to lower gas concentration (Collins 1991; Zhao, 1991). In this transport phenomenon, the 

gas molecules collide more with the walls of the flow paths than with other molecules, and it is 

believed that the gas molecules never see each other (Thorstenson, 1989). Broadly, the resistance 

to flow is not due to molecules colliding with pore walls. 



21 
 

 
 

Surface diffusion of gas occurs when adsorbed gas molecules move along the micropore 

surface like a liquid (Collin, 1991). The exchange rate between the gaseous and adsorbed 

molecules is much higher than the rate of surface migration when equilibrium is achieved 

between gaseous and adsorbed phases. For this reason, at room temperature, the surface diffusion 

is much smaller than Knudsen diffusion. Typically, this is ignored in CBM production. 

Bulk diffusion is the opposite of Knudsen diffusion, because (a) it occurs at higher 

pressures (Collins, 1991), (b) pore diameter is larger than the mean free path of the gas molecule, 

and (c) the resistance to diffusion comes primarily from collision between different gas 

molecules. Bulk diffusion involves momentum transfer between gas molecules themselves, as 

well as momentum transfer between molecules and pore walls. However, the wall effect is 

considered to be negligible compared to the momentum transfer between gas molecules. 

The entire process of diffusion in coalbed reservoirs is described by Fick’s Law and the 

driving force is a gas concentration gradient established between the coal matrix and cleat 

system. The law states that the rate of flow of gas per unit area is directly proportional to the 

concentration gradient normal to the direction of flow, and is given as: 

          (4) 

where,  is the mass flow rate,  is the diffusion coefficient, and  is the concentration 

gradient. The diffusion effects in CBM operations are typically quantified by determining the 

sorption time, τ, defined as the time required for lump(s) of coal to desorb 63% of the gas 

content. This is related to the cleat spacing and diffusion coefficient. It is also typically a known 

parameter for CBM reservoirs. The diffusion coefficient for methane in coal is a function of 
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temperature, pressure, pore length, pore diameter, and water content (Rogers, 1994). A detailed 

description of the diffusion process is presented in a later section. 

2.8.3 Permeability 

Once methane reaches the cleat or fracture network, flow becomes viscous and follows the 

Darcy’s Law, given by: 

         (5) 

where,  is the mass flow rate per unit area,  is the pressure gradient,  is the viscosity of the 

gas,  is the density of the gas and,  is the apparent permeability of coal. Gas production in 

coalbed reservoir is initiated by pumping water through the wellbore to lower the pressure and 

initiate desorption. As water is produced, a two phase (water-gas) flow regime is initiated, which 

continues further as a result of the pressure drop in the reservoir, as discussed by Sawer et al. 

(1987). Finally, a flow regime is reached where the gas moves through the cleat network 

accompanied by only small amounts of water. 

2.9 Techniques to Determine Gas storage Characteristics 

Temperature and pressure dictate the amount that a specific adsorbate will get adsorbed 

by a specific adsorbent at adsorption equilibrium (Yang, 1987). For constant temperature, the 

amount of adsorption is a function of pressure. Adsorption of different gases on coal is usually 

described by isotherms. A sorption isotherm relates the amount of adsorption of a specific 

adsorbate on a unit of a specific adsorbent and pressure at a constant temperature. Isotherms are 

generally categorized into five types, as shown in figure 2.10. Typical adsorption on microporous 

solids is represented by type 1 isotherms, which is also known as the Langmuir’s isotherm. Type 
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1 isotherm has a monolayer coverage constraint during adsorption, while type 2, 3, 4 and 5 

isotherms do not have this constraint. The last two types have a constraint in terms of the 

maximum amount of adsorption due to finite pore volume of the porous media (Do, 2008). These 

isotherms have been numerically modeled using three different approaches. They are the 

Langmuir approach, potential theory approach, and volume filling micropore approach (Yang, 

1987).  

2.9.1 The Langmuir Approach 

a. Langmuir Equation 

For this approach, it is assumed that the adsorption reaches dynamic equilibrium 

when the rate of adsorption equals the rate of desorption, and each site of adsorption can 

accommodate only one adsorbate molecule/atom. Thus, the maximum amount of adsorption 

Figure 2.10: Different types of adsorption isotherms, p0 is the saturation 

vapor pressure (Yang 1987). 
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is reached when all adsorptive sites are occupied by a monolayer of adsorbate molecules/ 

atoms. The Langmuir adsorption falls into type 1 of the adsorption isotherms. 

The rate of adsorption per unit area of adsorbent is , where  is the 

sticking probability,  is the collision frequency of adsorbate molecules/atoms striking the 

adsorbent surface, and  is the percentage of the available adsorbent surface which has 

already been occupied by adsorbate molecules/atoms. The collision frequency of gas 

molecules striking a solid surface according to the kinetic theory of gases is given by: 

         (6) 

where, M is the mass of one gas molecule/atom,  is the temperature, and  is the Boltzmann 

constant. 

The rate of desorption is given by , where  is the rate constant of 

desorption,  is the activation energy of desorption,  is the universal gas constant. At 

adsorption equilibrium, the rate of desorption equals the rate of adsorption. This is 

mathematically represented as: 

      (7) 

where,  is the rate constant for desorption,  is the fractional coverage of adsorption,  is 

the activation energy of desorption, R is the universal gas constant and  is the sticking 

probability. Hence, 

          (8) 

where, 
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            (9) 

is called the Langmuir constant. 

The fractional coverage of adsorption,  is defined as: 

         (10)  

where,  is the amount of adsorption (moles) on one unit of adsorbent at pressure , and  is 

the maximum amount of monolayer adsorption in moles on one mass unit of adsorbent at 

infinite pressure. The expression can also be expressed in volume of sorption instead of 

moles.  , similar to , is the gas volume adsorbed per unit mass of solid at pressure , and 

 is the maximum monolayer volumetric capacity per unit mass of solid. Thus, the 

Langmuir equation (eq. 8), can be rewritten as: 

          (11) 

where, the Langmuir volume,  is ; and the Langmuir pressure, . These are the 

two Langmuir constants analogous to the parameters m and B respectively. These define the 

characteristic isotherm, where  points the asymptotic value of the isotherm and  is the 

pore pressure at which the sorbed volume is one half of the Langmuir volume. 

In addition to the Langmuir equation, the modified spiral equations also represent 

type 1 sorption isotherm. Mathematically, this is given as: 

     (12) 
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where,  is the adsorption amount in moles; ,  are constants; and  is the Henry’s 

constant defined as (Talu et al., 1995): 

          (13) 

In the modified spiral equation, the term  enforces Langmuir behavior at high 

pressure, whereas the viral expansion terms modify the low-pressure adsorption. 

Extended Langmuir Equation 

The Extended Langmuir (EL) equation is the simplest and most commonly used 

model for prediction of mixed gas adsorption on coal (Clarkson and Bustin, 2000). In order 

to predict the binary adsorption equilibria, it requires pure component isotherm data only, 

and no binary sorption constants are necessary. The EL equation is given as: 

         (14) 

where,  and  are the pure gas isotherm Langmuir constants, and  and  are the partial 

pressures of individual gas in free-gas phase. The partial pressure is related to the total 

pressure by the relation: 

          (15) 

where,  is the gas phase mole fraction of the component , and  is the total pressure. The 

relative adsorption of the two components is calculated by estimating the separation factor, or 

the selectivity ratio. The selectivity ratio of a binary gas adsorption system is defined as: 

         (16) 
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where,  and  are the molar fraction of a component gas in the adsorbed and free phase 

respectively. For the EL model, the separation factor is simply the ratio of the adsorption 

equilibrium constants (Arri et al., 1992; Ruthven, 2984), given as: 

         (17) 

The simple nature of the EL model makes it easy to use for most adsorption 

applications although it does not have a strong theoretical foundation. In order to have a 

theoretical backing for the EL equation, the Langmuir volumes for all individual components 

must be equal (Ruthven, 1984). However, for adsorption of molecules of widely different 

sizes, such an assumption is unrealistic and is usually not true. The Extended Langmuir 

isotherm is, therefore, viewed more as a correlation rather than an accurate physical model 

with firm theoretical basis. Extrapolations outside the range of experimental data should be 

made with caution. 

b. The BET Model (Brunauer et al., 1938) 

For gases like CO2, which are rather strongly adsorbed onto coal surfaces, monolayer 

adsorption is not an accurate estimate of the sorption capacity. The BET model provides a 

quantitative description of sorption that is not limited to one adsorption layer on the 

adsorbent surface. The model is mathematically given as: 

        (18) 

where,  is the saturation pressure of the adsorbate at the temperature of adsorption,  is 

the relative pressure or the reduced pressure. Eq. 18 is called the Brunauer-Emmett-Teller 

(BET) equation. The fitting parameters for this equation are: , which is the maximum 



28 
 

 
 

monolayer adsorption in moles; and , which is the shape parameter at low pressure range. 

The value of   is usually greater than unity, indicating that the heat of adsorption of the first 

adsorption layer is greater than the heat of liquefaction. 

