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  AN ABSTRACT OF THE THESIS OF  

RABINDRA KARKI, for the Master degree in Molecular Biology, 

Microbiology and Biochemistry, presented on 6/18/2014, at Southern Illinois 

University Carbondale. 

TITLE: REGULATION OF GLUCOSE METABOLISM BY Alox8 

MAJOR PROFESSOR:  Dr. Daotai Nie 

Type II diabetes is one of the leading cause of morbidity in the U.S. and other parts of the 

world. Insulin resistance which precedes Type II diabetes is a complex state of the body where 

the body fails to respond to insulin. Its complexity lies in its multifactorial origin that is to say 

various environmental and polygenic components come into play. Here we try to dissect one of 

these components – ‘Alox8’ in transgenic mice and try to see if it affects blood glucose 

homeostasis. Comparison of glucose tolerance and insulin sensitivity among sixteen mice 

comprising of six wild type, five heterozygous and five knockout mice with respect to Alox8 

gene showed that wild type mice had relatively more glucose tolerance than knockout mice and 

this corresponded with relatively more insulin sensitiveness of wild type mice with respect to the 

knock out. However, these findings were not significant statistically at p=0.05. In search of any 

relevant biological significance, periodic acid schiff staining of the liver sections from these mice 

in three independent repeated experiments revealed that the knockout phenotype led to 

accumulation of glycogen deposits as compared to the wild type mice an indication of insulin 

resistance. 

Taken together, our data suggests that these findings when extrapolated to human which 

carries ALOX15B instead of mice orthologue Alox8, could lead to a benefit of administration of  
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lower doses of insulin in the wild type phenotype as compared to its polymorphic alleles carrying 

individuals. 
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                        CHAPTER 1 

                    INTRODUCTION 

1.1) Metabolism of Arachidonic acid  

“Eicosanoids” (Greek: eikosi – twenty) are metabolites of 20 C polyunsaturated fatty 

acids (PUFAs) generated primarily due to the action of three distinct enzymes : Lipoxygenases 

(LOXs), Cyclooxygenases (COXs) and Cytochrome P450 (CYP)  which we collectively propose 

to be called as “ Eicoxygenases”  on arachidonic acid (AA) (1).  The biosynthesis of eicosanoids 

in mammalian cells generally begin due to the activation of phospholipase A2 (cPLA2α) which 

releases the substrate AA from sn-2 position of glycerophospholipids (2, 3) of the cell membrane 

(1, 4, 5) in response to various stimuli (6) that usually occur under inflammatory conditions (5) 

such as growth factors , cytokines (5,7) oxidative stress, complement C5b-9, hypoxia, 

mechanical stretch, endothelin, angiotensin II,  vasopressin (7) and wound (8) ( figure 1). 

LOX enzymes occur in various forms of life including bacteria (9, 10), fungi, plants and 

animals (11) but not in archaea (12).  LOX (EC. 1.13.11.12) consists of single polypeptide chain 

of MW ~ 75-80 kDa (12) folded into two domains: a noncatalytic N-terminal β- barrel domain 

and a catalytic C-terminal domain (10, 12). The non-heme iron is held in the catalytic domain of 

the enzyme by interaction with conserved histidines ( H361, H366, H541, H545) and a 

conserved carboxylic group of isoleucine moiety at the C- terminal end (11,12). Oxidation of the 

iron to ferric state is required for catalysis (12), figure 2. 
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Fig.1 Fate of AA due to the action of “ eicoxygenases” .   

 

 

                                                     

Fig. 2 A 3D structure of 15-LOX showing N-terminal β- barrel domain and a C-terminal 

catalytic domain and a non heme iron shown as a purple  ball (Adapted from Kuhn et al., 2002).  
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Seven genes encode LOXs in mouse whereas six homologues and an expressed 

pseudogene (ALOX12P2) exist in humans (5, 12, 14) figure 3. 

 

Fig.  3 Comparison of lipoxygenase gene family between two species viz. Mouse and Human. 

            These non-heme iron containing enzymes carry out the insertion of hydroperoxy group 

(13) into  cis double bonds (12) or 1Z, 4Z- pentadiene moieties of polyunsaturated fatty acids 

(10) like AA (7, 15) and linoleic acid (14) with varying stereoconfiguration (S or R) (16). 

According to the position of insertion in AA, these are classified as 5-LO, 8-LO, 12 LO and 15-

LO (15, 16, 17). The initial reaction of LOXs with AA, results in corresponding 

hydroperoxyeicosatetraenoic acid (5-, 8-, 12- or 15- HPETE)  whereas with linoleic acid (LA) 9- 

or 13-hydroperoxyoctadecadienoic acid are produced which undergoes further reduction by 

glutathione peroxidase to yield hydroxyeicosatetraenoic acid (5-, 8-, 12- or 15- HETE) (1) and 

hydroxyoctadecadienoic acid (9-or 13-HODE) respectively (9, 19) .   
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Fig. 4 Metabolism of AA via Lipoxygenase pathway.  

            LOX generated products act in an autocrine or paracrine fashion via interaction with G 

protein coupled cell surface receptors and nuclear receptor – peroxisome proliferator activated 

receptors (PPARs) (18). Activation of LOXs have been noted in numerous health conditions like 

atherosclerosis (14), diabetes (19, 20) and vascular remodelling (14). Based upon 

carcinogenicity, LOXs are classified as procarcinogenic which includes 5-, 8-, and 12- LO or 

anticarcinogenic (15-LO-2) (16). Hydroxyeicosatetraenoic acids (HETEs) and leukotrienes (LTs) 

are the two major metabolites derived from LOX action upon AA (3, 15) . HETEs can activate 

protein kinase C (PKC) and mitogen activated protein kinases (MAPK) and thereby activating 
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key transcription factors that promotes expression of genes involved in growth and inflammation 

(7). 

            The 5-LO which with the help of 5-LO activating protein (FLAP) interacts with AA 

(4,12,15) and metabolizes the latter into 5- (S)-HPETE ( 5-hydroperoxyeicosatetraenoic acid) 

which under further metabolism yields 5(S)-HETE ( 5(S)-hydroxy-6,8,11,14- eicosatetraenoic 

acid) (7) and LTA4, a precursor of downstream LTs (4). LTA4 under hydrolysis yields LTB4. 

LTA4 further can conjugate with glutathione to form cysteinyl-LTs (cysLTs), LTC4, LTD4 and 

LTE4 (1,15, 21). As the name suggests, leukotrienes are the major products in white blood cells 

like eosinophils, monocytes/ macrophages, neutrophils and mast cells and they exert 

proinflammatory effects by inducing production of proinflammatory cytokines and also 

recruiting inflammatory cells in nearby tissues (1,15). 

            12-LO oxygenates polyunsaturated nonesterified fatty acid to produce 12-HPETE and 12-

HETE (22). Three different types of 12- LO exists viz. leukocyte, platelet and epidermal (12, 15) 

which differ in sequence, catalytic activities and function (12). 12-LO is often designated by its 

stereoconfiguration as in 12R-LOX or 12S-LOX (12).  12(S) - HETE is a major LOX product in 

the pancreatic islet where it induces β-cell death (15).  12-LO products promote atherogenesis by 

enhancing the interaction of monocytes with vascular endothelium and participates in oxidative 

modification of lipoproteins and membrane lipids (24). 

            15-LO-1 (reticulocyte/ leukocyte 15-LO-1) metabolises AA into 15(S) HETE and lipoxin 

(LX) and occurs in polymorphonuclear leukocytes (PMNs), reticulocyte, eosinophils and airway 

epithelial cells (18). With LA, the product is 13-HPODE (13- hydroperoxyoctadecadienoic acid) 

and 13-(S)-HODE (hydroxyoctadecadienoic acid) (19, 20). One remarkable feature of 15-LO-1 

is that it can convert LTA4 into LXs (1).  LXs are believed to be involved in wound healing and 
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resolution of inflammation unlike other eicosanoids which provoke the inflammatory process (1). 

Mammalian 15-LO-1 is known to play a significant role in the maturation of red cell by causing 

peroxidation of membrane lipids and thereby inducing structural changes. Besides it is also 

known to initiate atherosclerosis by oxidation of low density lipoprotein (LDL) (12). 15-LO-1 

preferentially, does the conversion of linoleic acid to 13(S)-HODE and is known to have 

procarcinogenic role (16). 

