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 The fully Bayesian estimation via the use of Markov chain Monte Carlo (MCMC) 

techniques has become popular for estimating item response theory (IRT) models.  The current 

development of MCMC includes two major algorithms: Gibbs sampling and the No-U-Turn 

sampler (NUTS).  While the former has been used with fitting various IRT models, the latter is 

relatively new, calling for the research to compare it with other algorithms.  The purpose of the 

present study is to evaluate the performances of these two emerging MCMC algorithms in 

estimating two two-parameter logistic (2PL) IRT models, namely, the 2PL unidimensional 

model and the 2PL multi-unidimensional model under various test situations.  Through 

investigating the accuracy and bias in estimating the model parameters given different test 

lengths, sample sizes, prior specifications, and/or correlations for these models, the key 

motivation is to provide researchers and practitioners with general guidelines when it comes to 

estimating a UIRT model and a multi-unidimensional IRT model.  The results from the present 

study suggest that NUTS is equally effective as Gibbs sampling at parameter estimation under 

most conditions for the 2PL IRT models.  Findings also shed light on the use of the two MCMC 

algorithms with more complex IRT models.  
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CHAPTER 1 

INTRODUCTION 

            Educational and psychological measurement is a field of interest for many researchers to 

construct objective measurement of individuals’ skills, knowledge, and abilities.  Classical test 

theory (CTT, Traub, 1997) is a psychometric theory that can be used to develop and further 

validate such measurement.  The goal of CTT is to understand the characteristics of developed 

instruments, investigate the performance of individual items, and possibly improve the test’s 

reliability and validity.  Although CTT has been broadly used in measurement for decades, it has 

its shortcomings.  The major ones include (a) the person ability (e.g., observed scores) depends 

on items selected, and (b) the item characteristic (e.g., item difficulty or item discrimination) 

depends on groups selected (Hambleton & Swaminathan, 1985).  Due to these, applications such 

as test equating and construction (Skaggs & Lissitz, 1986), computerized adaptive testing (CAT; 

Linden & Glas, 2000), differential item functioning (DIF; Holland & Wainer, 1993), linking and 

building item banks would be difficult to perform in CTT (Fan, 1998; Güler, Uyanık, & Teker, 

2014).  Item response theory (IRT; Lord, 1980), an extension of CTT, provides a solution.  

Instead of focusing on information at the test level as CTT does, IRT mainly postulates the 

probabilistic relationship between a person’s latent trait and the test at the item level.  Latent 

traits are a specific type of constructs that refer to unobservable or unmeasurable objects.  They 

include entities such as attitudes, preferences, and disposition and various underlying processes 

that educators are interested in measuring such as ability, aptitude, expertise, and intelligence.  

For example, we can use achievement tests to measure individuals’ constructs such as memory.  

Because of IRT’s advantages over CTT, it has gained increased popularity in large-scale 

educational and psychological testing settings (e.g., Baker & Kim, 2004; De Ayala, 2009; 

Hambleton & Jones, 1993).   
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            Based on the number of latent constructs being measured, IRT models can be conceived 

as being unidimensional or multidimensional.  Unidimensional IRT (UIRT) models are utilized 

in circumstances when all test items measure one single latent trait.  Dichotomous UIRT models 

(e.g., Birnbaum, 1969; Lord, 1980; Lord & Novick, 1968; Rasch, 1960) can be applied to 

cognitive/achievement tests where two response categories such as correct/incorrect or true/false 

responses are used.  Various such models have been developed in the literature, including the 

conventional one-, two-, and three-parameter models.  The one-parameter model (Rasch, 1960; 

Wright & Stone, 1979) is the simplest IRT model because it only contains the difficulty 

parameter (i.e., the ability required for individuals to have a probability of 50% to respond to the 

item correctly).  The two-parameter model (Lord, 1952) extends the one-parameter model by 

adding the discrimination parameter, which is proportional to the slope at the point of the 

difficulty level.  Items with steeper slopes are more useful for separating individuals with 

different ability levels than are items with less steep slopes.  The three-parameter model extends 

the two-parameter model by adding the pseudo-guessing parameter, which is the probability of 

individuals with low ability answering the item correctly.  With a logit or a probit link, these 

dichotomous UIRT models can be defined in either logistic or normal ogive forms.  In the 

literature, such models are equivalent (Edelen & Reeve, 2007) in providing similar item 

characteristic curves (ICCs), which specify that as the level of latent trait increases, the 

probability of a correct response to an item increases (Hambleton, Swaminathan, & Rogers, 

1991).  Dichotomous UIRT models have been broadly studied in the literature (e.g. Kang & 

Cohen, 2007; Rizopoulos, 2006) and are the focus of this dissertation. 

            UIRT models have two major assumptions: unidimensionality and local independence 

(Lord, 1980).  Unidimensionality states that only one single latent trait is measured by a set of 
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test items.  This assumption is related to the assumption of local independence, which means that 

when the latent trait is held constant, individuals’ responses to any pair of items are independent.  

In other words, the latent trait measured by a test is the only factor that affects the probability of 

correct responses to individual items.  In most situations, all test items are designed to measure 

one trait and hence it is appropriate to use UIRT models.  However, when multiple traits are 

being measured or the test dimensionality structure is not obvious, using a UIRT model becomes 

problematic because measurement error inflates and incorrect inferences about an individual’s 

proficiency in a given subject may be made (e.g., Walker & Beretvas, 2000).  In such cases, 

multidimensional IRT (MIRT; Reckase, 1997, 2009) models should be considered. 

            There are two general forms of MIRT models: compensatory and noncompensatory.  For 

compensatory MIRT models, a lack of one trait dimension can be compensated by an increase of 

other trait dimensions (e.g., Ackerman, Gierl, & Walker, 2003; Reckase, 1985).  However, for 

noncompensatory MIRT models, a lack of one cannot be offset by an increase of others (e.g., 

Sympson, 1978; Whitely, 1980).  Due to the estimation complexity in noncompensatory MIRT 

models, most research has focused on compensatory MIRT models (De Ayala, 1992).  By using 

the compensatory form, the multidimensional one-, two-, and three-parameter models can be 

extended from unidimensional models (De Ayala, 1992; DeMars, 2010).  A special case of 

MIRT models is known as the multi-unidimensional IRT model when the overall test is 

multidimensional but each item measures only one latent trait (Sheng & Wikle, 2007).  

            To date, many estimation techniques have been developed for various IRT models with 

early focus being on using the joint maximum likelihood (JML; Birnbaum, 1969).  The JML 

estimation begins with the joint probability (likelihood) of the item response vector given the 

person parameters.  This procedure treats both item and person parameters as unknown and 
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simultaneously estimates them by maximizing the joint likelihood.  The JML, however, tends to 

result in inconsistent and biased estimates (Andersen, 1970; Gruijter, 1990; Ghosh, 1995; 

Neyman & Scott, 1948).  

            The marginal maximum likelihood (MML; Bock & Aitkin, 1981) method based on the 

expectation maximization (EM) algorithm was developed in the early 1980’s to overcome the 

problems resulting from using the JML estimation.  It treats persons as random effects and 

derives a marginal probability of observing the item response vector by integrating the person 

effects out of the joint likelihood in order to separate item parameters from person parameters.  

Therefore, in MML, two steps are taken where item parameters are first estimated using the EM 

algorithm after integrating out person parameters, and then person parameters can be 

subsequently estimated by fixing the estimated item parameters as known.  Given that both JML 

and MML produce estimators related to the maximum likelihood, they may result in either 

infinite or impossible parameter estimates in circumstances where unusual response patterns are 

observed (e.g., perfect or zero scores). 

            With the help of modern computer techniques, the estimation methods of IRT models 

have gradually shifted to the fully Bayesian estimation, which can simultaneously obtain 

posterior estimates for both item and person parameters.  The fully Bayesian estimation via the 

use of Markov chain Monte Carlo (MCMC; Hastings, 1970) simulation techniques has 

demonstrated its advantages over traditional maximum likelihood for IRT models (e.g., Kim, 

2007; Mislevy, 1986; Swaminathan & Gifford, 1983).  Unlike JML and MML, the Bayesian 

method can avoid unreasonable parameter estimates occurring.  In addition, the Bayesian 

approach controls the parameters within a reasonable range via specifying appropriate prior 

distributions.  Further, the fully Bayesian estimation, with the use of MCMC methods, is highly 
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flexible and has demonstrated its practical usefulness in all aspects of Bayesian inferences, such 

as parameter estimation or model comparisons. 

            As the name indicates, MCMC combines Monte Carlo with Markov chain.  Monte Carlo 

is a computational simulation technique with the name coming from the Monte Carlo casino in 

Monaco.  A Markov chain is a stochastic process that satisfies the Markov property if one can 

make predictions for the future process based solely on its present value.  In other words, what 

happens next in the chain depends only on the current state of the system and not on how it 

reached the current state.  An important feature of a Markov chain is its stationary distribution.   

The stationary state allows one to define the probability for every state of a system at a random 

time.  Therefore, MCMC methods are a class of algorithms that can be used to simulate samples 

from a probability distribution via constructing a Markov chain that has the desired distribution 

(i.e., the posterior distribution) as its stationary distribution.   

            Common MCMC algorithms include Gibbs sampling (Geman & Geman, 1984) and 

Metropolis-Hastings (MH; Hastings, 1970; Metropolis & Ulam, 1949).  These methods engage 

in random walk behaviors where at each step, the direction of the proposed move is random.  If 

the relative probability of the proposed position is less than that of the current position, the 

acceptance of the proposed move is by chance.  Due to the randomness, if the process were 

started over again, then the movement would certainly be different.  Gibbs sampling is the 

simplest MCMC algorithm that requires the marginal distribution of each parameter conditional 

on the values of all the others to be in closed form.  The algorithm works by drawing random 

samples of each parameter from its full conditional distribution based on the previously 

generated values of all the other parameters.  Then, the joint posterior distribution can be 

eventually obtained through an adequate number of iterations.  If the full conditional distribution 
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is not in closed form or is difficult to simulate, one has to use a more general MH algorithm, 

which chooses a proposal or candidate distribution by the current value of the parameters.  Then, 

a proposal value is generated from the proposal distribution and accepted in the Markov chain 

with a certain amount of probability.  Although the MH method can be applied in many 

situations, finding an appropriate proposal distribution for each parameter could sometimes be 

inefficient in the Markov chain.  In addition, both Gibbs sampling and MH utilizing random 

walks have the general problem of possibly requiring too much time to reach convergence to the 

target distribution for complicated models with many parameters.  These methods tend to explore 

the parameter space via inefficient random walks (Neal, 1992). 

            Other MCMC methods such as Hamiltonian Monte Carlo (HMC; Duane, Kennedy, 

Pendleton, & Roweth, 1987) and No-U-Turn Sampler (NUTS; Hoffman & Gelman, 2014) have 

been developed to avoid the random walk behavior that Gibbs sampling or MH exhibits by 

introducing an auxiliary momentum vector and implementing Hamiltonian dynamics so the 

potential energy function is the target density.  HMC generates a proposal in a way similar to 

rolling a small marble on a hilly surface (the posterior distribution).  The marble gains kinetic 

energy when it falls down the hill and earns potential energy when it climbs back up the hill.  

The proposed point is then accepted or rejected according to the Metropolis rule.  HMC obtains a 

sequence of random samples from a probability distribution for which direct sampling is 

difficult.  This sequence can be used to approximate the distribution (i.e., to generate a 

histogram), or to compute an integral (such as an expected value).  NUTS further improves HMC 

by eliminating the need to manually set the number of steps in HMC at each iteration.   The 

algorithm gets its name “no-U-turn” sampler because it prevents inefficiencies that would arise 

from letting the trajectories make a U-turn.  NUTS generalizes the notion of the U-turn to high 
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dimensional parameter spaces and estimates when to stop the trajectories before they make a U-

turn back toward the starting point.  Gibbs sampling and NUTS can be implemented in software 

such as JAGS (Plummer, 2003) and Stan (Stan Development Team, 2016), respectively.   

1.1 Statement of the Problem 

            In the IRT literature, many studies have been conducted on the development and 

application of Bayesian IRT models using Gibbs sampling or MH (e.g., Albert, 1992; Albert & 

Chib, 1993; Béguin & Glas, 2001; Patz & Junker, 1999a, 1999b; Sheng & Wikle, 2007, 2008, 

2009) as well as using NUTS (Caughey & Warshaw, 2014; Zhu, Robinson, & Torenvlied, 2014).  

Also, studies comparing fully Bayesian and maximum likelihood estimation (MLE) have found 

that Gibbs sampling performs better than MH (e.g., Sahu, 2002) with the use of data 

augmentation (Tanner & Wong, 1987) and MLE (e.g., Albert & Chib, 1993) with the small 

sample size situation.  Recently, Grant, Furr, Carpenter, and Gelman (2016) tried to fit the one-

parameter IRT model (Rasch, 1960) using both Gibbs sampling and NUTS.  Although their 

results showed that NUTS performed better than Gibbs sampling, their study only focused on the 

computation speed and scalability.  To date, no research has actually investigated the comparison 

of Gibbs sampling and NUTS in estimating the dichotomous UIRT and multi-unidimensional 

IRT models.  Hence, given the increased popularity of fully Bayesian estimation using Gibbs 

sampling and NUTS, and the ease in implementing them via two computer programs, JAGS and 

Stan, it is important and necessary to investigate how these two types of MCMC algorithms 

perform in estimating item and person ability parameters in such models especially when 

different sample size, test length, prior specification, and/or intertrait correlation conditions for 

these IRT models are considered. 
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1.2 Purpose of the Study 

            The purpose of the study is to evaluate the performances of two emerging MCMC 

algorithms, Gibbs sampling and NUTS, in estimating the two-parameter logistic (2PL) UIRT 

model and the 2PL multi-unidimensional IRT model under various test situations.  The 

parameter estimates were obtained using these two algorithms, which can be implemented in two 

computer programs, JAGS and Stan, respectively.  The key motivation for this investigation is to 

provide researchers and practitioners with general guidelines when it comes to estimating a 

UIRT model and a multi-unidimensional IRT model using Gibbs sampling and NUTS.  

Moreover, the accuracy and bias in estimating the model parameters were investigated given 

different test lengths, sample sizes, prior specifications, or correlations for these models.   

1.3 Research Questions 

            The general research question is to compare two types of MCMC algorithms, i.e., Gibbs 

sampling where random walk is utilized with NUTS where random walk behaviors are avoided 

for the 2PL IRT models.  Each algorithm was implemented to the 2PL UIRT and multi-

unidimensional IRT models.  The specific research questions related to the performance of the 

model and parameter estimations are as follows 

1. How does Gibbs sampling compare with NUTS in estimating the 2PL UIRT model under 

various test conditions where sample sizes, test lengths, and prior specifications differ? 

2. How does Gibbs sampling compare with NUTS in estimating the 2PL multi-

unidimensional IRT model under various test conditions where sample sizes, test lengths, 

and intertrait correlations differ? 

1.4 Definition of Terms 

            For the purpose of this dissertation, some important terms are defined as follows: 
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 Item response theory (IRT) − Item response theory, also known as the latent trait theory, 

is the theory used in educational and psychological measurement (e.g., achievement tests, 

rating scales, and inventories) that investigates a mathematical relationship between 

individuals’ abilities (or other mental traits) and item responses. 

 Unidimensional IRT (UIRT) − UIRT assumes each of the individual trait level varies 

continuously along a single dimension.  A person’s response to a specific item is 

determined by a single unified latent trait.   

 Multidimensional IRT (MIRT) − MIRT assumes multiple traits are measured by each 

item. 

 Multi-unidimensional IRT − It is a special case of MIRT.  It assumes that an overall test 

measures multiple latent traits, with each subtest measuring one of them.  This implies 

that the overall test is multidimensional while each subtest is unidimensional.  The latent 

traits can be correlated.  

 Dichotomous IRT models − A dichotomous IRT model is used when a test involves 

items with two response categories (e.g., true/false items). 

 Fully Bayesian− It is a branch of mathematical probability theory that allows one to 

model uncertainty about the world and outcomes of interest by combining common-sense 

(prior) knowledge and observational evidence (likelihood). 

 Markov chain Monte Carlo (MCMC) − MCMC methods are a class of algorithms for 

generating samples from a probability distribution via constructing a Markov chain that 

has the desired distribution as its stationary distribution.  MCMC methods are used in 

data modeling for Bayesian inference and numerical integration. 
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 Random walk Monte Carlo methods – A MCMC algorithm can be a random walk that 

uses either an acceptance or rejection rule to converge to the target distribution.  

Algorithms such as Gibbs sampling and Metropolis-Hastings algorithm are considered as 

random walk Monte Carlo methods.   

 Gibbs sampling − This is one of the simplest MCMC algorithms. Gibbs sampling is 

applicable when the joint posterior distribution is not known explicitly, but the 

conditional posterior distribution of each parameter is known.  The idea of a Gibbs 

sampler is to obtain the joint posterior distribution by iteratively generating a random 

sample from the full conditional distribution for each parameter. 

 Metropolis-Hastings (MH) − This is more general than Gibbs sampling and used when 

any of the conditional posterior distributions do not have an obtainable closed form. The 

idea of MH is to generate a proposed value from a proposal distribution. Then the 

proposed value is accepted as the next value in the Markov chain with a certain 

probability. 

 Hamiltonian Monte Carlo (HMC) −HMC is a MCMC algorithm that uses an auxiliary 

momentum vector and implements Hamiltonian dynamics so the potential energy 

function is the target density. 

 No-U-Turn Sampler (NUTS) – NUTS is one of the MCMC algorithms that build a set of 

likely candidate points that span a wide swath of the target distribution, stopping 

automatically when it starts to double back and retrace its steps.  

 JAGS – JAGS stands for just another Gibbs sampler and is a program for analysis of 

Bayesian models with MCMC simulation using Gibbs sampling. 

 Stan − It is a program that performs Bayesian inference using NUTS. 

https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Hamiltonian_dynamics
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1.5 Significance of the Research 

            The significance of the study lies in the comparison between two MCMC algorithms for 

the 2PL dichotomous UIRT and multi-unidimensional IRT models under various test conditions.  

The results of the study provide researchers and practitioners with a set of guidelines on using 

Gibbs sampling and NUTS in estimating the two IRT models.  Understanding the performance 

of the two algorithms for IRT models in various test situations would further provide guidance to 

future research when it comes to parameter estimation for IRT models using the algorithms 

under investigation.  Findings from this study also provide empirical evidence on the use of 

Gibbs sampling or NUTS with more complicated IRT models. 

1.6 Delimitation of the Study 

            The delimitations in this dissertation are described as follows.   

1. This dissertation focuses on the two-parameter dichotomous IRT model.  More item 

parameters such as three-parameter IRT models, or polytomous IRT models such as the 

partial credit and the rating scale models are not considered. 

2. This dissertation only compares two MCMC algorithms under the fully Bayesian 

framework.  Other MCMC algorithms such as Metropolis-Hastings or Hastings-within-

Gibbs, or other estimation methods such as JML or MML are not considered.   

3. When implementing the IRT models, this dissertation focuses only on simulated data not 

real data because with simulations, the model parameters can be specified, which makes 

it possible to evaluate the performance of each estimation algorithm. 

4. The two-parameter multi-unidimensional IRT model is a special case of the 

corresponding MIRT model.  It is noted that the multi-unidimensional model does not 

apply to situations where each item measures multiple latent traits.  
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5. The simulation study for the multi-unidimensional IRT model in this dissertation only 

considers situations where a test involves two subscales.  The algorithms, however, can 

be applied to situations where more than two dimensions are involved. 

1.7 Overview of Subsequent Chapters 

            The subsequent chapters are organized as follows.  Chapter 2 reviews the related 

literature on the IRT models, estimation procedures, and the algorithms of implementing IRT 

models under the fully Bayesian framework.  Chapter 3 describes the procedures of fitting the 

models with simulated datasets.  Chapter 4 presents the results of simulation studies for the 2PL 

UIRT and multi-unidimensional IRT models.  Finally, Chapter 5 summarizes the conclusion of 

findings, implication of this study, and the discussion for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

            The review of literature starts with the basic concept of item response theory.  Five main 

sections are included in this chapter.  The first section reviews the unidimensional and 

multidimensional IRT models, with the multi-unidimensional model as a special case.  The 

second section focuses on the estimation procedures with UIRT models.  Section 3 reviews the 

estimation procedures with MIRT models.  Section 4 concentrates on a few major Markov chain 

Monte Carlo (MCMC) algorithms and programs that can be used to implement these algorithms.  

The last section reviews prior research estimating unidimensional and multidimensional IRT 

models using fully Bayesian estimation via MCMC. 

