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AN ABSTRACT OF THE THESIS OF 

 
Guanling Feng, for the Master of Science degree in Geography and Environmental 
Resources, presented on 12th May 2014, at Southern Illinois University Carbondale.  
 
TITLE: MONITORING DROUGHT IN ILLINOIS WITH A COMBINED INDEX 
 
MAJOR PROFESSOR: Dr. Guangxing Wang 
 

Many traditional drought assessments are conducted based on climate and 

hydrologic data. The availability and precision of data limit the spatial and temporal 

resolution and accuracy of derived drought indices. In this study, Vegetation Condition 

Index (VCI) and Temperature Condition Index (TCI) were generated from Moderate 

Resolution Imaging Spectroradiometer (MODIS) products. The VCI was derived from 

Normalized Difference Vegetation Index (NDVI) that was calculated with near infrared 

and visible red band reflectance from MOD09Q1. The TCI was derived from land 

surface temperature (LST) product MOD11A2. The VCI and TCI were then combined 

with reference to the vegetation coverage information from MOD44B to generate the 

modified Vegetation Health Index (VHI). The modified VHI was applied to quantify the 

intensity of drought that took place in Illinois from 2000 to 2012. The results showed that 

the modified VHI identified the major droughts that occurred in Illinois from 2000 to 

2012, especially the extreme one taking place in 2012. Moreover, the modified VHI led 

to the spatial distributions and temporal trends of drought severity, which were overall 

similar to those from the U.S. Drought Monitor (USDM) maps, but had more detailed 

spatial variability and much higher spatial resolution. The modified VHI also 

differentiated the drought impacts between the vegetated and non-vegetated areas, 

being a lack of the original VHI. Thus, the modified VHI takes advantage of spatially 
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continuous and timely data from satellites and can be applied to conduct the monitoring 

and detection of drought intensity at local, regional, and national scales. The modified 

VHI can effectively synthesize the drought information of LST and NDVI to differentiate 

the effects of land use and land cover (LULC) types and provide the detailed spatial 

variability of drought intensity and thus enhance the understanding of relationship 

between drought condition and LULC types. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

   Drought has been quite a hot topic in recent years. Based on the data available 

from U.S. Drought Monitor, the 2012 North American Drought hit nearly 80% of the 

contiguous United States. It has inflicted a catastrophe to several states. A total of 1,692 

counties across 36 states in the US have been legally declared primary natural disaster 

areas as of August 17 (National Weather Service Information, 2012). Back into history, 

the most recent comparable drought took place in 1988. It is one of the costliest natural 

disasters in American history since its impact on the US economy has been estimated 

at $40 billion, which is 2 - 3 times the estimated loss caused the 1989 San Francisco 

earthquake (Riebsame et al., 1990). And compared to other severe droughts, which 

happened before 1980s, the impacts and frequency of droughts in the last two decades 

has increased rapidly, which brings much attention of experts in different fields to this 

disaster.  

   Drought can be described as a chronic, potential natural disaster characterized 

by a prolonged, abnormal water shortage (Ghulam et al., 2007). However, the 

differences in hydrometeorological variables and socioeconomic factors as well as the 

complex nature of water demands in different regions over the world make it very 

difficult to give a common definition of drought. Therefore how to objectively 

characterize it for planning and management is still quite challenging. Precipitation 

deficit, evapotranspiration and stream flow are often used as indicators to provide a 
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comprehensive description. These indicators along with other variables are combined in 

various models to derive different drought indices. And the intensity, duration, severity 

and spatial extent of droughts can be defined from the drought index. 

  There is a category of the existent drought indices by their use of disciplinary 

data: meteorological drought indices, agricultural drought indices, hydrological drought 

indices, remote sensing-based drought indices, and combined drought indices 

(Niemeyer, 2008). As for meteorological drought indices, the most popular one is 

Standardized Precipitation Index (SPI) proposed by McKee et al. in 1993. Other 

examples are the Rainfall Anomaly Index (Van Rooy, 1965), the Bhalme and Mooley 

Drought Index (Bhalme and Mooley, 1980), the Drought Severity Index (Bryant et al., 

1992). The specialization on soil moisture and evapotranspiration resulted in the 

development of agricultural drought indices, such as the Crop Moisture Index (Palmer, 

1968), the Soil Moisture Drought Index (Hollinger et al., 1993), the Crop Specific 

Drought Index (Meyer et al., 1993), and the Soil Moisture Deficit Index (Narasimhan and 

Srinivasan, 2005). The hydrological drought indices focus more on analyzing stream 

flow data, for instance, the Surface Water Supply Index (SWSI) of Shafer and Dezman 

(1982), the Reclamation Drought Index of Weghorst (1996), and the Regional Stream 

flow Deficiency Index of Stahl (2001). Remote sensing-based drought indices are newly 

developed compared to above indices since they rely on the advancement of Earth 

observation satellites and sensors from the 1980s. There are numerous indices 

proposed every year, which is following the development of new sensors and 

approaches. Among these indices are some prominent ones: the Normalized Difference 

Vegetation Index (Tucker, 1979), the Vegetation Condition Index (Kogan, 1990, 1995), 

the Temperature Vegetation Dryness Index (Sandholt et al., 2002), the Vegetation 



 

 
 

3

Temperature Condition Index (Wan et al., 2004), and the Perpendicular Drought Index 

(Ghulam et al., 2007). The most promising direction in development of drought indices 

is the combination of various indices to exploit a maximum of available and useful 

information. Take the Vegetation Drought Response Index (Brown et al., 2008) as an 

example. NDVI datasets, climate data from the stations and static biophysical 

information such as elevation are included in this comprehensive index. On the other 

hand, the US Drought Monitor (NDMC, 2008) has realized the combination of 

meteorological data and remote sensing images on a manual basis (see Figure 1). A 

limitation of drought monitor products lies in their attempt to show droughts at several 

temporal scales (from short term to long-term drought) on one map product (Heim, 

2002). 

 



Figure 1: The USDM map for the whole United States, which

2012. 

 

1.2 PROBLEM STATEMENT 

 For traditional climate-based indices, the spatial resolution and precision is 

restricted to a certain level. Because the climate data such as precipitation, air 

temperature and soil moisture are collected by 

are only available at the points. 

continuous coverage over the landscape

provided by these indices are 

stations and the methods to be used to create the spatial distributions

 
 

The USDM map for the whole United States, which is updated on July 

 

 

based indices, the spatial resolution and precision is 

level. Because the climate data such as precipitation, air 

soil moisture are collected by separate weather stations, these

points. Statistical methods are thus needed to construct a 

coverage over the landscape. Therefore, the accuracy, detail,

 dependent on the spatial distribution of the weather 

and the methods to be used to create the spatial distributions. With higher 
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density of weather stations, there will be more detailed assessment of related climate 

data. But for places with sparse weather stations, the resolution of the data will be much 

coarser and the accuracy may be poor.  

  The satellite observations of earth surface can provide spatially continuous and 

timely data for monitoring drought. On one hand, the images acquired by remote 

sensors can detect the apparent declines in vegetation health, which may be caused by 

lack of water. Nevertheless the remote sensing data alone cannot identify the specific 

reasons behind the vegetation condition anomalies. There is possibility that it is caused 

by other natural disasters such as flood or some serious communicable diseases 

destroy the vegetation. Thus, it is necessary to incorporate other climate data to help 

eliminate other possible reasons. On the other hand, the land surface temperature can 

be derived from remote sensing data. It is one of the common used characteristics while 

describing drought and can provide good assessment of drought for areas with little or 

no vegetation cover. 