 15-LO-2 (epidermis type) unlike 15-LO-1 converts AA exclusively to 15(S)-HpETE and 

15(S)-HETE and occurs in prostate, skin and lung (23), cornea but absent in pheripheral blood 

leukocytes (11). 15-LO-2 shows only a partial sequence homology to 15-LO-1 and is remarkably 

distinct from the latter when it comes to chemical and enzymatic properties. Its role is speculated 

in relation to skin functionality and prostate cancer (11). 

            Human and rabbit reticulocyte 15-LO-1 as well as the murine/ rabbit leukocyte- type 12-

LO have high homology and share a common enzymatic activity and hence are classified under 

12/15 LO especially in rat and mouse (11, 17, 18). There exists no separate gene for leukocyte-

type 12-LOX in humans. However separate genes encoding for both reticulocyte type 15-LO-1 

and leukocyte type 12-LO exist in case of rabbit.  Gene sequencing studies show that these 

isoforms share >99 % identity implying they might be the result of gene duplication (11). 12/15 

LO unlike other LOXs can insert molecular oxygen at 12th and/or 15th position in AA (20:4) 

thereby producing corresponding hydroperoxide. Whereas with LA (18:2) the insertion occurs at 

9th and/or 13th positions (24).  In humans and rabbit  12/15 LO activity results in 15-HPETE as 

the dominant product hence the enzyme is preferably called as 15- LOX  whereas, in case of rat, 

mouse, pig and cow,  12-LO  activity is the dominant one (12, 14). The substrates for 12/15 LO 

may be either free unsaturated fatty acids or fatty acids in phospholipids and cholesteryl esters 
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(18, 26). Peroxidation of polyunsaturated fatty acids present in the biomembrane causes 

alteration in the membrane structure contributing to cellular remodeling (14). 12/15 LO occur in 

dendritic cells, differentiated macrophages, inflamed endothelial and smooth muscle cells and in 

some tumors (26). 12/15 LO in mammals regulate MAPK, PKC, small GTPases like Ras and 

Rho A and NF-kB (26). 12/15-LO can mediate oxidation of LDL promoting atherosclerosis 

(7,8).   

            In mouse, AA when metabolized by 8(S)- lipoxygenase (8-LO) leads to the formation of 

8-hydroperoxy-5,9,11,14- eicosatetraenoic acid (8-(S)-HPETE) which is further reduced to 8(S)-

HETE. Based on sequence identity, structure and chromosomal location, human epidermis type 

15(S)-LO-2 which is located in chromosome 17p13.1 is considered as the orthologue of mouse 

8-LO located in chromosome 11, central region although they insert dioxygen at different 

positions .  However, the gene encoding 8-LO is designated as Alox 15b commemorating 15-LO-

2 encoding ALOX 15B of humans. 8(S)-HETE in rats and mice has been detected in corneal 

epithelium and skin like its human orthologue 15-LO-2  . 8(S)-HETE plays a role in terminal 

differentiation of keratinocytes (25). 

            Prostanoids are  arachidonic acid derived metabolites due to the acting upon by the 

enzyme –cyclooxygenase (COX/PTGs) which by itself exists in two isoforms viz. COX-1 and 

COX-2 (8,25,28,29,30) . COX-1 is encoded by cox-1 gene whereas cox-3 splice variant and cox-

2 encode COX-2 (30).  Besides being regulated post-transcriptionally, STAT-1, STAT-3, NF-kB, 

NF-IL6 induce COX-2 via cis-acting elements whereas other stimuli upregulate cox-2  via 

cAMP- response element (CRE), peroxisome-proliferator-activated receptor-responsive element 

and CCAAT enhancer (26). The two isoforms have comparable activity albeit expressed 

differentially with cox-1  being constitutive in most tissues and cox-2  being inducible 
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(1,7,8,15,25,28,29,31,32). However, recent findings show that cox-2  is constitutive in kidneys 

(2,22,25), brain, tracheal epithelium, some endothelial cells (25) and pancreatic islets 

(7,15,31,33,34).  COX-1 performs housekeeping functions as in cytoprotection of the gastric 

mucosa, regulation of platelet aggregation (8) and renal water balance (25). However, COX-2 is 

involved in pathophysiological processes like angiogenesis, inflammation and tumorigenesis and 

is induced by mitogens, inflammatory mediators (8) hyperglycemia (27, 29) lipopolysaccharides 

and chemicals (34). AA gets converted first to prostaglandin (PG)G2 via bis-oxygenase activity 

of the enzyme which is then subsequently converted to endoperoxides (PGH2) due to peroxidase 

COX- activity (8) which upon further acting by specific synthases yields respective prostanoids/ 

prostaglandins like : prostacyclin (PGI2), thromboxane A2 , prostaglandin D2 (PGD2), 

prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) (28, 32).  Five G-protein coupled seven 

transmembrane receptors are engaged in interacting with prostanoids. These are: DP, EP, FP, IP, 

and TP which interact with prostaglandins D2, E2, F2α, I2 (prostacyclin) and thromboxane A2 

respectively (4).  Some prostanoids however may engage with nuclear receptors such as PPAR δ 

and PPAR γ. There are four subtypes of EP receptors viz. EP1, EP2, EP3, and EP4. The G-protein 

coupled signaling cascade initiated by each prostanoids is distinct. For instance, EP3 receptor 

interaction to an inhibitory G protein reduces cyclic adenosine monophosphate (cAMP) 

synthesis. Whereas IP, DP, EP2 and EP4 receptors coupled to stimulatory G protein results in 

signaling cascades due to increasing cAMP  rather than inducing calcium mobilization as with 

TP, FP, and EP1 receptors.  Depending upon the type of prostanoids and receptor interactions, 

the role played by prostanoids is diverse (8).  The biosynthetic pathways for prostanoids is 

shown in figure 5 below (28). 
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 Fig.5 Biosynthetic pathways for prostanoid from arachidonic acid.   

            CYP monooxygenases, first described in 1980 consists of two enzymatic pathways-the 

epoxygenases and the hydroxylases (2,34). Epoxyeicosatrienoic acids (EETs) are metabolites of 

AA  due to the action of epoxygenases and are endothelial in origin and plays diverse spectrum 

of roles from activating Ca
2+

 -sensitive K
+
 channels thereby inducing hyperpolarization  (29, 30, 

31) based vascular dilatation of coronary, renal and cerebral arteries to anti-inflammatory effects 

in such tissues (32) and  proliferation of endothelial, epithelial and smooth muscle cells (33, 38). 

The four cis- regioisomers of EETs (based on location of double bond across which epoxide is 

added)  that are produced from AA by the action of cytochrome P450 (P450 or CYP) 
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epoxygenases of 2C and 2J classes (34) in the presence of NADPH and oxygen (52) are : 5,6-

EET, 8,9-EET, 11,12-EET, and 14, 15-EET (6,36,38,41) which gets metabolized via β-oxidation 

into shorter chain fatty acids and  vicinal-dihydroxyeicosatrienoic acids ( DHETs) by soluble 

epoxide hydrolase (sEH ) in mammalian system (38, 43). Each EET regioisomer exists in two 

enantiomeric forms based on how epoxide group is attached to the double bond viz. R/S and S/R 

thus giving rise to eight different EETs each with different biological effects (42). Whereas the 

epoxygenases results in EETs from AA metabolism, ω- hydroxylases belonging to the classes 

CYP4A and CYP4F (22) in extrahepatic tissues also lead to the formation of 7-, 10-, 12-, 13-, 

15-, 16-, 17-, 18- HETEs and 19- and 20- hydroxyeicosatetraenoic acids (19- and 20-HETE) 

(2,36,42). Because of various cardiovascular protective effects of EETs, the therapy for treating 

such cardiovascular diseases is centered on targeting sEH and thereby stabilizing EETs (36). The 

summary of CYP based metabolism of AA is depicted in figure 6. 