2.1 Item Response Theory 

            Item response theory (IRT; Lord, 1980) is a measurement theory used in educational and 

psychological assessments (e.g., achievement tests, rating scales, and inventories) that assumes a 

mathematical relationship between individuals’ abilities (or other mental traits) and item 

responses (Baker & Kim, 2004; Hambleton et al., 1991; Wainer, Bradlow, & Wang, 2007).  IRT 

is constructed on the concept that the probability of a correct response to an item is a 

mathematical function of both person and item parameters (Hemker, Sijtsma, & Molenaar, 

1995).   It is generally considered as an improvement over classical test theory (CTT), which has 

become the norm for test measurement since the 1930s and has been the predominant 

psychometric method with psychological instruments for most of the last century (Gulliksen, 

1987).  For tests that can be performed using CTT, IRT generally provides more flexibility and 

offers additional test information.  Some applications, such as computerized adaptive testing 

(CAT), are enabled by IRT and cannot reasonably be performed using CTT only.  Although CTT 

https://en.wikipedia.org/wiki/Computer-adaptive_test
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has been used in educational and psychological measurement for decades, it has its own 

limitations.  For example, for CTT, the item characteristics are sample dependent, and hence can 

change based on the groups of individuals that are being selected.  Another limitation of CTT is 

that the traits of individuals depend on the items selected.  Thus, it is difficult to compare 

individuals’ latent traits if the test forms are not exactly parallel.  IRT was developed to tackle 

the limitations of CTT and offered more information on test scores.  IRT differs from CTT in 

that it has the property of invariance of item and latent trait characteristics, which indicates that 

the corresponding estimates are not sample or item dependent.  In other words, latent trait 

estimates from different item sets evaluating the same fundamental construct are similar and vary 

only because of the examinee measurement error.  Item estimates from different respondent 

groups in the same population are similar and vary only because of the sampling error.  The 

comparisons between IRT and CTT have been widely explored in the literature (see e.g., De 

Ayala, 2009; Hambleton & Jones, 1993; Thissen & Wainer, 2001). 

2.1.1 IRT Major Assumptions 

            There are two main assumptions with conventional IRT models, including 

unidimensionality and local independence.  Unidimensionality states that only one single latent 

trait 𝜃 is measured with a set of test items.  In reality, this assumption can be difficult to meet 

because several cognitive, personality, and test taking factors directly affect individuals’ test 

performance.  To overcome this, a “dominant” factor that affects the test performance is 

required.  Once the assumption of unidimensionality is met, local independence is also obtained.   

To some extent, these two concepts are equivalent (Lord, 1980).  Local independence means that 

when individuals’ latent traits are held constant, their responses to any pairs of items are 
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statistically independent.  In other words, after taking individuals’ abilities into account, no 

relationship exists between individuals’ responses to test items.  

            Due to these assumptions, IRT models can be generally divided into two categories: 

unidimensional and multidimensional IRT models.  Unidimensional IRT models assume each of 

the latent traits varies continuously along a single dimension 𝜃, while multidimensional IRT 

models are used to measure multiple traits (Reckase, 1997, 2009).  However, given the greatly 

increased complexity involved with multidimensional IRT models, the majority of IRT research 

and applications focuses on unidimensional IRT models.  In addition, based on the number of 

scored responses, IRT models can also be categorized as models for dichotomous outcomes (e.g., 

true/false; correct/incorrect), and those for polytomous outcomes, where each response has a 

different score value.  A common example of the latter is Likert-type items (e.g., “Rate on a 

scale of 1 to 5”).  Given that this dissertation focuses on dichotomous models, interested readers 

can refer to Samejima (1969, 1972), Masters (1982), and Muraki (1992) for polytomous models.  

2.1.2 Unidimensional IRT (UIRT) Models  

            Common dichotomous UIRT models are described by the number of item parameters 

they consist of.  The one-parameter model is the simplest UIRT model.  The model contains an 

item difficulty parameter (𝑏𝑗), which corresponds to the ability required for individuals to 

respond to the item correctly at a probability of 0.5.  The one-parameter logistic (1PL) model, 

also known as the Rasch model (Rasch, 1960), is defined as the probability of a correct response 

for person i to item j (𝑌𝑖𝑗 = 1): 

                                           P(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝑏𝑗) = 
exp (𝜃𝑖−𝑏𝑗)

1+exp (𝜃𝑖−𝑏𝑗)
 ,                                                (2.1.1) 

where 𝜃𝑖 is the latent variable of person i (i = 1,…, N).  𝜃𝑖 ranges from −∞ to +∞ and follows a 

standard normal distribution.  Given this, the majority of persons (99.7%) have 𝜃 values ranging 
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from −3 to 3 (DeMars, 2010).  The range of 𝑏𝑗 (j = 1,…, K) is from −2 to 2 in practice when 𝜃𝑖 

is assumed to be between −3 and 3 (Hambleton & Cook, 1977).  Given that 𝑏𝑗 denotes item 

difficulty, the larger its value is, the more difficult this item becomes since it requires 

individuals’ greater ability to attain a 50% correct response.  With a probit form, the one-

parameter model can be defined as the one-parameter normal ogive model: 

                                            P(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝑏𝑗) = Φ (𝜃𝑖 − 𝑏𝑗),                                                (2.1.2) 

where Φ(∙) is the standard normal cumulative density function. 

            The two-parameter model assumes that items can vary in terms of difficulty (𝑏𝑗) and 

discrimination (𝑎𝑗).  The two-parameter logistic (Lord & Novick, 1968) and normal ogive 

models are defined as follows:  

                                          P(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗) = 
exp [𝑎𝑗(𝜃𝑖−𝑏𝑗)]

1+exp [𝑎𝑗(𝜃𝑖−𝑏𝑗)]
 , and                                  (2.1.3) 

                                         P(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗) = Φ[𝑎𝑗(𝜃𝑖 − 𝑏𝑗)],                                            (2.1.4) 

where 𝑎𝑗 is referred to as the discrimination parameter for item j.  The value of 𝑎𝑗 can range from  

−∞ to +∞, but in practice, it ranges from 0 to 2 (DeMars, 2010; Hambleton & Cook, 1977).  An 

item with a negative discrimination parameter suggests that individuals with greater abilities are 

less likely to answer the item correctly.  Hence, such items should be revised or removed.  

            The three-parameter model is an extension of the two-parameter model by adding a 

pseudo-guessing parameter 𝑐𝑗 for item j.  The three-parameter logistic and normal ogive models 

are described as  

                                    P(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗) = 𝑐𝑗 + (1 − 𝑐𝑗)
exp [𝑎𝑗(𝜃𝑖−𝑏𝑗)]

1+exp [𝑎𝑗(𝜃𝑖−𝑏𝑗)]
 ,                     (2.1.5) 

                                   P(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗) = 𝑐𝑗 + (1 − 𝑐𝑗) Φ[𝑎𝑗(𝜃𝑖 − 𝑏𝑗)].                       (2.1.6) 
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If a five-option multiple choice item is used, 𝑐𝑗 would be approximately 0.2, which is the chance 

that an individual with an extremely low latent trait could answer this item correctly.  For 

example, in multiple-choice aptitude tests, even the least competent people can score by guessing 

(Drasgow & Schmitt, 2002).  For 𝑐𝑗 > 0, the item difficulty is not the trait level at which the 

probability that an individual answers correctly is 0.5.  Instead, the inflation point (1+𝑐𝑗)/2 is 

shifted by the lower asymptote.   

            In summary, the three-parameter model gets its name because it contains three item 

parameters, including the difficulty (𝑏𝑗), discrimination (𝑎𝑗), and guessing (𝑐𝑗) parameters.  The 

two-parameter model assumes that items can differ in terms of difficulty (𝑏𝑗) and discrimination 

(𝑎𝑗) with no guessing.  The one-parameter model assumes that all items have comparable 

discriminations and that guessing is a part of the ability, and hence items can be described by a 

single parameter (𝑏𝑗). 

            In addition to the three conventional IRT models, there is a hypothetically four-parameter 

model (Barton & Lord, 1981), which adds an upper asymptote, represented by 𝑑𝑗.  The upper 

asymptote 𝑑𝑗 allows high-ability students to miss an easy item without their ability being 

drastically underestimated (Barton & Lord, 1981).  Therefore, 1−𝑐𝑗 in the three-parameter model 

is replaced by 𝑑𝑗 − 𝑐𝑗.  This model, however, is rarely used.  Note that the alphabetical order of 

the item parameters does not necessarily suggest their practical or psychometric importance.  The 

difficulty parameter (𝑏𝑗) is clearly the most important because it is included in all four models.  

The one-parameter model only has 𝑏𝑗, the two-parameter model has 𝑏𝑗 and 𝑎𝑗, the three-

parameter model adds 𝑐𝑗, and the four-parameter model adds 𝑑𝑗. 
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            The three-parameter model is equivalent to the two-parameter model with 𝑐𝑗 = 0, which is 

appropriate for testing items where guessing the correct answer is highly unlikely, such as fill-in-

the-blank questions (“What is the square root of 121?”), or where the concept of guessing does 

not apply, such as personality, attitude, or interest items (e.g., “Do you like Broadway musicals? 

Yes/No”). 

2.1.3 Multidimensional IRT (MIRT) Models  

            When multiple latent traits are being measured or the test dimensionality structure is not 

obvious, it could be problematic to fit the data with a UIRT model since measurement error 

increases and incorrect inferences about an individual’s proficiency may be made (Walker & 

Beretvas, 2000).  In such cases, multidimensional IRT (MIRT, Reckase, 1997, 2009) models 

should be used for dealing with this type of complicacy in educational and psychological 

measurement. 

            MIRT models have been developed to explain how test items interact with an individual 

when characteristics of an individual are defined using a vector of hypothetical constructs rather 

than a single unified trait (Reckase, 1997).  The two most common MIRT models are 

compensatory (e.g., Ackerman et al., 2003; Reckase, 1985) and non-compensatory (e.g., 

Sympson, 1978; Whitely, 1980) MIRT models.  In compensatory MIRT models, a lack of one 

dimension can be compensated by an increase in other trait dimensions.  For example, 

individuals with a higher arithmetic problem-solving ability might be able to use it to 

compensate for their lower algebraic symbol manipulation ability in order to correctly respond to 

a mathematical problem.  In contrast, in non-compensatory multidimensional IRT models, a lack 

of one trait dimension usually cannot be compensated by an increase of others.  For example, an 

individual with a very low reading proficiency attempts solving a math problem.  Even with 
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extremely high mathematical skills, that individual will still be unable to solve the math problem 

described in words.  

            Due to the difficulties in estimation, more studies have focused on compensatory MIRT 

models rather than on non-compensatory models (De Ayala, 1992; Knol & Berger, 1991).  For 

example, in an m-dimensional test, the compensatory two-parameter logistic MIRT model can be 

defined as (Reckase, 1985) 

        P(𝑦𝑖𝑗=1|𝜽𝑖, 𝜶𝑗, 𝛾𝑗) = logit(∑ 𝑎𝑣𝑗𝜃𝑣𝑖 − 𝛾𝑗
𝑚
𝑣=1 ) = 

1

1+exp [−(∑ 𝑎𝑣𝑗𝜃𝑣𝑖−𝛾𝑗)]𝑚
𝑣=1

 ,                       (2.1.7) 

where P(𝑦𝑖𝑗=1|𝜽𝑖, 𝜶𝑗, 𝛾𝑗) is the probability of a correct response of person i for item j, 𝜽𝑖= 

(𝜃𝑖1,…, 𝜃𝑖𝑚)′  is an ability vector of person i for each of the m dimensions, 𝜶𝒋 is a vector of 

discrimination parameters where 𝜶𝑗 = (𝛼1𝑗,…, 𝛼𝑚𝑗)′, and 𝛾𝑗 is a scalar parameter representing 

the location in the latent space where the item is maximally informative.  When the link function 

is probit (Φ) rather than logit, the model is called the compensatory two-parameter normal ogive 

MIRT model.  The compensatory two-parameter logistic or normal ogive MIRT models are an 

extension of the two-parameter logistic or normal ogive UIRT models.  Similarly, the 

compensatory three-parameter logistic (normal ogive) MIRT models can also be extended from 

the three-parameter logistic (normal ogive) UIRT models (see De Ayala, 1992, for detailed 

descriptions and equations).    

2.1.4 Multi-unidimensional IRT Model 

            The multi-unidimensional IRT model (Sheng & Wikle, 2007), also known as the 

between-item MIRT model, can be considered as a special case of MIRT models.  For the multi-

unidimensional IRT model, items measure only one of the multiple latent abilities, which are 

commonly in the form of an overall test containing multiple unidimensional subsets or domains 

(e.g., de la Torre & Patz, 2005; Oshima, Raju, & Flowers, 1997; Sheng & Wikle, 2007; Wang, 
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Wilson, & Adams, 1997).  For the multi-unidimensional IRT model, the vector of discrimination 

parameters in the MIRT model as defined in (2.1.7) is simplified to 𝜶𝑗 = (0,…, 0, 𝛼𝑣𝑗 , 0, … ,0)′.  

Specifically, suppose a K-item test containing m subtests, each having 𝑘𝑣 multiple-choice items 

that measure one trait dimension.  With a logit link, the probability of person i obtaining a 

correct response for item j of the vth subtest can be defined as follows (Lee, 1995): 

          P(𝑦𝑣𝑖𝑗 = 1|𝜃𝑣𝑖, 𝛼𝑣𝑗 , 𝛾𝑣𝑗) = logit (𝛼𝑣𝑗𝜃𝑣𝑖 − 𝛾𝑣𝑗) = 
1

1+exp [−(𝛼𝑣𝑗𝜃𝑣𝑖−𝛾𝑣𝑗)]
 ,                     (2.1.8) 

where 𝛼𝑣𝑗 and 𝜃𝑣𝑖 are scalar parameters representing the item discrimination and the examinee 

ability in the vth ability dimension, and 𝛾𝑣𝑗 is a scalar parameter indicating the location in that 

dimension where the item provides maximum information.  With a probit link, the two-

parameter normal ogive multi-unidimensional IRT model can be defined as 

         P(𝑦𝑣𝑖𝑗 = 1|𝜃𝑣𝑖, 𝛼𝑣𝑗 , 𝛾𝑣𝑗) =  Φ (𝛼𝑣𝑗𝜃𝑣𝑖 − 𝛾𝑣𝑗) = ∫
1

√2𝜋
𝑒

−𝑡2

2 𝑑𝑡
𝛼𝑣𝑗𝜃𝑣𝑖−𝛾𝑣𝑗

−∞
.                      (2.1.9) 

2.2 Parameter Estimation of UIRT Models 

            Accurate recovery of model parameters from response data is a central problem in the 

IRT models.  In fact, successful applications of IRT highly rely on finding appropriate 

procedures for estimating the model parameters (Hambleton et al., 1991).  Numerous estimation 

techniques have been developed for various IRT models in the past decades.  The early method 

focused on using joint maximum likelihood (JML) and conditional maximum likelihood (CML) 

estimations.  The problem with estimating the item parameters using JML was its tendency to 

obtain inconsistent estimators (Andersen, 1973).   Compared with JML, CML produced more 

consistent and efficient parameter estimates by removing the trait level parameters from the 

likelihood equations (Si & Schumacker, 2004).  However, when applying the CML estimation to 

the Rasch model, the parameter estimates are inconsistent due to the loss of item information 
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from the marginal distribution (Andersen, 1973).  Bock and Aitkin (1981) presented an 

algorithm based on the expectation maximization (EM) and since then, the standard approach has 

been the marginal maximum likelihood (MML) estimation.  Modern computer technologies also 

helped the development of parameter estimation (see Zhao & Hambleton, 2009, for a comparison 

of the current computer software for IRT analysis) and made it possible to move to the fully 

Bayesian estimation (e.g., Chib & Greenberg, 1995).  Lord (1980) and Baker and Kim (2004) 

provided a comprehensive review of the methods for parameter estimation with UIRT models.  

Three main estimation methods, including the JML, MML, and Bayesian estimation are 

reviewed as follows. 

2.2.1 Joint Maximum Likelihood (JML) 

            The joint maximum likelihood (JML) method relies on the assumption of local 

independence that individuals’ traits are independent of one another and item responses of an 

individual are independent given the individual’s trait 𝜃𝑖.  Therefore, the joint probability 

(likelihood) of the person parameter 𝜃𝑖 given 𝒚𝑖 is 

                                          L(𝜃𝑖|𝒚𝑖, 𝝃) = P(𝒚𝑖 |𝜃𝑖, 𝝃) = ∏ 𝑃(𝑘
𝑗=1 𝒚𝑖𝑗|𝜃𝑖,𝝃𝑗),                          (2.2.1) 

where 𝝃𝑗 is the vector of all item parameters for item j in the IRT model.  For example, for the 

unidimensional two-parameter logistic (2PL) model, 𝝃𝑗 = (𝑎𝑗, 𝑏𝑗)′ and the likelihood for 𝜃𝑖 is 

                                        L(𝜃𝑖| 𝒚𝑖, 𝝃) = 
exp {𝜃𝑖 ∑ 𝑦𝑖𝑗𝑎𝑗−∑ 𝑦𝑖𝑗𝑎𝑗𝑏𝑗}𝑗𝑗

∏  (1+exp{𝑎𝑗(𝜃𝑖−𝑏𝑗)})𝑗
.                                          (2.2.2) 

The JML method maximizes the joint likelihood function in equation (2.2.1) via simultaneously 

estimating both item and person parameters.  The method treats both item and individual 

parameters as unknown so the model is unidentified.  Therefore, there is no unique solution to 

find the maximization.  To overcome this, constraints have to be placed on the parameters of the 

model in order to ensure the existence of a solution.  Even with constraints, the problem is that 
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the maximization equation cannot be solved analytically unless a numerical method is used.  

Another problem with the JML method is that the estimations could be inconsistent (Andersen, 

1970; Ghosh, 1995; Neyman & Scott, 1948).  This is because a limited number of item 

parameters are estimated in the presence of many person parameters.  In that case, regardless of 

how many individuals are included in the data, the estimation of the item parameters may still be 

biased (Gruijter, 1990).  The JML method is implemented in the LOGIST (Wingersky, 1992) 

software for one-, two-, and three-parameter IRT models. 

2.2.2 Marginal Maximum Likelihood (MML) 

            The marginal maximum likelihood (MML) method takes a different approach to 

eliminate the problems encountered in the JML method by treating individuals as random effects 

and separating person parameter estimation from item parameter estimation via estimating item 

parameters first.  In MML, it is assumed that person parameters 𝜃𝑖 are random effects sampled 

from a large continuous distribution, denoted F(𝜃).  The marginal probability of observing the 

item response vector 𝒚𝐢 is derived by integrating the random person effects out of the joint 

likelihood defined in (2.2.1), i.e., 

                                                 P(𝒚i| 𝝃) = ∫ 𝐿(𝜃𝑖|𝒚𝑖𝜃𝑖
, 𝝃)𝑑𝐹(𝜃𝑖).                                         (2.2.3) 

Taking the product of the probabilities in (2.2.3) over individuals i defines the marginal 

likelihood of the item parameter vector 𝝃: 

                                                L(𝝃|y) = ∏ 𝑃(𝒚𝑖|𝑖 𝝃).                                                              (2.2.4) 

The MML estimates for the item parameter 𝝃 can be acquired by maximizing the marginal 

likelihood in (2.2.4) using the EM algorithm.  Then, the person parameters 𝜃𝑖 can be obtained 

using the item parameter estimates.  Like the JML method, constraints are needed to identify the 

model.  The constraints can either be placed on the mean and standard deviation of the 
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propensity distribution F or on the item parameters.  Typically, the distribution F is assumed to 

be the standard normal distribution, but the normal distribution does not necessarily work for all 

situations.  Therefore, it becomes difficult to specify the distribution F (Johnson, 2007).  In 

addition, both JML and MML methods encounter the problems that they may result in infinite or 

impossible parameter estimates.  The MML method is directly implemented in BILOG-MG 

(Zimowski, Muraki, Mislevy, & Bock, 2003) for the one-, two-, and three-parameter logistic 

IRT. 

2.2.3 Bayesian Estimation 

            In the IRT literature, the Bayesian estimation includes a marginal Bayes and a fully 

Bayesian method.  Generally speaking, in the Bayesian approach, model parameters are 

considered random variables and have prior distributions that reflect the uncertainty about the 

true values of the parameters before observing the data.  The item response models discussed for 

the observed data are referred to as likelihood models and are the part of the model that presents 

the density of the data conditional on the unknown model parameters. Therefore, two modeling 

stages can be recognized: (1) the specification of a prior and (2) the specification of a likelihood 

model.  After observing the data, the prior information is combined with the information from 

the data and a posterior distribution is constructed.  Bayesian inferences are made conditional on 

the data, and inferences about parameters can be made directly from their posterior densities. 

            The marginal Bayes estimation uses similar ways for estimating IRT models as the MML 

method, but the difference is that it places a prior distribution for each parameter in the model.  

For example, in the three-parameter logistic (3PL) model, the discrimination parameter can be 

specified to follow a log normal distribution, the difficulty parameter is specified to follow a 

normal distribution, and the guessing parameter can follow a beta distribution.  Then, with 
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information from data (the likelihoods), posterior estimates of item parameters (usually in the 

form of the mode of the posterior distribution) can be obtained using these priors.    