According to the BET equation (eq. 18), when  . Thus, the BET model 

does not have a limit on the maximum amount of adsorption, indicating that there can be 

infinite layers of molecules built up on the surface. When the adsorption space is finite, the 

maximum number of layers that can be built on top of the surface is limited, which results in 

the n-layer BET equation, expressed as: 

       (19) 

where,  is relative pressure, and  is the allowed number of adsorption layers. For 

, the equation reduces to Langmuir equation. The maximum amount of adsorption is 

reached when the pressure approaches the vapor pressure, which depends on the number of 

adsorption layers allowed on the adsorbent surface. For pure gas adsorption, the BET 

equation works well by adjusting the fitting parameters. It falls short in modeling multi-

component adsorption, where the adsorbed phase composition is not readily predicted by 

fitting the parameters. For this, thermodynamics has to be taken into account. The Gibbs 

approach is the most developed approach to model multi-component adsorption, but it is 

beyond the scope of this study. 

2.9.2 Polanyi’s Potential Theory 

Analogous to gravitational potential around a planet, Polanyi assumed the existence of a 

potential field around the surface of the solid into which the adsorbed gas molecules falls. The 
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surface force field can be represented by equipotential contours, where the space between each 

set of equipotential surfaces corresponds to a definite adsorbed volume. The adsorption potential 

is defined as the work done per mole of adsorbate in transferring molecules from the gaseous to 

adsorbed state. The adsorption potential represents the work done by temperature independent 

dispersion forces. The potential curve is, therefore, not dependent on temperature, and is 

characteristics of the particular gas solid system alone. It is a function of only the volume 

enclosed by an equipotential surface surrounding the adsorbent surface. Thus, the sorbed volume 

becomes a function of adsorption potential A, that is: 

          (20) 

The above relation is characteristic of a gas-solid system, and is known as the 

characteristic curve (Yang, 1987). The characteristic curve generated from one experimental 

isotherm thus permits prediction of isotherms at different temperatures (Mehta, 1982). Assuming 

that the adsorbate behaves as an ideal gas, the adsorption potential is given as: 

         (21) 

where, A is the adsorption potential, R is the Universal Gas Constant, T is the adsorption 

temperature in absolute units, P is the adsorption pressure and Po is the saturation vapor pressure 

of the adsorbate at temperature T. The Potential Theory has been substantiated by the work of 

several researchers. Although the concept of the original theory has not changed, its 

mathematical functional relations have changed significantly to utilize its predictive capability 

(Mehta, 1982). Dubinin (1967) used this to describe adsorption on microporous adsorbents and 

proposed a new theory, which is known as the theory of volume filling of micropore (TVFM). 

2.9.3 Theory of Volume Filling Micropore (TVFM) 
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Microporous adsorbents (pore size less than 20 nanometer) have an enhanced adsorption 

potential in the pores owing to the superposition of the adsorption energy fields of the opposite 

walls (Amankwah and Schwarz, 1995). Coal is, therefore, a microporous adsorbent since most of 

its pores fall in this size range. Borrowing the well-known concept of colloid chemistry, Dubinin 

(1967) argued that the macroscopic notion of the surface of a solid body loses its physical 

significance when the pore size is less than 20 A0, and this is true for coal. The concept of 

adsorption on surfaces by the layering mechanism can, therefore, not be accurate. The basic 

geometrical parameter for microporous adsorbent is the volume of the micropores rather than 

their surface area. Based on Polanyi’s Potential Theory, Dubinin (1975) developed a new theory 

for adsorption of gases on microporous solids, and named it as the Theory of Volume Filling of 

Micropore. It was postulated that, in micropores, the adsorbate occupies the pore volume by the 

mechanism of volume filling, as shown in figure 2.11, and hence, does not form discrete layers 

in the pores. 

Dubinin (1967) showed that, for several vapors, the ratio of limiting adsorption values on 

two varieties of zeolite crystals was essentially constant and equal to the ratio of void volumes 

calculated from X-ray data. The ratio was, however, not equal to the geometric surface area of 

the zeolites. This observation provided proof for the volume filling mechanism of the 

micropores. Based on this, Dubinin and Astakhov proposed an equation representing the 

isotherms that obeyed the TVFM (Amankwah and Schwarz, 1995). Known as the Dubinin-

Astakhov (D-A) equation, it is expressed as follows:  

       (22) 
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where,  is the amount adsorbed,  is the volume of micropores,  is the structural 

heterogeneity parameter and is a small number varying between 1 and 4,  is a 

constant, where  is the characteristic energy of the adsorption system,  is the absolute 

temperature,  is the universal gas constant, and  is the adsorbate affinity coefficient. D is a 

constant for a particular adsorbent adsorbate system, and is determined experimentally.  is the 

saturation vapor pressure of the adsorbate at temperature , and  is the equilibrium free gas 

pressure. Dubinin and Radushkevich suggested that  may be appropriate for some cases, 

and the equation can be modified as follows: 

       (23) 

The above equation is known as the Dubinin-Radushkevich (D-R) equation. The D-A and 

D-R equations are also known as the Dubinin-Polanyi (D-P) equation. One unique advantage of 

the D-P isotherm equations is that, if one isotherm at a particular temperature is available, then 

Figure 2.11: Micropore filling mechanism used in TVFM (Do, 1998). 
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the characteristic curve can be derived from that single isotherm and used to obtain another 

isotherm for the same solid-gas system at any other temperature. This unique advantage is really 

useful where isotherm data at multiple temperatures cannot be obtained readily. 

2.9.4 Estimation of Surface Area 

Specific surface area is defined as the accessible area of solid surface per unit mass of 

material, coal in our case. Use of the techniques discussed in sections 2.9.1 through 2.9.3 enables 

the estimation of the surface area available to sorption in a number of cases. We make use of the 

Langmuir equation to estimate the specific surface area of coverage of a particular sorbent, coal 

in our case, for a sorbate, which is methane or CO2. Itodo et al., (2010) used the following 

equation to estimate the specific surface area: 

       (24) 

where, SMB is the specific surface area in 10-3 km2kg-1, qm is derived from the Langmuir constant 

providing an estimate of the number of molecules of the sorbate adsorbed at the monolayer of 

coal with units of mgg-1, aMB is the occupied surface area of one molecule of sorbate in Å², NA is 

the Avogadro’s number with units of mol-1 and M is the molecular weight of the sorbate in g 

mol-1. 

2.10 Techniques to Determine Diffusion Characteristics 

The three primary laboratory techniques used to estimate the diffusion coefficient, D, of 

coal are the Particle Method, Steady-state Flow Method and Counter Diffusion Method. This 

study makes use of the particle method since it is the most commonly used in CBM industry, the 

primary reason being that the sorption isotherms are established as well, using pulverized coal. 

The different methods are discussed in the following sections: 
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2.10.1 Particle Method 

The particle method involves grinding of coal to eliminate the cracks and micropores 

completely, ensuring that the movement of gas is purely diffusive in nature. It is reported that the 

crushing of coal increases sorption of gases due to increase of surface area for gas adsorption. 

Jones et al., (1988) reported the increase to be between 0.1 and 0.3% for 40-60 mesh coal size, 

thus representing near in situ conditions in terms of accuracy of the experiment. The 

experimental procedure is discussed in detail in chapter 3. 

There are two diffusion models that have been used successfully based on the particle 

method. They are the “unipore” and “bidisperse” models.  

a. Unipore Diffusion Model 

The unipore model assumes that all pores in the coal matrix are of the same radius. 

The model is based on Fick’s second law for spherically symmetric flow, given as: 

         (25) 

where,  is the radius of the micropore,  is the adsorbate concentration,  is the diffusion 

coefficient, and  is the time between two measurements. This form of equation assumes that 

the diffusion coefficient is independent of the concentration and location within the solid 

coal. 

The solution to the above equation for a constant surface concentration of the 

diffusing adsorbate can be expressed as (Crank, 1975): 

      (26) 
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where,  is the total mass of the diffusing gas that has desorbed in time ,  is the total 

desorbed mass, and , the diffusion path length. Following a step change in surface 

concentration, this relationship for sorbed gas can be written as (Clarkson and Bustin, 1999): 

      (27) 

where  is the total volume of gas desorbed in time , and  is the total sorbed volume. 

This equation is commonly referred to as the unipore model equation.  The value of D is 

determined using the data collected from experimental work. The experimentally determined 

fraction of gas sorbed is plotted versus the square root of time and the unipore equation is 

curve fitted to the experimental data to obtain an estimate of . 

For , the unipore equation can be approximated as: 

         (28) 

Mavor et al., in 1990 used the above equation to calculate the diffusion coefficient 

using an averaged value for particle size. In order to obtain the diffusion coefficient during a 

pressure step, a diagnostic plot of the gas content change during the pressure step with 

elapsed time is required. The monitored pressure variation enables the calculation of the 

quantity leaving or entering the sample, or change in the capacity of the sample to store gas 

with time. Figure 2.12 is a typical example of the diagnostic plot required for one of the 

pressure steps. The purpose of the plot is to verify that the measured data satisfies the 

condition for short time diffusion for spherical geometry. The slope of the log-log plot should 

be ~0.5. The model during the half slope period is given as: 
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     (29) 

where,  is the gas storage capacity in scft,  is the gas content at the end of step I in scft, 

 is the gas content at the end of step  in scft,  is the diffusion coefficient in 

cm2/sec,  is the spherical particle radius in cm, and  is the time elapsed between 

measurements of  and , in seconds. 