 

Fig. 6 Metabolism of AA via CYP pathway.  
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1.2) Diabetes 

            According to International Diabetes Federation, the global prevalence of diabetes was 

382 million in the year 2013.  Hyperglycemia due to insulin secretory defect or failure of insulin 

action or both results in diabetes mellitus   and under chronic conditions leads to damage or 

dysfunction  of eyes, kidneys, blood vessels, heart, nerves (35, 36).  Various risk factors of 

diabetes are: sedentary life style, hypertension, dyslipidemia, family history of diabetes, history 

of gestational diabetes and polycystic ovary syndrome (37). Diabetes often leads to poor 

prognosis of cardiovascular diseases like atherosclerosis and hypertension (7, 38, 39, 40, 41) and 

renal diseases (42).  > 700, 000 annual deaths in the U.S. are attributed to diabetes induced 

cardiovascular diseases and further it has been estimated that the subclinical states of glucose 

intolerance will increase (50) 40% death risk due to cardiovascular complications in adults as 

compared to 110% risk among overt diabetics  independent of other risk factors for 

cardiovascular diseases (49).  It has been estimated that the global burden of diabetes would be 

increased to 439 million adults by 2030 and this would be mainly due to increase in cases among 

developing countries rather than in developed countries.  The reason being obvious decrease in 

physical activity but increase in obesity (43). Impaired glucose tolerance (IGT) is common ( 1.5 

times Type II diabetes) in the U.S. accounting 11.2% adults of age 20 to 74 years (44).  IGT but 

not impaired fasting glucose (IFG) has been identified to be an independent risk factor for 

cardiovascular diseases (45). However, IFG and IGT are used to predict risk of developing 

diabetes (46, 105) as they occur as an intermediate stages in the natural history of diabetes 

mellitus (47). Hyperglycemia induces mitochondria to overproduce reactive oxygen species 

(ROS) which leads to induction of tissue damages through following five pathways: 1) increased 

formation of intracellular AGEs (advanced glycation end products) 2) increased expression of 
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the receptor for AGEs and its activating ligands 3) activation of protein kinase (PK) C isoforms 

4) increased flux of glucose and other sugars through the polyol pathway  and 5) hexosamine 

pathway overactivity (31, 46). 

1.2.1) Type I diabetes 

            Type I diabetes also known as insulin dependent diabetes mellitus (IDDM) or juvenile 

onset diabetes accounts for 5-10% of all diabetics results from immune attack to the pancreatic 

beta cells (45, 48). Increase in autoantibodies to insulin, glutamic acid decarboxylase (GAD65 ) , 

tyrosine phosphatases IA-2 and IA-2β (45),  carboxypeptidase-H, islet cell antigen (ICA)-69, 

GM gangliosides and SOX13 (59)  are markers of beta cells destruction . Both genetic and 

environmental factors come into play in the onset of Type I diabetes (59, 105).  

            The onset of Type I diabetes is characterized by infiltration of inflammatory cells (29,49, 

50) particularly CD4
+
 and CD8

+
 T cells, monocytes and macrophages (31, 58, 59) which release 

various cytokines like IL-1 β that induce expression of COX-2 that result in production (35) of 

proinflammatory mediators like  prostaglandins and thromboxanes  and iNOS (inducible nitric 

oxide synthase) that produce NO radical.  It is due to these metabolites that leads to destruction 

(34,62) and apoptosis of pancreatic islets (51) . 70-80 % of β cell mass is lost in type I diabetes 

(52). Affected individuals depend upon exogenous source of insulin for life and are at high risk 

of developing serious cardiovascular and microvascular complications (60). 

1.2.2) Type II diabetes 

            Around 285 million adults globally suffer from type II diabetes (105) also known as adult 

onset diabetes (45).  This form of diabetes which is most prevalent account approximately 90-

95% of total diabetics (45). Type II diabetes or non-insulin dependent diabetes mellitus is a result 
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of insulin resistance and β- cell dysfunction (35,53, 54, 105). The latter process encompasses 

phenomena like: loss of glucose sensing and thereby decrease in glucose stimulated insulin 

secretion (GSIS), increased basal insulin secretion, decrease in insulin content of the islet, altered 

gene transcription, changes in intracellular signaling intermediates (65) and loss of β- cell mass 

(35, 65). It has been observed that there is 25- 50 % loss of β- cell mass in Type II diabetes (15) 

but this is not due to autoimmune destruction (45). Initially, there is hyperinsulinemia to 

maintain normoglycemia  but later on due to progressive insulin resistance and β- cell destruction 

leads to hyperglycemic state (15). Chronic exposure to elevated levels of glucose and free fatty 

acid (FFA) induce β- cell apoptosis particularly via ER-stress which is independent of  IL-1β, 

NF-kB or NO  and is unique from β- cell death during type I diabetes (64).  However, some 

study has shown that elevated level of glucose also has been shown to induce IL-1β production 

by the beta cells and there by leading to their own apoptosis (29) this contrast with other findings 

where no induction of IL-1β due to high glucose was noticed (64).  

            Release of insulin under glucose stimulation by the pancreatic beta cells is a biphasic 

process. The first phase that lasts 10-15 minutes is extremely dependent upon elevated level of 

intracellular [Ca
+2

]i level. Whereas the amplifying signals resulting from glucose metabolism 

initiates the second phase and is less oscillatory [Ca
+2

]i dependent. Partial or complete defect in 

the first phase of insulin secretion marks the onset of type II diabetes whereas defect in second 

phase occurs secondary but is prominent too (66). Although type II diabetic patients, have 

normal level or elevated level of insulin at the baseline, they cannot respond to higher glucose 

level due to defect in insulin secretion (45).  

            Type II diabetes is a major risk factor for health complications like hypertension, 

cardiovascular diseases, dyslipidemia, infections, renal failure, blindness and amputations due to 



 
 

14 
 

microvascular complications (45, 105). Obesity is often associated with type II diabetes (15, 55). 

However, a distinct link of genetic trait to this form of diabetes has not been delineated (45). 

1.3) Mode of Insulin action 

Insulin acts by binding to the growth factor receptor tyrosine kinases subfamily of cell 

surface receptor which includes insulin receptor (Insr), type I insulin-like growth factor (IGF) 

receptor (Igf1r) and Insr-related receptor (Irr). Although being an structural analogue, the roles 

played by these receptors vary although intracellular signaling cascades coincide, with Insr 

being involved in fuel metabolism and Igf1r in growth. Insulin, Igf1 and Igf2 activate the former 

two receptors but not the third one making it an orphan receptor (56).  The glucose homeostasis 

maintenance due to insulin is a result of its pivotal role intertwined among metabolism of three 

major nutrients: carbohydrate, protein and fats by acting upon liver, muscle and fat cells. Insulin 

stimulates liver cells to uptake glucose and store as glycogen but at the same time preventing 

gluconeogenesis and glycogenolysis. Whereas in case of muscle and fat cells, it stimulates 

uptake, storage and use of glucose. 

            Upon binding of insulin to its receptor, the tyrosine residue of the intracellular region of 

the receptor gets phosphorylated thus activating receptor tyrosine kinase activity. This activity 

leads to phosphorylation of protein tyrosine which inturn initiates a signaling cascade. Of interest 

is the phosphorylation of serine kinase at the serine residue. This activates the latter which 

phosphorylates protein phosphatase 1 at the serine residue and activates it. The activated, protein 

phosphatase1 has dual functions: first, it dephosphorylates the glycogen synthase~Pi to glycogen 

synthase which causes increase in glycogen synthesis and second, there occurs 

dephosphorylation of phosphorylase kinase~Pi to phosphorylase kinase which leads to inhibition 

of glycogenolysis. This occurs usually in the liver and muscle cells where as in case of fat cells, 
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lipogenesis is encouraged, this tissue specific discrepancy is due to the fact that there occurs 

disparity of enzymes involved in the lipogenesis among these tissues with much abundance of 

these enzymes occurring in the fat cells (57) (figure 7).  

            The binding of the insulin to its receptor also initiates other signalling pathways that are 

of interest. For instance, the activated tyrosine receptor activity leads to the phosphorylation of 

Src and Insulin receptor substrate (IRS) which inturn activate GRB2.  GRB2 and SOS, two 

exchange factors then form a complex which inturn activate Ras          Mitogen activated protein 

(MAP) kinase pathway thereby stimulating growth and proliferation of cells.  The IRS          

phosphatidylinositol-3-kinase (PI3K) pathway leads to activation of downstream kinases like 

pdk1 which in turn phosphorylates and activates serine/ threonine kinases like isoforms of Akt. 