            On the other hand, the fully Bayesian estimation can simultaneously obtain posterior 

estimates for both item and person parameters, and can find the mean of the posterior 

distribution.  Wollack, Bolt, Cohen, and Lee (2002) suggested that fully Bayesian estimation 

provides a solution when the MML method is not applicable.  For decades during the early stage 

of the development of IRT, the fully Bayesian estimation was not computationally practical for 

models with a very large number of parameters such as IRT models and therefore, the MML and 

the marginal Bayes have been the standard estimation methods.  Modern computational 

technology and the development of Markov chain Monte Carlo (MCMC; Hastings, 1970; 

Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Metropolis & Ulam, 1949) 

algorithms, however, have made the fully Bayesian estimation applicable to fit different IRT 

models (e.g., Béguin & Glas, 2001; Bolt & Lall, 2003; Bradlow, Wainer, & Wang, 1999; de la 

Torre, Stark, & Chernyshenko, 2006; Fox & Glas, 2001; Johnson & Sinharay, 2005; Patz & 

Junker, 1999a).  MCMC methods are a class of algorithms for sampling from a probability 

distribution (e.g., the posterior distribution) based on constructing a Markov chain that has the 

desired distribution as its stationary distribution.  At each state of the Markov chain, random 

samples of model parameters are generated from the distribution based on those generated from a 

previous state.  Since early samples may be affected by initial values, they are discarded in the 

so-called burn-in stage.  After the burn-in stage, the quality of the sample becomes 

approximately stable.  Different MCMC algorithms have been developed in the last two decades, 

and a review of the major ones is made in a later section of this chapter.  MCMC methods have 

been proven useful in practically all aspects of fully Bayesian inference, such as parameter 
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estimation and model comparisons.  Albert (1992) was the first to apply the fully Bayesian 

estimation with IRT by fitting the two-parameter normal ogive (2PNO) IRT model using an 

MCMC algorithm.  Since then, other UIRT models have been developed under the fully 

Bayesian framework such as two- and three-parameter logistic models (Patz & Junker, 1999a, 

1999b) and three-parameter normal ogive models (Sahu, 2002).   

            Many studies have demonstrated advantages of Bayesian estimation, including the 

marginal Bayes and the fully Bayesian estimation, over MML and JML methods (e.g., Kim, 

2007; Mislevy, 1986; Swaminathan & Gifford, 1983; also see Appendix A for a demonstration 

of the advantages of fully Bayesian estimation over MML).  For example, with the specified 

prior distribution of item parameters, the Bayesian method avoids the possibility of having 

unreasonable parameters using MML and JML methods.  The specified priors can pull extreme 

estimates back toward the center of their respective distributions and stop them from assuming 

unreasonable values.  This effect should be more noticeable for small samples and short tests 

(e.g., Lim & Drasgow, 1990).  Even with larger samples and longer tests, however, Bayesian 

estimation is still superior to JML and MML methods when unusual response patterns occur.  

For example, individuals may answer all items correctly or incorrectly, or they may answer easy 

items incorrectly while answering difficult items correctly.  Under these circumstances, JML and 

MML methods would not be able to find an estimate while the Bayesian method will still 

estimate the parameters within a reasonable range (Baker, 1987; Swaminathan & Gifford, 1983).   

            The fully Bayesian method also has advantages over the marginal Bayes estimation.  

Specially, in the marginal Bayes method, person parameters 𝜃𝑖 are treated as random variables 

and integrated out from the joint likelihood of item and person parameters.  However, when the 

model gets complex, integrating out 𝜃𝑖 could be difficult and as a result, it becomes challenging 
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to implement marginal Bayes.  On the other hand, the fully Bayesian approach circumvents the 

problem of integrating out 𝜃𝑖 since it simultaneously draws samples from the posterior 

distributions of model parameters.   

2.3 Parameter Estimation of MIRT Models 

            The estimation procedures for MIRT models are relatively complicated for the following 

reasons (Reckase, 2009).  First, as with UIRT, the models contain both person and item 

parameters and generally, it is difficult to estimate the two sets of parameters independent of 

each other.  Second, compared to UIRT models, MIRT models have more parameters that need 

to be estimated and hence are more complex.  A third reason is that there are indeterminacies in 

the models such as the location of the origin of the space, the units of measurement for each 

coordinate axis, and the orientation of the coordinate axes relative to the locations of the persons.  

All of these issues must be addressed in the construction of an algorithm for estimating the 

model parameters.   

            Bock and Aitkin (1981) developed an EM algorithm (Dempster, Laird, & Rubin, 1977) to 

estimate the parameters of the one-, two-, and three-parameter normal ogive MIRT models for 

dichotomous items.  The algorithm, however, is limited to small testing situations (Baker & Kim, 

2004) and it does not work well with a large number of dimensions, either.  More estimation 

methods and computer software have subsequently been developed using the MML technique.  

For example, Bock, Gibbons, and Muraki (1988) used the MML method and EM algorithm for 

dichotomous MIRT models and discussed technical problems of its implementation for a number 

of simulated and real datasets.  TESTFACT (Wilson, Wood, & Gibbons, 1991) is a computer 

program that can be used to implement a nonlinear, exploratory factor analysis for dichotomous 

test items.  The program uses the MML method with an EM algorithm to estimate item 
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parameters in the MIRT model.  Then, person parameters are estimated using the Bayesian 

method by fixing the item parameters.   

            Trying to use the MML method for MIRT models has been impeded by the fact that the 

computations involve a numerical integration over the latent ability distribution.  With an 

increased dimensionality, the ability is a multivariate distribution involving more parameters.  

This makes integration to be computationally demanding such that the applicability of higher 

dimensional IRT models is impossible in practical settings (Rijmen, 2009).  Therefore, more and 

more researchers have resorted to the fully Bayesian estimation for MIRT models.  For example, 

the algorithm introduced by Albert (1992) for the unidimensional two-parameter normal ogive 

model was extended to the dichotomous MIRT models (Béguin & Glas, 2001).  Other 

applications of Bayesian estimation of multidimensional dichotomous IRT models can be seen in 

various studies (e.g., Lee, 1995; Sheng & Headrick, 2012; Sheng & Wikle, 2007, 2008, 2009; 

Yao & Boughton, 2007; Zheng, 2000).     

2.4 MCMC Algorithms 

            The concept of MCMC methods is to generate samples from a probability distribution via 

constructing a Markov chain that has the desired distribution as its stationary distribution.  As the 

name shows, MCMC starts with Monte Carlo, a computational simulation technique with a 

catchy name, i.e., the Monte Carlo casino in Monaco.  A Markov chain is a sequence of random 

variables, {𝑋0, 𝑋1, 𝑋2,…}, sampled from the distribution p(𝑋𝑘+1|𝑋𝑘).  Then, each subsequent 

sample 𝑋𝑘+1 depends on the current state 𝑋𝑘 rather than on previous history {𝑋0, 𝑋1, 𝑋2,…, 

𝑋𝑘−1}.  An important concept of a Markov chain is its stationary distribution.   The stationary 

state allows one to define the probability for every state of a system at a random time.  Under the 

fully Bayesian framework, MCMC methods are a class of algorithms that can be used to simulate 
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samples from the posterior distribution and these posterior samples can then be used to 

summarize the posterior distribution.            

            Using MCMC-based fully Bayesian methods for estimating complex psychometric 

models such as IRT models has become popular in recent years.  These sampling based methods 

are more flexible and can provide a more complete picture of the posterior distribution of all 

parameters in the model than JML or MML does.  They can be applied in situations (e.g., small 

sample size) where the likelihood methods fail or are difficult to implement.  The samples 

produced by the MCMC procedure can also be used for conducting model fit diagnosis, model 

selection, and model-based prediction.   

           Common MCMC methods are performed under the notion of random walks, which imply 

that at each step, the direction of the proposed move is random.  If the relative probability of the 

proposed position is more than that of the current position, then the proposed move is always 

accepted.  If the relative probability of the proposed position, however, is less than that of the 

current position, the acceptance of the proposed move is by chance.   Due to the randomness, if 

the process were started over again, then the movement would certainly be different.  However, 

regardless of the specific movement, in the long run the relative frequency of visits will be close 

to the target distribution.  The random walk nature of the algorithms can greatly increase the 

number of iterations required before convergence is reached and/or the number of subsequent 

iterations that are needed to gather a sample of states from which accurate estimates for the 

quantities of interest can be obtained.   To overcome such inefficiency, other MCMC algorithms 

such as Hamiltonian Monte Carlo (HMC; Duane et al., 1987) have been developed to reduce 

random walk behaviors.  These algorithms are reviewed as below.  
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2.4.1 Random Walk MCMC Algorithms            

            Two fundamental random walk MCMC algorithms, including Gibbs sampling and 

Metropolis-Hastings (MH) are described as follows.  Gibbs sampling, originally introduced by 

Geman and Geman (1984), is named after the physicist Josiah Willard Gibbs (1839-1903).   The 

process for Gibbs sampling is considered as a type of random walk through the parameter space.  

The walk begins at some arbitrary point, and at each point in the walk, one of the component 

parameters is selected and the parameters are cycled through in order (e.g., 𝜃1, 𝜃2, 𝜃3, ….., 

𝜃1, 𝜃2, 𝜃3 … ..).  By generating a random value directly from the conditional probability 

distribution, a new value is selected for that parameter.  The process then repeats: select a 

component parameter and generate a new value for that parameter from its conditional posterior 

distribution.  By cycling through these conditional statements, the joint posterior distribution 

would be eventually reached.  Suppose a multivariate distribution, 𝑝(𝜽) = 𝑝(𝜃1, 𝜃2,…, 𝜃𝑝) of the 

random vector 𝜽 = (𝜃1, … , 𝜃𝑝) is generated and the algorithm of Gibbs sampling can be 

described as follows: 

1. Establish initial values of the parameters, 𝜽(0) = (𝜃1
(0)

, 𝜃2
(0)

,…, 𝜃𝑝
(0)

). 

2. For each iteration, generate a random sample from the distribution of that parameter 

conditioned on all other parameters, making use of the most recent values and updating 

the parameter with its new value as soon as it has been sampled.  In the kth iteration, the 

ith parameter, 𝜃𝑖
(𝑘)

 is specified by 𝑝(𝜃𝑖|𝜃1
(𝑘)

, 𝜃2
(𝑘)

,…, 𝜃𝑖−1
(𝑘)

, 𝜃𝑖+1
(𝑘−1)

,…, 𝜃𝑝
(𝑘−1)

), which is 

the full conditional distribution of 𝜃𝑖.  

3. Repeat step 2 N times to get the values (𝜽𝑖
(0)

,…, 𝜽𝑖
(𝑁)

) for estimating the joint 

distribution   𝑝(𝜽𝑖). 

Gibbs sampling is applicable when the joint distribution is not known explicitly or is difficult to 
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sample from directly, but the conditional distribution of each parameter is known and is easy (or 

at least easier) to sample from.  Gibbs sampling, however, does not work well when any of the 

full conditional distribution is not in closed form.  Due to that, the MH (Hastings, 1970; 

Metropolis & Ulam, 1949) algorithm can be used to estimate parameters.  For the MH method, a 

proposal or candidate distribution is chosen given the current value of the parameter rather than 

simulating from the full conditional distribution like Gibbs sampling did.  The algorithm of MH 

proceeds as below: 

1. Establish initial values of the parameters, 𝜽(0) = (𝜃1
(0)

, 𝜃2
(0)

,…, 𝜃𝑝
(0)

). 

2. For iterations 1 to N, a proposal value, 𝜽(𝑘), is generated from the proposal distribution, 

q(𝜽(𝑘)|𝜽(𝑘−1)).  Then, the proposal value is accepted as the next value in the Markov 

chain with the probability 𝛼 = min {
𝑝(𝜽(𝑘))𝑞(𝜽(𝑘−1)|𝜽(𝑘))

𝑝(𝜽(𝑘−1))𝑞(𝜽(𝑘)|𝜽(𝑘−1))
 , 1}.  If the proposal value is not 

accepted, the current value would be used as the next value of the Markov chain. 

3. Return the values (𝜽(0),…, 𝜽(𝑁)) for estimating the joint distribution 𝑝(𝜽). 

It is noted that Gibbs sampling could be considered as a special case of the MH algorithm when 

the probability of accepting the proposal value is always equal to one (Gelman, 2014; Tanner, 

1996).  In the Metropolis algorithm, a random walk is taken through the parameter space, 

favoring parameter values that have a relatively high posterior probability.  In order to proceed to 

the next step in the walk, there is a proposed jump from the current position, with the jump 

sampled randomly from a proposal distribution.  The proposed jump could be either accepted or 

rejected probabilistically, according to the relative densities of the posterior at the proposed 

position and the current position.  If the posterior density is higher at the proposed position than 

at the current position, the jump is definitely accepted.  If the posterior density is lower at the 

proposed position than the current position, the jump is accepted only with a probability equal to 

https://en.wikipedia.org/wiki/Conditional_distribution
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the ratio of the posterior densities.  In addition, the step size is a critical tuning factor in the 

random walk MCMC algorithms.  If the average step size is too large, the proposed jump will be 

rejected almost every cycle and result in high autocorrelation.  If the step size is too small, the 

chain will move very slowly through the parameter space and result in high autocorrelation.  

Gibbs sampling, where the movement is chosen using a conjugate distribution so the Metropolis-

Hastings ratio always accepts, is not necessarily better.  Therefore, the effective step size of the 

Gibbs sampler tends to be small resulting in high autocorrelation (Almond, 2014). 

2.4.2 Other MCMC Algorithms 

            Hamiltonian Monte Carlo (HMC, Duane et al., 1987), also known as a hybrid Monte 

Carlo, is a MCMC algorithm that tries to avoid the random walk behavior by introducing an 

auxiliary momentum vector and implementing Hamiltonian dynamics so the potential energy 

function is the target density.  In HMC (Neal, 1992, 2011; Duane et al., 1987), once the proposed 

jump is established, then the proposal is either accepted or rejected according to the Metropolis 

decision rule except that the terms involve not only the relative posterior density, but also the 

momentum at the current and proposed positions.  The initial momentum applied at the current 

position is drawn randomly from a simple probability distribution such as a normal (Gaussian).  

Denote the momentum as ∅. Then the Metropolis acceptance probability for HMC is defined as 

below: 

                                            𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = min(
𝑝(𝜃𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑|𝐷)𝑝(∅𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑝(𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡|𝐷)𝑝(∅𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
, 1).                         (2.4.1) 

In an idealized continuous condition, the sum of potential and kinetic energy [corresponding to 

−log(p(θ|D)) and −log(p(∅))] is a constant, and therefore the ratio in (2.4.1) would be one, and 

the proposal would never be rejected.  The end result of HMC is that proposals move across the 

sample space in larger steps; therefore, they are less correlated and converge to the target 

https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Hamiltonian_dynamics
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distribution more rapidly.  HMC uses a proposal distribution that changes depending on the 

current position and takes a series of steps informed by the first-order gradient information. 

HMC’s performance, however, is highly sensitive to two user-specified parameters: a step size 𝜖 

and a desired number of steps L (Hoffman & Gelman, 2014).  The step size regulates the 

smoothness or jaggedness of the trajectory.  The overall duration, steps (L) ∗ step size (𝜖), 

regulates how far the proposal explores from the current position.  It is important to tune this 

duration since we want the proposal to be close to a mode, without overpassing, and without 

rolling all the way back to the starting point.  In particular, if L is too small, then the algorithm 

exhibits inefficient random walk behavior, while if L is too large the algorithm wastes 

computation time.  Also, HMC requires the gradient of the log-posterior.  It is sometimes 

impossible to compute the gradient for a complex model, but this requirement can be achieved 

by using automatic differentiation (Griewank & Walther, 2008).  Given the above reasoning, 

Hoffman and Gelman (2014) introduced the No-U-Turn Sampler (NUTS), an adaptation to HMC 

that eliminates the need to set a number of steps L.  NUTS utilizes a recursive algorithm to 

construct a set of possible candidate points that crosses a wide strip of the target distribution, 

stopping automatically when it starts to double back and retrace its steps.  Empirically, NUTS 

performs as well as (and sometimes better than) a well-tuned standard HMC method, without 

involving user intervention or costly tuning runs (Hoffman & Gelman, 2014).   

2.4.3 Implementation of MCMC  

            One of the primary challenges in implementing MCMC, however, is the availability of 

accessible software.  This issue can be resolved via two emerging computer programs specially 

developed for implementing any MCMC procedure to a model: JAGS (Plummer, 2003) and Stan 

(Stan Development Team, 2016).   
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            JAGS, which stands for just another Gibbs sampler, was written in the C++ programming 

language for Bayesian hierarchical models (Plummer, 2003).  JAGS succeeds the pioneering 

system Bayesian inference using Gibbs Sampling (BUGS, Gilks, Thomas, & Spiegelhalter, 

1994), which is implemented in three software packages: WinBUGS (Lunn, Thomas, Best, & 

Spiegelhalter, 2000; Spiegelhalter, Thomas, Best, & Lunn, 2003), OpenBUGS (Spiegelhalter, 

Thomas, Best, & Lunn 2010; Thomas, O’Hara, Ligges, & Sturtz, 2006), and JAGS (Plummer, 

2003).  JAGS can be called from R (R Core Team, 2016) using the R packages rjags (Plummer, 

2013) and R2jags (Su & Yajima, 2012).  It was written with three aims in mind: 1) to act as a 

cross-platform engine for the BUGS language, 2) to be flexible, allowing users to write their own 

functions, distributions and samplers, and 3) to be a platform for experimentation with ideas in 

Bayesian modeling.  With many additional desired features, JAGS has been preferred over 

BUGS (Plummer, 2003). 

            Stan, named after the mathematician Stanislaw Ulam (1909-1984), is an open-source 

C++ program that performs Bayesian inference (Stan Development Team, 2016).  Stan uses 

NUTS (Hoffman & Gelman, 2014), an adaptive variant of HMC (Neal, 2011), which itself is a 

generalization of the familiar Metropolis algorithm, performing multiple steps per iteration to 

move more efficiently through the posterior distribution.  Gelman, Lee, and Guo (2015) pointed 

out that compared to BUGS and JAGS, the modeling languages of Stan are more flexible and 

general.  For large data sets or complex models, Stan can provide solutions when JAGS (or 

BUGS) takes too long or fails.  For example, models with matrix parameters (e.g., multilevel 

models with multiple coefficients that vary by group) are particularly slow in BUGS and JAGS, 

indicating Gibbs sampling does not work well with covariance matrices (Gelman et al., 2015).  

Although Stan is not surprisingly fast in such conditions, for problems of moderate size, it runs 
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well enough to be useful.  For example, the hierarchical time-series model in Ghitza and Gelman 

(2014) took several hours to run in Stan but would not have been doable at all in other similar 

Bayesian software. 

2.5 Prior Research Using Fully Bayesian with IRT Models   

            Computational techniques based on MCMC algorithms have enabled IRT model 

estimation under the fully Bayesian framework (see e.g., Gilks, Richardson, & Spiegelhalter, 

1996 for a review).  Some relevant research is reviewed as follows.  Albert and Chib (1993) 

proposed Gibbs sampling for the 2PNO UIRT model and compared the item parameters 

estimates with those obtained using the maximum likelihood estimation (MLE).   Their results 

showed that Gibbs sampling is preferable to the MLE for small samples and is easier to 

implement in computer programs.  Since then, many studies have been conducted on the 

development and application of Bayesian UIRT models and MIRT models using random walk 

MCMC algorithms.   

2.5.1 UIRT Models Using Random Walk MCMC Algorithms 

            Baker (1998) compared Gibbs sampling and MML for a normal ogive IRT model and 

found that the item parameter estimation was excellent for the largest datasets (50 items and 500 

examinees) using Gibbs sampling but for the rest of the test lengths (10, 20, and 30 items) and 

sample sizes (30, 60, and 120 examinees), the MML performs better than Gibbs sampling in item 

parameter recovery.  Patz and Junker (1999a, 1999b) used an MCMC method called Metropolis-

Hastings within Gibbs (Chib & Greenberg, 1995) for the 2PL and 3PL UIRT models and the 

algorithm performed better than MML in fitting more complex models.  Ghosh, Ghosh, Chen, 

and Agresti (2000) examined noninformative priors for the one-parameter IRT models using 

Gibbs sampling and found that such priors performed as well as proper priors for item 
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difficulties.  Janssen, Tuerlinckx, Meulders and De Boeck (2000) proposed a 2PL hierarchal IRT 

model using Gibbs sampling and their findings indicated that the recovery was very good for the 

difficulty parameters but not so good for the discrimination parameters.  Fox and Glas (2001) 

implemented Gibbs sampling to the multilevel 2PNO IRT model and their algorithm worked 

well in resulting in accurate item parameter estimates.  Sahu (2002) compared Gibbs sampling 

and MH for fitting three-parameter normal ogive (3PNO) IRT models and suggested that Gibbs 

sampling with the use of data augmentation (Tanner & Wong, 1987) is preferred to MH.  Eaves 

et al. (2005) fitted genetic IRT models using Gibbs sampling and concluded that the algorithm 

provides a convenient and flexible alternative compared with the MLE for estimating the 

parameters of IRT models for relatively large data sizes with multi-category items.  Sheng 

(2010) further examined the performance of Gibbs sampling for the 3PNO IRT model with 

various test-length and sample-size conditions and her findings were that the algorithm was 

influenced more by the choice of prior specification for the 3PNO model than the 2PNO model.  

Culpepper (2015) proposed a model for the four-parameter normal ogive (4PNO) IRT model 

using Gibbs sampling and the results supported the use of less informative uniform priors for the 

lower and upper asymptotes, and suggested that modest sample sizes (i.e., at least N = 2500) are 

needed to accurately recover all of the 4PNO item parameters. 