Figure 2.12: A typical diffusion diagnostic graph. 
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Mavor et al. (1990) stated that the unipore diffusion model is more applicable to high 

pressure steps of the isotherm rather than all steps. However, for a complete analysis, using 

the bi-disperse model of diffusion may be necessary. The diffusion coefficient is estimated 

from the slope of the initial graph, b, based on the following: 

        (30) 

b. Bi-disperse Diffusion Model 

Ruckenstein et al. (1971), developed this model assuming that some coals have bi-

modal pore size distribution. The model assumes that the adsorbent is a spherical particle, 

which is a macrosphere, containing microspheres of uniform size, as shown in figure 2.13. 

Few researchers, like Smith and Williams (1984), used this study to better represent the 

diffusion behavior of coal and found that the bi-disperse diffusion model describes the entire 

desorption regime better than the unipore models for some coals, but might be inadequate for 

application to high pressure volumetric sorption experiments. The model assumes a step 

Figure 2.13: Conceptual model of the bidisperse pore structure (Yang, 1997). 
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change in external concentration in the diffusing gas at time zero, and that this concentration 

remains unchanged with time (Clarkson and Bustin, 1999). This assumption is not true for 

constant volume and variable pressure adsorption rate experiments as described by Mavor et 

al. (1990). Moreover, methane and carbon dioxide adsorption isotherms for bituminous coal 

are known to be nonlinear, and the application of linear models is truly inadequate for most 

coals. 

In previous research effort at SIU Carbondale, Ajayendra Kumar (2007) showed that, 

for coal samples taken from the Illinois basin, the estimated values of the diffusion 

coefficient using the unipore and bi-disperse results produced similar data. Significant 

difference was not observed in terms of the diffusivity trend with pressure. The current study 

will, therefore, use the computationally simple unipore approach to study diffusion behavior 

in coal. 

c. Steady State Flow Model 

This technique utilizes experimental setups similar to ones typically required for 

estimation of the permeability, where flow rates are measured through a solid coal sample, 

typically cylindrical cores. A pressure gradient is applied across the sample to initiate gas 

flow, limited by the condition that the gas flow is not turbulent. The diffusion coefficient is 

measured after measuring steady-state flow. The samples used for this experiment is required 

to be cleat and fracture free to prevent viscous flow of gas due to the applied pressure 

gradient. This is the major disadvantage of the method, since obtaining a sample of cleat free 

coal is difficult. Moreover, the experiments take a very long time, compared to the particle 

method, because the sorption of methane on solid coal is very slow (Thimons and Kissel, 

1973).  
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d. Counter Diffusion Model 

This technique is similar to the steady-state flow method with a major improvement 

since it avoids a pressure gradient across the sample, thus eliminating any possibility of 

viscous flow. The method involves passage of an adsorbing gas and a non-adsorbing gas 

through the opposite faces of a sample, resulting in zero pressure gradient across the two 

ends. This is the reason for the technique being also known as the constant pressure, counter 

diffusion method. By measuring the flowrate and outlet concentration of each stream at 

steady-state, the flux of each component across the sample is determined (Smith, 1982). This 

is followed by calculation of the diffusion coefficient. The disadvantage with this method is 

that it has to be performed at much lower pressures than those encountered in CBM 

operations. The results for higher pressure, therefore, can only be extrapolated for application 

in CBM applications. Since the variation in the value of diffusion coefficient with pressure 

might be different at high pressures, use of this method is discouraged. 

2.11 Summary 

In this chapter, an effort was made to present the basic background about coal as a natural 

gas reservoir. It is understood that bacterial actions on coal have resulted in the formation of 

(secondary) biogenic methane that is stored in coal along with methane from thermogenic origin.  

A number of studies have been successfully conducted to simulate the process of secondary 

biogenic methane formation in laboratory setup. Given that methane can be generated by 

microbial consortia, it is critical to study the properties of coal that determine its storage and 

flow properties. A number of approaches necessary to model single and multi-gas sorption were 

discussed. The Langmuir approach provides accurate estimation of storage characteristics of 

coalbed reservoirs with computational ease. Different approaches to model diffusion 
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characteristics have also been presented. The diffusion characteristics can be studied over 

pressure ranges using the unipore model, providing acceptable estimates of the diffusion 

coefficient. 
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CHAPTER 3 

EXPERIMENTAL STUDY 

The basis of the experimental work is that sorption of a small quantity of methane 

or CO2 on/from coal results in a change of pressure in a closed container. Hence, 

monitoring the pressure enables calculating the volume sorbed. Second, precise 

monitoring of pressure changes during early stages of sorption enables estimation of the 

diffusion coefficient The experimental setup for this study was, therefore, designed to 

fulfil this requirement of precise and accurate pressure monitoring. Since temperature 

impacts the sorption capacity significantly, effort was made to maintain the system 

temperature constant during the entire experiment. This ensured that the changes in 

pressure were only due to ad/de -sorption of methane, and not the result of variation in 

temperature. This also enabled establishing the sorption characteristics at the desired in 

situ temperature.  

3.1 Experimental Design 

The experimental setup was designed to measure very small changes in gas 

pressure over very short periods of time resulting due to ad/de -sorption of methane or 

CO2 on/from the coal sample. A schematic of the experimental setup is shown in Figure 

3.1. The primary components of the setup were a pressure vessel assembly, capable of 

withstanding very high pressures, a high-precision data acquisition system (DAS), and a 

computing interface. The setup was designed so that it could be completely immersed in 

water, maintained at constant temperature using a water bath with fairly precise 

temperature control. Figure 3.2 shows the setup pictorially. 
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3.1.1 High Pressure Vessel Assembly 

A high pressure vessel assembly, as shown in Figure 3.3, was fabricated 

especially for this experiment. The sample container, made of stainless steel, was 

designed to withstand a pressure of more than 5000 psi. All other connections and fittings 

used were capable of withstanding pressures up to 3000 psi. The sample container and 

fixed volume cylinder were connected with a filter and a control valve in between. The 

filter was provided to prevent movement of coal particles between the sample container 

and the fixed volume cylinder when the pressure in the sample container dropped 

suddenly. The control valve was provided in order to control the flow of gas between the 

sample container and fixed volume cylinder. A set of two-/three- way valves was used in 

the setup to achieve the desired flow and storage of gas. A pressure transducer was 

connected to the fixed volume cylinder. 

3.1.2 Temperature Control System 

Since ad/de -sorption of methane or CO2 on coal is very sensitive to temperature, 

maintaining a constant temperature throughout the experimental phase is critical. A 

precision constant temperature water bath, with ± 0.1oC error, was used for this purpose. 

The pressure vessel assembly was kept in this bath throughout the experiment, which 

lasted over a period of several weeks. 
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(1) Pressure vessel assembly immersed in water bath; (2) constant temperature water bath 

with the pressure vessel; (3) DAS; and (4) computer for DAS. 

Figure 3.1: Schematic of the sorption/diffusion experimental setup. 

Figure 3.2: Pictorial representation of the experimental setup. 
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(1) Sample container; (2) filter; (3) two-way control valve; (4) reference volume cylinder; 

(5) two-way valve; (6) three-way valve; and (7) pressure transducer. 

Figure 3.3: High pressure vessel assembly. 
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3.1.3 Data Acquisition System 

A 16-bit data acquisition system (DAS) was used in order to collect the pressure 

data. The purpose of using 16-bit high precision DAS was to acquire data at very small 

time intervals, with the least amount of bit-flip since a minute deviation from the exact 

pressure during initial diffusion process could easily result in erroneous results. The 

hardware provided a physical connection to the sensors with high-level voltage outputs 

through an instrumentation card. This card, incorporating all the necessary power 

supplies, circuit completion components, signal conditioning amplifiers and analog- to-

digital converters, was housed in a scanner, which measured the data in a digital form and 

transferred them through a high-speed digital interface. The data was collected by the 

software “StrainSmart” which works on Windows NT platform. The data collection 

procedure included collection of raw data with the pressure transducer, defining 

instrumentation and software parameters, calibration and zeroing of the transducer, and 

reductions of the digital raw data to usable measurements data. The system was set to 

collect data every 0.5 second interval during the initial period, which was gradually 

increased to 50 seconds as pressure approached equilibrium. 

3.2 Sample Procurement and Preparation 

The experimental phase included carrying out tests for three sets of coal samples. 

Pieces of coal, taken from blocks of coal, were ground and separated using sieve analysis. 

The size of the test specimens was between 40 and 100 mesh, providing an average 

particle radius of 0.0143 cm. The first set of samples was virgin, untreated coal. This 

provided the baseline for comparison with the data for treated coal. The sieved coal was 

then treated with microbial solutions along with a nutrient profile. Methane and CO2 
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production rates were monitored over a period of thirty and sixty days respectively. The 

second set of coal tested was for the sample treated for thirty days. The third set of coal 

tested was for the sample treated for sixty days. The microbial solution producing the 

most methane was utilized for the experiment. A discussion about the experimental setup 

for setting up microbial solutions for treating the coal is beyond the scope of the study. 

However, detailed description of the methods used is included in Zhang et al (2015). 

Approximately 60 g of sample was used for each set of sorption-diffusion 

experiment. Prior to starting the experiment, the samples were kept in an environmental 

chamber at the desired temperature and 97% humidity for twenty four to thirty six hours 

for moisture equilibrium. Five grams of sample was used to measure the ash and moisture 

content while the remainder was used for the sorption/diffusion experiment. 