Akt inturn phosphorylates, glycogen synthase kinase 3 (Gsk3), cGMP-inhibitable 

phosphodiesterase b and Foxo transcription factors which leads to stimulation of glycogen 

synthesis, inhibition of lipolysis and gene expression. PI3K has been stated as necessary but not 

sufficient cause for glucose transporter translocation. A new PI3K independent pathway for 

insulin dependent uptake of glucose is based on activation of protooncogene c-Cbl. It is believed 

that this or related pathway aids in glucose transporter recycling by remodeling cortical actin 

filaments with possible involvement of atypical myosin isoforms (68). 

1.4) Lipoxygenases and diabetes 

            12/15-LO has been shown to induce production of proinflammatroy cytokines and cause 

reduction in beta cell mass thereby causing type I diabetes in mice (60).  12-LO in mice makes 

pancreatic islets more sensitive to cytokines and enhance nitric oxide synthesis in peritoneal 

macrophage and thereby induce type I diabetes (58). 12-LO products have been implicated in the 

pathogenesis of both type I and type II diabetes. It has been demonstrated that 12-(S)- HETE 
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induce apoptosis in beta cells (15,17). However, no literature exists regarding the role of Alox8 

in glucose metabolism or diabetes.  Further, the goal of the study was also supported by the fact 

that PPARα which is an endogenous ligand for 8(S)-HETE gets down regulated in zucker 

diabetic rats implying that 8-LO might play anti-diabetic role (8) . Hence to understand the role 

played if any by 8-LO in glucose homeostasis in mice, this study was conducted.  The study 

revealed a biologically significant role of this enzyme in maintaining lower blood glucose level 

in mice. 
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                  CHAPTER 2 

               MATERIALS AND METHODS 

2.1) Animals 

            Wild type (WT) mice C57BL6 and Alox8 
-
/
-
 knockout (KO) mice were obtained from the 

Jackson Laboratories.  These mice were used for breeding and the heterozygous off springs were 

interbred further to generate the KO mice required for the experiment. The mice were housed at 

room temperature under controlled light comprising 12: 12  (light : dark ) cycle under pathogen 

free conditions with free access to normal feed ( Purina Lab Diet 5001, Gateway Lab Supply) 

and water all the time. Mice were housed usually 1-3 per cage but not more than 5.  All 

procedures including were carried out with total compliance to the guidelines of the National 

Institutes of Health and as per the protocols that were reviewed and approved by the committee 

on the Use and Care of Laboratory Animals (LACUC) of Southern Illinois University School of 

Medicine Springfield, Illinois. 

2.2) Genotyping 

            Weaning and genotyping of the mice were carried out at the age of 21 days. Tail tissue was 

used to obtain DNA. Briefly, mice were anesthetized and tail tip less than 5 mm were sterilized 

and snipped off using a pair of sterilized scissors. The downstream extraction was done 

according to the protocols of available commercial kits (ArchivePure DNA Cell/Tissue and 

Tissue Kits, 5 PRIME). For genotyping following primers were used: Alox8wtF - 5’CCC AGA  

AAT ACA AAG  GTT  TAG  ATT TT-3’ ;  Alox8wtR- 5’AGA CAA ATT GGT ACG GGG 

AAT GG-3’ and  Common-LoxP-F— 5’ GAG  ATG  GCG CAA CGC AAT TAAT-3’ ;  CSD-

Alox8-R— 5’ AAG GCT CCT ACA GGT CTC TTT TGA CC-3’ . The PCR product size for WT 
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was 700 bp whereas  for KO it was 350 bp  using the above sets of primers. The PCR cycling 

conditions used were as follows: Initial denaturation  at 92 ºC for 2 minutes followed by 34 

cycles of  denaturation at 92 ºC for 30 seconds , annealing at 56 ºC for 30 seconds and extension 

at 72 ºC for 40 seconds followed by a final elongation at 72 ºC for 5 minutes.  GoTaq® qPCR 

Master Mix  ( Promega) was used for the process. 

2.3) Intraperitoneal Glucose tolerance test (IPGTT) 

            Age matched male mice (59) were fasted for 16 hours prior to the conduction of the test.  

The mice had however access to the water. On the test day, the weights of the mice were taken. 

Tip of the mouse tail was surfaced sterilised by wiping with 70% ethanol and then with a sterile 

razor blade, the tail was incisioned just enough to collect 5- 10 ul of blood from the tail vein . 

Baseline blood glucose was noted. Then the mice were injected peritoneally with glucose 

solution made in sterile 0.9 % normal saline. Whereas the control mice received only 0.9 % 

normal saline. The amount of glucose injected was at the rate of 2mg/ gram body weight or 1mg/ 

gram body weight depending upon the experimental purpose. However, no more than 200 μl of 

solution in toto was injected. After injection, the same tail wound was scrapped for further blood 

glucose testing every 5 min, 15 min, 30 min, 60 min and 120 min respectively. All the readings 

were noted. ReliOn® Prime glucose meter was used for the process.  

 

2.4) Intraperitoneal Insulin tolerance test (IPITT) 

            Age matched male mice (71) were fasted for 5 hours prior to the conduction of the test.  

The mice had however access to the water. On the test day, the weights of the mice were taken. 

Tip of the mouse tail was surfaced sterilised by wiping with 70% ethanol and then with a sterile 

razor blade, the tail was incisioned just enough to collect 5- 10 μl of blood from the tail vein . 
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Baseline blood glucose was noted. Then the mice were injected peritoneally with porcine insulin 

(Sigma-Aldrich ) solution made in sterile 0.9 % normal saline. Whereas the control mice 

received only 0.9 % normal saline. The amount of insulin injected was at the rate of 0.5 U/ Kg 

body weight . However, no more than 200 μl of solution in toto was injected. After injection, the 

same tail wound was scrapped for further blood glucose testing every 5 min, 15 min, 30 min, 60 

min and 120 min respectively. All the readings were noted. ReliOn® Prime glucose meter was 

used for the process. 

 

2.5) Histopathology 

            Mice from the three genotypes were euthanized and then sacrificed by cervical 

dislocation. Then immediately liver tissue was isolated and then fixed in 10 % formalin and then 

embedded in paraffin. The embedded blocks were sectioned at the thickness of 4 μm for staining 

via H & E (HE), periodic acid-schiff (PAS) and PAS- diastase (PASD) methods. And the 

readings were taken at the same exposure of light. 

 

2.6) Statistical Analysis 

            Mean body weights and ages of the mice were compared among the genotypes by using 

unpaired Student’s t-test. Area under curves (AUCs)   were compared by using One- way 

analysis of variance (ANOVA).  Values were expressed as mean ± SEM.  P value of   ≤ 0.05 was 

considered to be significant. 
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    CHAPTER 3 

      RESULTS 

3.1) Genotyping 

            All the mice were genotyped as per the protocol mentioned in the materials and methods 

section at the inception of the experiment. A representative genotyping profile of the three 

different genotypes is shown in figure 8. 

 

3.2) Alox8 -/- mice has lower glucose tolerance 

            Sixteen mice with the following distributions: WT = 6; Het = 5 and KO = 5 were taken 

for the IPGTT.  The age and weight distribution of the mice are shown in table 1.  One-way 

ANOVA for the age distribution of the mice among the three different genotypes showed no 

significant difference, p = 0.87. However, the weight distribution showed a significant 

difference, One-way ANOVA p= 0.017 with the KO mice being slightly heavier than the WT. 

The blood glucose levels at various time points of the IPGTT for these mice is shown in table 2. 

The same thing is depicted in the form of line curve to see the dynamics of blood glucose levels 

with time in the three genotypes (figure 9). 