2.5.2 MIRT Models Using Random Walk MCMC Algorithms 

            Fully Bayesian estimation using random walk MCMC algorithms has also made 

parameter estimation possible for MIRT models.  Béguin and Glas (2001) used Gibbs sampling 

for the 3PNO MIRT model and their results showed that Gibbs sampling recovers the true 

parameter values to a reasonable extent.  Hoijtink and Molenaar (1997) examined model 

parameter estimation and model fit of nonparametric MIRT models using Gibbs sampling and 
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found that Gibbs sampling is an excellent tool if inequality constraints have to be taken into 

consideration.  Bolt and Lall (2003) used MH to evaluate parameter recovery for the 

multidimensional two-parameter logistic model (M2PL) and the multidimensional latent trait 

model (MLTM) under various sample sizes, number of items, and correlation between abilities.  

Their results suggested that parameters of both models can be recovered but is less successful for 

the MLTM as the correlation between abilities increases.  de la Torre and Patz (2005) used the 

MH algorithm to fit 3PL multi-unidimensional IRT models and the results showed that when 

taking correlation into account, the multi-unidimensional model resulted in better ability 

estimates than the unidimensional IRT models.  Sheng and Wikle (2007) used Gibbs sampling to 

fit multi-unidimensional IRT models under the situation when the overall test consists of 

unidimensional subtests.  Their finding indicated that the model provides better results to test 

situations than the unidimensional IRT model.  Then, Sheng and Wikle (2008) proposed MIRT 

models with a hierarchical structure using Gibbs sampling.  The results showed that the proposed 

models describe the actual data better than the conventional IRT models.  Also, Sheng and Wikle 

(2009) proposed an additive MIRT model using Gibbs sampling and their results showed that the 

proposed model works well for item parameter estimation if there is no or low correlation 

between the general and each specific ability.  Huo et al. (2015) proposed a hierarchical multi-

unidimensional 2PL IRT model using both MH and Gibbs sampling.  Their findings were that 

item parameter could be recovered accurately and the estimated latent trait closely approximated 

true latent scores.     

            IRT models have also been developed under the fully Bayesian framework using Gibbs 

sampling or MH to account for multiple raters (Patz & Junker, 1999b), testlet structures 

(Bradlow, Wainer & Wang, 1999; Wainer, Bradlow, & Du, 2000; Wang, Bradlow, & Wainer, 
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2002), latent classes (Hoijtink & Molenaar, 1997), and multidimensional latent abilities (Adams, 

Wilson, & Wang, 1997; Béguin & Glas, 1998; DeMars, 2005).  

2.5.3 IRT Models Using NUTS  

            To date, there have not been many Bayesian IRT studies conducted using NUTS.  

Caughey and Warshaw (2014) developed a new group-level hierarchical IRT model using NUTS 

to estimate dynamic measures of public opinion at the sub-national level and their results showed 

that this model has considerable advantages over an individual-level IRT model for measuring 

aggregate public opinion.  Copelovitch, Gandrud, and Hallerberg (2015) used a hierarchical 

Bayesian IRT model implemented in NUTS to develop a new Financial Regulatory 

Transparency (FRT) Index.  The FRT Index is used to measure a country’s latent willingness to 

report minimally credible data about its financial system to international organizations and 

investors.  The results indicated that borrowing costs are less volatile when investors are better 

able to anticipate instability because they have access to financial regulatory information.  

Recently, Grant et al., (2015) tried to fit the Rasch (1960) model in both Gibbs sampling and 

NUTS.  Their study, however, only focused on the computation speed and scalability, and the 

results showed that NUTS performed better than Gibbs sampling as far as these aspects are 

considered.   

            In summary, IRT has gained an increasing popularity in large-scale educational and 

psychological testing situations because of its theoretical advantages over CTT.  With current 

enhanced computational technology and the emergence of MCMC simulation techniques (e.g., 

Chib & Greenberg, 1995), the methodology for parameter estimation with IRT models has 

rapidly moved to a fully Bayesian approach.  The current development of MCMC focuses on two 

major algorithms: Gibbs sampling and NUTS, which are implemented in two specialized 
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software packages JAGS and Stan, respectively.  Both Gibbs sampling and NUTS show their 

advantages in efficiently performing Bayesian posterior inference on a large class of complex, 

high-dimensional models with minimal human intervention and have been applied to IRT models 

(e.g., Stan Development Team, 2016; Zhu et al., 2014).  However, to date, no research has 

compared the performance of them in fitting more complex IRT models. 
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CHAPTER 3 

METHODOLOGY 

            This chapter illustrates the methodology that was used to answer the two research 

questions, which are reiterated in Section 3.1.  Specifically, Monte Carlo simulations were 

carried out to fit the two-parameter logistic (2PL) unidimensional IRT (UIRT) model and 2PL 

multi-unidimensional IRT model.  The details of the simulation studies are provided in Section 

3.2 and 3.3. 

3.1 Research Questions 

            The major purpose of this dissertation is to compare the performance of two MCMC 

algorithms, namely, Gibbs sampling and NUTS, when implementing them to 2PL IRT models.  

The specific research questions related to the performance of the parameter estimations are as 

follows: 

1. How does Gibbs sampling compare with NUTS in estimating the 2PL UIRT model under 

various test conditions where sample sizes, test lengths and prior specifications differ? 

2. How does Gibbs sampling compare with NUTS in estimating the 2PL multi-

unidimensional IRT model under various test conditions where sample sizes, test lengths 

and intertrait correlations differ? 

Two simulation studies were conducted with each addressing one of the two research questions.  

3.2 Simulation Study 1 

            Monte Carlo simulations were conducted to answer research question one via examining 

the recovery of the model parameters using Gibbs sampling and NUTS under various test 

conditions. 
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3.2.1 Model 

            In simulation study 1, the focus is on the 2PL UIRT model, which is defined as: 

                                          P(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗) = 
exp [𝑎𝑗(𝜃𝑖−𝑏𝑗)]

1+exp [𝑎𝑗(𝜃𝑖−𝑏𝑗)]
,                                        (3.2.1) 

where 𝑌𝑖𝑗 is the probability that the ith individual responds to the jth item correctly (𝑌𝑖𝑗 = 1) or 

incorrectly (𝑌𝑖𝑗 = 0), 𝜃𝑖 is the latent ability for subject i, 𝑎𝑗 is the discrimination parameter, and 

𝑏𝑗 is the difficulty parameter for item j.   

            In practice, 𝜃𝑖 ranges from −3 to 3.  The discrimination parameter is a measure of the 

differential capability of an item.  A high discrimination parameter value suggests an item that 

has a high ability to differentiate subjects and the usual range for  𝑎𝑗 is from 0 to 2.  The item 

difficulty parameter measures the difficulty of answering the item correctly, and in practice,  𝑏𝑗 

has a range from −2 to 2. 

3.2.2 Simulation Procedure 

            Since sample size and test length play a role in parameter estimation, the general 

guidelines for stable parameter estimates have been mentioned in the literature (Baker, 1998; 

Bolt & Lall, 2003).  For example, Hulin, Lissak, and Drasgow (1982) used a Monte Carlo study 

to assess the accuracy of both item and person parameter estimations in IRT.  Samples of 200, 

500, 1000, and 2000 examinees and tests of 15, 30, and 60 items were generated for the 2PL IRT 

models.  Their results indicated that the minimum sample sizes and test lengths depend on the 

response model and the purposes of the investigation.  With the 2PL model, samples of 500 

examinees and tests of 30 items appear adequate for parameter recovery.   

            Given these, data were generated from the 2PL UIRT model as defined in Equation 

(3.2.1).  Sample size (N) was manipulated to be 100, 300, 500, and 1,000 examinees and test 

length (K) was manipulated to be 10, 20, and 40 items.  Model parameters were generated such 
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that 𝜃𝑖 is from a normal distribution, 𝜃𝑖~ N(0, 1), 𝑎𝑗 is from a uniform distribution, 𝑎𝑗~U(0, 2), 

and 𝑏𝑗 is from a uniform distribution, 𝑏𝑗~𝑈(−2, 2).   

            For the MCMC procedures, normal priors were assumed for both 𝜃𝑖 and 𝑏𝑗 such that 𝜃𝑖 ~ 

N(0, 1) and 𝑏𝑗~𝑁(0, 1).  Three prior specifications were considered for 𝑎𝑗 such that  

1.  𝑎𝑗 was from a lognormal distribution, 𝑎𝑗~ lognormal(0, 0.5), which is commonly used in 

BILOG-MG (Zimowski et al., 2003).  

2.  𝑎𝑗 was from a truncated normal distribution,  𝑎𝑗~ 𝑁(0,∞) (0, 1), which is another common 

way to specify the discrimination parameter in the IRT literature (Sahu, 2002; Sheng, 

2008; Spiegelhalter et al., 2003). 

3.  𝑎𝑗 was transformed to 𝛼𝑗 such that  𝑎𝑗 = exp ( 𝛼𝑗), where a standard normal prior was 

assumed for 𝛼𝑗 such that  𝛼𝑗~N(0, 1).  With this transformation, any real value 

exponentiated is positive.  Therefore, with this prior specification, Equation (3.2.1) can 

be reexpressed as  

                                 logit (𝑝𝑖𝑗) = exp ( 𝛼𝑗) (𝜃𝑖 − 𝑏𝑗).                                                 (3.2.2)  

            Gibbs sampling and NUTS were implemented for each simulated data set via the use of 

JAGS and Stan, respectively.   In JAGS, the burn-in stage was set to 3000 iterations followed by 

4 chains with 5000 iterations.   In Stan, the procedure was very similar to JAGS except that Stan 

uses “warm-up” instead of “burn-in.”  Therefore, in Stan, the number of warm-ups was set to 

3000 iterations followed by 4 chains with 5000 iterations.  For both algorithms, the initial values 

for the discrimination parameters 𝑎𝑗 were set to ones, and those for the difficulty parameters 𝑏𝑗 

and latent ability parameters 𝜃𝑖 were set to zeros.  Convergence was evaluated using the Gelman-

Rubin R statistic (Gelman & Rubin, 1992).   To obtain the R statistic, multiple Markov chains 

are generated with spread initial points from the parameter space.  Then, the Gelman-Rubin R 
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statistic can be obtained by comparing the variance within and between simulated chains.  The 

procedure is described as follows.  Suppose 𝜉 is the parameter of interest.  Further, suppose M 

Markov chains were generated, each with a length of L after initial draws are thrown away (burn-

in).  Denote 𝜉𝑖𝑚 as the simulated parameter in the ith generation of the mth chain.  The between 

sequence variance is defined as B =  
𝐿

𝑀−1
 ∑ (𝜉

.𝑚
− 𝜉

..
)2𝑀

𝑚=1 , and the within sequence variance is 

defined as W = 
1

𝑀
∑ 𝑠𝑔

2𝑀
𝑚=1 , where 𝑠𝑔

2 = 
1

𝐿−1
∑ (𝜉

𝑖𝑚
− 𝜉

𝑖.
)2𝑁

𝑖=1 .  An R statistic is obtained as 𝑅̂ 

=√
𝑣𝑎𝑟̂(𝜉|𝒚)

𝑊
, where 𝑣𝑎𝑟̂(𝜉|𝒚) = 

𝐿−1

𝐿
 W + 

1

𝐿
 B.  Brooks and Gelman (1998) pointed out that 𝑅̂ < 1.1 

or 1.2 provides evidence that the chain has converged to the posterior distribution.  If the R 

statistic, however, is larger than 1.2 (e.g., 𝑅̂ = 1.53), it suggests that the Markov chains have not 

reached stationarity and more iteration runs are needed to improve convergence. 

3.2.3 Measures of Estimation Accuracy 

            For each simulated condition out of the total of sample sizes (4) × test lengths (3) × prior 

specifications for 𝑎𝑗 (3) × algorithms (2) = 72 experimental conditions, 25 replications when 

N=100 and 300, or 10 replications when N=500 and 1000 were conducted to avoid erroneous 

results in estimation due to sampling error.  Although Harwell, Stone, Hsu, and Kirisci (1996) 

suggested a minimum of 25 replications for typical IRT-based Monte Carlo studies, the current 

study only carried out 10 replications for large data sizes due to the computational expense of the 

MCMC algorithms for test conditions such as N=1000 and K=40.  The accuracy of item 

parameter estimates was evaluated using bias, the root mean square error (RMSE), and the mean 

absolute error (MAE).  Bias is defined as:   

                                                      𝑏𝑖𝑎𝑠𝜋 =
∑ (𝜋̂𝑗−𝜋𝑗)𝑛

𝑗=1

𝑛
 ,                                                             (3.2.3)   
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where 𝜋 (e.g., 𝑎𝑗 or 𝑏𝑗) is the true value of an item parameter, 𝜋̂ is the estimated value of that 

parameter in the kth replication using either Gibbs sampling or NUTS, and n is the total number 

of replications.  If bias is close to zero, it suggests that the value of the estimated parameter is 

close to the true parameter.  Also, positive bias suggests that the true parameter is overestimated 

and a negative bias suggests an underestimation of the true parameter (Dawber, Roger, & 

Carbonaro, 2009).   

            The RMSE for each item parameter was calculated using the following formula:               

                                              𝑅𝑀𝑆𝐸𝜋 = √
∑ (𝜋̂𝑗−𝜋𝑗)2𝑛

𝑗=1

𝑛
 ,                                                                (3.2.4) 

where 𝜋, 𝜋̂, and n are as defined in Equation (3.2.3).   

            The RMSE measures the average squared discrepancy between a set of estimated and true 

parameters and can be conceived as the amount of variability around a point estimate.  In 

general, a smaller value of the RMSE suggests that the more accurate the parameter estimate is.   

            In addition, the mean absolute error (MAE) was also used to evaluate the accuracy of item 

parameter estimates.  It is defined as: 

                                              𝑀𝐴𝐸𝜋 =
1

𝑛
∑ |𝜋̂𝑗 − 𝜋𝑗|,𝑛

𝑗=1                                                  (3.2.5) 

where 𝜋, 𝜋̂, and n are defined previously. 

           Similar to RMSE, the smaller the MAE is, the more accurate the item parameters are 

estimated.  The MAE was considered in addition to RMSE because it is intuitively easier to 

conceptualize, as it measures the absolute difference between the predicted and true values, or 

the average amount of absolute estimation error in the item.   
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             Each item had a corresponding bias, RMSE, and MAE measures, which was averaged 

across items to provide summary information.  As for the recovery of the person ability 

parameters, correlations, r(𝜃, 𝜃), was examined between true and estimated values of them.  In 

the educational setting, one is often more interested in the relative values of 𝜃 rather than the true 

values for different examinees.  The correlations for both Gibbs sampling and NUTS in various 

test conditions were averaged across the ten replications and summarized to provide information 

regarding the accuracy in estimating person abilities. 

            In addition, in order to determine which factor accounted for most of the variation in the 

accuracy of estimating of the parameters in the 2PL UIRT model, five separate analyses of 

variance (ANOVAs) were conducted with the dependent variables being logRMSEs and 

logMAEs for estimating the discrimination or difficulty parameters as well as correlations r(𝜃, 𝜃) 

for estimating the person ability parameters.  A log-transformation of the RMSEs, logRMSEs and 

the MAEs, logMAEs were used to increase the likelihood of satisfying the assumption of 

normality needed in hypothesis testing (Harwell et al., 1996).  Effect sizes (𝜔̂2) for the four 

factors (i.e., sample size (N), test length (K), prior specifications for 𝑎𝑗 (P), and MCMC 

algorithm (A)) in each ANOVA were obtained using 

                                      𝜔̂2 = 
𝑆𝑆𝐸𝑓𝑓𝑒𝑐𝑡−(𝑑𝑓𝐸𝑓𝑓𝑒𝑐𝑡)(𝑀𝑆𝐸𝑟𝑟𝑜𝑟)

𝑀𝑆𝐸𝑟𝑟𝑜𝑟+𝑆𝑆𝑇𝑜𝑡𝑎𝑙
,                                                     (3.2.6) 

where 𝑆𝑆𝐸𝑓𝑓𝑒𝑐𝑡 is the sum of squares for a main effect or interaction, 𝑑𝑓𝐸𝑓𝑓𝑒𝑐𝑡 is the degrees of 

freedom for a main effect or interaction, 𝑀𝑆𝐸𝑟𝑟𝑜𝑟 is the mean square of the error, and 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 is 

the sum of squares for the total model to measure the effect of each main effect and interactions 

on the respective estimate.  Following Cohen’s (1988) guidelines, a large effect captures at least 

14% of the variability, a medium effect captures about 6% of the variability, and a small effect is 

one that captures about 1% of the variance.   
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3.3 Simulation Study 2 

            Monte Carlo simulations using Gibbs sampling and NUTS were conducted to answer 

research question two by examining the recovery of the model parameters using Gibbs sampling 

and NUTS under various test conditions. 

3.3.1 Model 

            Consider a K-item test containing m subtests, each consisting of 𝑘𝑣 multiple-choice items 

that measure one ability dimension.  With a logit link, the 2PL multi-unidimensional model can 

be defined as follows: 

                             P(𝑌𝑣𝑖𝑗 = 1|𝜃𝑣𝑖 , 𝑎𝑣𝑗 , 𝑏𝑣𝑗) = 
exp [𝑎𝑣𝑗(𝜃𝑣𝑖−𝑏𝑣𝑗)]

1+exp [𝑎𝑣𝑗(𝜃𝑣𝑖−𝑏𝑣𝑗)]
,                                            (3.3.1) 

where 𝑌𝑣𝑖𝑗 is the response of ith individual to jth item of vth dimension correctly (𝑌𝑣𝑖𝑗 = 1) or 

incorrectly (𝑌𝑣𝑖𝑗 = 0), 𝜃𝑣𝑖 is the latent ability parameter and is the vth component of vector 𝜽𝐢, 

𝑎𝑣𝑗 is the discrimination parameter of jth item of dimension v, and  𝑏𝑣𝑗 is the difficulty 

parameters of jth item of dimension v.  Note that with each item measuring only one latent 

ability, the multi-unidimensional IRT model is a special case of the MIRT model.  

3.3.2 Simulation Procedure 

            For the 2PL multi-unidimensional IRT model, tests with two subscales were considered 

so that the first half items measured one latent trait (𝜃1) and the second half measured the other 

latent trait (𝜃2).  Three factors were manipulated in the simulation study such that sample size 

(N) was 100, 300, 500, and 1000 examinees, test length (K) was 10, 20, and 40 items, and 

intertrait correlation (𝜌12) was 0.2, 0.5, and 0.8 (Sheng & Wikle, 2008).  Person parameters 𝜽𝑖 = 

(𝜃1𝑖, 𝜃2𝑖)
′ were generated from a bivariate normal distribution such that 

𝜽𝑖~ 𝑁2(𝝁, ∑), 
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where 𝝁 = (0, 0)′  and ∑ = (
1 𝜌12

𝜌12 1
).  The intertrait 𝜌12 is described previously which was 

manipulated to be 0.2, 0.5, and 0.8.  Item parameters 𝑎𝑣𝑗  and 𝑏𝑣𝑗 were generated from uniform 

distributions such that 𝑎𝑣𝑗~U(0, 2), and 𝑏𝑣𝑗~𝑈(−2, 2). 

            Dichotomous item responses were then generated from the 2PL multi-unidimensional 

model as defined in Equation (3.3.1), where v = 2.  

            To implement the 2PL multi-unidimensional model using MCMC, the prior for 𝜽𝑖 was 

assumed to follow a multivariate normal distribution 

𝜽𝑖~MVN(𝝁, ∑𝐻), 

where 𝝁 = (0, 0)′ and ∑𝐻 had an inverse-Wishart prior distribution such that  

∑𝐻~inv-Wishart(∑, D), 

in which D is the degrees of freedom and was set to 2.  ∑ is a covariance matrix and ∑ 

= (
𝑠1

2 𝜌12𝑠1𝑠2

𝜌12𝑠1𝑠2 𝑠2
2 ),   

where 𝑠1, 𝑠2, and 𝜌12 were specified such that 𝑠1~U(0, 10), 𝑠2~U(0, 10), and 𝜌12~U(−1, 1).  

Note that the informativeness of the prior for the covariance matrix is decided by D.  Also, prior 

densities for 𝑎𝑣𝑗  and 𝑏𝑣𝑗 were set such that 𝑎𝑣𝑗~𝑁(0,∞) (0, 1) and 𝑏𝑣𝑗~𝑁(0, 1).           