3.3 Calibration and Testing of Entire Setup 

The pressure vessel assembly was tested for leakages by injecting helium at a 

pressure of ~1500 psi and leaving it for 48 hours. This testing was also carried out prior 

to every experiment to ensure that there was no leakage path generated during opening 

and closing of sample container when changing samples. The calibration and testing of 

the entire setup, including the DAS and software, was conducted by performing a trial 

test using a coal sample from the San Juan basin with known parameters. 

3.4 Experimental Procedure 

For each experiment, the sample container was blow-dried before placing the 

sample in it. The water bath was set to the required temperature and the entire pressure 

vessel assembly was immersed in it. The experiment was first carried out for methane. 
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The CO2 cycle was repeated for the same coal type. The following procedure was 

followed: 

a. The dead space of the sample container was calculated using Boyle’s Gas Law 

using helium at a pressure of ~200 psi. The compressibility of helium was taken 

into consideration since, at high pressures, helium volume change would 

eventually result in incorrect calculated dead space. This step was achieved in 

four steps by gradually increasing the pressure, and the values of calculated dead 

volume was averaged. 

b. Keeping the control valve closed, the fixed volume cylinder was then subjected to 

a methane/CO2 pressure of 100 psi and allowed to equilibrate. 

c.  After achieving equilibration, the control valve was opened as quickly as 

possible. The sample container, initially at atmospheric pressure, quickly 

equilibrated with the fixed volume cylinder. Thermal equilibrium was attained in 

5 to 10 seconds, after which data recording at 0.5 second interval was started, 

since adsorption rate is extremely fast during the initial period. 

d. Acquiring data at this pace continued until the pressure variation became 

insignificant, in this case, 0.1 psi per hour. After this, readings were taken at 50 

second intervals and continued for approximately 22 hours, at which time, there 

was almost no further change in the pressure. The sample was believed to have 

attained complete equilibrium. 

e. At this condition, the coal sample was fully saturated with methane/CO2 at the 

equilibrium pressure. This procedure was repeated for a step-wise pressure 
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increase of ~150 psi at low pressures and ~200 psi at higher pressures. The final 

pressure was ~1100 psi for methane and ~900 psi for CO2. 

f. Finally, the entire procedure was followed in reverse for decreasing pressure steps 

of 150 psi. This was believed to be more critical for CBM applications where 

methane and CO2 only desorbs during production. 

g. The procedure described above was the same for all three sets of coal. 

3.5 Sorption Isotherms 

The change in a pressure step reading of a particular gas, as described in section 

3.4, was representative of the volume of gas sorbed during the step. A mass balance 

analysis allowed calculation of the amount of gas sorbed. The change over all the 

pressure steps, until the pressure reached equilibrium for the gas, is best described by the 

Langmuir pressure and volume constants, PL and VL, respectively. The constants, 

calculated from the experimental data for methane and CO2 cycles for each coal type, 

describes the methane and CO2 Langmuir isotherm. The isotherm estimates the volume 

of gas sorbed over varying pore pressures and the maximum sorption capacity of the coal 

type for a particular gas. 

3.6 Estimation of Diffusion Coefficient 

Unlike the sorption experiments, where only the final equilibrium pressure is 

required, estimation of the diffusion coefficient requires precise and continuous change in 

pressure in the sample cylinder over time in order to calculate the amount of ad/de-sorbed 

gas as a function of time. This change in pressure over time was measured for every 

pressure step, that is, every time the pressure in the sample cylinder was changed due to 
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ad/de-sorption of gas. At the time of calculation of the diffusion coefficient, more weight 

was given to the initial ad/de-sorption period since the rate of sorption is the highest 

during this period.  

A model derived from Fick’s Second Law, as discussed in Chapter 2, was used to 

calculate the value of diffusion coefficient. In order to simplify the calculation, the value 

of diffusion coefficient for each pressure step was calculated using the best-fit plot 

method. First, a value of diffusion coefficient was chosen from the values of diffusion 

coefficient estimated by previous researchers (Kumar, 2007). A program was written in 

visual basic to execute equation (48). Using the chosen value of diffusion coefficient and 

estimated volume of gas ad/de-sorbed, the program was executed for twenty iterations. A 

plot was generated between the iterated values and time. A second plot between the 

pressure values and time, recorded during sorption experiment, was then superimposed 

on the previously generated plot. The value of the diffusion coefficient was determined 

by obtaining the best-match plot. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

As discussed in Chapter 3, three sets of experiments were performed, first using virgin 

coal to establish the baseline, followed by coal treated for thirty days and, finally, that treated for 

sixty days respectively. The experiments were completed using step-wise increase/decrease in 

gas pressure, as typically practiced in ad/de- sorption experiments. During the initial sixty 

minutes of every step, the increase/decrease in pressure was monitored at a frequency of two 

readings/ second. This provided the data to determine the diffusion characteristics for the 

particular pressure step. Results of both sorption and diffusion experiments are discussed in 

detail in this chapter. 

 To ascertain proper functioning of the entire system, rigorous testing of the data 

acquisition system (DAS) was first carried out to ensure the accuracy of the results during the 

experiments. A trial experiment was then conducted using a sample from San Juan basin. The 

results were in agreement with past studies, thus increasing the confidence in the experimental 

setup and testing procedure. 

4.1 Production of Gases 

 Before discussing the sorption-diffusion properties of the types of coal, it is essential to 

identify the gases that are produced due to methanogenesis. Details of the methods employed in 

this study can be found in published literature, and is beyond the scope of the study (Zhang et al., 

2015). But once produced, the fate of the gases would be a function of the sorption-diffusion 

characteristics of a particular coal. Given that all gases do not get sorbed equally by coal, coal 
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having a higher sorption affinity for CO2 than methane, identifying the amounts of gases 

produced is important. 

 The average volumes of methane and CO2 produced, as detected by the gas 

chromatograph after thirty and sixty days of bio-degradation are presented in Table 4.1. Since the 

reactors were purged by nitrogen prior to initiation of methanogenesis, the undetected gas(es) 

can either be nitrogen, or a mixture of nitrogen with other (undetected) gases produced during 

methanogenesis. 

Table 4.1: Produced gases during methanogenesis 

Duration CH4 (scft) CO2 (scft) Undetected (scft) 

30 Days 92.7 65.4 60.9 

60 Day 141.8 72.4 4.7 

 

4.2 Sorbed Gas Calculation 

 The principle of volumetric measurement of gas sorption is based on the phenomenon 

that adsorption removes the adsorbate gas molecules from free gas phase to adsorbed phase, thus 

resulting in a decrease in free gas pressure within the experimental system (Krooss et al., 2002). 

The amount (number of moles) of adsorbed gas (𝑛𝑠𝑜𝑟𝑏𝑒𝑑) during a particular pressure step is the 

difference between the total amount of gas (𝑛𝑡𝑜𝑡𝑎𝑙) introduced into the void volume of the 

sample container (SC) and the amount of free gas occupying the void volume (𝑛𝑓𝑟𝑒𝑒) in the 

sample container. 

𝑛𝑠𝑜𝑟𝑏𝑒𝑑 =  𝑛𝑡𝑜𝑡𝑎𝑙 −  𝑛𝑓𝑟𝑒𝑒        (31) 
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The total amount of gas introduced into the SC during a particular pressure step is calculated 

using the following equation: 

𝑛𝑡𝑜𝑡𝑎𝑙 =  (
𝑉

𝑅𝑇
× (

𝑃1

𝑍1
−

𝑃2

𝑍2
 ))

𝐹𝑉

       (32) 

where, 𝑃1 and 𝑃2 refer to the pressure in the fixed volume container (FVC) before and after the 

FVC-SC valve is opened during a partial pressure step, 𝑉 is the volume of FVC, 𝑍1 and 𝑍2are the 

compressibility factors of the adsorbate gas at the two pressures, and other symbols have their 

usual meaning. The free gas amount calculated using the above equation refers to the 

incremental or new free gas that appears in the SC during a particular pressure step. In the first 

adsorption step, all the free gas that appears in the void volume in the SC is new. However, in 

subsequent steps, free gas that is calculated also includes the free gas already present in the SC 

from previous steps. It is, therefore, important to calculate the volume of new free gas at a 

particular step by subtracting the free gas volume of previous adsorption step from the total free 

gas volume. The incremental free gas volume in the void space is calculated using the following 

equation: 

𝑛𝑓𝑟𝑒𝑒 =  (
𝑃𝑉𝑉

𝑅𝑇𝑍
)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡
− (

𝑃𝑉𝑉

𝑅𝑇𝑍
)

𝑙𝑎𝑠𝑡
       (33) 

where, 𝑉𝑉 is the void space in the SC. It is important to note that all of the above volume 

calculations are extremely sensitive to the compressibility factor, and a small change in the 𝑍 

value usually has a significant impact on the calculated sorbed volume. For this study, NIST 14 

software, which uses the Peng-Robinson equation of state to calculate the properties of single 

gas, and mixtures, was used to calculate 𝑍 (Friend, 1992). 
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 The amount of gas sorbed at different pressures, expressed in terms of volume at standard 

pressure (14.7 psi) and temperature (77oF) conditions (STP), was first calculated by conducting 

the adsorption experiment using a single gas, first methane and then CO2. The sorbed gas 

volume, as measured in the laboratory, is known as the Gibbs excess sorption, or Gibbs sorption. 