            Mean area under curve (AUC) values obtained from the glucose tolerance is shown in   

table 3.  One-way ANOVA analysis of AUCs showed insignificance in blood glucose 

distribution among the three genotypes with p value of 0.124.  However, there was a slightly 

higher glucose level trend among the KOs as compared to the WT mice (figure 10). 
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3.3) Alox8 
+/+

 mice are comparatively more responsive to insulin than the KO 

            Sixteen mice with the following distributions: WT = 6; Het = 5 and KO = 5 were taken 

for the IPITT.  The age and weight distribution of the mice are shown in table 4.  One-way 

ANOVA for the age distribution of the mice among the three different genotypes showed no 

significant difference, p = 0.88. However, the weight distribution showed a significant 

difference, One-way ANOVA p= 0.058 with the KO mice being slightly heavier than the WT. 

            The blood glucose levels at various time points of the IPITT for these mice is shown in 

table 5. The same thing is depicted in the form of line curve to see the dynamics of blood glucose 

levels   with time in the three genotypes ( figure 11). 

            Mean drop in blood glucose level five minutes after IPITT in three genotypes is shown in  

table 6. One-way ANOVA analysis of these mean drop in blood glucose level among three 

genotypes at five minutes time point after insulin administration showed insignificance with p 

value of 0.717. However, a rapid drop in blood glucose level among the WT mice as compared 

to the KOs was observed although statistically invalid (figure 12). 

 

3.4) Histology 

            The pictures of the liver sections obtained from the three different genotypes of mice are 

shown as figures 13 and 14.  The sections were stained by HE, PAS and PASD. HE staining of 

the liver sections showed no significant changes in the cell or nuclear morphology (figure 13).  

However, a trend in PAS stain intensity was observed among three genotypes in all three 

repeated batch of independent experiments (figure 14). 
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     CHAPTER 4 

              DISCUSSION 

            Diabetes is a costly (partly because it is chronic) disease that claims huge economic loss 

to a nation (15, 60, 105) . In its subclinical stages, the disease is manifested in the form of 

impaired glucose tolerance or impaired fasting glucose (45, 47). All these together have been 

proved to be an independent risk factors for various cardiovascular (7, 48, 52, 70) and 

microvascular complications leading to severe health consequences like neuropathy  , 

retinopathy (45), renal complications (52), amputations and so on (46) .  Various genetic (eg. 

PPARγ, ABCC8, KCNJ11, CALPN10 for type II diabetes) (61) and environmental factors have 

been linked to the predisposition of this malady (64). The important environmental factors that 

are linked strongly to diabetes are obesity and physical inactivity (54). Due to unhealthy diets , 

obesity, population growth and advancement in technologies, that causes  reduction in physical 

activity in our daily lives, a increase in prevalence in diabetes in the upcoming years particularly 

in the developing nations has been predicted (54, 72).  

            Lipoxygenases particularly 12-LO (24, 70) and 12/15- LO (7, 60) have been correlated to 

cause type I diabetes. And this has led us to the belief that 15-LOX 2 might possibly play some 

role in glucose homeostasis. Here in this study, we tried to study the role of  Alox8 gene, which 

is a mouse orthologous for human 15-LO2, in glucose metabolism if there exists any. 

           Our hypothesis was also supported by the fact that our  KO mice had significantly higher 

baseline blood glucose level than the WT ( p = 0.0072) (  Supplementary table 7). We began the 

study by looking for tolerance for glucose among the three genotypes. As shown in fig. 9, the 

trend in glucose metabolism over time were similar for both the WT and KO mice.  Also, the 
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AUC for blood glucose level for KO was higher as compared to the WT although not statistically 

valid (p =0.124) (figure 10). 

            We further tried to figure out if this poor tolerance of glucose in KO mice was due to 

resistance to insulin in this cohort of mice.  For this we carried out insulin tolerance test, the 

trend in level of blood glucose after insulin administration is shown in figure 11.  There are 

controls ( 0.9 %  PBS) which shows increase in blood glucose level after injection in mice , this 

is due to the fact that trauma due to injections cause release of hormones like cortisol which 

leads to elevated blood glucose level .  Since the half-life of insulin is ~ 10 minutes in mice, we 

tried to see if there is some effect of insulin within the first 15 minutes after its administration 

(71).  Since the trend lines among the two genotypes showed some remarkable difference at 5 

minutes and 15 minutes time points (fig. 11), we performed statistical analysis to see if the 

difference was significantly valid. However, difference in drop of blood glucose levels at both 

the time points of 5 minutes and 15 minutes revealed insignificance in the nature of data with 

corresponding one way ANOVA p values of 0.717 and 0.528 respectively. However, in 

conformity to the glucose tolerance test trend line, there was a slightly higher drop in blood 

glucose level among the WT mice as compared to that of the KO mice 5 minutes after insulin 

administration (figure 12). This data tells us that insulin may have biological significance in 

lowering blood glucose level among the WTs although not valid statistically. 

            Next we tried to question why was this effect of insulin acting so differently among the 

two, otherwise seemingly comparable, genotypes?  The reason for this insulin resistance (IR) 

may be various. One clear reason for IR is obesity (26, 62, 63, 64).  There occurs macrophage 

infiltration and inflammation (26,76) in the adipose tissue, this leads to inactivation of IRS by 



 
 

24 
 

cytokine-activated JNK, IKKβ and SOCS ultimately causing resistance to insulin action. 12/15-

LO has also been shown to cause infiltration of macrophages to adipose tissue and thereby 

causing release of proinflammatory cytokines ultimately leading to whole body insulin resistance 

(26). Besides storage of excess calories in the form of fat , adipose tissue is a metabolically 

active site for synthesis and release of bioactive compounds like proinflammatory cytokines 

(TNF-α, IL- 1β, IL6, MCP1) , leptin, resistin, adiponectin, PAI-1, acute phase reactants, 

angiotensin II and so on . And it has been known that some of these compounds in high dose 

leads to the development of IR ( 65, 66, 67). FFA which increases with obesity is known to 

induce IR and drugs like thiazolidinediones (TZDs) are based on increasing insulin sensitivity by 

causing oxidation of FFA and thereby lowering their content. One mechanism of IR due to high 

FFA is believed to be due to intramyocellular and intrahepatic accumulation of triglycerides and 

metabolites of FFA reesterification pathway such as long chain Acyl-CoAs and diacylglycerol 

(DAG). And it has been shown that DAG leads to activation of protein kinase C (a serine 

threonine kinase) isoforms which cause decrease in tyrosine phosphorylation of the IRS thereby 

inhibiting the insulin signaling pathway. Also it has been known that FFA in adipocytes leads to 

oxidative stress by generating reactive oxygen species which causes deregulated generation of 

proinflammatory cytokines which participates in IR.  Further, FFA in adipocytes, liver cells and 

pancreatic beta cells is known to cause ER stress which then activates JNK that leads to IR (78). 

Leptin, a fat derived hormone reduces intracellular fat accumulation. Hyperleptinemia, occurs 

early in obesity due to resistance of extra adipose tissues to leptin and thereby leading to lipid 

accumulation and lipotoxicity which promotes IR (68). Low –grade chronic inflammation is 

associated with IR and type II diabetes, and IL-6 which is produced during such inflammation 

has been known to interfere with the Insuin receptor downstream signaling leading to IR in liver 
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and adipose tissues (69). Study has shown that cells overexpressing 12/15-LO leads secretion of 

osteopontin and MCP-1 that cause IR (15). The existence of similar phenomenon cannot be 

denied with 8-LO.  Lipocalin 2 that is produced from adipocytes, is known to be an independent 

risk factors for inflammation, IR and diabetes (79). It has now been realized that any obesity 

inducing genes are also the culprits for induction of IR (80).  In   this study although the mice 

from three different genotypes were of comparable weights at the time of weaning (data shown 

as supplementary, tables 8 and 9 and figure15 ) there was significant difference in the weights of 

the mice at the time of experiment ( i.e. mice aged over 200 days) as mentioned previously.  So, 

we think that the IR seen in this study might be due to increase in obesity in KO mice as 

compared to the WT mice. However, we were unable to perform body composition analysis at 

the moment. 