            Gibbs sampling and NUTS were implemented for each simulated data set via the use of 

JAGS and Stan, respectively, where the burn-in (or warm-up) stage was set to 3000 iterations 

followed by 4 chains with 5000 iterations.  For both algorithms, the initial values for the 

discrimination parameters 𝑎𝑣𝑗 were set to ones, and those for the difficulty parameters 𝑏𝑣𝑗 and 

latent ability parameters 𝜃𝑣𝑖 were set to zeros.  Further, convergence of Markov chains was 

evaluated using the Gelman-Rubin R statistic (Gelman & Rubin, 1992).  
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3.3.3 Measures of Estimation Accuracy 

            For each simulated condition out of the total sample sizes (4) × test lengths (3) × 

intertrait correlations (3) × algorithms (2) = 72 experimental conditions, ten replications were 

conducted to avoid erroneous results in estimation due to sampling error.  Similar to simulation 

study 1, the accuracy of item parameter estimates was evaluated using bias, RMSE, and MAE, 

which are defined in Equations (3.2.3) to (3.2.5).  These measures were averaged across items to 

provide summary information.  Also, the recovery of the person ability parameters was examined 

using correlations r(𝜃1, 𝜃1) and r(𝜃2, 𝜃2) between true and estimated values of them.  Then, the 

correlations for both Gibbs sampling and NUTS in various test conditions were averaged across 

the ten replications and summarized to provide information regarding the accuracy in estimating 

person abilities.                                                    

            Similarly, to determine which factor accounted for most of the variation in the accuracy 

in estimation of the model parameters, ten separate ANOVAs were conducted with dependent 

variables being logRMSEs and logMAEs for estimating the discrimination or difficulty 

parameters in dimension 1 or 2, and correlations r(𝜃1, 𝜃1) and  r(𝜃2, 𝜃2) for estimating person 

ability parameters in the two dimensions.  For each ANOVA, effect sizes 𝜔̂2, as defined in 

Equations (3.2.6), were used to assess the effect of each of the main effects (i.e., sample size (N), 

test length (K), intertrait correlation (𝜌12), and MCMC algorithm (A)) and their interactions. 
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CHAPTER 4 

RESULTS 

            This chapter summarizes the simulation results comparing Gibbs sampling with NUTS 

when fitting the two-parameter logistic (2PL) unidimensional IRT (UIRT) and multi-

unidimensional IRT models to simulated data.  The results are organized such that the first 

section pertains to findings about the 2PL UIRT model and the second section pertains to 

findings of the 2PL multi-unidimensional IRT model under different simulated conditions that 

have been described in Chapter 3. 

4.1 Results for the 2PL UIRT Model 

            As described in Chapter 3, the convergence of Markov chains was examined using the 

Gelman-Rubin R statistic (Gelman & Rubin, 1992).  For the 2PL UIRT model where the burn-in 

(or warm-up) stage was set to 3000 iterations followed by 4 chains with 5000 iterations, 𝑅̂ is less 

than 1.10 for each model parameter under all test conditions using Gibbs sampling or NUTS, 

suggesting that convergence is potentially achieved using either algorithm.  In addition, visual 

diagnostics of convergence can also be carried out using trace plots and Gelman-Rubin plots as 

shown in Figures 1 and 2 for one item.  With this illustrated item, the trace plots of 𝑎𝑗 and 𝑏𝑗 

using Gibbs sampling (the upper panels) or NUTS (the lower panels) do not demonstrate signs of 

orphaned chains for item parameters, suggesting that the chains appear to mix well and have 

converged to the posterior distribution (see Figure 1).  Also, the Gelman-Rubin plots show that 

the Gelman-Rubin R statistic is very close to 1.0 using Gibbs sampling (the upper panels) or 

NUTS (the lower panels) for item parameters near the end of the sampling period, suggesting 

that the chains have potentially achieved convergence (see Figure 2).  
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Figure 1. Trace plots of the discrimination parameter and difficulty parameter for one item in the 2PL UIRT model 

using Gibbs sampling (top) and NUTS (bottom). 

 

 

 

     

    

Figure 2. Gelman-Rubin plots of the discrimination parameter and difficulty parameter for one item in the 2PL 

UIRT model using Gibbs sampling (top) and NUTS (bottom). 
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4.1.1 Item Parameter Recovery 

            The average bias, root mean square error (RMSE), and mean absolute error (MAE) values 

averaged across items for each simulated condition by implementing Gibbs sampling or NUTS 

to recover the discrimination (𝑎𝑗) and difficulty (𝑏𝑗) parameters are summarized in Tables 1 

through 4.  For visual help, the average MAE values to recover the discrimination (𝑎𝑗) and 

difficulty (𝑏𝑗) parameters are summarized in Figures 3 and 4.  Since the results of the average 

RMSEs and MAEs are similar, only the average MAEs are presented in figures.  

            The results show that Gibbs sampling performs similarly to NUTS under most simulated 

conditions.  Both algorithms recover item parameters with a similar precision as the RMSEs and 

MAEs are nearly identical except that they tend to be larger with the maximum value of the 

RMSE equal to 1.639 and MAE equal to 0.730 in the condition where the prior distribution for 𝑎𝑗 

is lognormal using Gibbs sampling with a small sample size (i.e., N=100) (see Table 1).  With 

adequate sample sizes and sufficient number of items (e.g., N=1000 and K=20), discrimination 

parameter estimates become more stable with the maximum value of the RMSE and MAE equal 

to 0.127 and 0.097, respectively (see Table 4).  In addition, except for the condition where the 

lognormal prior is used in Gibbs sampling with N=100 and K=10 or 20 (see Table 1), bias is 

close to zero for most conditions, suggesting that both algorithms estimate item parameters with 

little bias.   

            When sample size increases, the RMSEs and MAEs for estimating the discrimination tend 

to decrease using either Gibbs sampling or NUTS (see Figure 3).  For example, with the 

lognormal prior for the discrimination parameter using Gibbs sampling, the RMSEs and MAEs 

decrease from 0.862 and 0.373 to 0.127 and 0.094, respectively when N increases from 100 to 

1000 with K=20 (see Tables 1 and 4).  Similarly, as sample size increases, the RMSEs and MAEs 
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for estimating the difficulty parameter tend to decrease using either algorithm except for the 

condition where the prior specifications for 𝑎𝑗 is lognormal with N=500 and K=20 (see Figure 4).  

This pattern, however, is not observed with bias, which has mixed results.  When test length 

increases, the RMSEs and MAEs for estimating the discrimination parameter but not the 

difficulty parameter appear to decrease using either algorithm especially when N≥300.  For 

example, with the truncated normal prior for the discrimination parameter using NUTS, the 

RMSEs and MAEs decrease from 0.194 and 0.140 to 0.155 and 0.114, respectively when K 

increases from 10 to 40 with N=500 (see Table 3).  This pattern, however, is not directly 

observed with bias, either.   

            With both algorithms, the truncated normal prior for the discrimination parameter 

recovers 𝑎𝑗 better than the other two prior specifications when N≤300 (see Figure 3).  Moreover, 

with both algorithms, the discrimination parameter tends to recover better than the difficulty 

parameter for all test conditions except for the condition where the prior for 𝑎𝑗 is lognormal 

using Gibbs sampling with N=100, or is exponentiated using either algorithm with N=100 and 

K=10.  In addition, when comparing the RMSEs and MAEs under the condition where the prior 

distribution for 𝑎𝑗 is lognormal, there are some cases where the values of the RMSEs are slightly 

larger for Gibbs sampling than those for NUTS, but the values of the MAEs are slightly smaller 

for Gibbs sampling than those for NUTS (see Tables 2 and 3).  For example, when the prior 

distribution for the discrimination parameter is lognormal with N=300 and K=40, the RMSE for 

estimating 𝑎𝑗 using Gibbs sampling is 0.219, which is a little larger than 0.204 using NUTS.  The 

MAE, however, for estimating 𝑎𝑗 using Gibbs sampling is 0.158, which is a little smaller than 

0.164 using NUTS (see Table 2).  Although the RMSE and MAE values are similar, based on the 

average RMSEs, the lognormal prior for the discrimination parameter results in a slightly better 
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estimation for the discrimination parameter when using NUTS with N=300 and K=40.  However, 

based on the MAEs, the lognormal prior for the discrimination parameter results in a slightly 

better estimation when using Gibbs sampling with the same sample size and test length. 

 

 

 

 

 

 

 

 

Figure 3. Average MAEs for recovering discrimination (𝑎𝑗) parameters under various test conditions in the 2PL 

UIRT model. Note. 25 replications for N=100 and 300, 10 replications for N=500 and 1000. 

 

 

 

 

 

 

 

 

 

Figure 4. Average MAEs for recovering difficulty (𝑏𝑗) parameters under various test conditions in the 2PL UIRT 

model. Note. 25 replications for N=100 and 300, 10 replications for N=500 and 1000. 
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Table 1. Average Bias, RMSE, and MAE for recovering item parameters in the 2PL UIRT model when N=100. 

K Prior for 

𝑎𝑗 

Parameters  Gibbs 

sampling 

  NUTS  

   Biasa RMSEa MAEa Biasa RMSEa MAEa 

10 1 a 0.538 1.639 0.730 0.108 0.347 0.290 

  b 0.019 0.476 0.348 0.016 0.475 0.337 

 2 a -0.001 0.300 0.237 -0.001 0.300 0.237 

  b -0.040 0.466 0.319 -0.039 0.466 0.320 

 3 a 0.071 0.509 0.351 0.068 0.504 0.350 

  b 0.034 0.420 0.285 0.033 0.420 0.286 

20 1 a 0.209 0.862 0.373 0.105 0.322 0.259 

  b 0.018 0.448 0.314 0.017 0.452 0.315 

 2 a -0.011 0.273 0.211 -0.011 0.273 0.210 

  b -0.006 0.505 0.349 -0.006 0.505 0.349 

 3 a 0.080 0.438 0.280 0.080 0.439 0.280 

  b 0.009 0.440 0.311 0.008 0.440 0.311 

40 1 a 0.164 0.554 0.315 0.103 0.313 0.253 

  b 0.037 0.462 0.323 0.038 0.469 0.323 

 2 a -0.015 0.284 0.215 -0.015 0.284 0.215 

  b -0.009 0.472 0.331 -0.008 0.472 0.331 

 3 a 0.077 0.393 0.272 0.077 0.392 0.272 

  b -0.030 0.469 0.324 -0.030 0.469 0.324 

Note. Prior 1: 𝑎𝑗  ~ lognormal(0, 0.5); Prior 2: 𝑎𝑗 ~ 𝑁(0,∞) (0, 1); Prior 3: 𝑎𝑗 = exp(𝛼𝑗),  𝛼𝑗 ~ N(0, 1); 
a
 Based on 25 

replications. 

Table 2. Average Bias, RMSE, and MAE for recovering item parameters in the 2PL UIRT model when N=300
a
. 

K Prior for 

𝑎𝑗 

Parameters  Gibbs 

sampling 

  NUTS  

   Biasa RMSEa MAEa Biasa RMSEa MAEa 

10 1 a 0.062 0.324 0.213 0.044 0.251 0.194 

  b 0.015 0.336 0.238 0.019 0.358 0.249 

 2 a 0.006 0.227 0.169 0.006 0.228 0.170 

  b -0.005 0.407 0.258 -0.004 0.408 0.258 

 3 a 0.038 0.292 0.204 0.038 0.292 0.204 

  b 0.052 0.340 0.232 0.052 0.341 0.232 

20 1 a 0.056 0.253 0.171 0.060 0.214 0.167 

  b 0.010 0.334 0.223 0.009 0.345 0.228 

 2 a 0.002 0.199 0.150 0.001 0.199 0.150 

  b 0.050 0.368 0.230 0.051 0.367 0.230 

 3 a 0.032 0.234 0.173 0.032 0.234 0.173 

  b -0.049 0.368 0.244 -0.049 0.367 0.244 

40 1 a 0.069 0.219 0.158 0.081 0.204 0.164 

  b 0.007 0.379 0.237 0.008 0.399 0.249 

 2 a -0.005 0.179 0.140 -0.005 0.179 0.140 

  b -0.023 0.341 0.221 -0.023 0.341 0.221 

 3 a 0.042 0.213 0.156 0.042 0.213 0.156 

  b 0.017 0.349 0.224 0.017 0.349 0.224 

Note. Prior 1: 𝑎𝑗  ~ lognormal(0, 0.5); Prior 2: 𝑎𝑗 ~ 𝑁(0,∞) (0, 1); Prior 3: 𝑎𝑗 = exp(𝛼𝑗),  𝛼𝑗 ~ N(0, 1); 
a
25 replications. 
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Table 3. Average Bias, RMSE, and MAE for recovering item parameters in the 2PL UIRT model when N=500. 

K Prior for 

𝑎𝑗 

Parameters  Gibbs 

sampling 

  NUTS  

   Biasa RMSEa MAEa Biasa RMSEa MAEa 

10 1 a 0.019 0.236 0.156 0.023 0.208 0.163 

  b -0.012 0.374 0.208 -0.029 0.410 0.240 

 2 a -0.026 0.194 0.141 -0.025 0.194 0.140 

  b 0.019 0.307 0.214 0.017 0.310 0.216 

 3 a 0.018 0.185 0.144 0.016 0.184 0.143 

  b -0.018 0.369 0.215 -0.019 0.368 0.215 

20 1 a 0.052 0.179 0.130 0.074 0.176 0.142 

  b 0.034 0.408 0.245 0.034 0.424 0.250 

 2 a 0.013 0.184 0.132 0.013 0.184 0.132 

  b -0.006 0.314 0.199 -0.006 0.313 0.199 

 3 a -0.007 0.183 0.135 -0.007 0.183 0.136 

  b -0.021 0.326 0.189 -0.022 0.326 0.189 

40 1 a 0.031 0.158 0.119 0.055 0.159 0.125 

  b -0.034 0.342 0.204 -0.039 0.360 0.217 

 2 a 0.003 0.154 0.114 0.002 0.155 0.114 

  b -0.028 0.283 0.182 -0.028 0.283 0.181 

 3 a 0.014 0.161 0.123 0.014 0.161 0.123 

  b 0.005 0.327 0.197 0.006 0.327 0.197 
Note. Prior 1: 𝑎𝑗  ~ lognormal(0, 0.5); Prior 2: 𝑎𝑗 ~ 𝑁(0,∞) (0, 1); Prior 3: 𝑎𝑗 = exp(𝛼𝑗),  𝛼𝑗 ~ N(0, 1); 

a 
Based on 10 

replications.  

Table 4. Average Bias, RMSE, and MAE for recovering item parameters in the 2PL UIRT model when N=1000. 

K Prior for 

𝑎𝑗 

Parameters  Gibbs 

sampling 

  NUTS  

   Biasa RMSEa MAEa Biasa RMSEa MAEa 

10 1 a 0.022 0.167 0.117 0.041 0.163 0.129 

  b -0.062 0.312 0.209 -0.081 0.360 0.229 

 2 a 0.008 0.151 0.107 0.008 0.151 0.107 

  b -0.049 0.302 0.168 -0.050 0.303 0.168 

 3 a 0.005 0.153 0.111 0.005 0.154 0.111 

  b -0.002 0.287 0.155 -0.003 0.287 0.155 

20 1 a 0.006 0.127 0.094 0.022 0.127 0.097 

  b -0.0004 0.250 0.153 -0.003 0.253 0.152 

 2 a -0.005 0.122 0.091 -0.004 0.121 0.091 

  b 0.064 0.280 0.155 0.064 0.280 0.155 

 3 a 0.026 0.121 0.086 0.026 0.120 0.085 

  b 0.006 0.244 0.157 0.006 0.243 0.156 

40 1 a 0.006 0.117 0.088 0.017 0.118 0.090 

  b -0.025 0.199 0.127 -0.022 0.202 0.128 

 2 a -0.006 0.112 0.086 -0.007 0.112 0.086 

  b -0.002 0.274 0.152 -0.002 0.273 0.152 

 3 a 0.021 0.113 0.084 0.021 0.113 0.084 

  b -0.028 0.226 0.137 -0.029 0.226 0.137 

Note. Prior 1: 𝑎𝑗  ~ lognormal(0, 0.5); Prior 2: 𝑎𝑗 ~ 𝑁(0,∞) (0, 1); Prior 3: 𝑎𝑗 = exp(𝛼𝑗),  𝛼𝑗 ~ N(0, 1); 
a 
10 replications. 
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4.1.2 Person Ability Parameter Recovery 

            Correlations between the true and estimated person abilities r(𝜃,𝜃) for the 2PL UIRT 

model are used to evaluate how well the person ability parameters have been recovered under the 

different simulated conditions using either algorithm and the results are presented in Table 5 and 

Figure 5.  The results show that r(𝜃,𝜃) for using both Gibbs sampling and NUTS are nearly the 

same, indicating that there is not much difference between the two algorithms on estimating the 

person ability parameter in the 2PL UIRT model.  For example, the value of r(𝜃,𝜃) is 0.795 

using Gibbs sampling and is 0.794 using NUTS when a lognormal prior is assumed for 𝑎𝑗 with 

N=300 and K=10.  Furthermore, the choice of priors for the discrimination parameter has a 

marginal influence on estimating person traits.  For example, the values of r(𝜃,𝜃) are 0.871, 

0.882, and 0.883 using the aforementioned three prior distributions for 𝑎𝑗 when NUTS is used 

with N=500 and K=20.  In addition, sample size does not have a considerable effect on the 

person ability estimates, either.  For example, the value of r(𝜃,𝜃) remains the same when N 

increases from 100 to 1000 when a truncated normal prior is assumed for 𝑎𝑗 and either algorithm 

is used with K=40.  Test length, however, shows a positive and major effect on estimating the 

person ability parameter.  In other words, the larger K is, the greater r(𝜃,𝜃) is, consistent in all 

simulated conditions, indicating that the person ability parameter is better recovered (see Figure 

5).  For example, the values of r(𝜃,𝜃) change from 0.743 to 0.939 when K increases from 10 to 

40 when a lognormal prior is assumed for 𝑎𝑗 using Gibbs sampling with N=1000.  

            In summary, Gibbs sampling and NUTS perform equally well under most of the 

simulated conditions in estimating the 2PL UIRT model except for the condition where the prior 

for 𝑎𝑗 is lognormal with N=100.  In terms of the precision of item parameter estimates, sample 

size plays a more important role than other test format conditions such as algorithms.  Therefore, 
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when other conditions are fixed, more subjects should be added in order to improve the precision 

of item parameter estimates.  On the other hand, when considering the accuracy of person ability 

parameter estimates, test length plays a crucial role, instead.  Therefore, in order to get a better 

recovery of the person ability parameter, more items should be considered. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Average correlations between the actual and estimated person abilities r(𝜃,𝜃) under various test conditions 

for the 2PL UIRT model. 

Table 5. Correlations between the actual and estimated person abilities r(𝜃,𝜃) for the 2PL UIRT model. 

 

N 

 

K 

 Gibbs 

sampling 

  NUTS  

  Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3 

100 10 0.784 0.753 0.782 0.787 0.753 0.783 

 20 0.869 0.880 0.870 0.868 0.880 0.870 

 40 0.928 0.935 0.930 0.930 0.935 0.930 

300 10 0.795 0.783 0.788 0.794 0.783 0.788 

 20 0.879 0.873 0.881 0.879 0.873 0.881 

 40 0.934 0.933 0.936 0.934 0.933 0.936 

500 10 0.774 0.795 0.769 0.773 0.795 0.769 

 20 0.872 0.882 0.883 0.871 0.882 0.883 

 40 0.927 0.934 0.933 0.927 0.934 0.933 

1000 10 0.743 0.784 0.803 0.742 0.784 0.803 

 20 0.875 0.882 0.871 0.875 0.882 0.871 

 40 0.939 0.935 0.935 0.939 0.935 0.935 

Note. Prior 1: 𝑎𝑗  ~ lognormal(0, 0.5); Prior 2: 𝑎𝑗 ~ 𝑁(0,∞) (0, 1); Prior 3: 𝑎𝑗 = exp(𝛼𝑗),  𝛼𝑗 ~ N(0, 1). 
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4.1.3 Analysis of Variance (ANOVA) Results for the 2PL UIRT Model 

            Via the use of ANOVA, effect sizes of the four factors, namely, sample size (N), test 

length (K), prior specifications for 𝑎𝑗 (P) and MCMC algorithm (A), in the accuracy of 

estimating the 2PL UIRT model under various simulated conditions are summarized in Table 6. 

Also, the interaction plot is presented in Figure 6.  Table 6 pertains to the accuracy in estimating 

the discrimination parameters.  It suggests that sample size (N) has the largest effect, accounting 

for 46.2% (49.4%) of the variance in the logRMSE (logMAE) of the discrimination parameter 

estimates.  Moreover, test length (K) has a small effect, accounting for 3.1% (2.9%) of the 

variance in the logRMSE (logMAE) of 𝑎𝑗 estimates.  Prior specifications for 𝑎𝑗 (P) has a small 

effect as well, contributing 1.5% (1.5%) of the variance in the logRMSE (logMAE).  In addition, 

the interaction between sample size (N) and prior specifications for 𝑎𝑗 (P), and interaction among 

sample size (N), prior specifications for 𝑎𝑗 (P) and algorithm (A) have a small effect, accounting 

for about 1.6% (1.1%) and 1.3% (0.6%), respectively of the variance in the logRMSE (logMAE) 

of the discrimination parameter estimates.  The interaction plot also suggests that there is an 

interaction between sample size (N) and prior specifications for 𝑎𝑗 (P) (see Figure 6).  This effect 

indicates that when N≤300, truncated normal prior for 𝑎𝑗 should be adopted.  However, when 

N>300, the difference of using these three priors is marginal.  The main effect of algorithm (A) 

and other interaction effects are smaller, contributing no more than 1% of the variance in the 

logRMSE (logMAE) of 𝑎𝑗 estimates.   