In most of the published literature, Gibbs sorption has been measured and reported. Although it 

is obvious that sorbed gas occupies a certain amount of space in the pore space of the adsorbent, 

the concept of Gibbs sorption ignores the volume. At low pressures, the volume occupied by the 

sorbed gas is not significant, and the actual sorbed volume is not much different from the Gibbs 

sorption volume calculated. However, at higher pressures, the volume occupied by the sorbed 

volume can be significant, and cannot be ignored since the actual sorbed gas amount can be 

significantly larger than the Gibbs sorption values (Mavor, 2004). To accommodate this 

difference, the concept of absolute sorption is used by researchers, which corrects the Gibbs 

adsorption by taking into account the volume occupied by the sorbed gas (Sudibandriyo et al., 

2003; Arri et al., 1992). 

 Absolute sorption is calculated using the following equation: 

𝑛𝑎𝑏𝑠 =  
𝑛𝐺𝑖𝑏𝑏𝑠

(1−
𝜌𝑔𝑎𝑠

𝜌𝑠𝑜𝑟𝑏𝑒𝑑
)
         (34) 

where, 𝑛𝑎𝑏𝑠 and 𝑛𝐺𝑖𝑏𝑏𝑠 are absolute and Gibbs sorption in moles, 𝜌𝑔𝑎𝑠 and 𝜌𝑠𝑜𝑟𝑏𝑒𝑑 are the 

densities of gas in gaseous and sorbed phases (g/ml), respectively. The value of the sorbed gas 

density, or molar volume, must be known to calculate the absolute sorption. Since direct 

measurement of the sorbed phase density/volume is difficult, empirical approaches are used to 

calculate the adsorbed phase molar volume/density. The values for methane and CO2 are 0.421 

and 0.871 g/ml respectively. 
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 In this study, experiments were carried out to establish methane absolute ad/de-sorption 

isotherms for three types of coal: the baseline, and coal treated for thirty and sixty days. The 

isotherms are presented in figures 4.1, 4.3 and 4.5 respectively. Only absolute adsorption 

isotherms were established for the CO2 cycle. Figures 4.2, 4.4 and 4.6 are the CO2 isotherms for 

the baseline coal, and coal treated for thirty and sixty days respectively. The isotherms provide 

the values of the Langmuir constants, as listed in Table 4.2. Additional basic testing included the 

ultimate and proximate analysis of coal, the results are which are shown in Table 4.3. 

Table 4.2: Results obtained from Langmuir isotherms 

 

Baseline Coal Thirty-day Treated Coal Sixty-day Treated Coal 

Adsorption Desorption Adsorption Desorption Adsorption Desorption 

CH4 

PL 

(psi) 

551 559 1729 219 3715 436 

VL 

(scft) 

428 412 683 253 1907 232 

CO2 

PL 

(psi) 

247 - 391 - 749 - 

VL 

(scft) 

823 - 1164 - 1821 - 
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Figure 4.1: Ad/de- sorption isotherms of methane – baseline coal. 

Figure 4.2: CO2 adsorption isotherm – baseline coal. 
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Figure 4.3: Ad/de- sorption isotherms of methane – thirty-day treated coal. 

Figure 4.4: CO2 adsorption isotherm for coal – thirty-day treated coal. 
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Figure 4.5: Ad/de- sorption isotherms of methane – sixty-day treated coal. 

Figure 4.6: CO2 adsorption isotherm for coal – sixty-day treated coal. 
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Table 4.3: Results of the basic coal characteristics 

Sample 

Carbon 

(%) 

Nitrogen 

(%) 

Hydrogen 

(%) 

Oxygen 

(%) 

Sulfur 

(%) 

Ash   

(%) 

Moisture 

(%) 

Baseline 70.1 1.4 5.2 15.4 0.6 6.1 11.5 

Day 30 59.5 1.2 4.3 16. 8 0.7 8.1 17.4 

Day 60 57.3 1.2 4.2 16.6 0.7 7.6 16 

 

4.3 Estimation of Diffusion Coefficient 

 The various methods to estimate the diffusion coefficient were discussed in Sections 2.10 

and 3.6. As illustrated in figure 14, estimation of diffusion coefficient requires the calculation of 

slope for the initial period. The exact point where the slope is calculated is subjective. The value 

of the slope, 𝑏, determines the value of the diffusion coefficient, D as indicated by equation 30. 

Hence the coefficient of diffusion presents values within a given range with a standard deviation. 

Kumar (2007) conducted a sensitivity analysis of the values obtained for D using the same 

methods. He reported that, for sorption of methane on Illinois coals, the errors in calculation 

ranged from -7.9 to 6.7% of the calculated values. The error calculations in this study were 
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completed for the values of the coefficient of diffusion at every pressure step. The graphs 

presented are within one standard deviation of the expected results. 

4.3.1 Diffusion Results 

 Using equation 30, the value of D for each pressure step for methane and CO2 cycles was 

calculated. The variation, calculated as a function of pressure, for the three coals tested is shown 

in figures 4.7, 4.8 and 4.9 respectively. The methane and CO2 cycles are represented as plots (a) 

and (b) respectively. It is apparent from the results that there is a negative correlation between D 

and pressure, both for adsorption and desorption steps, and for methane and CO2 cycles.  
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Figure 4.7(a): Variation in the value of D with changes in methane pressure – baseline coal. 
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Figure 4.7(b): Variation in the value of D with increasing CO2 pressure – baseline coal. 

Figure 4.8(a): Variation in the value of D with changes in methane pressure – thirty-day treated 

coal. 
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Figure 4.8(b): Variation in the value of D with increasing CO2 pressure – thirty-day treated 

coal. 

Figure 4.9(a): Variation in the value of D with changes in methane pressure – sixty-day treated 

coal. 
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4.4 Discussion 

4.4.1 Sorption 

 The results of ad/de-sorption of methane and adsorption of CO2 on untreated (baseline) 

coal are similar to past studies. The experimental data obtained fits Type 1 Langmuir isotherm, 

that is, the sorbed volume increases initially with pressure linearly but, at higher pressures, the 

rate of increase slows down, reaching a stable value. The Langmuir pressure and volume 

constants for adsorption of methane for untreated coal were estimated to be 551 psi and 428 scft 

respectively. The values for desorption were 551 psi and 412 scft respectively. For adsorption of 

CO2, the Langmuir parameters were estimated to be 247 psi and 823 scft. The difference in the 

experimental values, and that estimated by the Langmuir parameters is 0.05% and ~0.00002% 

for methane adsorption and desorption cycles respectively. The difference observed for 
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Figure 4.9(b): Variation in the value of D with increasing CO2 pressure – sixty-day treated coal. 
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adsorption of CO2 was slightly higher, at 0.68%. Such ranges of deviations are within acceptable 

ranges as per published literature (Dutta et al., 2013). 

Langmuir constants for adsorption of methane on coal treated for 30 days were 

determined to be 1729 psi and 683 scft; whereas, the constants for desorption of methane were 

219 psi and 253 scft. For sorption of CO2 on coal treated for thirty days, the Langmuir constants 

were estimated to be 391 psi and 1164 scft. The difference in the predicted values by the 

Langmuir isotherm were 0.01%, 0.31% and 0.35% for methane ad/de-sorption and CO2 sorption 

respectively. The Langmuir constants for the adsorption of methane on coal treated for sixty days 

were determined to be 3715 psi and 1907 scft, and that for desorption of methane 436 psi and 

232 scft. The constants for CO2 were 749 psi and 1821 scft. The difference in the modeled 

Langmuir sorption values and the ones estimated experimentally was 0.01%, 0.11% and 0.04% 

for methane ad/de-sorption and CO2 adsorption respectively.  

Given that the Langmuir isotherm assumes a monolayer surface coverage, adsorption of 

methane and CO2 on treated coal, compared to that on untreated coal, reveal high values of 

Langmuir constants. VL, which signifies the maximum sorption capacity for coal, for coals 

treated for thirty and sixty days was ~1.6 and ~4.5 times that of the values for untreated coal. PL, 

which defines the shape of the Langmuir isotherm, presented values ~3.1 and ~6.7 times higher 

than for untreated coal. This implies that the decrease in the rate of sorption observed beyond 

~500 psi for untreated coal, occurred beyond ~1500 psi and 3000 psi for coals treated for thirty 

and sixty days respectively. Plotting the Langmuir isotherms beyond 1200 psi, as shown in 

Figure 4.10, although not of any practical value, illustrates the predicted change in the sorption 

characteristics as a result of bio-conversion. 
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 Adsorption of CO2 on the three coals tested presents a more of a uniform trend compared 

to adsorption of methane. Since CO2 is adsorbed strongly by coal, there was no noticeable 

change in the sorption capacity at low pressures. However, beyond ~250 psi, Figure 4.10 

suggests that, unlike untreated coal, additional amount of CO2 was being adsorbed. The increase 

of sorption capacity was more noticeable for coal treated for a longer period of time. The trend is 

well reflected in the values of the Langmuir constants, where the pressure constants for coal 

treated for thirty and sixty days was ~1.6 and ~3 times higher than the values for untreated coal, 

and volume constants were ~1.1 and 2.1 times higher.  