This study plans to make a combination of vegetation condition and temperature 

information. For areas where it is hard to monitor the drought with vegetation condition, 

like bared areas, land surface temperature is applied to provide information of drought 

stress. A comprehensive model will be built to process all the data and generate the 

maps, which indicate the intensity and patterns of drought over large-scale landscape. 

This study assesses the comprehensive index proposed here. A visual 

verification is applied to compare the USDM maps and the final maps of the proposed 

index. Because the USDM (Svoboda et al., 2002) is a state-of-the-art drought-

monitoring tool used in Unties States, the USDM map is updated every week and its 

spatial resolution is adequate for national- and state-level policy makers (Svoboda et al., 
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2002). The comparison can evaluate the capability of the proposed index in monitoring 

drought condition at a large scale and a local scale. 

 

1.3 RESEARCH OBJECTIVES 

 

The purpose of this study is to search for a useful and relatively simple 

combination of various types of drought indices. Researchers try to incorporate different 

drought indicators and exploit a maximum of information, which is available and 

effective. Much work has been done in this area. For example, Vegetation Drought 

Response Index (VegDRI) has been combined with NDVI, SPI, and PDSI which 

provides near-real-time maps of drought severity and spatial extent (Brown et al. 2008). 

Karamouz et al. (2009) proposed the Hybrid Drought Index (HDI), which combined the 

SPI, SWSI, and PDSI. Among these indices, the USDM is currently widely used in the 

organization level by media. The USDM integrates meteorological indices and indicators 

such as vegetation and hydrologic conditions into a composite drought index. However, 

the coarse resolution of USDM maps fails to provide detailed information at the local 

level. The counties of every state needs more specific data to make polices and design 

strategies towards drought disasters (Brown et al, 2008). This study attempts to provide 

such kind of information to complement the USDM maps. 

The severity of drought is regionally different from place to place and therefore it 

is essential to define a threshold value for different hydroclimatic regions (Mishra and 

Singh, 2009). This study tries to derive a useful drought index and categorizes drought 

severity. The comparison of normal years with the years of drought is necessary to 

distinguish the differences. For the remote sensing data, there are two aspects of the 

significance in exploring the historic data. On one hand, the drought impact on 
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vegetation condition in the past can provide reference for identifying the intensity of the 

future droughts. On the other hand, the long-term images over the same area can assist 

in tracing the change of the landscape and land using conditions, which are also very 

important analyzing the drought stress. 

The study made an effort to build a quantitative drought monitoring which applies 

well to regions with varied degree of vegetation coverage. There are indices derived 

from satellite observations that are sensitive to vegetation condition, such as NDVI. 

Some indices describe more about temperature and soil moisture, such as LST. If only 

one index is used to make assessment of drought intensity, for example, NDVI, the 

assessment over bared areas or areas with few plants will be much less accurate than 

the areas with dense vegetation. In order to solve such kind of problems, a model is 

established to divide the study area into two parts: bared soil and land with vegetation 

coverage. For each unit of the area, the soil and vegetation fraction images can be 

calculated and they provide a basis for the combination of different indices. In this way, 

the effective information from these indices can make a reasonable integration. The 

fraction is considered in Modified Perpendicular Drought Index (Ghulam et al., 2007c), 

but not much work has been done in this direction. 

The specific objective of this study is to develop a comprehensive drought index 

by combining the information from remotely sensed data in both vegetation condition 

and temperature and to monitor drought intensity in Illinois. This study aimed at 

answering following research questions: 

1. Is the combined drought index able to provide more detailed information of 

drought intensity than the existing USDM? 
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2.  Is the combined drought index able to capture the drought events that took 

place during the last decade, especially the one in 2012? 

3. Is the combined drought index able to reveal the differences of the drought 

impacts between urbanized and vegetated areas? 

4. Is the combined drought index better than the existing indices to quantify 

drought intensity? 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 DEFINITION OF DROUGHT  

    Drought is quite a stochastic natural phenomenon. It can be defined as the 

precipitation deficit over a specific area for a specific period of time (Beran and Rodier 

1985; Correia et al., 1994). Tsakiris and Vangelis (2004) have included the impacts of 

drought on environment and society as an expansion. Wilhite (2004) underscored the 

human demand placed on water supply under drought condition. Much research work 

has been done to explore the various impacts and characteristics of drought as a 

natural disaster. But no common definition has been reached because of its complex 

nature.  

     It is very essential to distinguish conceptual and operational definitions of 

drought (Wilhite and Glantz, 1987). Conceptual definitions are formulated in general 

terms for overall understanding. Operational definitions are used for a specific 

application to analyze drought frequency, severity and duration. Based on the 

operational definitions, there are three main physical drought types: meteorological, 

agricultural, and hydrological droughts.  

 

2.2 TRADITIONAL DROUGHT INDICES 

    Although there are several methodologies proposed for characterizing drought, 

drought indices are the most popular way (Tsakiris et al, 2007). Over 150 drought 

indices have been proposed (Niemeyer 2008) and lately more indices appeared (Cai et 

al. 2011; Karamouz et al. 2009; Vasiliades et al. 2011). A drought index, generally 

speaking, is a prime variable for assessing the effect of a drought. It defines the 
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intensity, duration, severity and spatial extent of specific drought. Different indicators of 

drought are selected as the base data for calculating the index, such as precipitation 

deficit, soil moisture, water flow and so on. Usually, drought indices are categorized by 

these indicators or variables or the disciplinary data they use (Niemeyer 2008). There 

are three popular categories: meteorological, agricultural and hydrological drought 

indices. Niemeyer (2008) added the following categories: comprehensive, combined 

and remote-sensing based drought indices. 

For meteorological drought indices, they use the climate data collected from 

synoptic meteorological stations. Therefore the development of meteorological drought 

indices is closely related to the availability of the climate data. Early meteorological 

drought indices only take precipitation into consideration, such as the Rainfall Anomaly 

Index (Van-Rooy 1965),the Bhalme and Mooley Drought index(Bhalme and Mooley, 

1980), the Drought Severity Index(Bryant et al., 1992), NRI (Gommes and Petrassi, 

1994), EDI (Byun and Wilhite 1999), and DFI (Gonzalez and Valdes, 2006). Among 

these indices, Standardized Precipitation Index (SPI) (McKee et al., 1993) is most 

frequently used. It is calculated based on the long-term precipitation record that is fitted 

to probability distribution. SPI has several advantages: it is simple and adaptable for the 

analysis of drought at variable times scales. It can be used for both agricultural and 

hydrological droughts (Zargar et al, 2011). But, SPI fails to take potential 

evapotranspiration into accounts, which is also a helpful indicator (Hu and Willson, 

2000; Vicente-Serrano et al., 2010). The Reconnaissance Drought Index proposed by 

Tsakiris et al. (2007) solved this problem and get better correlation with impacts from 

agricultural and hydrological droughts. Other meteorological variables, such as 
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temperature, are included in newly developed index to gain a comprehensive 

understanding of the drought condition.  

Agricultural drought indices mainly concentrate on soil moisture, 

evapotranspiration and soil water balance. Take Crop Moisture Index (CMI) as an 

example. CMI was developed by Palmer (1968) and is used to evaluate short-term 

moisture conditions across major crop-producing areas with a water balance model. 