            The other possibility for impaired insulin action in KO mice relative to WT might be due 

to defect in insulin receptor interaction. To elucidate the mechanism we performed glucose 

tolerance test again, but this time we halved the concentration of glucose administered i.e. 1mg 

per gram body weight of the mice. The age and weight distribution of the mice are shown as 

supplementary tables 10 and 11. There were no significant difference in weights and ages of the 

mice (one way ANOVA, p > 0.05). Comparison of AUC for glucose tolerance showed that WT 

mice were less glucose tolerant that the KO (figure 16) although this difference was not 

statistically significant (one –way ANOVA p= 0.315). This finding is just the opposite of what 

we found with administration of 2 mg/ gm BWt. of glucose (figure 10). One way of explaining 

this anomaly is by taking into account of insulin –receptor interaction constant Kd. We know that 

IR leads to hyperinsulinemia (47, 69, 70,75) here we assume the hyperinsulinemia is 

compensatory due to defect in insulin receptor interaction instead of other usual causes of IR. 
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Thus when 1mg per gram body weight of glucose is administered to the mice during IPGTT,  the 

hyperinsulinemia in the KO mice gets rid of the excess glucose effectively than the WT mice 

which may have relatively less insulin flowing in the blood stream. But this is not the case when 

glucose is injected at the rate of 2 mg per gram body weight of the mice. In this case since the 

receptor insulin interaction is better in WT mice as compared to the KO, the effectiveness of 

insulin is more pronounced in the former although both the mice might have optimum or 

equivalent amount of insulin produced ( figures 10, 12 and 16).  However, we could not measure 

insulin levels during the tests.  And there may also be a possibility that, signalling pathway 

downstream of insulin receptor interaction may have gone defective instead, which needs 

verification in future studies. 

            One important reason for the non-significant nature of the data presented in this study is 

due to the biased expression of Alox8 in mice tissues.  It is highly expressed in corneal 

epithelium however its mRNA has been detected in lung, colon, brain, footsole, forestomach or 

hair follicles (27).  Also, antitumorigenic role of Alox8 has been explored in relation to skin (9).   

Based on availability of data at present, we have no evidence that Alox8 is highly expressed in 

liver, skeletal muscle or adipose tissue, the hot spots for the glucose storage and insulin action. 

Furthermore, its orthologue 15 LO-2 has been known to be highly expressed in platelets rather 

than any other sites (www.genecards.org).  On these grounds, it is plausible to state that Alox8 

might play a biologically significant but statistically invalid role in lowering blood glucose level 

in mice.  

          Inaddition, PAS staining which is specific for glycogen showed a trend in the liver sections 

. Usually PAS staining can stain nonspecifically, hence to sort out specific binding with 

glycogen, PAS staining is followed by PASD after which only nonspecific stain will remain. 

http://www.genecards.org/
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Hence, comparing the two staining slides we can figure out if glycogen was stored in the tissue.  

In our triplicate repeats of PAS (D) in three different genotypes of mice, the storage of glycogen 

was non-uniform (fig. 14). In case of row A, WT mice had highest glycogen storage intensity 

followed by KO and then Het. Whereas in case of rows B and C, there was an increase in 

intensity gradient while moving from WT to Het to KO with KO mice having the highest and 

WT mice with lowest PAS intensity. The reason for this discrepancy is obvious. WT liver 

responds to insulin better than the heterozygous or KO liver. This notion is also supported by the 

fact that liver from 80 % of diabetic patients often suffers from glycogen accumulation possibly 

due to long run of insulin insufficiency (71, 72).   Further, in our three batches of independent 

experiments (A, B and C) only B and C gave the repetitive pattern of glycogen accumulation in 

liver, this is due to the fact that the role of Alox8 in lowering blood glucose is biologically 

significant but not statistically. 
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   CHAPTER 5 

           CONCLUSION 

 

            Type II diabetes which comprises approximately 95% of all the diabetic cases is a costly 

disease. The most amenable way of combating the disease is by taking life style modification 

therapy where people with the illness is suggested for consuming a balanced diet and taking a 

regular exercise (67).  Besides there are currently available drugs that induces insulin sensitivity 

like Biguanides (Metformin) and TZDs (105) .  Taken together our data suggests that KO mice is 

less responsive to insulin than the WT mice implying that the findings when extrapolated to 

human subjects may require less insulin administration in 15 LO-2 diabetics as compared to 

those carrying its polymorphic alleles. However, such claim requires further validation. 
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       TABLES 

 

Table 1.  Distribution of ages and weights among the three genotypes. 

    Average     

Genotype No. Wt. (gms) Age (days) Std. Wt. Std. Age 

WT 6 30.67 288 2.16 25.56 

HET 5 34.7 296.6 2.01 24.39 

KO 5 33.46 287 1.91 43.41 

      

 

 

Table 2.  Blood glucose levels among the three genotypes during IPGTT. 

 

  Baseline 5 min 15min 30min 60min 120min 

 WT 117.67 238.17 372.17 266.5 158 97.83 

 WT-C 107 160.33 156.67 164.67 121.33 96 

Het 116.8 289.6 465.4 395 286.4 143.2 

Het-C 142 201.6 179.8 199.2 161.8 153 

KO 124.8 246.2 372.4 305.2 217.6 119.2 

KO-C 129.8 160.8 166 181.8 156 108.8 
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Table 3.   Mean AUC among the three genotypes during IPGTT. 

Genotype n AVG Std 

WT 6 8653.75 4548.8 

Het 5 20337 14737.4 

KO 5 12072.5 3218.69 

 

 

Table 4.   Distribution of ages and weights among the three genotypes. 

 

    Average     

Genotype No. Wt. (gms) Age (days) Std. Wt. Std. Age 

WT 6 33.48 301.17 2.81 24.79 

HET 5 37.18 310.2 2.36 24.72 

KO 5 35.84 301.8 1.49 44.22 
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Table 5.  Blood glucose levels among the three genotypes during IPITT. 

  Baseline(B) 5 min 15 min 30 min 60 min 120 min 

WT 108.33 116.5 111.67 110.33 116.5 150.5 

WT-C 135.33 192.67 200 203.67 168.83 138.83 

Het 172.8 176.8 178.4 135.2 170 166.8 

Het-C 182.6 223.2 249.8 254.6 206 171 

KO 156.4 193.6 164 175.4 221.2 186 

KO-C 156 230 275.8 246.8 176.8 167.6 

 

 

 

Table 6.   Mean drop in blood glucose level among the three genotypes five minutes after insulin 

administration via intraperitoneal route. C- control, T- test. 

 

 

∆ 5min (C-T) AVG SE 

WT 76.17 25.09 

Het 46.4 43.49 

KO 36.4 36.98 
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      FIGURES 

 

 

 

  Fig. 7 Mode of insulin action in liver cell.   
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Fig. 8  Genotyping 

 

 

Fig. 9  Dynamics of blood glucose level with time among three genotypes during IPGTT. Error 

bars denote  ± SEM  and  n =  6, 5, 5 for WT, Het & KO resp. . C stands for control of the 

respective genotypes. 
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Fig. 10 AUC analysis of data obtained from IPGTT. Error bars denote ± SEM and  n =  6, 5, 5 

for WT, Het & KO resp. . 
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Fig. 11 Dynamics of blood glucose level with time among three genotypes during IPITT. Error 

bars denote  ± SEM  and  n =  6, 5, 5 for WT, Het & KO resp. . C stands for control of the 

respective genotypes. 
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Fig. 12  Drop in blood glucose level five minutes interval after insulin administration  among 

three genotypes during IPITT. Error bars denote  ± SEM  and  n =  6, 5, 5 for WT, Het & KO 

resp. . 

 

 

 

 

-20

0

20

40

60

80

100

120

WT Het KO

WT

Het

KO

  
  
  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

  
  
  
  
  

  
  
  
  
  

D
ro

p
 i

n
 b

lo
o
d
  
G

lu
co

se
 a

t 
5
 m

in
 (

m
g
/d

l)
 

                      
      
           Drop in blood  Glucose at 5 min (mg/dl) 



 
 

37 
 

               

               

Fig. 13 Representative H & E staining of liver sections from three different genotypes. 