            Regarding to the accuracy in estimating the difficulty parameters, Table 6 indicates that 

sample size (N) again has the largest effect, accounting for about 22.8% (28.5%) in the logRMSE 

(logMAE) of the difficulty parameter estimates.  However, none of the other main and interaction 

effects contributes more than 1% of the variance in the logRMSE or logMAE of the difficulty 
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parameter estimates.  For example, test length (K) accounts for only 0.6% of the variance in the 

logRMSE of the difficulty parameter estimates. 

            In terms of the accuracy in estimating the person ability parameters, it shows that with a 

large effect size, test length (K) accounts for the majority of the variance, about 64.0%, in the 

correlation between 𝜃 and 𝜃.  On the other hand, none of the other main and interaction effects 

contributes more than 1% of the variance in the correlations, with the maximum value of 𝜔̂2 

equal to 0.007, which is the interaction among sample size (N), test length (K), and prior 

specifications for 𝑎𝑗 (P).   

            In summary, the ANOVA results reinforce the conclusions drawn from Tables 1 through 

5.  Increased sample size has a positive and major effect on the recovery of item parameters.  

Increased test length, on the other hand, positively affects the estimation of the person ability 

parameters.    

Table 6. ANOVA effect sizes (𝜔̂2) for logRMSE and logMAE in estimating the discrimination (a), difficulty (b) 

parameters, and 𝑟(𝜃, 𝜃) in the 2PL UIRT model. 

Variable logRMSEa logMAEa logRMSEb logMAEb 𝑟(𝜃, 𝜃) 

P 0.015 0.015 0.002 0.003 0.000 

K 0.031 0.029 0.006 0.007 0.640 

N 0.462 0.494 0.228 0.285 0.001 

A 0.003 0.000 0.000 0.000 0.000 

P×K 0.000 0.001 0.001 0.001 0.000 

P×N 0.016 0.011 0.001 0.000 0.002 

P×A 0.005 0.001 0.000 0.000 0.000 

K×N 0.001 0.001 0.003 0.004 0.000 

K×A 0.000 0.000 0.000 0.000 0.000 

N×A 0.006 0.003 0.000 0.000 0.000 

P×K×N 0.002 0.000 0.010 0.008 0.007 

P×K×A 0.001 0.000 0.000 0.000 0.000 

P×N×A 0.013 0.006 0.000 0.000 0.000 

K×N×A 0.001 0.000 0.000 0.000 0.000 

P×K×N×A 0.001 0.000 0.000 0.000 0.000 
Note. P: Prior specifications for 𝑎𝑗; K: Test length; N: Sample size; A: Algorithm. 
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Figure 6. The interactions of sample size and prior specifications for 𝑎𝑗 under different test lengths in logRMSEa 

(left) and logRMSEb (right). 

 

4.2 Results for the 2PL Multi-unidimensional IRT Model 

            For the 2PL multi-unidimensional IRT model where the burn-in (or warm-up) stage was 

set to 3000 iterations followed by 4 chains with 5000 iterations, 𝑅̂ is also less than 1.10 for each 

model parameter under all simulated conditions using either Gibbs sampling or NUTS, 

suggesting that convergence is potentially achieved using either algorithm.   

 4.2.1 Item Parameter Recovery 

            The average bias, RMSE, and MAE values averaged across items for recovering the 

discrimination (𝑎1, 𝑎2), difficulty (𝑏1, 𝑏2), and intertrait correlation (𝜌12) parameters in the 2PL 

multi-unidimensional model via the use of Gibbs sampling and NUTS are summarized in Tables 

7 through 10.  For visual help, the average MAE values to recover the discrimination (𝑎1, 𝑎2) and 

difficulty (𝑏1, 𝑏2) parameters are summarized in Figures 7 through 10.  For all item parameters, 
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𝑎1 and 𝑏1 are used to denote the discrimination and difficulty parameters for the first half items, 

which are assumed to measure 𝜃1, and 𝑎2 and 𝑏2 are used to denote the discrimination and 

difficulty parameters for the second half, which are assumed to measure 𝜃2.  

            A close examination of the tables suggests that Gibbs sampling and NUTS do not differ 

much in their average bias, RMSE, and MAE values in estimating individual item parameters.  In 

addition, both algorithms recover the intertrait correlation (𝜌12) parameter with a similar 

precision as the RMSEs and MAEs are nearly identical.  As the sample size increases, the RMSEs 

and MAEs for the discrimination parameters (𝑎1, 𝑎2) tend to decrease using either Gibbs 

sampling or NUTS (see Figures 7 and 8).  For example, when N increases from 100 to 1000, the 

RMSEs and MAEs decrease from 0.277 and 0.210 to 0.171 and 0.128, respectively for 𝑎1 using 

Gibbs sampling with 𝜌12= 0.5 and K=20 (see Tables 7 and 10).  This pattern, however, is not 

observed with RMSEs (MAEs) for the difficulty parameters (𝑏1, 𝑏2) (see Figures 9 and 10) and 

bias.  As the test length increases, the RMSEs and MAEs for estimating the discrimination 

parameters (𝑎1, 𝑎2) and difficulty parameters (𝑏1, 𝑏2) do not show a consistent pattern using 

either algorithm.  Similarly, there is no pattern observed with bias.  In other words, sample size 

plays a more crucial role than test length in improving the precision of the discrimination 

parameter estimates.  This is different from what was observed with the simpler 2PL UIRT 

model where as sample size increases, both discrimination and difficulty parameters are 

estimated more accurately.  

            In terms of recovering the intertrait correlation (𝜌12) parameter, the results indicate that 

sample size or test length does not show a consistent pattern in the accuracy or bias in estimating 

it.  However, when comparing among the various levels of 𝜌12 considered (i.e., 0.2, 0.5, 0.8), the 

RMSEs and MAEs for estimating 𝜌12 tend to increase as the actual correlation increases using 
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either algorithm except for the conditions where N=100 and K≤20.  For example, when 𝜌12 

increases from 0.2 to 0.8, the RMSEs and MAEs for estimating the intertrait correlation increase 

from 0.084 and 0.078 to 0.220 and 0.210, respectively when Gibbs sampling is used with 

N=1000 and K=10 (see Table 10).  Moreover, the negative average bias values indicate that 𝜌12 

is consistently underestimated under all simulated conditions.    

            In addition, with both algorithms, the discrimination parameter tends to recover better 

than the difficulty parameter under all simulated conditions except for the condition where 𝜌12= 

0.2 is used together with a small sample size and a short test length (i.e., N=100 and K=10) (see 

Table 7).   

            When comparing the average RMSE, MAE or bias values for estimating the 

discrimination parameters (𝑎1, 𝑎2) and difficulty parameters (𝑏1, 𝑏2) from different dimensions 

(i.e., 𝑎1 vs. 𝑎2 and 𝑏1 vs. 𝑏2) under various test conditions, the results indicate that there is an 

inconsistent pattern.   
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Figure 7. Average MAEs for recovering discrimination (𝑎1) parameters under various test conditions in the 2PL 

multi-unidimensional IRT model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Average MAEs for recovering discrimination (𝑎2) parameters under various test conditions in the 2PL 

multi-unidimensional IRT model. 
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Figure 9. Average MAEs for recovering difficulty (𝑏1) parameters under various test conditions in the 2PL multi-

unidimensional IRT model. 

Figure 10. Average MAEs for recovering difficulty (𝑏2) parameters under various test conditions in the 2PL multi-

unidimensional IRT model. 
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Table 7. Average Bias, RMSE, and MAE for recovering item parameters in the 2PL multi-unidimensional IRT 

model when N=100. 

K 𝜌12 Parameters  Gibbs 

sampling 

  NUTS  

   Bias RMSE MAE Bias RMSE MAE 

10 0.2 𝑎1 -0.055 0.460 0.386 -0.055 0.461 0.386 

  𝑏1 -0.057 0.441 0.319 -0.059 0.444 0.319 

  𝑎2 -0.185 0.445 0.350 -0.189 0.447 0.355 

  𝑏2 0.136 0.435 0.345 0.143 0.441 0.350 

𝜌12 -0.071 0.201 0.163 -0.058 0.177 0.138 

 0.5 𝑎1 -0.076 0.355 0.285 -0.071 0.359 0.286 

  𝑏1 0.076 0.490 0.380 0.074 0.492 0.383 

  𝑎2 -0.062 0.379 0.316 -0.061 0.374 0.311 

  𝑏2 -0.094 0.587 0.440 -0.097 0.585 0.438 

𝜌12 -0.103 0.149 0.125 -0.099 0.142 0.119 

 0.8 𝑎1 -0.081 0.355 0.268 -0.070 0.355 0.268 

  𝑏1 0.029 0.432 0.324 0.023 0.434 0.325 

  𝑎2 -0.166 0.371 0.281 -0.167 0.371 0.284 

  𝑏2 -0.066 0.522 0.339 -0.070 0.521 0.338 

𝜌12 -0.279 0.302 0.279 -0.285 0.306 0.285 

20 0.2 𝑎1 -0.038 0.344 0.265 -0.042 0.342 0.263 

  𝑏1 -0.001 0.430 0.298 -0.001 0.429 0.299 

  𝑎2 -0.066 0.316 0.251 -0.068 0.317 0.251 

  𝑏2 0.018 0.534 0.369 0.019 0.533 0.370 

𝜌12 -0.119 0.434 0.119 -0.116 0.432 0.116 

 0.5 𝑎1 0.008 0.277 0.210 0.010 0.276 0.211 

  𝑏1 0.005 0.544 0.383 0.006 0.543 0.384 

  𝑎2 0.023 0.312 0.259 0.027 0.316 0.263 

  𝑏2 -0.007 0.553 0.395 -0.009 0.554 0.396 

𝜌12 -0.206 0.782 0.217 -0.200 0.761 0.210 

 0.8 𝑎1 0.009 0.318 0.232 0.003 0.320 0.232 

  𝑏1 -0.080 0.522 0.359 -0.081 0.525 0.362 

  𝑎2 -0.021 0.307 0.251 -0.019 0.299 0.245 

  𝑏2 -0.069 0.495 0.347 -0.067 0.494 0.344 

𝜌12 -0.176 0.640 0.176 -0.170 0.627 0.170 

40 0.2 𝑎1 -0.052 0.292 0.229 -0.053 0.293 0.230 

  𝑏1 -0.030 0.446 0.320 -0.029 0.445 0.319 

  𝑎2 -0.030 0.271 0.214 -0.033 0.272 0.215 

  𝑏2 -0.012 0.480 0.348 -0.012 0.481 0.348 

𝜌12 -0.125 0.450 0.142 -0.127 0.454 0.143 

 0.5 𝑎1 -0.007 0.287 0.217 -0.005 0.286 0.217 

  𝑏1 0.013 0.500 0.353 0.016 0.499 0.352 

  𝑎2 -0.011 0.272 0.216 -0.013 0.272 0.215 

  𝑏2 0.003 0.457 0.317 0.002 0.457 0.317 

𝜌12 -0.170 0.549 0.170 -0.168 0.548 0.168 

 0.8 𝑎1 0.039 0.254 0.200 0.036 0.254 0.201 

  𝑏1 -0.049 0.540 0.381 -0.050 0.538 0.380 

  𝑎2 -0.064 0.298 0.237 -0.063 0.297 0.236 

  𝑏2 0.004 0.526 0.374 0.003 0.526 0.374 

𝜌12 -0.208 0.590 0.208 -0.212 0.604 0.212 
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Table 8. Average Bias, RMSE, and MAE for recovering item parameters in the 2PL multi-unidimensional IRT 

model when N=300. 

K 𝜌12 Parameters  Gibbs 

sampling 

  NUTS  

   Bias RMSE MAE Bias RMSE MAE 

10 0.2 𝑎1 -0.082 0.339 0.279 -0.089 0.344 0.281 

  𝑏1 -0.087 0.518 0.365 -0.088 0.517 0.368 

  𝑎2 -0.055 0.334 0.262 -0.057 0.336 0.264 

  𝑏2 0.040 0.417 0.319 0.035 0.413 0.313 

𝜌12 -0.034 0.085 0.072 -0.032 0.082 0.070 

 0.5 𝑎1 -0.058 0.287 0.223 -0.042 0.288 0.229 

  𝑏1 0.102 0.349 0.253 0.106 0.346 0.256 

  𝑎2 -0.079 0.342 0.249 -0.076 0.331 0.241 

  𝑏2 -0.006 0.333 0.240 0.001 0.318 0.228 

𝜌12 -0.146 0.170 0.150 -0.139 0.156 0.139 

 0.8 𝑎1 -0.032 0.224 0.174 -0.045 0.238 0.182 

  𝑏1 -0.051 0.445 0.314 -0.054 0.457 0.320 

  𝑎2 -0.034 0.314 0.231 -0.013 0.318 0.237 

  𝑏2 -0.053 0.380 0.274 -0.040 0.396 0.285 

𝜌12 -0.178 0.200 0.178 -0.192 0.218 0.192 

20 0.2 𝑎1 -0.026 0.287 0.232 -0.026 0.287 0.233 

  𝑏1 0.003 0.370 0.268 0.003 0.370 0.267 

  𝑎2 -0.025 0.213 0.162 -0.031 0.215 0.163 

  𝑏2 0.001 0.353 0.244 0.001 0.355 0.246 

𝜌12 -0.095 0.325 0.099 -0.093 0.321 0.097 

 0.5 𝑎1 -0.074 0.256 0.200 -0.073 0.254 0.197 

  𝑏1 0.024 0.335 0.250 0.024 0.334 0.251 

  𝑎2 0.001 0.209 0.154 -0.001 0.211 0.155 

  𝑏2 -0.043 0.447 0.311 -0.042 0.448 0.311 

𝜌12 -0.160 0.451 0.160 -0.154 0.449 0.154 

 0.8 𝑎1 -0.015 0.227 0.170 -0.006 0.228 0.171 

  𝑏1 0.027 0.381 0.255 0.028 0.381 0.252 

  𝑎2 0.023 0.229 0.178 0.016 0.228 0.178 

  𝑏2 -0.010 0.315 0.242 -0.009 0.314 0.243 

𝜌12 -0.250 0.665 0.250 -0.246 0.649 0.246 

40 0.2 𝑎1 -0.028 0.231 0.170 -0.031 0.232 0.170 

  𝑏1 -0.025 0.338 0.237 -0.026 0.339 0.238 

  𝑎2 0.011 0.228 0.170 0.009 0.229 0.171 

  𝑏2 0.011 0.398 0.254 0.012 0.398 0.254 

𝜌12 -0.073 0.215 0.073 -0.075 0.220 0.075 

 0.5 𝑎1 0.008 0.209 0.159 0.008 0.206 0.157 

  𝑏1 0.023 0.423 0.275 0.022 0.421 0.274 

  𝑎2 -0.026 0.217 0.165 -0.028 0.217 0.164 

  𝑏2 0.046 0.361 0.218 0.045 0.361 0.219 

𝜌12 -0.186 0.501 0.186 -0.186 0.496 0.186 

 0.8 𝑎1 0.016 0.201 0.156 0.015 0.200 0.155 

  𝑏1 0.018 0.365 0.251 0.019 0.366 0.253 

  𝑎2 0.006 0.209 0.156 0.005 0.211 0.157 

  𝑏2 -0.001 0.335 0.232 -0.001 0.337 0.234 

𝜌12 -0.227 0.602 0.227 -0.225 0.593 0.225 
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Table 9. Average Bias, RMSE, and MAE for recovering item parameters in the 2PL multi-unidimensional IRT 

model when N=500. 

K 𝜌12 Parameters  Gibbs 

sampling 

  NUTS  

   Bias RMSE MAE Bias RMSE MAE 

10 0.2 𝑎1 -0.061 0.310 0.247 -0.050 0.299 0.232 

  𝑏1 -0.034 0.336 0.259 -0.039 0.330 0.255 

  𝑎2 -0.055 0.241 0.183 -0.077 0.239 0.178 

  𝑏2 0.026 0.244 0.176 0.032 0.251 0.184 

𝜌12 -0.110 0.121 0.110 -0.110 0.121 0.110 

 0.5 𝑎1 0.073 0.194 0.149 0.083 0.195 0.151 

  𝑏1 -0.052 0.340 0.210 -0.056 0.343 0.210 

  𝑎2 -0.117 0.247 0.204 -0.111 0.232 0.194 

  𝑏2 -0.001 0.349 0.265 -0.005 0.346 0.258 

𝜌12 -0.176 0.190 0.176 -0.177 0.192 0.177 

 0.8 𝑎1 -0.107 0.230 0.165 -0.093 0.234 0.173 

  𝑏1 -0.012 0.475 0.258 -0.014 0.479 0.264 

  𝑎2 -0.104 0.275 0.200 -0.105 0.275 0.200 

  𝑏2 0.046 0.384 0.273 0.046 0.380 0.274 

𝜌12 -0.226 0.233 0.226 -0.216 0.225 0.216 

20 0.2 𝑎1 -0.011 0.203 0.151 -0.007 0.212 0.158 

  𝑏1 0.001 0.325 0.244 0.005 0.328 0.249 

  𝑎2 0.015 0.189 0.147 0.008 0.192 0.146 

  𝑏2 -0.049 0.335 0.234 -0.052 0.336 0.237 

𝜌12 -0.070 0.208 0.070 -0.071 0.215 0.071 

 0.5 𝑎1 -0.026 0.237 0.180 -0.023 0.234 0.175 

  𝑏1 0.032 0.392 0.232 0.030 0.389 0.229 

  𝑎2 0.030 0.177 0.139 0.027 0.178 0.141 

  𝑏2 -0.043 0.350 0.224 -0.043 0.350 0.225 

𝜌12 -0.189 0.538 0.189 -0.188 0.537 0.188 

 0.8 𝑎1 -0.029 0.200 0.153 -0.029 0.199 0.153 

  𝑏1 -0.070 0.444 0.285 -0.071 0.441 0.282 

  𝑎2 0.040 0.249 0.181 0.051 0.255 0.186 

  𝑏2 0.029 0.354 0.240 0.029 0.355 0.238 

𝜌12 -0.225 0.675 0.225 -0.221 0.663 0.221 

40 0.2 𝑎1 -0.0004 0.177 0.131 -0.0006 0.177 0.132 

  𝑏1 0.031 0.345 0.214 0.031 0.345 0.215 

  𝑎2 0.018 0.167 0.128 0.023 0.166 0.128 

  𝑏2 0.011 0.318 0.208 0.010 0.320 0.210 

𝜌12 -0.066 0.215 0.066 -0.067 0.214 0.067 

 0.5 𝑎1 -0.010 0.161 0.121 -0.019 0.161 0.122 

  𝑏1 -0.034 0.293 0.190 -0.035 0.292 0.191 

  𝑎2 -0.027 0.169 0.138 -0.027 0.167 0.136 

  𝑏2 -0.027 0.288 0.183 -0.027 0.287 0.182 

𝜌12 -0.189 0.531 0.189 -0.185 0.526 0.185 

 0.8 𝑎1 -0.009 0.174 0.132 -0.013 0.176 0.133 

  𝑏1 0.003 0.304 0.195 0.004 0.306 0.197 

  𝑎2 -0.030 0.181 0.139 -0.027 0.176 0.135 

  𝑏2 -0.022 0.333 0.218 -0.022 0.332 0.216 

𝜌12 -0.247 0.643 0.247 -0.243 0.638 0.243 
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Table 10. Average Bias, RMSE, and MAE for recovering item parameters in the 2PL multi-unidimensional IRT 

model when N=1000. 