CMI is most effective for measuring agricultural drought during warm seasons (Heim, 

2002). But, it is not suitable for monitoring long-term drought since it may provide 

misleading information (Mishra et al., 2010). An example of other indices is Crop 

Specific Drought Index (CSDI) proposed by Meyer et al (1993) and estimates soil water 

availability for different regions and soil layers. Narasimhan and Srinivasan (2005) 

developed the Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index 

(EDI). These two indices use a high-resolution comprehensive hydrologic model, which 

integrates a crop growth model. They improve the older indices such as SPI, PDSI and 

CMI, by considering the spatial variability of hydrological parameters of soil type and 

land cover as well as meteorological parameters. Recently Marletto et al. (2005) 

proposed another new agricultural drought index called DTx for regional application. It is 

based on the daily transpiration deficit as computed by a water balance model and 

describes the integrated deficit of transpiration of a crop for a period of x days. 

Hydrology-oriented drought indices characterize the delayed hydrologic impacts 

of drought and study the water balance in a catchment area for water management 

purpose (Zagar et al, 2011). Palmer Hydrological Drought Index (PHDI) proposed by 

Palmer (1965) analyzes precipitation and temperature in water balance model and 

compares meteorological and hydrological drought across space and time (Heim, 
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2002). While PHDI does not account for snow accumulation, the Surface Water Supply 

Index (SWSI) of Shafer and Dezman (1982) that is probably most popular hydrological 

drought index takes it into consideration. Weghorst (1996) proposed the Reclamation 

Drought Index (RDI) which further improved the SWSI. The RDI incorporates air 

temperature for the demand side, and precipitation, reservoir storage, stream flow, and 

snowpack for the supply side, as well as the duration of a drought event. Stahl (2001) 

developed a Regional Streamflow Deficiency Index (RSDI) to detect drought event in 

each homogeneous region. The RSDI uses flow duration curves and the 90% 

exceeding threshold (Q90) derived from the curves. Cluster analysis is applied to 

calculate the value of the index. Ground Water Resource Index (GWRI) (Mendicino et 

al., 2008) considers geo-lithological conditions that affect the summer hydrologic 

response to winter precipitation. Another new hydrological drought index is Water 

Balance Derived Drought Index (WBDDI) (Vasiliades et al., 2011) which uses water 

balance model (Loukas et al., 2007) to simulate runoff. 

 

2.3 REMOTE SENSING-BASED DROUGHT INDICES 

Remote sensing-based drought indices are developed on the foundation of the 

launch of earth observation satellites with sensors mainly in the optical domain. The 

new technologies make it possible to generate higher resolution of drought analysis 

products, which is a shortcoming of previous drought indices (Niemeyer, 2008). There is 

a variety of satellites observation-based drought indices. Some of them are derived from 

information of the optical domain. The most outstanding example is the Normalized 

Difference Vegetation Index (NDVI) (Tucker, 1979). NDVI uses information of red and 

near-infrared channels from the advanced very high-resolution radiometer and it applies 
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simple algorithms to identify the health condition of vegetation. The basic idea is that 

healthy vegetation generally has higher reflectance of radiance in near infrared channel. 

However, moisture condition is not the only reason that will impact vegetation. Regional 

rainfall patterns and soil type, as well events such as insect infestation and wildfire are 

also possible causes for declined vegetation health condition. Therefore, many 

modifications have been made on the base of NDVI, for example, the Vegetation 

Condition Index (Kogan, 1990, 1995), the anomaly of NDVI called NDVIA (Anyamba et 

al., 2001), and the Standardized Vegetation Index (Peters et al., 2002). The Land 

Surface Temperature (LST) is different from NDVI because it exploits the information 

from the thermal channel. The Temperature Condition Index proposed by Kogan (1995) 

is another example of this kind of drought index. 

More and more research has focused on the correlation between vegetation 

indices based on visible or near infrared information and the land surface temperature 

information. The Vegetation Index / Temperature Trapeziod (Carlson et al., 1994) is 

built on the slope of the LST versus NDVI relationship. There are two drought indices, 

which are constructed on the NDVI/LST reflectance space: the Vegetation Temperature 

Condition Index (e.g. Wan et al., 2004) and the Temperature Vegetation Dryness Index 

(Sandholt et al., 2002). The Perpendicular Drought Index proposed by Ghulam et al. 

(2007b) also explores the near-infrared and red spectral reflectance space. Moreover, 

Modified Perpendicular Drought Index (Ghulam et al., 2007) improved the former by 

incorporating the fraction of a pixel that accounted for soil moisture and vegetation 

growth. Some newly developed indices attempt to take advantage of information from 

the multi-band of sensors. One example is the Normalized Multi-Band Drought Index 

(Wang and Qu, 2007) using the data from MODIS. 
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The comprehensive and combined drought indices (Niemeyer, 2008) make use of 

various type of information to characterized drought condition. Compared to non-hybrid 

indices, they provide a comprehensive description of drought events (Kallis, 2008). 

Because of their composite nature, the hybrid indices usually are closely related to the 

actual drought influences. Vegetation Drought Response Index (Brown et al., 2008) is a 

prominent example, which is a combination of NDVI, SPI, and PDSI. The high resolution 

makes it useful for local planning and mitigation towards drought. Karamouz et al (2009) 

proposed the Hybrid Drought Index that includes SPI, SWISI, and PDSI. USDM 

integrates meteorological data with remote sensing images as well, but it provides no 

single reproducible quantitative index that comprises all information (NDMC, 2008). 

Kogan (1995, 1997) proposed a Vegetation Health Index (VHI) by combining a 

temperature condition index (TCI) and vegetation condition index (VCI). TCI was 

derived from land surface temperature image and VCI was obtained using NDVI image 

calculated from red and near infrared bands of satellite images. This composite index is 

simple and effective to quantify drought intensity and has been successfully applied in 

many different environmental conditions (Kogan et al., 2005; Rojas et al., 2011; Seiler et 

al., 2007; Unganai & Kogan, 1998; Wu et al., 2013). To combine TCI and VCI, equal 

weights of 0.5 are used for them, which implies the equal contributions of temperature 

and vegetation on drought impacts regardless of different land use and land cover 

(LULC). In practice, the impacts of the same temperature on drought intensity may differ 

due to different LULC. For example, vegetated lands may have higher tolerance to high 

temperature than the lands in which no or little vegetation exists. 

Combining meteorological, agricultural, hydrology-oriented, and remote sensing 

based drought indices into more comprehensive and integrative drought index is a 
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promising direction in this field. The combined information covers multiple aspects and 

applications of droughts. Especially, the combination of remote sensing based indices 

and meteorological or hydrological indicators are likely to paint a whole picture of a 

drought situation (Niemeyer, 2008). There is a strong need for development of more 

comprehensive drought indices. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 STUDY AREA 

    The proposed method is applied to the whole state of Illinois, which locates in 

the Midwest Region of the United States and is one of the nine states that are in the bi-

national Great Lake region of North America. Illinois’ eastern borders with Indiana 

consists of a north-south line at 87°31 ′30″ west longitude, from Lake Michigan to the 

Wabash River above Post Vincennes. Its southern border with Kentucky runs along the 

northern shoreline of the Ohio River. Mississippi River is the western border of Illinois 

with Missouri and Iowa. And the northern border with Wisconsin is fixed at 

42° 30′ north latitude. 