                 

Fig. 14 PAS (upper row) and PAS-digestion (lower row) staining of liver sections from three 

different genotypes. (A, B & C denotes three different batches of experiments and + denotes 

degree of PAS intensity ). Magnification 4X. 
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Fig. 16 AUC analysis of data obtained from IPGTT ( 1mg/gm BWt.) . Error bars denote ± SEM 

and  n =  6, 5, 5 for WT, Het & KO resp. . 
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     APPENDIX-A 

         SUPPLEMENTARY 

GTT 

 

 

 

 

 

 

WT 

 
Age(days) Sex 

Weight(gms
) 

Baseline(B
) 5 min 15 min 30 min 60 min 120 min 

 
266 Male 31 111 244 296 226 183 98 

 
266 Male 31 84 264 331 250 169 79 

 
266 Male 27 162 217 279 233 146 88 

 
321 Male 30 151 242 331 334 191 126 

 
314 Male 33.6 82 265 577 278 111 101 

 
295 Male 31.4 116 197 419 278 148 95 

AVG 288 #DIV/0! 30.67 117.67 238.17 372.17 266.5 158 97.83 

Std 25.56 #DIV/0! 2.16 
      n 6 

 
SEM 13.58 10.92 45.47 16.18 11.96 6.49 

Control WT 

 
Age(days) Sex Weight(gms) Baseline(B) 5 min 15 min 30 min 60 min 120 min 

 
266 Male 31 89 193 139 174 95 96 

 
266 Male 31 112 106 136 134 112 101 

 
266 Male 27 103 175 156 136 94 82 

 
321 Male 30 120 166 159 240 228 105 

 
314 Male 33.6 81 144 120 147 99 101 

 
295 Male 31.4 137 178 230 157 100 91 

AVG 
   

107 160.33 156.67 164.67 121.33 96 

Std 
         n 6 

 
SEM 8.39 12.71 15.78 16.22 21.49 3.43 
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Het  

 
Age(days) Sex Weight(gms) Baseline(B) 5 min 15 min 30 min 60 min 120 min 

 
322 Male 36.4 108 342 479 323 172 129 

 
266 Male 37.2 102 219 285 291 161 124 

 
314 Male 34 97 264 444 346 374 113 

 
276 Male 33.4 94 393 600 600 526 257 

 
305 Male 32.5 183 230 519 415 199 93 

AVG 296.6 #DIV/0! 34.7 116.8 289.6 465.4 395 286.4 143.2 
Std 24.39 #DIV/0! 2.01 

      n 5 
        

   

SEM 16.72 33.64 52.05 55.15 71.25 29.11 

Control Het  

 
Age(days) Sex Weight(gms) Baseline(B) 5 min 15 min 30 min 60 min 120 min 

 
322 Male 36.4 120 154 206 138 137 107 

 
266 Male 37.2 96 133 169 142 142 94 

 
314 Male 34 136 191 139 249 168 138 

 
276 Male 33.4 122 240 197 151 171 290 

 
305 Male 32.5 236 290 188 316 191 136 

AVG 
   

142 201.6 179.8 199.2 161.8 153 
Std 

         n 5 
 

SEM 24.36 28.61 11.90 35.68 9.96 35.27 
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KO 

 
Age(days) Sex Weight(gms) Baseline(B) 5 min 15 min 30 min 60 min 120 min 

 
322 Male 36 87 318 335 200 130 101 

 
322 Male 34.6 103 251 474 352 134 104 

 
221 Male 32 131 309 298 283 366 108 

 
266 Male 33.4 97 180 255 296 199 132 

 
304 Male 31.3 206 173 500 395 259 151 

AVG 287 #DIV/0! 33.46 124.8 246.2 372.4 305.2 217.6 119.2 
Std 43.41 #DIV/0! 1.91 

      n 5 
        

   

SEM 21.57 30.71 48.64 33.09 44.01 9.65 

Control KO 

 
Age(days) Sex Weight(gms) Baseline(B) 5 min 15 min 30 min 60 min 120 min 

 
322 Male 36 81 118 108 103 133 96 

 
322 Male 34.6 127 175 178 152 220 123 

 
221 Male 32 100 195 160 344 178 87 

 
266 Male 33.4 150 173 166 144 160 120 

 
304 Male 31.3 191 143 218 166 89 118 

AVG 
   

129.8 160.8 166 181.8 156 108.8 
Std 

         n 5 
 

SEM 19.28 13.54 17.67 41.88 21.92 7.25 
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Glucose (mg/dL) Area under the curve 

 WT 0 min 5 min 15 min 30 min 60 min 120 min Total Baseline Above Baseline 

#1 111 244 296 226 183 98 22067.5 13320 8747.5 

#2 84 264 331 250 169 79 21927.5 10080 11847.5 

#3 162 217 279 233 146 88 19972.5 19440 532.5 

#4 151 242 331 334 191 126 26220 18120 8100 

#5 82 265 577 278 111 101 23685 9840 13845 

#6 116 197 419 278 148 95 22770 13920 8850 

        

AVG 8653.75 

        

Std. 4548.80 

        

SEM 1857.04 

 

Glucose (mg/dL) Area under the curve 

 Het 0 min 5 min 15 min 30 min 60 min 120 min Total Baseline Above Baseline 

#1 108 342 479 323 172 129 27700 12960 14740 

#2 102 219 285 291 161 124 22972.5 12240 10732.5 

#3 97 264 444 346 374 113 35777.5 11640 24137.5 

#4 94 393 600 600 526 257 55562.5 11280 44282.5 

#5 183 230 519 415 199 93 29752.5 21960 7792.5 

        

AVG 20337 

        

Std. 14737.44 

        

SEM 6590.78 

 

Glucose (mg/dL) Area under the curve 

KO 0 min 5 min 15 min 30 min 60 min 120 min Total Baseline Above Baseline 

#1 87 318 335 200 130 101 20170 10440 9730 

#2 103 251 474 352 134 104 25135 12360 12775 

#3 131 309 298 283 366 108 32447.5 15720 16727.5 

#4 97 180 255 296 199 132 24355 11640 12715 

#5 206 173 500 395 259 151 33135 24720 8415 

        

AVG 12072.5 

        

Std. 3218.69 

        

SEM 1439.44 
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                    ITT 

 

 

 

 

 

 

 

 

WT 

 
Age(days) Sex Weight(gms) Baseline(B) 5 min 15 min 30 min 60 min 120 min 

 
280 Male 34.5 106 115 138 132 97 143 

 
280 Male 29.7 113 129 105 126 155 191 

 
280 Male 35.8 128 124 87 95 156 165 

 
334 Male 32.5 103 137 105 133 124 137 

 
326 Male 31.3 90 89 74 72 71 106 

 
307 Male 37.1 110 105 161 104 96 161 

AVG 301.17 
 

33.48 108.33 116.50 111.67 110.33 116.50 150.50 

SEM 10.12 
 

1.15 5.10 7.13 13.22 9.96 14.11 11.80 

Control WT 

 
Age(days) Sex Weight(gms) Baseline(B) 5 min 15 min 30 min 60 min 120 min 

 
280 Male 34.5 112 151 196 124 133 107 

 
280 Male 29.7 216 212 255 266 224 167 

 
280 Male 35.8 157 316 174 162 194 116 

 
334 Male 32.5 115 154 249 323 155 161 

 
326 Male 31.3 93 158 155 199 172 128 

 
307 Male 37.1 119 165 171 148 135 154 

AVG 
   

135.33 192.67 200.00 203.67 168.83 138.83 

   

SEM 18.25 26.32 17.31 31.27 14.50 10.27 
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   Het  

 
Age(days) Sex Weight(gms) Baseline(B) 5 min 15 min 30 min 60 min 120 min 

 
280 Male 38.8 120 236 213 186 172 157 

 
326 Male 38.6 135 116 135 152 124 122 

 
289 Male 33.2 127 164 164 119 92 173 

 
318 Male 36.8 331 202 267 114 342 241 

 
338 Male 38.5 151 166 113 105 120 141 

AVG 310.2 
 

37.18 172.8 176.8 178.4 135.2 170 166.8 

SEM 11.06 
 

1.06 39.89 20.15 27.76 14.98 44.88 20.39 

Control Het  

 
Age(days) Sex Weight(gms) Baseline(B) 5 min 15 min 30 min 60 min 120 min 

 
280 Male 38.8 144 214 292 267 265 141 

 
326 Male 38.6 226 178 174 277 220 196 

 
289 Male 33.2 150 374 307 329 189 133 

 
318 Male 36.8 195 192 285 239 192 257 

 
338 Male 38.5 198 158 191 161 164 128 

AVG 
   

182.6 223.2 249.8 254.6 206 171 

   