Ideally, isotherms describing desorption of methane and/or CO2 on coals should not 

Figure 4.10: Langmuir isotherms for adsorption of methane and CO2 on different coals. 
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deviate from the adsorption isotherms. Ad/de-sorption isotherms for methane on untreated coal, 

as shown in Figure 4.1, although similar, do exhibit some hysteresis effects. This is not a new 

finding, and has been reported by several researchers in the past (Greaves et al., 1993; Busch et 

al., 2003; Ozdemir et al., 2003; Harpalani et al., 2006). Desorption hysteresis on coals may occur 

due to two reasons: changes in the adsorbent properties/structures, or capillary condensation in 

the adsorbent micropores (Gregg and King, 1982). Busch et al. (2003) attributed hysteresis to a 

metastable sorbent-sorbate system that prevents release of gas, to the extent corresponding to the 

thermodynamically equilibrium value, with decreasing pressure during desorption. Moisture 

content is also attributed to hysteresis because, as moisture content in the sample decreases, the 

capacity of the coal to adsorb gas increases (Harpalani et al., 2006). 

 Compared to desorption hysteresis observed for untreated coal, that for coal treated for 

thirty and sixty days is staggering, with such trends being un-reported anywhere in the existing 

literature. The Langmuir pressure and volume constants for adsorption of methane on coal 

treated for 30 days were ~ 7.8 and ~2.7 times the corresponding desorption values respectively. 

Coal treated for sixty days presented the pressure and volume constants for adsorption to be ~8.5 

and 8.2 times the desorption values respectively. In comparison, the adsorption values for 

untreated coal were ~0.98 and 1.03 times the desorption constants. Possible reasons for such 

desorption behavior is discussed in section 4.4.1. 

4.4.2 Surface Area 

 As discussed in section 2.9.4, equation 24 can be used to determine the specific surface 

area available for sorption, which provides an estimate of the pore surface area available. The 

equation is used to calculate the ratio of the surface areas available for sorption before and after 

methanogenesis. The ratio for the sorption of the same gas on different coal types requires the 
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calculation of qm for each case. Establishing the Langmuir type isotherms show that the ratio of 

different qms can be indicated by the ratio of the Langmuir volumes. Table 4.4 illustrates the 

results of the estimated changes in specific surface area. 

Table 4.4: Estimated changes in surface areas 

Treatment 

Period 

(days) 

Change in Specific Surface Area 

(× Baseline Area, 10-3 km2kg-1) 

CH4  CO2  

30 1.6 1.4 

60 4.5 2.2 

 

The estimation of the surface areas, as shown in Table 4.4, takes in to account the 

adsorption characteristics of methane and CO2. Langmuir parameters obtained from the 

desorption characteristics provide misleading interpretation of the surface areas available for 

sorption. This is because, as indicated by the adsorption isotherms, for pressure ranges used in 

the experimental work, sorption sites for treated coal were continuing to fill, without progressing 

towards an asymptotic value. Since adsorption of gases was discontinued during the experiment 

and the process of desorption started, the coal exhibited desorption characteristics similar to the 

condition where Langmuir parameters indicated lower values of the volume constants. At higher 

pressures, the isotherm presents itself to be asymptotic, gradually increasing the rate of 

desorption at lower pressures, typically less than 300 psi. Possible reasons for such behavior are 

discussed in section 4.4.1. 
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Given that, for isothermal conditions, the sorption of coal is a function of number of sorption 

sites available, increase in specific surface area suggests an increase in the number of sites 

available for sorption. The microbial action is believed to create new pore spaces, or enlarge 

existing pore space available. Since the microbes need carbon in coal to produce methane, 

ultimate analysis of the baseline and treated coals were performed. The data illustrated in Table 

4.3 suggests that there has been a steady decrease in the carbon content of treated coal. The 

untreated coal presented itself with ~70% carbon content and, with gradual methanogenesis, the 

carbon content in coal treated for thirty and sixty days reduced by ~15% and 17% respectively. 

Such a change is indicative of the increase in pore space of coal due to methanogenesis as 

represented by the increased surface areas. 

4.4.3 Extended Langmuir Isotherm 

The isotherm, as explained by equation 14, and pertinence to this study, has two 

components: methane and CO2. The Extended Langmuir (EL) equation is generally viewed as a 

correlation, rather than an accurate physical model with theoretical basis. The results of gas 

production for coal treated for thirty days had ~ 27% undetected gases, in addition to methane 

and CO2. Normalizing such a high fraction of undetected gases into methane and CO2 fractions 

would be erroneous. However, data from coal treated for sixty days had ~2% of undetected 

gases, making it possible to achieve acceptable results for multi-component sorption using 

methane and CO2. The fractions of methane and CO2 were then normalized to a cumulative value 

of 100% and the Extended Langmuir isotherm model was used for the coal sample treated for 

sixty days. 

Figure 4.11 above provides the extended Langmuir isotherm, where the normalized free 

gas composition is 66.2% methane and 33.8% CO2, which is representative of the gas produced 
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after methanogenesis. For CBM production, it is seen that, if CO2 is detected during initial 

production, its percentage increases over the course of production. The problem with CO2 is that 

it reduces the calorific value of the produced gas. Hence, when dealing with high percentages of 

CO2, it is necessary to apply separation techniques before the produced gas can be brought to 

pipeline quality. The EL isotherm model, which is capable of providing compositional 

information over the production period can, therefore, be used to set up the required separation 

techniques. 

 

4.5 Diffusion 
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Figure 4.11: Extended Langmuir isotherm for coal treated for sixty days. 
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 As discussed in section 4.3.1, the results indicate a negative correlation between pressure 

and coefficient of diffusion for both methane and CO2 for all three coals tested. Such trends are 

in agreement with the studies by past researchers. Kumar (2007) successfully linked such trends 

to the Kilinkenberg effect and matrix shrinkage phenomenon.  In his correlation to the 

Klinkenberg permeability, where at high pressures, there is crowding of gas molecules in rock 

fractures making the gas molecules along the fracture surface are practically immobile, the 

permeability approaches that of liquids. At low pressures, the gas molecules slip along the 

surface of the fractures, the slippage adding to the permeability of the medium. Hence, with 

decrease in pressure, there is an apparent increase in permeability. Kumar postulated a similar 

relationship for diffusion of methane in coal with one difference, where the value of D flattens 

out in the high pressure regime. When the gas pressure is high, there is a large number of gas 

molecules trying to diffuse out of the matrix, resulting in increased inter-molecular resistance 

and low diffusivity. As the gas continues to desorb from the matrix, there is a reduction in 

pressure and the number of molecules diffusing out, resulting in lower resistance to its 

movement and, hence, increased diffusivity. 

 The variation in the value of D can, therefore, be assumed to be dual in nature, where its 

value remains constant at high pressures, retaining a positive value, which may be extremely 

low. However, once the gas pressure is reduced, the value of D starts to increase with continued 

desorption of gas. This was explained mathematically as: 

𝐷 =  𝐷𝐷   for 𝑃 < 𝑃𝐷       (35) 

where, the gas pressure (𝑃) is above the pressure when gas desorption is significant (𝑃𝐷), and 

𝐷 = 𝐷𝐷 + 𝑏
𝑃𝑚

⁄   for 𝑃 < 𝑃𝐷       (36) 
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when gas desorption becomes significant. The value of “𝑏” is expected to be constant for a 

particular coal type and gas. 

 The measured values of D in this study were plotted as a reciprocal of gas pressure, as 

shown in Figures 4.12 and 4.13 for methane and CO2 cycles respectively. One apparent 

difference between the Klinkenberg permeability plot and the Klinkenberg diffusion plot is that 

the value of D approaches a negative value at high/infinite pressure when the measured results 

are extrapolated, a physical impossibility. For practical and applicability reasons, the 

experiments in this study were performed only up to 1000 psi, and it was found that, at high 

pressure, the value of D flattened out, confirming the dual behavior of the diffusion coefficient. 
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Figure 4.12: Klinkenberg plot showing D as a function of methane pressure for the three coals 

tested. 
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The diffusion coefficients for CO2 were found to agree well with the Klinkenberg 

diffusion hypothesis. Methane diffusion rates, on the other hand, although related positively with 

the reciprocal pressure, the R2 value of the regression fit was < 0.9 in all cases. The best fit for 

both methane and CO2 cycles were observed for coal treated for sixty days and the fit got 

progressively poorer for coal treated for thirty days and untreated coal respectively. 

Another explanation, as pointed out by Kumar, for the negative correlation between the 

diffusion coefficient and pressure, was based on drawing an analogy with the permeability-

pressure variation. Typically, there is shrinkage of coal matrix with continued desorption, which 

has been found to be universally true for all coal types (Harpalani and Chen, 1995). Illinois basin 

coals have also been shown to exhibit increase in permeability with matrix shrinkage (Zutshi, 

2004). For diffusion at the micropore level, as gas pressure decreases, shrinkage of coal matrix 
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Figure 4.13: Klinkenberg plot showing D as a function of CO2 pressure for three coals tested. 



71 
 

results in decreased space in the micropores, that is, an increase in pore size. As this occurs, 

movement of methane in the matrix is eased, resulting in an increase in diffusivity. The 

relationship between pore size distribution and diffusion, reported by researchers in the past 

(Radovic, 1991) supports this argument since an increase in pore size results in an increase in the 

value of D. 