The total area of Illinois is 149,998 km2 and most parts of it are plains with 

northwestern parts of higher and rugged topography. The highest point of Illinois is 

located in Charles Mound with a height of 376.4 meters above sea level. On the 

contrary, the lowest point locates in the Confluence of Mississippi River and Ohio River, 

the height of which is 85.3 meters above sea level (Figure 2) 

Midwestern United States experienced most of the severe droughts in history as 

mentioned in the introduction part. With over $200 billion in farm gate value, agriculture 

is a major component of the Midwestern economy (NASS, 2012). There are over 

400,000 farms and its corn and soybean production takes a significant portion of the 

global total production. This region is also a major producer of fruits, vegetables, dairy, 

pigs and beef cattle. Since most agriculture in this region is rain fed, it is highly 

vulnerable to drought. In the future it is projected that the annual temperature of the 
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Midwest would increase (Hayhoe et al 2007), which makes the occurrence of drought 

disaster more possible. Therefore it is essential to study the drought issues in the state 

of Illinois. 

The study aims at modifying the combined drought index VHI and making it 

possible to effectively combine the vegetation condition information from VCI and 

temperature information from TCI with reference to the vegetation coverage factor. The 

modified VHI is applied to the growing season: June, July, August and September from 

2000 to 2012 and it is expected to be applied in the future drought assessment as well.  
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Figure 2: Land cover map of Illinois (http://www.isgs.uiuc.edu/nsdihome/webdocs/ 

landcover/ nass07.html) 
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3.2 DATA SETS 

     Moderate Resolution Imaging Spectroradiometer(MODIS) products were 

applied in this study, including MOD09Q1, MOD11A2 and MOD44B. MODIS is a key 

instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit 

around the Earth is timed so that it passes from north to south across the equator in the 

morning, while Aqua passes south to north over the equator in the afternoon. Terra 

MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, 

acquiring data in 36 spectral bands, or groups of wavelengths (Table 1). 

 

Table1: Spectral and spatial characteristics of MODIS (http://modis.gsfc.nasa.gov/ 

about/specifications.php). The spatial resolution for bands 1-2 is 250m, for bands 3-7 is 

500m and for bands 8-36 is 1000m. 
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Table1: Spectral and spatial characteristics of MODIS 

  

 

MOD09Q1 provides surface reflectance of band 1 (red) and band 2 (near 

infrared) at 250-meter resolution in the Sinusoidal projection. The products are updated 

every 8-day and the pixels are selected from that time period on the basis of high 

observation coverage, the cloud shadow, low view angle and aerosol loading. 

MOD11A2 provides land surface temperature and emissivity data at 1-km resolution in 

the Sinusoidal projection. The land surface temperature data are calculated as the 
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mean land surface temperatures under clear sky during an 8-day period. MOD44B is 

referred as the Terra MODIS vegetation continuous fields product. It contains the 

percent of tree cover, percent of non-tree cover and percent of bare area for each pixel. 

The products are produced every year at 250-meter resolution in the Sinusoidal 

projection. 

 

3.3 COMPUTATION OF INDICES 

The methodology consists of four steps (Figure 3). The first step is to collect and 

process the MODIS products applied in this study. The second step is to extract the 

information of the study area from the datasets and use the information for calculation of 

VCI and TCI. The third step is to incorporate the two different indices: VCI and TCI with 

the vegetation coverage information and generate VHI. The final step is the analysis of 

mean VHI, VCI, TCI and NDVI-z values during the 13 years. 
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Figure 3: Methodological framework. 

 

3.3.1 DATA PRE-PROCESS 

 MOD09Q1, MOD11A2 and MOD44B were acquired from NASA’s Earth 

Observing System Clearing House (ECHO). The website is 

http://reverb.echo.nasa.gov/reverb/#utf8=%E2%9C%93&spatial_map=satellite&spatial_

type=rectangle. MOD09Q1 and MOD11A2 were downloaded for four growing seasonal 

months: June, July, August and September from year 2000 to 2012. The study area 

was covered by four scenes of MODIS images and every month sixteen images were 

collected for each product. Because of a power outage in June 2001 and satellite 

problem in 2000, some of the data were missing for both products. MOD44B were 
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available only from 2000 to 2010 and all of them were downloaded. The study area was 

also covered by four scenes and finally 44 images were collected. 

MODIS Reprojection Tool (MRT) was applied to process the downloaded data. 

The image processing began with image mosaic. Four scenes acquired at the same 

date, which covered the study area, were mosaicked into one file. Then the projection 

system of the output file was transformed from Sinusoidal projection to Universal 

Transverse Mercator (UTM) projected coordinate system, zone 16 north with datum 

WGS 1984. Finally, MRT wrote the output to tagged image file format (TIF) so that 

these data can be read in ArcMap and ERDAS Imagine. Since the number of images 

was very large, two batch files were written to conduct transformation of map projection 

and coordinate systems and to realize the mosaic of images for each product. The 

codes of the batch files for MOD09Q1 are displayed here as examples (Figure 4 and 

Figure 5). 

 

 
Figure 4: Batch Java code for mosaic process of MODIS images. 
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Figure 5: Batch java codes for reprojection parameters. 

 

3.3.2 TCI, VCI AND NDVI  

   The data acquired from first procedure covered a larger area and the images 

that only covered study area were extracted with raster calculation function of ArcMap. 

The temperature condition index (TCI) was produced by the land surface temperature 

(LST) images. The TCI was proposed to estimate the thermal impact of drought. It was 

computed as 

 

���� � ���	
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                                                            (1) 
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Where Ti is the 8-day temperature,  and  are the absolute maximum and 

minimum temperature, respectively, calculated for each pixel and 8-day period during 

the time period 2000 to 2012. The values of TCI vary from 0 to 1. The low values of TCI 

imply serious condition of drought. 

Using the reflectance values of band 1 and band 2 images, 8-day NDVI values 

from June to September were calculated using following expression: 

 

NDVI � ���
���
�������                                                             (2) 

 

Since NDVI values can be seriously influenced by cloud and other factors, the NDVI 

data were pre-processed. Quality data was employed to identify and discard low-quality 

pixels. Then the mean value for the period 2000-2012 of each pixel was calculated 

without the bad data. In the end, the pixels of poor quality were filled with corresponding 

mean values and the pre-processed NDVI images served as an input for the 

computation of vegetation condition index (VCI). The VCI is a pixel-wise normalization 

of NDVI, which filters out the contribution of local geographic resources to the spatial 

variability of NDVI in relative assessment of NDVI signal changes (Quiring and Ganesh, 

2009). The following expression was used for computing the VCI: 

 

���� � �����
�������
������	
�������

                                                       (3) 

 

Where ����� is the pre-processed 8-dayNDVI, NDVI��  and NDVI�!" are the absolute 

minimum and maximum values, respectively, calculated for each pixel and 8-day period 

during the time period 2000-2012. The values of VCI range from 0 to 1. The low values 

maxT minT



 

 
 

26

indicate stressed vegetation condition and the high values indicate good vegetation 

condition.  

NDVI anomaly (z-value) was also calculated to assess the departure from long-

term average value for each pixel during the time period 2000 to 2012. The Z value 

accounts for the anomaly of vegetated areas compared to normal condition. 