K 𝜌12 Parameters  Gibbs 

sampling 

  NUTS  

   Bias RMSE MAE Bias RMSE MAE 

10 0.2 𝑎1 0.032 0.259 0.193 0.054 0.241 0.184 

  𝑏1 -0.048 0.316 0.244 -0.040 0.317 0.238 

  𝑎2 -0.047 0.224 0.179 -0.054 0.224 0.185 

  𝑏2 0.008 0.266 0.200 -0.0007 0.273 0.203 

𝜌12 -0.052 0.084 0.078 -0.045 0.080 0.071 

 0.5 𝑎1 -0.041 0.258 0.189 -0.051 0.259 0.185 

  𝑏1 -0.028 0.359 0.250 -0.020 0.352 0.245 

  𝑎2 0.024 0.164 0.131 -0.004 0.150 0.120 

  𝑏2 -0.039 0.247 0.176 -0.053 0.252 0.184 

𝜌12 -0.171 0.180 0.171 -0.169 0.178 0.169 

 0.8 𝑎1 -0.044 0.206 0.153 -0.044 0.214 0.155 

  𝑏1 -0.005 0.234 0.187 -0.012 0.243 0.192 

  𝑎2 -0.103 0.261 0.193 -0.090 0.264 0.198 

  𝑏2 0.012 0.322 0.221 0.011 0.316 0.221 

𝜌12 -0.210 0.220 0.210 -0.211 0.219 0.211 

20 0.2 𝑎1 -0.015 0.143 0.105 -0.016 0.148 0.111 

  𝑏1 0.028 0.256 0.149 0.027 0.265 0.161 

  𝑎2 0.034 0.159 0.128 0.025 0.154 0.121 

  𝑏2 -0.011 0.247 0.174 -0.009 0.238 0.166 

𝜌12 -0.069 0.217 0.069 -0.069 0.217 0.069 

 0.5 𝑎1 -0.020 0.171 0.128 -0.018 0.166 0.125 

  𝑏1 0.005 0.343 0.209 0.005 0.342 0.208 

  𝑎2 -0.020 0.147 0.111 -0.013 0.145 0.109 

  𝑏2 -0.082 0.321 0.209 -0.083 0.317 0.205 

𝜌12 -0.183 0.492 0.183 -0.184 0.497 0.184 

 0.8 𝑎1 0.067 0.178 0.120 0.080 0.185 0.130 

  𝑏1 0.032 0.391 0.207 0.035 0.393 0.210 

  𝑎2 -0.072 0.174 0.134 -0.075 0.171 0.131 

  𝑏2 0.016 0.228 0.157 0.021 0.227 0.159 

𝜌12 -0.207 0.554 0.207 -0.204 0.550 0.204 

40 0.2 𝑎1 0.014 0.171 0.122 0.015 0.172 0.122 

  𝑏1 0.002 0.292 0.179 0.003 0.293 0.180 

  𝑎2 -0.008 0.120 0.092 -0.013 0.116 0.089 

  𝑏2 0.009 0.226 0.135 0.010 0.224 0.134 

𝜌12 -0.099 0.270 0.099 -0.098 0.269 0.098 

 0.5 𝑎1 -0.012 0.162 0.117 -0.015 0.153 0.111 

  𝑏1 0.015 0.292 0.180 0.011 0.288 0.174 

  𝑎2 0.007 0.134 0.098 0.011 0.139 0.104 

  𝑏2 -0.023 0.259 0.141 -0.023 0.260 0.143 

𝜌12 -0.178 0.491 0.178 -0.175 0.487 0.175 

 0.8 𝑎1 -0.030 0.127 0.096 -0.027 0.124 0.094 

  𝑏1 0.010 0.236 0.147 0.011 0.234 0.145 

  𝑎2 -0.034 0.141 0.110 -0.046 0.145 0.113 

  𝑏2 -0.027 0.251 0.155 -0.025 0.252 0.157 

𝜌12 -0.215 0.593 0.215 -0.214 0.587 0.214 
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4.2.2 Person Ability Parameter Recovery 

            In order to understand the performance of the two algorithms in estimating person 

abilities in the 2PL multi-unidimensional model, correlations between the true and estimated 

person abilities from dimension 1, r(𝜃1,𝜃1) and dimension 2, r(𝜃2,𝜃2) are obtained and presented 

in Table 11, and Figures 11 and 12.   

            Consistent to what is observed in the item parameter recovery for this model, r(𝜃1,𝜃1) 

and  r(𝜃2,𝜃2) do not show much difference between Gibbs sampling and NUTS in estimating the 

person ability parameter as the values of correlating 𝜃1 with 𝜃1 or 𝜃2 with 𝜃2 are almost identical 

using the two algorithms.  Moreover, similar to the 2PL UIRT model, sample size has not much 

influence on estimating person trait levels, but test length has a positive and major effect on 

estimating both 𝜃1 and 𝜃2.  Specifically, with an increase of K, r(𝜃1,𝜃1) and r(𝜃2,𝜃2) consistently 

increase regardless of N, 𝜌12, or algorithm, suggesting that the person ability parameters are 

better recovered with more items (see Figures 11 and 12).  For example, when K increases from 

10 to 40, the values of r(𝜃1,𝜃1) and r(𝜃2,𝜃2) change from 0.673 and 0.690 to 0.879 and 0.891, 

respectively using NUTS with 𝜌12=0.5 and N=300.  In addition to test length, increase of the 

intertrait correlation also plays a role in estimating the person ability parameters: with a higher 

intertrait correlation between the two dimensions, the estimated person ability parameters appear 

to be closer to their true values than conditions with a lower intertrait correlation.  For example, 

when 𝜌12 increases from 0.2 to 0.8, the values of r(𝜃1,𝜃1) and r(𝜃2,𝜃2) increase from 0.634 and 

0.648 to 0.740 and 0.747, respectively using Gibbs sampling with N=300 and K=10.  Also, the 

effect of test length on the person ability parameter estimation is not the same across the three 

levels of intertrait correlations.  Specifically, a low intertrait correlation seems to benefit more 

from an increased test length than a high intertrait correlation.  For example, when test length 
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increases from 10 to 40, the values of r(𝜃1,𝜃1) for 𝜌12=0.2 and 𝜌12=0.8 increase from 0.631 and 

0.734 to 0.872 and 0.886, respectively using Gibbs sampling with N=100.  On the other hand, the 

values of r(𝜃1,𝜃1) remain similar across the three levels of intertrait correlations for K=40, but 

increase from 0.631 to 0.734 as 𝜌12 increases from 0.2 to 0.8 for K=10 using Gibbs sampling 

with N=100.  In addition, when comparing r(𝜃1,𝜃1) with r(𝜃2,𝜃2), there is not much difference in 

their values and no specific pattern between them under different simulated conditions especially 

when K is larger (i.e., K=40).   For example, the values of r(𝜃1,𝜃1) and r(𝜃2,𝜃2) are the same 

using Gibbs sampling with N=1000, K=40, and 𝜌12=0.5. 

            In summary, Gibbs sampling and NUTS perform similarly under all of the simulated 

conditions for estimating the 2PL multi-unidimensional IRT model.  The recovery of item 

parameters shows the pattern that if sample size increases, the precision of the discrimination 

parameters improves accordingly.  Likewise, the recovery of person ability parameters has the 

pattern that if test length increases, the precision of the person ability parameter estimate 

becomes better.  In addition, test conditions with highly correlated dimensions can also achieve 

improved precision in the recovery of the person ability parameters.  
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Figure 11. Average correlations between the actual and estimated person abilities r(𝜃1,𝜃1) under various test 

conditions for the 2PL multi-unidimensional model.  

Figure 12. Average correlations between the actual and estimated person abilities r(𝜃2,𝜃2) under various test 

conditions for the 2PL multi-unidimensional model. 
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Table 11. Correlations between the actual and estimated person abilities r(𝜃1,𝜃1) and r(𝜃2,𝜃2) for the 2PL multi-

unidimensional IRT model. 

 

N 

 

K 

  Gibbs 

sampling 

  NUTS  

   𝜌12 = 0.2 𝜌12 = 0.5 𝜌12 = 0.8 𝜌12 = 0.2 𝜌12 = 0.5 𝜌12 = 0.8 

100 10 r(𝜃1,𝜃1) 0.631 0.687 0.734 0.633 0.688 0.733 

  r(𝜃2,𝜃2) 0.703 0.649 0.772 0.705 0.650 0.772 

 20 r(𝜃1,𝜃1) 0.781 0.778 0.832 0.781 0.779 0.832 

  r(𝜃2,𝜃2) 0.779 0.750 0.832 0.779 0.750 0.833 

 40 r(𝜃1,𝜃1) 0.872 0.883 0.886 0.872 0.883 0.886 

  r(𝜃2,𝜃2) 0.873 0.875 0.898 0.873 0.876 0.898 

300 10 r(𝜃1,𝜃1) 0.634 0.673 0.740 0.634 0.673 0.737 

  r(𝜃2,𝜃2) 0.648 0.689 0.747 0.648 0.690 0.747 

 20 r(𝜃1,𝜃1) 0.770 0.823 0.829 0.770 0.824 0.829 

  r(𝜃2,𝜃2) 0.788 0.776 0.830 0.788 0.775 0.831 

 40 r(𝜃1,𝜃1) 0.882 0.879 0.897 0.882 0.879 0.897 

  r(𝜃2,𝜃2) 0.877 0.891 0.905 0.877 0.891 0.905 

500 10 r(𝜃1,𝜃1) 0.657 0.668 0.761 0.658 0.667 0.760 

  r(𝜃2,𝜃2) 0.710 0.711 0.768 0.710 0.711 0.768 

 20 r(𝜃1,𝜃1) 0.760 0.810 0.829 0.760 0.810 0.830 

  r(𝜃2,𝜃2) 0.781 0.785 0.821 0.781 0.786 0.821 

 40 r(𝜃1,𝜃1) 0.879 0.886 0.902 0.879 0.886 0.902 

  r(𝜃2,𝜃2) 0.872 0.890 0.903 0.872 0.890 0.903 

1000 10 r(𝜃1,𝜃1) 0.640 0.674 0.751 0.638 0.675 0.751 

  r(𝜃2,𝜃2) 0.686 0.679 0.755 0.686 0.680 0.755 

 20 r(𝜃1,𝜃1) 0.794 0.810 0.827 0.793 0.810 0.827 

  r(𝜃2,𝜃2) 0.787 0.799 0.853 0.787 0.799 0.853 

 40 r(𝜃1,𝜃1) 0.866 0.883 0.908 0.866 0.883 0.908 

  r(𝜃2,𝜃2) 0.884 0.883 0.911 0.884 0.883 0.911 

 

4.2.3 Analysis of Variance (ANOVA) Results for the 2PL Multi-unidimensional Model 

            Effect sizes of the four factors, namely, sample size (N), test length (K), intertrait 

correlation (𝜌12), and MCMC algorithm (A), in the accuracy of estimating the 2PL multi-

unidimensional IRT model under various simulated conditions are summarized in Table 12. 

Also, the interaction plots are presented in Figures 13 and 14.  

            For the discrimination parameters estimation, Table 12 shows that sample size (N) has the 

largest effect, accounting for 24.1% (26.7%) of the variance in the logRMSE (logMAE) of the 

discrimination parameter 𝑎1 estimates.  Test length (K) has a medium effect, accounting for 

11.7% (11.5%) of the variance in the logRMSE (logMAE) of 𝑎1 estimates.  With a small effect 
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size, intertrait correlation (𝜌) contributes 2.1% (2.5%) of variance in the logRMSE (logMAE).  

The main effect of algorithm (A) and all interactions account for less than 1% of the variance in 

the logRMSE and logMAE of the discrimination parameter 𝑎1 estimates.  For example, the 

interaction between sample size (N) and test length (K) contributes about 0.8% of variance in the 

logRMSE of the discrimination parameter 𝑎1 estimates.  Similarly, it shows that sample size (N) 

has the largest effect, accounting for 31.4% (30.9%) of the variance in the logRMSE (logMAE) of 

the discrimination parameter 𝑎2 estimates.  Test length (K) has a medium effect, accounting for 

11.6% (11.1%) of the variance in the logRMSE (logMAE) of 𝑎2 estimates.  In addition, the 

interaction between sample size (N) and intertrait correlation (𝜌) has a small effect, contributing 

about 1.1% (0.9%) of the variance in the logRMSE (logMAE) of the discrimination parameter 𝑎2 

estimates.  The main effect of intertrait correlation (𝜌) and algorithm (A) together with other 

interactions contribute less than 1% of the variance in the logRMSE and logMAE of the 

discrimination parameter 𝑎2 estimates.  The interaction plot also suggests that there is no 

noticeable effect among these factors in estimating the discrimination parameters (𝑎1, 𝑎2) (see 

Figure13).     

            For the difficulty parameters estimation, it shows that sample size (N) again has the 

largest effect, accounting for 12.9% (18.5%) of the variance in the logRMSE (logMAE) of the 

difficulty parameter 𝑏1 estimates.  Test length (K) has a small effect, accounting for 1.4% (2.3%) 

of the variance in the logRMSE (logMAE) of 𝑏1 estimates.  In addition, the interaction among 

sample size (N), test length (K), and intertrait correlation (𝜌) has a small effect, contributing 

about 1.3% (0.8%) of the variance in the logRMSE (logMAE) of the difficulty parameter 𝑏1 

estimates, and the interaction between test length (K) and sample size (N) also has a small effect, 

accounting for 1.2% (1.5%) of the variance in the logRMSE (logMAE) of 𝑏1 estimates.  The 
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other two main effects of intertrait correlation (𝜌) and algorithm (A), and interactions account for 

no more than 1% of the variance in the logRMSE and logMAE in estimating 𝑏1.  Similarly, it 

shows that with a large effect size, sample size (N) accounts for 18.6% (22.6%) of the variance in 

the logRMSE (logMAE) of the difficulty parameter 𝑏2 estimates.  On the other hand, test length 

(K) only has a small effect, accounting for 2.3% (3.4%) of the variance in the logRMSE 

(logMAE) of 𝑏2 estimates.  In addition, the interaction among sample size (N), test length (K), 

and Intertrait correlation (𝜌) has a small effect, contributing about 1.0% of variance in the 

logMAE of the difficulty parameter 𝑏2 estimates.  The other two main effects of intertrait 

correlation (𝜌) and algorithm (A), and interactions account for less than 1% of the variance in the 

logRMSE and logMAE in estimating 𝑏2.  Similarly, the interaction plot suggests that there is no 

noticeable effect among these factors in estimating the difficulty parameters (𝑏1, 𝑏2) (see 

Figure14).     

            For the person ability parameters estimation, it shows that test length (K) accounts for the 

majority of the variance, about 67.0% of the variance in the correlation between 𝜃1 and 𝜃1.  Also, 

intertrait correlation (𝜌12) has a medium effect, contributing about 6.3% of the variance in the 

correlation between 𝜃1 and 𝜃1.  In addition, interaction between test length (K) and intertrait 

correlation (𝜌12) has a small effect, accounting for 1.9% of the variance in the correlation 

between 𝜃1 and 𝜃1.  The other two main effects and interactions contribute less than 1% of the 

variance in the correlation, with the maximum value of 𝜔̂2 equal to 0.002, which is the 

interaction among test length (K), sample size (K) and intertrait correlation (𝜌12).  In addition, 

test length (K) again accounts for most of the variance, about 61.5% of the variance in the 

correlation between 𝜃2 and 𝜃2.  Similarly, intertrait correlation (𝜌12) has a medium effect, 

contributing about 6.6% of the variance in the correlation between 𝜃2 and 𝜃2.  Moreover, 
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interaction between test length (K) and intertrait correlation (𝜌12) has a small effect, accounting 

for 1.1% of the variance in the correlation between 𝜃2 and 𝜃2.  The other two main effects and 

interactions, however, contribute less than 1% of the variance in the correlation, with the 

maximum value of 𝜔̂2 equal to 0.004, which is the interaction between sample size (N) and 

intertrait correlation (𝜌12).  

            In summary, the ANOVA results support the conclusions drawn from Tables 7 through 

11.  Sample size plays a more important role than test length on the recovery of the 

discrimination parameters, with larger N leading to a better estimation.  Also, sample size 

accounts for more proportion of variance in both logRMSE and logMAE of item parameters 

estimates from dimension 2 than those from dimension 1.  On the other hand, intertrait 

correlation accounts for more proportion of variance in both logRMSE and logMAE of the 

discrimination parameter estimates from dimension 1 than those from dimension 2.  In addition, 

test length and intertrait correlation positively affect the estimation of the person ability 

parameter, with more items and higher intertrait correlation leading to a better estimation.  Also, 

test length accounts for more proportion of variance in the correlation between 𝜃1 and 𝜃1 than 

those in the correlations between 𝜃2 and 𝜃2.  
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Table 12. ANOVA effect sizes (𝜔̂2) for logRMSE in estimating the discrimination (𝑎1,𝑎2), difficulty (𝑏1,𝑏2) 

parameters, r(𝜃1,𝜃1), and r(𝜃2,𝜃2) in the 2PL multi-unidimensional IRT model. 

Variable logRMSE𝑎1(𝑎2) logMAE𝑎1(𝑎2) logRMSE𝑏1(𝑏2) logMAE𝑏1(𝑏2) r(𝜃1,𝜃1) r(𝜃2,𝜃2) 

K 0.117(0.116) 0.115(0.111) 0.014(0.023) 0.023(0.034) 0.670 0.616 

N 0.241(0.314) 0.267(0.309) 0.129(0.186) 0.185(0.226) 0.000 0.002 

A 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000 0.000 

𝜌 0.021(0.006) 0.025(0.003) 0.000(0.000) 0.000(0.000) 0.063 0.066 

K×N 0.008(0.004) 0.007(0.005) 0.012(0.000) 0.015(0.004) 0.000 0.004 

K×A 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000 0.000 

K×𝜌 0.006(0.003) 0.007(0.003) 0.004(0.009) 0.004(0.008) 0.019 0.011 

N×A 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000 0.000 

N×𝜌 0.007(0.011) 0.006(0.009) 0.005(0.001) 0.010(0.001) 0.000 0.004 

A×𝜌 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000 0.000 

K×N×A 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000 0.000 

K×N×𝜌 0.008(0.010) 0.008(0.007) 0.013(0.006) 0.008(0.010) 0.002 0.000 

K×A×𝜌 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000 0.000 

N×A×𝜌 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000 0.000 

K×N×A×𝜌 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000 0.000 

Note. K: Test length; N: Sample size; A: Algorithm; 𝜌: Intertrait correlation. 

 

Figure 13. The interactions of sample size and intertrait correlation under different test lengths in logRMSE𝑎1 (left) 

and logRMSE𝑎2 (right). 
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Figure 14. The interactions of sample size and intertrait correlation under different test lengths in logRMSE𝑏1 (left) 

and logRMSE𝑏2 (right). 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

            This chapter contains two main sections.  The first section summarizes the results on 

comparison of Gibbs sampling and No-U-Turn sampler (NUTS) for recovering parameters in the 

two-parameter logistic (2PL) unidimensional IRT (UIRT) model and the 2PL multi-

unidimensional IRT model.  Implications are discussed with the use of the Markov chain Monte 

Carlo (MCMC) algorithms for a fully Bayesian estimation when sample sizes, test lengths, prior 

specifications for 𝑎𝑗, and/or intertrait correlations vary.  Then, Section 2 illustrates limitations of 

this dissertation and provides directions for future studies. 

5.1 Comparison of Gibbs Sampling and NUTS for the 2PL IRT Models 

            The findings for the simulation studies are summarized and discussed in the following 

sections for the 2PL UIRT and 2PL multi-unidimensional IRT models. 

5.1.1 Model Parameters Recovery for the 2PL UIRT Model 

            Simulation study 1 compares Gibbs sampling with NUTS in the performance of 

parameter recovery for the 2PL UIRT model via manipulating three factors: prior specifications 

for the item discrimination parameter (𝑎𝑗), sample sizes (N), and test lengths (K).  Results of the 

simulation study presented in Chapter 4 indicate that when comparing Gibbs sampling with 

NUTS, both fully Bayesian algorithms recover item and person ability parameters with similar 

accuracy and bias.  More specifically, the two algorithms result in identical estimates under most 

conditions except for the condition with a lognormal prior for 𝑎𝑗 and a small sample size (i.e., 

N=100).  This further suggests that if the lognormal prior distribution is used for 𝑎𝑗 in the 2PL 

UIRT model with sample sizes such as N≤100, NUTS rather than Gibbs sampling should be 

considered in order to obtain a better estimation of the discrimination parameters.  In addition, 



78 
 

 

the ANOVA results based on 𝜔̂2 values also suggest that there is an interaction effect between 

prior specifications for 𝑎𝑗 and sample size in estimating the discrimination parameters.  For 

example, among the three prior distributions considered for 𝑎𝑗, the truncated normal prior should 

be adopted for 𝑎𝑗 with either Gibbs sampling or NUTS when estimating the discrimination 

parameters with sample sizes such as N≤300.  As the sample size increases (i.e., N>300), the 

advantage of using the truncated normal prior for 𝑎𝑗 is not that noticeable since the root mean 

square error (RMSE) and the mean absolute error (MAE) values of these three priors are similar.  

Theoretical explanation for the use of a lognormal prior or a truncated normal prior for 𝑎𝑗 comes 

from the fact that in typical test settings, the 𝑎𝑗 are assumed to be greater than zero, suggesting 

that the distribution of 𝑎𝑗 can be specified as a unimodal and positively skewed distribution such 

as the lognormal (Mislevy, 1986) or truncated normal.  In addition, a possible reason for the 

advantage of using the truncated normal prior distribution over lognormal prior distribution in 

estimating the discrimination parameters when sample size is small might be that when the range 

for the discrimination parameter 𝑎𝑗 is from 0 to 0.5, the truncated normal prior distribution is 

more informative than the lognormal prior distribution (see Figure 15).  

 

Figure 15. The probability density plot of lognormal(0, 0.5) distribution (left) and truncated normal 𝑁(0,∞) (0, 1) 

distribution (right).  
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            The results also indicate that sample size plays an important role in item parameter 

estimation.  That is, increased sample sizes improve the precision in estimating both the 

discrimination and difficulty parameters.  Since increased sample sizes provide more information 

on estimating items, item parameter estimation improves accordingly.  Similarly, test length 

plays a more important role than other factors in improving the precision of the person ability 

parameter estimates.  In other words, increased test lengths provide more information on subjects 

and hence, the person ability parameter can be better recovered.  In terms of reducing the bias, 

increased sample sizes and test lengths have mixed effects.  These findings are consistent with 

the previous studies, suggesting that sample size affects the accuracy of item parameter 

estimation and test length affects the accuracy of person ability parameter estimation (e.g., 

Kieftenbeld & Natesan, 2012; Roberts & Thompson, 2011; Sheng, 2010; Swamnathan & 

Gifford, 1982; Wollack, Bolt, Cohen, & Lee, 2002).  It is, however, noted that test length only 

has a positive effect in estimating the discrimination parameters when data involve large sample 

sizes (i.e., N≥300), which is not consistent with previous research (e.g., Sheng, 2010).   