SEM 15.54 38.79 27.83 27.56 17.21 24.71 
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KO 

 
Age(days) Sex Weight(gms) Baseline(B) 5 min 15 min 30 min 60 min 120 min 

 
235 Male 37 126 162 170 164 315 391 

 
280 Male 36.4 155 202 110 243 215 125 

 
338 Male 35.8 211 145 179 176 168 156 

 
338 Male 36.7 161 309 199 149 266 132 

 
318 Male 33.3 129 150 162 145 142 126 

AVG 301.8 
 

35.84 156.4 193.6 164 175.4 221.2 186 

SEM 19.77 
 

0.67 15.30 30.54 14.84 17.78 31.58 51.56 

Control KO 

 
Age(days) Sex Weight(gms) Baseline(B) 

5 
min 

15 
min 

30 
min 

60 
min 

120 
min 

 
235 Male 37 128 215 341 292 176 174 

 
280 Male 36.4 196 183 210 306 174 164 

 
338 Male 35.8 162 244 229 238 246 250 

 
338 Male 36.7 178 234 250 177 153 126 

 
318 Male 33.3 116 274 349 221 135 124 

AVG 
   

156 230 275.8 246.8 176.8 167.6 

   

SEM 15.01 15.14 28.98 23.62 18.86 22.89 
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WT 

Age(days) Sex Weight(gms) 5 min(C) 5 min(T) C-T 

280 Male 34.5 151 115 36 

280 Male 29.7 212 129 83 

280 Male 35.8 316 124 192 

334 Male 32.5 154 137 17 

326 Male 31.3 158 89 69 

307 Male 37.1 165 105 60 

    
AVG 76.17 

    
SE 25.09 

 

 

 

 

 

 

 

 

 

 

 

Het 

Age(days) Sex Weight(gms) 5 min(C) 5 min(T) C-T 

280 Male 38.8 214 236 -22 

326 Male 38.6 178 116 62 

289 Male 33.2 374 164 210 

318 Male 36.8 192 202 -10 

338 Male 38.5 158 166 -8 

    
AVG 46.40 

    
SE 43.49 

 
 
 

     

 

 

WT 

Age(days) Sex Weight(gms) 
15 

min(C) 
15 

min(T) 
C-T 

280 Male 34.5 196 138 58 

280 Male 29.7 255 105 150 

280 Male 35.8 174 87 87 

334 Male 32.5 249 105 144 

326 Male 31.3 155 74 81 

307 Male 37.1 171 161 10 

    
AVG 88.33 

    
SE 21.61 
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Het 

Age(days) Sex Weight(gms) 15 min(C) 15 min(T) C-T 

280 Male 38.8 292 213 79 

326 Male 38.6 174 135 39 

289 Male 33.2 307 164 143 

318 Male 36.8 285 267 18 

338 Male 38.5 191 113 78 

    
AVG 71.40 

    
SE 21.36 

KO 

Age(days) Sex Weight(gms) 5 min(C) 5 min(T) C-T 

235 Male 37 215 162 53 

280 Male 36.4 183 202 -19 

338 Male 35.8 244 145 99 

338 Male 36.7 234 309 -75 

318 Male 33.3 274 150 124 

    
AVG 36.40 

    
SE 36.98 

KO 

Age(days) Sex Weight(gms) 15 min(C) 15 min(T) C-T 

235 Male 37 341 170 171 

280 Male 36.4 210 110 100 

338 Male 35.8 229 179 50 

338 Male 36.7 250 199 51 

318 Male 33.3 349 162 187 

    
AVG 111.80 

    
SE 29.00 
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Table 7. Comparison of baseline blood glucose levels between two genotypes after 5 hours of 

fasting during IPITT. 

WT KO 

106 126 

113 155 

128 211 

103 161 

90 129 

110   

  

Table 8.   Mean  weaning ( 21 days) weight distribution between two sexes among the three 

genotypes of Alox8 mice. 

AVG Genotype SE Std 

Wts.(gm) WT Het KO WT Het KO WT Het KO 

M 11.11 11.32 11.49 0.63 0.66 1.09 2.37 2.28 3.08 

F 11.58 11.16 10.58 0.62 0.6 0.66 2.25 2 1.98 

 

 

Table 9. Distribution of sexes among the three genotypes of Alox8 mice at the time of weaning. 

  Genotypes 

Sexes  WT Het KO 

Male 14 12 8 

Female 13 11 9 
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Table 10. Age and weight distribution among the three genotypes during IPGTT (1mg/ gm 

BWt.).  

  Average       

Genotype Wt. (gms) Age(days) No. Std Wt. Std Age 

WT 33.05 356.83 6 2.74 24.33 

HET 35.86 363.4 5 4.09 22.97 

KO 35.56 356.8 5 3.55 43.31 

 

One way- ANOVA of ages in three groups , p = 0.926 

One way- ANOVA of Wts in three groups , p =  0.355 

 

 

 

Table 11.  Dynamics of blood glucose level with time  during IPGTT ( 1mg/ gm BWt. ) 

  Baseline 5 min 15min 30min 60min 120min 

 WT 138.17 252 285.67 200.33 182.67 127.5 

Het 166.4 280.8 368.4 224.2 187.2 135.6 

KO 211.2 294.6 289.2 284.2 211 136.8 
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One way ANOVA for weights of males p= 0.941 

One way ANOVA for weights of females p= 0.553 

students' t-test for  weights in WT between sexes , p= 0.6124 

students' t-test for  weights in Het between sexes , p= 0.8663 

students' t-test for  weights in KO between sexes , p= 0.4747 

 

Fig. 15  Comparison of weights distribution between sexes among three genotypes of Alox8 

mice at the time of weaning. Error bar denotes ±SEM. For n values see table 8 above. 

 

0

2

4

6

8

10

12

14

WT Het KO

M

F

A
ve

ra
ge

s
o

f w
e

ig
h

ts
 in

 g
ra

m
s

Genotypes



 
 

61 
 

 

 

Fig. 17 Dynamics of blood glucose level during IPGTT ( 1mg/ gram BWt.). 
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                      IPGTT (1mg/gm BWt) 

 

 

 

 
Glucose (mg/dL) Area under the curve 

KO 0 min 5 min 15 min 30 min 60 min 120 min Total Baseline 
Above 

Baseline 

#1 244 283 244 297 149 119 22740 29280 -6540 

#2 132 290 202 306 158 119 22595 15840 6755 

#3 174 333 321 244 237 170 28200 20880 7320 

#4 176 274 256 239 186 111 22772.5 21120 1652.5 

#5 330 293 423 335 325 165 35422.5 39600 -4177.5 

        
AVG 1002 

        
Std. 6267.90 

        
SEM 2803.09 

 

 

 
Glucose (mg/dl) Area under the curve 

 WT 0 min 5 min 15 min 30 min 60 min 120 min Total Baseline 
Above 

Baseline 

#1 128 246 447 241 235 179 29120 15360 13760 
#2 97 228 196 132 110 92 15082.5 11640 3442.5 
#3 137 251 290 211 225 158 25462.5 16440 9022.5 
#4 168 306 282 222 165 112 22020 20160 1860 
#5 136 215 234 197 206 120 22180 16320 5860 
#6 163 266 265 199 155 104 20287.5 19560 727.5 

        
AVG 5778.75 

        
Std. 4910.37 

        
SEM 2004.65 

 
Glucose (mg/dL) Area under the curve 

 Het 0 min 5 min 15 min 30 min 60 min 120 min Total Baseline 
Above 

Baseline 

#1 142 193 263 194 177 131 21350 17040 4310 

#2 230 263 572 258 183 148 28177.5 27600 577.5 

#3 182 311 306 202 183 123 23082.5 21840 1242.5 

#4 158 359 470 272 224 116 28642.5 18960 9682.5 

#5 120 278 231 195 169 160 22065 14400 7665 

        
AVG 4695.5 

        
Std. 3959.73 

        
SEM 1770.85 



 
 

63 
 

APPENDIX-B 
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