 

 Z� � ��$�%
��$�
&'()*%

                                                             (4) 

 

Where �����  is the pre-processed 8-day NDVI, ����  is the multiyear average value 

and ,����� is the standard deviation. 

 

3.3.3 VEGETATION COVERAGE AND VHI 

On the base of VCI and TCI, VHI can be calculated by the following expression: 

 

�-� � . / ��� 0 11 3 .4 / ���                                                 (5) 

 

Where . and (1-α) indicate the relative contribution of VCI and TCI to the value of VHI, 

respectively. In the previous studies, equal values of α are used to account for the 

contributions of both VCI and TCI. However, the impacts of the same temperature and 

the same time period of drought vary depending on how an area is vegetated. On the 

other hand, in an urbanized area that is not vegetated the impact of drought is mainly 

determined by temperature. In this study, . was computed with the vegetation coverage 

for each pixel. For pixels of dense vegetation coverage, drought assessment relies 

more on the information provided by vegetation condition and therefore the contribution 
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of VCI in VHI increases as the vegetation coverage increases. For pixels of little 

vegetation coverage, drought assessment relies more on the information provided by 

temperature condition and therefore the contribution of TCI increases as the vegetation 

coverage decreases. 

To acquire the vegetation and soil fraction for each pixel, spectral mixture 

analysis (SMA) (for example, Lu et al., 2003) has been applied to MOD09Q1 products 

with ENVI. SMA is a technique based on modeling image spectra as the linear 

combination of endmembers and has been used to derive the fractional contribution of 

endmember materials to image spectra in a wide variety of applications (Dnnison and 

Roberst, 2003). In SMA models, the reflectance of a pixel 56́ is determined by the sum 

of the reflectance values of each material within a pixel multiplied by its fractional cover: 

 

56́ � ∑ 9� / 5�6 0 :6��;<                                                         (6)                                                                                                                        

 

Where 5�6 is the reflectance of the ith endmember, λ is a specific band, 9� is the fraction 

of the ith endmember, N is the number of endmembers, and :6 is the residual error. The 

modeled fraction of the endmembers are commonly constrained by: 

 

∑ 9���;< � 1                                                                  (7)         

    Model fit is assessed using the model residuals :6or the root mean squared 

error (RMSE): 

 

=>?@ � A∑ 1BC4DE�FG
�                                                            (8) 

 

SMA assumes single interaction between photons and surface, producing linear 

mixing of the surface fractions and their reflectance. Its limitation lies in the inability to 
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account for on-linear mixing (Adams et al., 1993). But, for large areas, the mixing is very 

linear and approximations of the linear unmixing techniques appear to work well 

(Boardman and Kruse, 1994). 

The whole unmixing process was implemented with ENVI software. MODIS 

image was selected as input data instead of Landsat image because the Landsat 

image, which can cover the whole state, occupied too much space and current ENVI did 

not work. The unmixing process includes the following procedures:(1) determining the 

inherent dimensionality of the data with the Minimum Noise Fraction (MNF) transform; 

(2) Deriving the Pixel Purity Index (PPI) to identify endmembers; (3) Selecting pure 

pixels with the n-D Visualizer; (4) Building model with the pure pixels and applying to the 

whole image to acquire the vegetation percent of every pixel. However, the result image 

was not accurate while comparing to the aero photos of some counties. The possible 

reason was that the spatial resolution of MODIS image was coarse and the area that 

was presented by single pixel usually contained more than one kind of physical 

material, such as water and land. Therefore the pure pixel selected in this way actually 

was not “pure” and the errors occured in the model. To avoid above situation, the 

vegetation coverage information was extracted directly from MOD44B. The products 

only cover 11 years from 2000 to 2010. For 2011 and 2012, the vegetation coverage 

data was extracted from the image of 2010 since the change in vegetation coverage is 

relatively small over a short period of time. And the products were produced by linear 

and non-linear spectral mixture analysis as described above. 

For each pixel with vegetation coverage V, the contribution factor . was 

computed as: 

  



 

 
 

29

. � �
<HH                                                                     (9) 

 

1 3 . � <HH
�
<HH                                                               (10) 

 

Therefore the expression of VHI can be transformed to  

 

�-� � �
<HH / ��� 0 <HH
�

<HH / ���                                               (11) 

 

The modification is based on the idea that the vegetation coverage is an important 

factor while assessing the drought condition. For areas of dense vegetation coverage, 

such as forest, the contribution factor . is high and therefore the vegetation health index 

relies more on the information of vegetation. For areas of sparse vegetation coverage, 

such as urban area, the contribution factor . is low and therefore the vegetation health 

index relies more on the information of temperature. 

 

3.3.4 COMPARISON WITH USDM MAPS 

The mean values of VHI, VCI and TCI for the whole state every month during the 

time period from 2000 to 2012 were computed to provide more comprehensive 

understanding of the changing trend and variations. The annual average values of VHI, 

VCI and TCI were derived to identify the differences among these three indices. Cook 

county and Pope County were selected as the representatives of areas with dense 

vegetation coverage and with little vegetation coverage. The mean values of VHI for 

these two counties were computed and compared. Another comparison was 
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implemented between the VHI maps, NDVI-z maps, USDM maps and unmodified VHI 

maps, which were produced for similar time period. 
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CHAPTER 4 

RESULTS AND ANALYSIS 

 

4.1 TEMPERATURE CONDITION INDEX (TCI) 

The 8-day TCI maps at 1 km spatial resolution were produced using MODIS land 

surface temperature product (MOD11A2) for the time period 2000 to 2012 (Appendix A). 

The value of TCI ranges from 0 to 1. The low values represent high temperature 

condition and the high values imply low temperature conditions. In the maps, the darker 

color indicates hotter conditions for the responding area. The maps are updated for 

every 8 days and 16 maps were derived for June, July, August and September of each 

year. A total of 208 TCI maps were obtained for a time period of 13 years from 2000 to 

2012. The first row of maps represents the temperature condition in June. The second 

row shows the temperature condition of July. The third and fourth rows indicate the 

condition in August and September. To display the variation of TCI with time and spatial 

distribution, the TCI maps for 2010, and 2012 were shown in Figures 6 and 7, 

respectively. The reason for selection of these three years was mainly because the 

years of 2010 and 2012 represent the normal and dry year, respectively, based on 

climate data.  

The maps in Figure 6 show the evolution of temperature condition from June to 

September in 2010. Overall, the colors of the first, second and third row maps look quite 

light and therefore the temperature was relatively low in June and July. The temperature 

started to increase in the middle of August and continued in September as the dark 

color of some area shows.  
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Figure 6: 2010 Illinois Temperature Condition Index Maps. 
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The maps in Figure 7 show the evolution of temperature condition from June to 

September in 2012. Compared to the maps in Figures 7 for years 2010, it is obvious 

that the temperature was abnormal during June, July and September. The dark colors 

covering most areas of Illinois indicated very low TCI values and very high temperature 

during that period. Especially in July, the dark umber color covered nearly the whole 

state and shows the extreme temperature condition. In September, the weather started 

to become better with lower temperature.  
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Figure 7: 2012 Illinois Temperature Condition Index Maps. 