 The trend in the variation of the value of D for untreated coal was in agreement with the 

studies reported by past researchers, where CO2 exhibited higher values than methane. The 

highest diffusion rate for CO2 was almost five times higher than that for methane. With 

continued bio-conversion, there was in increase in the values of D. For methane at low pressures, 

the value of D was almost18 times higher than for coal treated for thirty days and 25 times higher 

for coal treated for sixty days at ~50 psi. For pressures below 400 psi, the diffusion coefficient 

for both treated coals was ~15 to 20 times higher than for untreated coal. The estimated value of 

D for CO2 was also higher for treated coals than for untreated coal. The change in values of D 

was twice that for coal treated for 30 days as well as 60 days, compared to that for untreated 

coal. Basically, the difference between the two treated coals was very small. The comparison 

between the values of diffusion coefficient between methane and CO2 for treated coal was an 

aberration from the studies reported in the past. Figures 4.14 (a) and (b), illustrating the values of 

diffusion coefficient for methane and CO2 sorption for untreated coal and coal treated for 60 

days respectively, provides a good understanding of the trend in the results. 
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Figure 4.14 (a): Comparison of diffusion coefficient for methane and CO2 for untreated coal. 
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sixty days. 



73 
 

4.5.1 Possible Explanation Using Non-monotonic Size Dependence of Effective Diffusion 

Constant 

a. Diffusion  

As illustrated in Figure 4-15, for a molecule of assumed spherical radius 𝑟, the 

Einstein-Stokes equation relating the effective diffusion coefficient is as follows: 

𝐷𝑒 =  
𝑘𝑇

6𝜋𝜂𝑟
         (37) 

where, 𝐷𝑒 is the effective diffusivity, 𝑘 is the Boltzmann constant, 𝑇 is the temperature, 

and 𝜂 is the viscosity of the fluid. At constant temperature, the term 
𝑘𝑇

6𝜋𝜂
 is a constant. The 

Einstein-Stokes equation thus becomes: 

𝐷𝑒 ∝  
1

𝑟
          (38) 

 

 Figure 4.15: A tube with identical periodic dead ends with entry radius of ‘a’ and a 

diffusing particle of radius ‘r’. (adapted from Dagdug et al. (2008)) 
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 The above relation suggests that the diffusing particle with a larger diameter will 

have a slower rate of diffusion. In a coal environment, the molecular diameters of CO2 

and methane are represented by different models. The Lennard-Jones theory estimates 

methane to have a diameter of 3.751 Å, and CO2 to have a diameter of 3.615 Å 

(Kurniawan et al., 2006). The kinetic diameter, which is the geometry optimized diameter 

of a continually moving set of gas molecules, trackable using computational geometry 

models of kinetic structure of gases, and is a reflection of the smallest effective 

dimension of a given molecule, of methane is 3.8 Å and, for CO2, it is 3.3 Å (Cui et al, 

2004). Given that the methane molecule is larger than CO2 in, the diffusion characteristics 

of baseline coal, which is in agreement with the trends of the past studies, is found to 

comply with the Einstein-Stokes equation. 

 Dagdug et al. (2008) conducted experiments to determine the diffusion 

characteristics of spherical particles in a tube with periodic dead ends. The microporous 

structure of coal can be considered as a tube, from which constricted periodic tubes 

branch out and terminates as the pore itself. Figure 4-15 depicts such a model 

representing the pore structure in coals. In the series of experiments performed, it was 

concluded that the effective diffusion coefficient was inversely related to the size of the 

diffusing particles, as indicated by the Einstein-Stokes equation. This was found to be 

true for cases when the radius (size) of the constricted entries/tubes, ‘𝑎’, was either much 

larger or smaller than the radius (size) of the diffusing particles. In essence, 

𝐷𝑒 ∝  
1

𝑟
   for 𝑟 ≪ 𝑎 and 𝑟 > 𝑎 
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For tube and pore entry diameters of size comparable to the size of the diffusing 

particles, it was found that values of 𝐷𝑒 noticeably deviate from the Einstein-Stokes 

relation. The deviation is a non-monotonic function of 𝑟, where particles of larger radii 

were found to have a higher value of diffusion coefficient. Such deviating behavior was 

also observed to be a function of the dead-end geometry. When the dead ends have no 

cavities, i.e., purely cylindrical with long ends, diffusion coefficient was found to comply 

with equation (38). When cavities are present, the dependence of 𝐷𝑒(𝑟) was found to be 

non-monotonic for arbitrary lengths of the connecting channels. 

Scientifically, this study establishes that, under certain cases, it is possible for 

larger particles to diffuse faster compared to smaller particles. This is because a larger 

particle, methane molecule in our case, cannot enter the dead ends and spends all the time 

diffusing along the tube axis. The smaller particles, on the other hand, waste time 

travelling in the dead ends and diffuse along the constricted entries for a fraction of the 

total observation time. Micropores in coals are classified to be < 20 Å, with a modal 

value of 10 Å. With such distribution of pore sizes, it is expected that the pore entries, 

which are generally even more constricted than the end pores, can be smaller or much 

larger than the size of gas molecules, and might also be of the same size. Some of the end 

cavities of the pores might be well developed and some similar to the ends of a long 

cylindrical tubes. Thus, with reference to the results obtained from the diffusion 

experiments in this study, it can be concluded that, during the process of bio-conversion, 

the pore structure of coal changed in such a way that the diffusion paths facilitated longer 

diffusion times for CO2 molecules. Figure 4.14 (b), which compares the values of D of 

methane and CO2 of coal treated for sixty days provides an indication of such a change. 
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b. Sorption 

The non-monotonic behavior can be used to explain the trends in the sorption 

behavior of treated coal. As previously discussed, and observed in Figures 4.1 through 

4.6, the Langmuir constants for sorption were found to increase, reflecting the availability 

of larger areas for sorption. In spite of the increasing trend exhibited, for the experimental 

pressure range, the amount of methane adsorbed by the coal treated for thirty days was 

considerably lower than the amount sorbed by untreated coal. The coal treated for sixty 

days presented similar trends for pressure lower than 400 psi. Similar trends were not 

very noticeable for sorption of CO2, which is attributed to the fact that coal has a higher 

affinity towards CO2 than for methane.  The rate of CO2 adsorption at lower pressures is 

much higher than methane, and thus CO2 covers the monolayer of the sorption sites 

rather earlier and at a faster pace. This is in agreement with the work completed by 

previous researchers. Given that methane and CO2 are adsorbed on the surface of coal, as 

suggested by the non-monotonic behavior of diffusing particles, it is inferred that 

methane molecules during early stages of sorption start adsorbing onto the surface of the 

pore entries and not the pore itself. Given that the porous structure of coal is what 

provides the enormous surface areas that is available for sorption, the amount of gas 

sorbed during the initial period of sorption is limited to the entries and, therefore, lower 

than the amount that would sorb if the methane molecules had unrestricted access to the 

entire pore geometry. The diffusion characteristics of the untreated coal is indicative of 

such unrestricted entries. 

The theory above is supported by the following hypothesis that microbes, while 

consuming coal, will have more access to the wider entries that have periodic constricted 
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entries branching from them. It is believed that consumption of coal, resulting in 

increased surface area is predominantly from these entries, making sorption on these 

surfaces easier compared to the surface present in virgin coal. Constricted entries make it 

difficult for the microbes to avail the pore cavities with large surface areas. The 

unavailability of such areas is also indicated by the reduced rates of gas generation over 

time, in spite of the substantial amount of carbon remaining in the sample, as indicated by 

the ultimate analysis results. 

Given that sorption of gases on coal is considered to have mono-layer coverage, 

sorption would continue as long as there are sufficient sorption sites available. Thus, it is 

expected that, with increasing pressures, once the surface of the entries are filled with 

sorbed molecules, gas molecules will eventually diffuse into the pores due to an increase 

of Brownian collisions. The amount adsorbed would, therefore, continue to increase with 

pressure, even if the pore entries are filled. The experimental results obtained to date 

support this hypothesis. For coal treated for sixty days, such behavior was observed at 

pore pressures >400 psi, below which, only the entries were being filled up, resulting in a 

smaller volume adsorbed compared to the baseline value. Coal treated for thirty days was 

just starting to exhibit similar behavior at the highest experimental pressure. Beyond 

1500 psi, as suggested by Figure 4.10, coal treated for thirty days is expected to exhibit 

behavior similar to that treated for sixty days. Finally, this behavior can be the result of 

the experimental procedure followed when establishing sorption isotherms.  The sample 

is allowed to equilibrate for one day after every pressure step change. Given the nature of 

data, it is expected that, if given infinite time, the amount of gas sorbed would eventually 
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increase until equilibrium is attained. The nature of the plots for methane for the three 

coals tested would then be expected to be similar to that observed for CO2. 