 

Overall, the years 2002, 2005, 2007, and 2012 had the condition of high 

temperature and other years the temperatures were low (Appendix A). The late June 

and beginning of September in 2002 had higher temperature. In 2005, high temperature 

took place through the whole time period of June to September, especially at the 

beginning of September. In 2007, high temperature mainly happened in August and 

September, also on June 9 to 16. Extremely high temperature condition existed in June 

July and August of 2012 and the temperature started to become normal until 

September.    
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4.2 VEGETATION CONDITION INDEX (VCI) 

The 8-day VCI maps at a spatial resolution of 250 m × 250 m were produced 

based on NDVI obtained from MODIS MOD09Q1 products (red and near infrared 

bands) for the time period 2000 to 2012 (Appendix B). The value of VCI ranges from 0 

to 1. The low values represent stressed vegetation condition and the high values imply 

favorable vegetation conditions. In the maps, dark color represents low VCI values and 

light color represents high VCI values. The maps are updated every 8 days for June, 

July, August and September of each year. They are arranged in appendix B with the 

same order of the above TCI maps. In Figures 8 and 9, the TCI maps for 2010 and 

2012 are shown as examples to account for the variation of VCI over time and space. 

 

In Figure 8, the maps show the spatial distribution and temporal dynamics of 

vegetation condition from June to September for year 2010. In June and July, the red 

and dark umber color only covered small areas for a short period of time and the overall 

vegetation condition was good. However, from the end of August, the areas of stressed 

vegetation condition started to expand from the central areas to the most parts of 

Illinois. The vegetation condition was worse in September as red color stayed in those 

areas for the whole month. 
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Figure 8: 2010 Illinois Vegetation Condition Index Maps. 
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The maps in Figure 9 show the evolution of vegetation condition from June to 

September in 2012. Overall, the red and dark umber colors covered most of the state 

from June to September in 2012, and only June 25th to July 2nd and August 12th to 19th 

showed relatively good vegetation condition. This implied the potential drought intensity 

shown by the VCI vegetation condition was much worse in 2012 than 2010 for this time 

period of June to September. 
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Figure 9: 2012 Illinois Vegetation Condition Index Maps. 

 

Overall, the years 2002, 2005, 2007, 2010, and 2012 had more stressed 

vegetation condition than the other years (Appendix B). The worst case took place in 

2012 in which there were strongly stressed vegetation conditions. Moreover, there was 

a trend that indicated the stressed vegetation condition often started in September for 

all the years except for 2003, 2008 and 2009. 
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4.3 NDVI ANOMALY 

The 8-day NDVI anomaly (Z values) maps at a spatial resolution of 250 m × 250 

m were produced by comparison with average NDVI in normal vegetation condition 

obtained from MOD09Q1 products (red and near infrared bands) for the time period of 

June to September for each of years 2000 to 2012 (Appendix D). The values of NDVI 

anomaly range from -3.5 to 3.5. The negative values represent below-normal vegetation 

condition and the positive values indicate good vegetation conditions. There are 16 

maps obtained for each year. In Figures 10 to 11, the spatial distributions and temporal 

variation of NDVI anomaly were shown for 2010 and 2012, as examples. 

The NDVI anomaly maps in Figure 10 show the spatial distribution and temporal 

dynamics evolution of NDVI anomaly for the whole state of Illinois from June to 

September in 2010. During June and July, the white color covered most of the state with 

dark color scattered in some small areas, which meant the vegetation condition was 

better than normal. In the late of August, the vegetation condition in some areas started 

to become worse and this bad vegetation condition was intensified during the whole 

September. The yellow and dark red colors covered the state, indicating the vegetation 

condition was worse than the normal. For September 6th to 12th, the serious vegetation 

condition dominated the northeast part. 

The NDVI anomaly maps in Figure 11 show the spatial and temporal variability of 

NDVI anomaly for the whole state of Illinois from June to September in 2012. The 

vegetation condition in June was not as good as the previous years as almost the whole 

state was in yellow. In July and August, the vegetation condition became worse as the 

dark umber color covered most of the area. Then, it was gradually improved in 

September. 
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Overall, most of the years 2000 to 2012 had normal vegetation condition 

(Appendix D). The anomaly vegetation condition mainly took place in 2002, 2007, 2009, 

and 2012, especially in July and August of 2012. The NDVI anomaly maps could be 

used to identify and track the abnormal vegetation condition. However, without 

supplementary information, it is hard to confirm the real reason behind the phenomena. 

There are many possible causes, such as insect damage, flood and fire. Drought is 

definitely one of these. But more data is needed to rule out other possibilities. 
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Figure 10: 2010 Illinois NDVI Anomaly Maps. 
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Figure 11: 2012 Illinois NDVI Anomaly Maps. 

 

4.4 VEGETATION HEALTH INDEX (VHI) 

The 8-days VHI maps at 1 km spatial resolution were produced using Eq. (11) 

based on the mentioned VCI maps and TCI maps for the time period of June to 

September for each of years 2000 to 2012 (Appendix C). Before that, the VCI maps 

were aggregated from a spatial resolution of 250 m × 250 m to 1 km × 1 km using a 

window average method. There were 16 maps created for each year and a total of 208 

maps for the time period of years 2000 to 2012. The values of VHI vary from 0 to 1. The 

low values represent severe drought condition and the high values mean wet and 

favorable conditions. As examples, the VHI maps for 2010 and 2012 were presented in 

Figure 12 and 13 to show the spatial and temporal variation of VHI.  
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The maps in Figure 12 show the evolution of VHI for the whole state of Illinois 

from June to September in 2010. In June and July, most of the area had the values of 

VHI ranging from 0.67 to 0.83, implying good condition and the poor condition only 

happened in some scattered areas. In August and September, the dry condition overall 

became worse and the east central Illinois had severe drought condition from August 

12th to 27th and September 13th to 20th. The extremely severe drought condition took 

place in 2012 (Figure 13). The drought condition started in June and became extremely 

serious in July. In August, more than half of the state still stayed in severe drought 

condition and the drought situation was then relieved in September as the VHI values 

turned to be higher than 0.5.  

As mentioned in section of 4.1, the years 2010 and 2012 represented normal and 

dry year, respectively, based on climate data. The VHI maps in Figure 12 to 13 were 

able to track the changes of drought intensity among these two years. Especially for 

year 2012, the VHI values demonstrated the abnormal condition for most of the Illinois 

in July and August. 
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Figure 12: 2010 Illinois Vegetation Health Index Maps. 
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Figure 13: 2012 Illinois Vegetation Health Index Maps. 
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Figures 14 and 15 show the monthly average values of VHI for each of years 

2000 to 2012 and overall monthly averages and standard deviations for Illinois based on 

the data with and without year 2012. Overall, the monthly average values of all the 

years except 2012 fell within the 2 standard deviations. Illinois experienced extreme 

drought in 2012 as showed both in Figure 14 and 15. In July, the month average VHI 

value of 2012 was as low as 0.083, out of the two standard deviation interval. Even in 

June and August, the monthly average VHI values were out of the one standard 

deviation interval. It is more obvious in the Figure 15 when the data of 2012 was not 

included in the computation of the overall mean and standard deviation. The drought 

intensity decreased a lot in September as the VHI value became higher than the 

average value. The overall monthly averages of VHI values were similar to each other 

for June, July, August and September, and the average for July was slightly higher than 

those for other months. 
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Figure 14: Monthly average values of VHI for each of the years 2000-2012 for Illinois 

with overall mean and standard deviation calculated based on the data with year 2012 

involved. 
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Figure 15: Monthly average values of VHI for each of the years 2000-2012 for Illinois 

with overall mean and standard deviation calculated based on the data with year 2012 

excluded). 

 

The monthly average values of TCI for each of the years 2000-2012 for Illinois 

with overall mean and standard deviation were presented in Figure 16. The TCI trends 

of monthly average values were similar to those of VHI. Obviously, the TCI value of 

2012 July was 0.057, out of the two standard deviation interval. In June and August, the 

monthly TCI average values were also very low and they were out of one standard 

deviation interval. The temperature turned to normal level in September. 

 

 

Figure 16: Monthly average values of TCI for each of the years 2000-2012 for Illinois 

with overall mean and standard deviation. 
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In Figure 17, the trends of monthly average VCI values looked different from 

those of TCI and VHI. For all the years except for 2012, the monthly average VCI had 

higher values in July and August and lower values in June and September. The higher 

VCI values imply better vegetation condition and vice versa. This suggested the monthly 

average trends looked reasonable because in Illinois vegetation generally starts 

growing in late April and reaches its peak in August. For the year 2012, the monthly 

average VCI values were slightly larger than the average value in June, then decreased 

to a very low value, out of the two standard deviation interval, and slightly increased. 

But, the VCI value was still low in August, out of the one standard deviation interval. 

This was mainly because in June of 2012 the temperature was high and vegetation 

grew very fast at the beginning, but the continuously high temperature without rain in 

July led to the severe drought condition that was revealed by the VCI, vegetation 

condition index. 
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Figure 17: Monthly average values of VCI for each of the years 2000-2012 for Illinois 

with overall mean and standard deviation. 
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Figure 18: Monthly average values of unmodified VHI for each of the years 2000-2012 

for Illinois with overall mean and standard deviation. 

 

In Figure 19, the annual averages of VHI, TCI and VCI fluctuated from year to 

year. The VHI values followed the similar trend with TCI values. Compared with VHI and 

TCI, the annual average of VCI values had a different trend with a smaller range of 

variation. During the time period of 2000 to 2012, the years 2002, 2005, and 2007 had 

lower values of TCI and VHI, indicating that relative drought condition existed in 2002, 

2005, and 2007. The year 2012 had the extremely low value of TCI, VCI and VHI, 

demonstrating the extremely drought took place in 2012. The results were similar to 

those from the maps of VHI, TCI and VCI. For years 2004 and 2009, the peak values of 

the VHI indicated relatively favorable condition.  
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Figure 19: 2000-2012 annual average values of VHI, TCI and VCI for Illinois.  

 

Moreover, Cook county and Pope county were used as examples to explain the 

combined drought index – VHI at local level in Figures 20 and 21, respectively. Cook 

County has the second largest population in the US after Los Angeles County, 

California. Most of its land is urban and dense populated. The situation in Pope County 

is opposite, which has very small population and where the vegetated (forested) lands 

dominate the whole county. 

Based on monthly average values of VHI for years 2000 to 2012 with overall 

mean and standard deviation for Cook County in Figure 20, the severe drought in 2012 

could be still identified with the VHI values of June, July and August being out of one 

standard deviation interval. Moreover, the severe drought in June to September of 2005 

was also picked up. But the drought of 2012 was not as extreme as showed in the VHI 
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graph for whole state (in Figures 14 and 15) in which the VHI value of 2012 July was out 

of the two standard deviation interval. For Pope County, the severe drought in 2012 was 

quite abnormal as indicated in Figure 21. The monthly average VHI values of June and 

July were out of the two standard deviation interval. Especially for July, the VHI value 

approximated to 0.2 and was the lowest point in the graph. In August, the VHI value 

was still out of the one standard deviation interval. The mean values for the four months 

during the 13-year period were close to 0.6 and the VHI value had its lowest in July.  

Compared to Cook County, the average VHI values of June, July, August and 

September of Pope County were larger. Even for 2012, the VHI values were lower in 

Cook County than in Pope County, which suggested that the drought intensity was 

stronger in Cook County at that time. However, within Cook County the drought intensity 

of 2012 was relatively not so strong compared to other years. To the contrary, within 

Pope County the drought of 2012 was very obvious compared to other years.  
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Figure 20: Monthly average values of VHI for years 2000 to 2012 with overall mean and 

standard deviation for Cook County. 

 

 

Figure 21: Monthly average values of VHI for years 2000 to 2012 with overall mean and 

standard deviation for Pope County. 

 

Figure 22 shows the difference in variation of annual mean VHI from 2000 to 

2012 between Cook and Pope County. Cook County was dense populated and less 

vegetation covered. Pope County had smaller population and higher percentage of 

vegetation coverage. The annual mean VHI values of Cook County had a greater range 

of variation than that of Pope County. The possible reason was that the environment 

was more stable in Pope County with more plants. The average VHI value for the 13-

year period of Pope County was higher than Cook County, which indicated more 
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favorable condition in Pope County than Cook County. For Pope County, the drought in 

2012 was extreme and the VHI value hit the bottom. Cook County

drought in 2002, 2005 and 2012

 

Figure 22: 2000-2012 annual mean VHI for Pope and Cook County. 
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to make exact comparison between USDM maps and the VHI and NDVI anomaly maps 

created in this study on the basis of pixel-by-pixel, such as calculating the coefficient of 

determination. But the visually verification can be made with USDM maps to account for 

the applications of VHI and NDVI in capturing the drought pattern (Rhee, et al, 2010). 

In the third column of Figure 23, the weekly USDM maps of 2012 indicate that 

from the beginning of June, the drought intensity started to increase from moderate to 

severe. In July and August, over half of the state experienced extreme drought 

condition. The drought condition expanded from small areas in south part to most of the 

Illinois area except the northeast corner. The subsequent drought condition was 

relieved in September. Less than 10% percent of the whole state was under extreme 

drought condition in September. However, the rest of the state was under moderate to 

severe drought condition. 

As showed in the first and second column of Figure 23, the VHI and NDVI 

anomaly maps of 2012 corresponding to the USDM maps in time were selected for 

every month to make the comparison. Both VHI and NDVI anomaly indices responded 

to the drought condition and captured the change of drought intensity during the 

growing season. Especially for the extreme drought condition in July and August, the 

VHI and NDVI anomaly maps demonstrated similar patterns with the USDM maps. The 

month-to-month change in drought intensity displayed by the VHI maps agreed quite 

well with the USDM maps. For NDVI anomaly maps, there was a time lag as indicated 

in the map of June and other maps followed quite the same trend with USDM maps. 

The reason for the delay was that crops needed time to respond to drought conditions. 

However, both the VHI and NDVI anomaly maps slightly differed from the USDM maps 

in the spatial distribution of drought condition. For instance, the VHI and NDVI anomaly 
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maps of July showed that the drought condition in south corner of Illinois was better 

than the central part, while the USDM map indicated the most serious drought in south 

corner of Illinois. The discrepancy between these three maps was mainly caused by the 

different data that were used for generation of the USDM maps in which climatology and 

hydrology information was included. The NDVI anomaly maps only focused on 

vegetation health while the VHI took both land surface temperature and vegetation 

heath into consideration. Therefore, the VHI maps may do better in detecting drought 

events than the NDVI and USDM. The VHI was able to capture the variation of both 

temperature and vegetation condition. Compared with USDM maps, the VHI maps also 

provided more localized drought information at the 1 km spatial resolution. The 

approach for generating VHI is repeatable and it is simpler than the method of USDM. 

Therefore it can be widely applied in other regions, even at global scale. 