While hysteresis during desorption has traditionally been related to capillary 

condensation and change in moisture content of the sample under laboratory conditions, 

the levels of desorption hysteresis for methane in this study has not been reported in the 

literature. While the Langmuir sorption theory assumes that each of the sorption site has 

an equal probability of being occupied by ad/de-sorbing gas, the non-monotonic 

dependence of 𝐷𝑒(𝑟) observed adds another factor to the desorption behavior in the 

experimental results. Given the shape of pore entries, it is possible that, during 

desorption, the amount of Brownian collisions among desorbed molecules within the pore 

cavities restricts them from traveling from the pores into the connecting flow path. This 

might result in preferential desorption of gas molecules sorbed on the walls of the pore 

entries since this would have a smaller path to travel in order to reach the free state, 

where the density of the gas is that of the bulk phase density. This would result in smaller 

amounts to be desorbed at high pressures and the isotherm would continue to be 

asymptotic even as it approaches lower pressures. With decreasing number of molecules 

at lower pressures, the Brownian collisions would decline and the desorbing amount 

would increase. This argument holds for the desorption patterns observed for coal treated 

for thirty and sixty days. 

4.6 Potential Impacts of the Observed Trends 

a. Sorption 

Sorption capacity of the coals tested was found to increase with continued bio-

conversion. For a monolayer coverage of adsorbed gases, increase in sorption capacity is 
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indicative of increased surface area available for sorption. Data from the calculation of 

surface area available for sorption is in agreement with such a change. Treating coal 

seams as a reservoir for these coalbed gases, an increased sorption capacity implies 

increased reservoir storage capacity for the stored/produced gases. The effects of this can 

be manifold: 

i) CBM wells, which are depleted or nearing depletion, are normally characterized by 

rubblized, high permeability coalbeds. Given that there is pre-existing well infrastructure, 

it might be possible to feed such coal seams with microbial solutions and nutrient 

amendments, or nutrient amendments alone, to simulate methanogenesis in the local 

microbial populations. Under optimum conditions, this would enable producing coalbed 

gases from depleted wells by bio-conversion. Given sufficient time, and the increased 

sorption capacities of the coal, it might be possible to initiate long-term production of 

coalbed gases, in excess of the previously documented storage capacities under 

traditional conditions. Given the nascency of the study, further work is required to 

establish the techno-economic feasibility of such an operation. 

ii) Microbial gasification can be used to convert coal wastes to methane. Such methods have 

been studied using laboratory-scale models. The results obtained are positive, suggesting 

setting up pilot-scale reactors for the same. Although it is unlikely that such reactors will 

operate under high pressures at pilot/initial stages, higher sorption capacity will facilitate 

longer periods of gas production given sufficient time for methanogenesis. The results 

obtained from the EL isotherm, discussed earlier, can be used to set up proper separating 

facilities at different stages over the production period. 
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b. Diffusion 

 The rates of diffusion, as indicated by the variation in the value of diffusion 

coefficient, has been found to increase with continued microbial gasification. Baseline 

coal presented trends similar to those reported by prior researchers, where the values for 

CO2 was higher than that for methane. Increase in the value of D resulted in a change in 

the trend for treated coal, where diffusion rates for methane were higher than that for 

CO2.  

(i) The value of the diffusion coefficients are used as an input parameter, although 

indirectly, as sorption time (𝜏), which is the time required by retrieved cores to desorb 

63% of the gas in place. The sorption time is an input parameter for production modeling 

in CBM reservoirs. The sorption time is typically considered a constant parameter and 

increasing values of diffusion coefficient with declining reservoir pressures is not 

included in any simulation exercise. Kumar (2007) studied the effect of treating this as a 

dynamic parameter over the duration of production. Figure 4.15 illustrates the 

underestimated production values as a result of considering this as a constant. Increasing 

the values of the diffusion coefficient gradually results in increased production capacities, 

especially during the late stages/low pressures, all other parameters remaining constant. 

Although simulation was  not carried out as a part of this study, extrapolation of the 

previous simulated results suggests that there considerable increase in production of 

methane from CBM wells is possible if the coal is treated with microbial consortia aimed 

to simulate methanogenesis as a result of improved rates of diffusion. 
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ii) Illinois basin has not been prolific in terms of CBM production. Most basins classified 

similarly have very low values of permeability. However, permeability in the Illinois 

basin is categorized as average to good. CBM production in the Illinois basin is plagued 

by very low rates of diffusion. The trends observed in the study point towards the 

potential of overcoming this bottleneck of low diffusion rates by treating coal with 

suitable microbial consortia. Methanogenesis would thus result not only in re-charging 

depleted coal, but also improve the producibility over a period of time. 

Figure 4.15: Comparison of two cases where, a) normal simulation run for 800 days, 

and b) where diffusion coefficient variability is taken into account, Kumar (2007) 
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4.7 Summary 

In this chapter, trends in the variation of sorption-diffusion properties of methane and 

CO2 on coal treated with microbial consortia were established. From the observed results, it is 

concluded that, due to increased rates of diffusion, there is a definite change in the pore structure 

of coal. This change was confirmed to be positive by the nature of the isotherms of treated coal, 

which suggested increased availability of pore surface areas available for sorption. The nature of 

results also established an additional factor affecting the desorption hysteresis in coals, selective 

desorption of molecules from sites in the pore entries rather than the sites in the pores cavities. 

The nature of the diffusion data was also found to be in agreement to the Klinkenberg diffusion 

model, suggested by Kumar. Finally, possible impacts of such changes on CBM applications 

have been discussed.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 Based on the results of experimental work and theoretical analyses, the following 

conclusions are made: 

1. Sorption capacity of the coal tested was found to increase with continued bio-conversion. 

Hence, new surface area is created as a result of bio-conversion. However, at lower 

pressures, the volume sorbed did not change significantly. This is attributed to the fact that, at 

lower pressures, sorption of methane is limited to the surface of the pore entries and not the 

pore cavities, which get filled slowly. It is hypothesized that microbes consume carbon more 

from the entries, thus increasing the surface area along the sides of these entries. A gradual 

increase in the sorption capacity with increasing pressures for treated coals is indicative of 

the filling of the pore cavities, which offer larger surface areas to sorption. 

2. Desorption of methane from coal surface exhibited significant hysteresis. The hysteresis 

effect resulted in an asymptotic isotherm at higher pore pressures and significant desorption 

at lower pressures. It is believed that, at high pressures, increased Brownian collisions within 

the pore cavities prevent the molecules to diffuse from the pore cavities, allowing them to 

exist in the free state. This results in preferential desorption from the pore entries, where only 

a small volume of gas is sorbed. At lower pressures, the gas eventually desorbs from the pore 

cavities, where large volume of gas is stored. 

3. The diffusion coefficient for baseline coal exhibited behavioral trends similar to that reported 

earlier, where diffusion rate for CO2 was higher than that for methane. After bio-conversion, 

the overall rates of diffusion increased and the results contradicted the expected trend, where 
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diffusion rates of methane were higher than CO2. Such behavior is adequately explained by 

the non-monotonic size dependence of effective diffusion coefficients. 

4. The diffusion data obtained from the experiments was fit to the Klinkenberg model, as 

hypothesized by Kumar (2007). The baseline coal provided relatively poor fit for the model, 

especially for sorption of methane. Sorption of CO2 fitted the Klinkenberg model extremely 

well. The fit of the model became progressively better with increased bio-treatment of coal. 

This suggests that the model, as hypothesized by Kumar, is applicable more to gases which 

are sorbed rather strongly on coal surfaces, or on coals which have higher sorption capacities. 

5. The study by Zhang et al (2015) was successful in formulating methods to produce methane 

from coal by simulating methanogenesis using suitable nutrient amendments. From a CBM 

perspective, wells which are depleted or nearing depletion, can be treated with suitable 

microbial consortia. Given sufficient time and amendments for the production of biogenic 

gas, the increased sorption capacities of treated coals are indicative of the potential of long-

term production of coalbed gases. 

6. Increased rates of diffusion can have a significant impact in basins like Illinois, where low 

production rates have plagued reservoirs with moderate to good permeability. Extremely low 

rates of diffusion have proved to be the bottleneck to commercial CBM production. Increase 

in the value of diffusion coefficient suggest that, at low pressures, the production would 

increase significantly. Methanogenic treatment in such conditions can thereby result not only 

in recharging depleted coal seams, but opening up the possibility of having more 

economically producing reservoirs over a period of time. 

Based on experience gained in this study, the following topics of research should be 

pursued further: 
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1. The non-monotonic dependence of effective diffusivity to the size of diffusing molecule 

needs to be studied in more detail. Approaches similar to dynamic light scattering 

experiments can be conducted to measure the Brownian motion and relate it to the size of the 

particle by correlating it with the Einstein-Stoke equation. Other approaches, such as, 

microscopy shape analysis, small angle X-ray scattering and mercury porosimetry, can also 

be applied. 

2. Surface energy levels are an important factor affecting the sorption of gases on coal. Given 

the chemical treatment of coal to simulate methanogenesis, chemical change is a distinct 

possibility. Measuring the change in the surface energy levels and associated chemical 

changes was beyond the scope of this study. Future researchers are encouraged to study these 

effects. 

3. Given that there is evidence of enhancement of diffusion properties of Illinois coal, different 

approaches to enhance the in situ permeability of Illinois coal should be studied in detail. 

Pressure-dependent-permeability studies can be carried out on coal cores post bio-conversion 

in order to obtain flow characteritics in the macropore network of coal. Coupling this flow 

characteristics in micropores, as estimated in this study, would provide a complete picture, 

providing input parameters to model flow behavior for possible future in situ bio-conversion 

production wells. 

4. Given the nascency of the study, most conclusions with regards to the applicability of this 

study to future potential biogenic CBM wells require extensive techno-economic analysis 

prior to application of such methods. 
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