 Compared to the VHI maps which are calculated with α = 0.5, the maps of the 

modified VHI generated in this study demonstrate very similar spatial distributions of 

drought condition. But there are still some differences in drought intensity at local scale. 

From June to August, the VHI maps obtained from vegetation coverage information 

indicate more severe condition in central and southern parts of Illinois with darker color. 

As showed in USDM maps, the south part experienced extreme situation during these 

three months. Therefore the VHI proposed in this study provides more accurate 

assessment of drought event than the unmodified VHI. The drought relieved in 

September and the two different VHI maps both captured the change. 
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Figure 23: Comparison of NDVI 

unmodified VHI maps in Illinois during June, Jul

first column: NDVI anomaly maps of this study, the second column: 

and the third column: USDM maps

column: unmodified VHI maps).
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: Comparison of NDVI Anomaly and modified VHI maps, USDM maps

in Illinois during June, July, August and September of 2012 

first column: NDVI anomaly maps of this study, the second column: modified 

USDM maps, Map courtesy of NDMC-UNL, and the fourth 

column: unmodified VHI maps). 

The correlation coefficients of spatial patterns between the modified VHI and 

Z, VCI, TCI, and the unmodified VHI maps were calculated in Figure 2

obvious that the correlation coefficient between the modified VHI and TCI is the highest, 

even higher than the value between the modified VHI and the unmodified VHI. The 

August and September are all over 0.9. The spatial pattern

modified VHI and VCI are less correlated compared to those from 
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Figure 24: Correlation coefficient

unmodified VHI in 2012. 
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CHAPTER 5 

CONCLUSION 

According to the recent records, the global and regional land surface temperature 

has increased in the twentieth century (WMO 2005). Among the warmest years 

observed since 1850, a total of 11 occurred between 1995 and 2006 (Alley et al. 2007). 

There is a lot of concern about the impact of global warming on drought occurrence at 

regional and global scales. Particularly, for the state of Illinois, agriculture is of central 

importance for the economy in this region and the production of corn and soybean is 

well known in the United States and the whole world. There is a direct relationship 

between the occurrence and magnitude of drought and the variability in the regional 

hydrologic cycle. It is essential to monitor the drought condition in this area because of 

serious influence on the agriculture, especially the quality and quantity of crop 

production. 

VHI has been proposed as a useful means for measuring the duration, intensity 

and impact of drought. Since the generation of VHI is based on the satellite images, VHI 

has many advantages over other meteorological and hydrological indices. It has 

continuous spatial coverage over large areas with high temporal and spatial resolution. 

NOAA/NESDIS system produces the VHI products from the radiance observed by the 

Advanced Very High Resolution Radiometer (AVHRR). The VHI images have 4 km 

spatial and 7-day composite temporal resolution. In this study, the modified VHI maps 

can be updated every eight days and the spatial resolution is as high as 1 km × 1 km. 

The more detailed information will help a lot in planning, mitigation and response 

activities and is vey meaningful for government officials and related organizations. 

Especially for relative small areas, such as counties, the high spatial resolution of 
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modified VHI maps can meet the requirement of local people. The other meteorological 

and hydrological indices rely on station-based data and their spatial resolution depends 

on the spatial distribution of the climate stations. For areas of sparse measurement 

networks and poor infrastructure, the modified VHI should be more useful in drought 

monitoring and mitigation than the traditional indices. 

Originally, VHI was created by combining VCI and TCI using equal weights of 0.5. 

The equal weights mean the neglect of differences between urbanization and vegetated 

areas for impacts of drought intensity. In this study, the contribution factor of vegetation 

condition index with vegetation coverage in the equation for calculating VHI index was 

modified. The modification led to variable weights of vegetation condition index and 

temperature condition index from pixel to pixel based on the vegetation fraction of each 

pixel. The modified VHI takes the influence of vegetation coverage factor on drought 

assessment into consideration and effectively incorporates the meteorological 

information from TCI and vegetation information from VCI.  

As showed in this study, VCI is much more stable than TCI since the range of 

VCI variation is much smaller than that of TCI. When drought takes place, the highly 

vegetated areas, such as forests, have higher drought resistance capability than those 

areas with low vegetation coverage, such as bared soil and urbanized areas. Even 

under the same temperature, the land of forests will not dry as quickly as cities and bare 

soils. Vegetation condition provides more accurate indicator of drought intensity. If there 

are only few trees or other plants, the drought condition for this area is strongly related 

to the temperature information. Therefore more weight is given to VCI for areas of 

dense vegetation coverage and more weight is given to TCI for areas of sparse 

vegetation coverage in computation of modified VHI. 
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After visual comparison with USDM maps, both NDVI and modified VHI 

demonstrate their ability in assessing the temporal and spatial variation of drought 

events. They captured the severe drought condition of Illinois in 2012 summer. 

Compared to modified VHI, there is a time lag of NDVI in detecting the occurrence of 

drought since crops need time to respond to the water stress caused by drought. The 

modified VHI shows identical temporal trend of drought intensity with USDM maps: the 

drought intensity started to increase in June and it became really extreme in July, then it 

gradually improved in August and September. The difference in spatial distribution is 

caused by the different datasets: the modified VHI is remote sensing based index and 

USDM is a composite index, which integrates traditional indices, such as PDSI and SPI. 

However, the severity of drought often varies greatly from place to place (Mishra and 

Singh, 2009). Especially, counties of every state need more specific information of 

drought intensity to make decision for policy and strategies towards management of 

drought disasters (Brown et al, 2008). Compared to USDM maps, the modified VHI 

provides more detailed information at local level. That is, the coarse resolution of USDM 

maps limits its application at local level. This study offered such potential. 

Overall, this study led to a modified drought index – VHI by combining the 

information from remotely sensed data in both vegetation condition and temperature 

based on the vegetation fraction images. This index is able to monitor the drought 

events that took place in Illinois and quantify the drought intensity. Especially, this study 

well answered all the research questions proposed in the first chapter, including: 1) Is 

the combined drought index able to provide more detailed information of drought 

intensity than the existing USDM? 2) Is the combined drought index able to capture the 

drought events that took place during the last decade, especially the one in 2012? 3) Is 
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the combined drought index able to reveal the differences of the drought impacts 

between urbanized and vegetated areas? And 4) Is the combined drought index better 

than existing indices in quantifying drought intensity? 

The shortcoming of the modified VHI is the uncertainty behind the change of 

vegetation condition. As discussed earlier in this study, the variation of vegetative status 

may result from insect, flood, nutrition of soil and other reasons. Drought could be part 

of the reasons and it is also possible that the variation has nothing to do with drought. 

Therefore more attention is to be paid while explaining the change of vegetation 

condition. The future improvement will focus on identifying the drought factor behind the 

vegetation condition change with meteorological data from local stations. For example, 

precipitation data that should be incorporated into the calculation of the modified VHI 

and enhance its capacity to verify whether the deteriorated vegetation health is the 

result of drought or not. There is still a lot of work to be done in validating and improving 

the VHI products. 
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Appendix A: Temperature Condition Index Maps of Illinois for years 2000-2012. 
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Appendix B: Vegetation Condition Index Maps of Illinois for years 2000-2012. 
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Appendix C: Vegetation Health Index Maps of Illinois for years 2000-2012. 
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Appendix D: NDVI Anomaly Maps of Illinois for years 2000 to 2012 
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