            In addition, when comparing the average RMSEs and MAEs under the condition where 

the prior distribution for 𝑎𝑗 is lognormal in the UIRT model, there are some inconsistent results 

between the two algorithms mainly due to the reason that there is a slight difference in the 

estimated values.  The RMSE and the MAE are considered as two of the most commonly used 

metrics for measuring the precision of parameter estimates in IRT models.  Both metrics express 

average model prediction error in units of the variable of interest with smaller values suggesting 

a better accuracy.  The RMSE, however, gives a relatively high weight to large errors since the 

errors are squared before they are averaged.  In other words, the RMSE should be more useful 

when large errors are particularly undesirable.  Also, the RMSE is more preferable to use than the 
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MAE when model errors follow a normal distribution (Chai & Draxler, 2014).  From an 

interpretation perspective, the MAE is easier to understand than the RMSE.  On the other hand, 

one distinct advantage of the RMSE over the MAE is that the RMSE avoids the use of taking the 

absolute value, which is undesirable in many mathematical calculations (Chai & Draxler, 2014).  

Moreover, Pelánek (2015) suggests that for the binary outcomes, the MAE metric should not be 

used since it is not a proper score and can lead to misleading conclusions. 

5.1.2 Model Parameters Recovery for the 2PL Multi-unidimensional IRT Model 

            Simulation study 2 compares Gibbs sampling with NUTS in the performance of 

parameter recovery for the 2PL multi-unidimensional model via manipulating three factors: 

intertrait correlations (𝜌12), sample sizes (N), and test lengths (K).  Again, when considering the 

effect of algorithms, the results on parameter recovery of the 2PL multi-unidimensional model 

indicate that Gibbs sampling and NUTS perform similarly across all conditions.  In addition, 

increased sample sizes improve the precision but not the bias in estimating the discrimination 

parameter estimates, which is inconsistent with the results of the 2PL UIRT model in which as 

sample size increases, the average RMSEs/MAEs tend to decrease for both the discrimination and 

difficulty parameters.  Test length, however, has no consistent effect on the accuracy or reducing 

bias in estimating item parameters.  On the other hand, for the recovery of the person ability 

parameters (𝜃1 and 𝜃2), the results suggest that test length and intertrait correlation have a 

positive and major effect on estimating 𝜃1 and 𝜃2.  As discussed in Section 5.1.1, increased test 

lengths provide more information on subjects and therefore, the person ability parameter can be 

better recovered.   

            In addition, increased 𝜌12 suggests that the two latent traits have more overlap since one 

trait is closely related to the other.  That is, a higher 𝜌12 enables the latent traits to share more 
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information with one another and hence, the person ability parameters can be better recovered 

with relatively less information (i.e., fewer number of items).  However, if 𝜌12 is low, the overall 

test is similar to measuring two separate sets of 𝜃s and therefore, more information is required in 

order to achieve a similar level of precision in estimation.  In other words, more items are needed 

in order to better estimate the two separate sets of 𝜃s.   

            Also, the ANOVA results based on 𝜔̂2 values indicate that there is an interaction effect 

between test length and intertrait correlation.  This indicates that the effect of test length is not 

consistent across the three levels of intertrait correlations.  Specifically, increased test lengths 

have a more positive influence on the accuracy of estimating person ability parameters when 

there is a low intertrait correlation (e.g., 𝜌12=0.2) than when there is a high intertrait correlation 

(e.g., 𝜌12=0.8).  In addition, the values of r(𝜃1,𝜃1) and r(𝜃2,𝜃2) are similar among the three levels 

of intertrait correlations when K=40.  However, the values of r(𝜃1,𝜃1) and r(𝜃2,𝜃2) are higher for 

𝜌12=0.8 than those for 𝜌12=0.2 when K=10.  It is noted that although higher intertrait correlation 

suggests a better recovery of 𝜃1 and 𝜃2, in real test situations, 𝜌12 is not readily known and needs 

to be estimated.  From the results presented in Chapter 4, the correlations between the true and 

estimated person ability parameters r(𝜃1,𝜃1) and r(𝜃2,𝜃2) are all about 0.9 when K=40.  

Therefore, when there are a sufficient number of items, both algorithms can obtain equally 

accurate estimates of 𝜃1 and 𝜃2 regardless of 𝜌12.  This also implies that even though tests with 

less correlated dimensions do not estimate 𝜃1 and 𝜃2 as well as those with highly correlated 

dimensions, one can compensate it by increasing test length.   

            In terms of recovering the intertrait correlation (𝜌12), the results suggest that as 𝜌12 

increases, the error and bias for estimating the intertrait correlation increase for N≥300.  Also, all 

negative biases suggest that the true parameter is consistently underestimated.  One possible 
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explanation of this result is the use of the inverse-Wishart prior for the covariance matrix in the 

present study.  Alvarez, Niemi, and Simpson (2014) pointed out that an inverse-Wishart prior 

might not work well when the true variance is small relative to the prior mean under which the 

posterior for the variance is biased toward larger values and the correlation is biased toward zero.  

This bias remains even for data with large sample sizes and therefore, caution should be used 

when using the inverse-Wishart prior.  The other issues of using this prior, which can impact 

posterior inferences about the covariance matrix include that the uncertainty for all variances is 

set by a single degree of freedom parameter (Gelman, 2014), the marginal distribution for the 

variances has low density in a region near zero (Gelman, 2006), and there is an a priori 

dependence between correlations and variances (Tokuda, Goodrich, Van Mechelen, Gelman, & 

Tuerlinckx, 2011).  Due to these reasons, the Stan manual (Stan Development Team, 2016) 

suggests the LKJ prior for the correlation matrices (Lewandowski, Kurowicka, & Joe, 2009).  

From a modeling perspective, the LKJ prior is appealing since one can model correlations and 

variances independently and allow the data to define their relationships.  The main disadvantage 

of the LKJ prior, however, is computational.  Currently, the LKJ prior cannot be used in the 

programs such as JAGS based on Gibbs sampling.        

5.1.3 Computational Speed of Gibbs Sampling and NUTS   

            In terms of computational speed of the two algorithms implemented in the two programs 

utilizing computers with a processor 2.7 GHz Intel Core i5 and memory 8 GB 1600 MHz, under 

exactly the same condition, Gibbs sampling takes a longer computational time than NUTS to fit 

the 2PL UIRT model.  For example, the computation time of implementing Gibbs sampling in 

JAGS to data with N=1000 and K=20 was about 73 minutes to complete four chains with 5000 

iterations.  For the same data size and number of iterations, NUTS via the use of Stan took about 
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32 minutes.  This is in line with findings from the previous study that NUTS is more efficient 

than Gibbs sampling (Grant et al., 2016).  However, when it comes to the 2PL multi-

unidimensional IRT model, NUTS takes a longer time than Gibbs sampling.  For example, the 

computation time of implementing Gibbs sampling in JAGS to data with N=1000 and K=40 was 

about 38 minutes to complete four chains with 5000 iterations.  For the same data size and 

number of iterations, NUTS via the use of Stan took about 141 minutes.  This is obviously 

different from findings on the 2PL UIRT model or from Grant et al. (2016).  A possible cause 

might be that the 2PL multi-unidimensional model is more complicated than the 2PL UIRT 

model or the Rasch model considered by Grant et al. (2016).  Moreover, the Stan code used in 

the present study for the 2PL multi-unidimensional model has a slow mixing issue for some 

iterations and needs further modification to make it more efficient.  Further investigations are 

needed to understand the actual reason.  In addition, when comparing the computation time of 

the two algorithms, the speed difference may be due to the use of two different software 

packages.  It will be ideal that the two procedures are compared in the same setting.  This is, 

however, difficult due to availability of MCMC software.  Readers need to take this into 

consideration when interpreting results of the present study.      

5.2 Limitations and Directions for Future Studies 

            Through simulation studies, this dissertation shows that researchers and practitioners 

should benefit from using Gibbs sampling and NUTS in estimating parameters of the 2PL UIRT 

and 2PL multi-unidimensional IRT models.  More importantly, the results of the present study 

show that Gibbs sampling and NUTS perform equally well across most of the simulated 

conditions.  There is not much difference in the accuracy/bias using Gibbs sampling vs. NUTS 

when implementing them to the 2PL IRT models.  The results also provide some sense of 
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assurance that decisions about which algorithm to use should be considered other than accuracy 

in estimation.  It is, however, noted that conclusions are based on simulated conditions 

considered in the present study and cannot be generalized to other conditions.  For example, the 

present study only considers four sample sizes (i.e., 100, 300, 500, and 1000 examinees), three 

test lengths (i.e., 10, 20, and 40 items), three intertrait correlations (i.e., 0.2, 0.5, and 0.8), and 

equal test items between two latent traits for the 2PL multi-unidimensional model, but for future 

studies, additional test conditions need to be explored too.  In addition, the results of this study 

are based on up to 25 replications due to the fact that MCMC algorithms are computationally 

expensive taking considerable time to execute, making it difficult to go with 25 replications in 

this dissertation for all simulated conditions.  Given the small number of iterations, and given 

that Harwell et al. (1996) suggested a minimum of 25 replications for Monte Carlo studies in 

typical IRT-based research, bias, RMSE, and MAE values presented in Chapter 4 need to be 

verified with further studies before one can generalize the results to similar conditions.  

            In addition, the lack of the difference between Gibbs sampling and NUTS is likely due to 

the fact that the 2PL model is relatively simple and thus, does not have issues with mixing when 

it comes to implementing MCMC algorithms.  Future studies can consider using a more 

complicated model such as the three-parameter logistic (3PL) model to compare the two 

algorithms since the 3PL model is a mixture model and requires more attention with convergence 

when compared with the 2PL model (Sheng, 2010). 

            Simulation studies often demonstrate performance under ideal situations.  In this case, the 

true IRT model was known and fit can be assumed nearly perfect.  Future studies may use these 

two MCMC algorithms to fit the 2PL IRT models to real data and use them for model 

comparison and selection.  Other test format conditions should be also explored.  For example, 
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the present study only compares two MCMC algorithms and therefore, current simulation 

conditions could be expanded to compare other MCMC algorithms (e.g., Metropolis-Hastings 

and Hastings-within-Gibbs).  Also, future studies can compare the fully Bayesian estimation with 

other estimation methods such as the marginal maximum likelihood (MML) estimation (see 

Appendix A for a demonstration of the advantages of fully Bayesian estimation over MML).  In 

addition, simulation study 2 only considers two latent dimensions.  Future studies can compare 

the two algorithms on multi-unidimensional models that have more than two latent dimensions 

or the more general multidimensional IRT models.  Moreover, the findings of the present study 

are limited to the dichotomous models.  Models with polytomous categories (e.g., the partial 

credit or graded response models) should be also explored in future studies.  There are a large 

number of choices for prior distributions or simulated values for the IRT model parameters.  Due 

to that, other prior specifications or simulated values for model parameters 𝑎𝑗, 𝑏𝑗, and 𝜃𝑖 should 

also be considered.  For example, future studies may use these two algorithms to fit IRT models 

with non-normal latent trait distributions (e.g., from a gamma distribution with a shape and scale 

parameter of 10 and 1.5).  In addition, other priors such as the scaled inverse-Wishart, 

hierarchical inverse-Wishart, and LKJ priors should be explored for the covariance matrix for the 

multi-unidimensional IRT models.  In addition to RMSE and MAE, other evaluation metrics such 

as area under the curve (AUC; Swets & Pickett, 1982) can be used in future studies as well. 
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APPENDIX A 

Comparing MML and Fully Bayesian Estimations with An IRT Model 

In order to demonstrate the advantages of the fully Bayesian estimation over the conventional 

marginal maximum likelihood (MML) estimation, a few simulations were carried out.  As 

described in Chapter 2, Bayesian estimation has advantages over MML when data involve small 

samples and short tests or when an unusual response pattern occurs.  To empirically demonstrate 

this, data were simulated from the two-parameter logistic (2PL) unidimensional IRT (UIRT) 

model as defined in Equation (3.2.1).  For the small sample and short test condition, sample size 

(N) was manipulated to be 10, 50, and 100 examinees and test length (K) was fixed at 10 items.  

Model parameters were generated such that 𝜃𝑖~N(0, 1), 𝑎𝑗~U(0, 2), and 𝑏𝑗~𝑈(−2, 2).  For the 

all correct/incorrect response pattern condition, sample size was set to be 1000 examinees and 

test length to be 10 items.  Model parameters were generated such that 𝜃𝑖~N(0, 1), 𝑎𝑗~U(0, 2), 

and either 𝑏𝑗~U(-2, -1.9), suggesting all extremely easy items, or 𝑏𝑗~U(1.9, 2), suggesting all 

extremely difficult items.   

            An R package ltm (Rizopoulos, 2006) was used for estimating the 2PL UIRT model 

using MML to compare with results from the fully Bayesian estimation using Gibbs sampling 

and No-U-Turn Sampler (NUTS).  For the MCMC procedures, conjugate normal priors were 

assumed for both 𝜃𝑖 and 𝑏𝑗 such that 𝜃𝑖~N(0, 1), 𝑏𝑗~𝑁(0, 1), and 𝑎𝑗~𝑁(0,∞)(0, 1).   

            Gibbs sampling and NUTS were implemented to each simulated data via the use of JAGS 

and Stan, respectively, where the burn-in (or warm-up) stage was set to 3000 iterations followed 

by 4 chains with 5000 iterations.  For both algorithms, the initial values for the discrimination 

parameters 𝑎𝑗 were set to ones, and those for the difficulty parameters 𝑏𝑗 and latent ability 
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parameters 𝜃𝑖 were set to zeros.  Further, convergence of Markov chains was evaluated using the 

Gelman-Rubin R statistic (Gelman & Rubin, 1992). 

            For each simulated condition, only one replication was conducted.  The accuracy of item 

parameter estimates was evaluated using the average square error (ASE) and can be defined as:  

                                             ASE = 
∑ (𝜋̂𝑗−𝜋𝑗)2𝐾

𝑗=1

𝐾
                                                                       (A.1) 

where 𝜋 is the true value of an item parameter, 𝜋̂ is the estimated value of that parameter, and K 

is the total number of items.  

            The ASE measures the average of the squares of the errors between the true and estimated 

item parameters.  In general, a small value of the ASE suggests a more accurate estimation of the 

item parameters. 

            The values of the true and estimated item parameters, and ASE values for each simulated 

condition by implementing MML, Gibbs sampling, or NUTS to recover the discrimination (𝑎𝑗) 

and difficulty parameters (𝑏𝑗) are presented in Tables A1 through A5.   

            The results show that both Gibbs sampling and NUTS perform equally well and better 

than MML under all simulated conditions.  For example, the ASE values for the discrimination 

parameters using MML, Gibbs sampling, and NUTS are 433.167, 0.247, and 0.248, respectively 

with N=10 and K=10 (see Table A1).  As sample size increases, the ASE values of either the 

discrimination or difficulty parameters using all three estimation methods decrease too.  For 

example, as N increases from 10 to 100, the ASE values for the discrimination parameters using 

MML, Gibbs sampling, and NUTS decrease from 433.167, 0.247, and 0.248 to 0.554, 0.107, and 

0.280, respectively (see Tables A1 and A3).  In addition, for the all correct/incorrect response 

condition, the fully Bayesian estimation still outperforms MML even though the difference is not 

that noticeable as compared with the small sample and short test conditions.  For example, the 
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ASE values for the discrimination parameters using MML, Gibbs sampling, and NUTS are 0.055, 

0.045, and 0.045, respectively with N=1000 and extremely easy items (see Table A4).  

            As far as the computation time is concerned, the implementation of MML for estimating 

the 2PL UIRT model is very fast using the R package ltm.  For example, with a processor 2.5 

GHz Intel Core i5 and memory 8 GB 1600 MHz, the computation time of implementing Gibbs 

sampling in JAGS to data with N=100 and K=10 was about 55.41 seconds to complete four 

chains with 5000 iterations.  For the same data size, MML via the use of ltm only took 0.11 

seconds. 

            Overall, although computationally more expensive, the use of fully Bayesian estimation 

for the 2PL UIRT model results in a better recovery of item parameters compared to those via 

the use of the MML estimation for data with small sample sizes and short test lengths, or when 

all correct/incorrect response patterns occur.  

 

 

Table A1. The true and estimated values of the item parameters in the 2PL UIRT model using MML, Gibbs 

sampling, and NUTS when N=10. 

 True  MML  Gibbs 

sampling 

 NUTS  

Item a b 𝑎̂ 𝑏̂ 𝑎̂ 𝑏̂ 𝑎̂ 𝑏̂ 

1 0.993 0.183 0.045 9.123 0.731 0.206 0.719 0.207 

2 1.454 -1.962 -1.252 1.514 0.778 -0.887 0.766 -0.884 

3 0.342 1.285 54.127 1.006 0.865 0.792 0.854 0.795 

4 1.738 -0.546 -0.240 5.900 0.733 -0.888 0.731 -0.877 

5 1.069 -1.369 1.287 0.049 0.619 -0.052 0.618 -0.055 

6 0.344 1.214 -31.365 -0.072 0.375 0.174 0.373 0.174 

7 0.397 1.439 1.114 1.025 0.787 0.487 0.767 0.480 

8 0.591 1.036 0.178 12.434 1.081 1.185 1.083 1.182 

9 0.769 -0.411 -0.020 0.042 0.546 -0.041 0.527 -0.041 

10 0.858 1.242 21.350 0.684 0.746 0.473 0.739 0.481 

MSE   433.167 26.789     0.247 0.599 0.248 0.598 
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Table A2. The true and estimated values of the item parameters in the 2PL UIRT model using MML, Gibbs 

sampling, and NUTS when N=50. 

 True  MML  Gibbs 

sampling 

 NUTS  

Item a b 𝑎̂ 𝑏̂ 𝑎̂ 𝑏̂ 𝑎̂ 𝑏̂ 

1 1.091 -1.755 0.085 -17.887 0.741 -1.849 0.730 -1.873 

2 1.015 0.755 1.768 0.368 1.209 0.488 1.204 0.484 

3 1.380 -1.344 2.183 -1.144 1.568 -1.337 1.553 -1.350 

4 1.463 -0.151 1.243 0.017 1.006 0.036 0.993 0.047 

5 0.895 -0.005 2.143 -0.118 1.485 -0.114 1.472 -0.119 

6 0.880 1.512 1.706 0.931 1.360 1.099 1.354 1.102 

7 0.573 0.334 1.216 -0.325 0.821 -0.385 0.818 -0.383 

8 1.732 -1.509 6.665 -1.056 1.843 -1.465 1.842 -1.472 

9 1.318 -0.015 1.320 0.098 1.093 0.138 1.083 0.131 

10 1.213 0.737 0.731 1.169 0.733 1.056 0.731 1.048 

MSE   2.949 26.165     0.134 0.094    0.133 0.094 

 

 

 

 

Table A3. The true and estimated values of the item parameters in the 2PL UIRT model using MML, Gibbs 

sampling, and NUTS when N=100. 

 True  MML  Gibbs 

sampling 

 NUTS  

Item a b 𝑎̂ 𝑏̂ 𝑎̂ 𝑏̂ 𝑎̂ 𝑏̂ 

1 1.461 -1.806 1.206 -1.880 1.369 -1.678 1.381 -1.664 

2 0.928 -1.507 2.429 -0.963 1.704 -1.058 1.699 -1.056 

3 0.346 0.421 -0.015 -13.127 0.193 0.403 0.193 0.417 

4 0.017 1.432 -0.095 -0.846 0.136 0.161 0.134 0.161 

5 1.085 -1.785 0.431 -3.994 0.900 -1.960 0.905 -1.955 

6 1.823 -1.368 1.200 -1.808 1.340 -1.621 1.340 -1.624 

7 0.685 0.328 0.657 -0.542 0.594 -0.490 0.588 -0.497 

8 1.486 -0.910 1.558 -0.743 1.335 -0.768 1.328 -0.764 

9 0.785 -1.133 0.645 -1.126 0.721 -0.949 0.721 -0.948 

10 1.428 0.502 2.925 0.647 1.768 0.859 1.751 0.864 

MSE   0.554 19.492     0.107 0.278    0.105 0.280 
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Table A4. The true and estimated values of the item parameters in the 2PL UIRT model using MML, Gibbs 

sampling, and NUTS when N=1000 and extremely easy items. 

 True  MML  Gibbs 

sampling 

 NUTS  

Item a b 𝑎̂ 𝑏̂ 𝑎̂ 𝑏̂ 𝑎̂ 𝑏̂ 

1 0.995 -1.916 1.086 -1.873 1.111 -1.835 1.109 -1.836 

2 0.263 -1.901 0.256 -2.078 0.317 -1.669 0.320 -1.658 

3 1.714 -1.937 1.948 -1.657 1.898 -1.660 1.908 -1.655 

4 1.543 -1.980 1.118 -2.367 1.176 -2.277 1.176 -2.276 

5 1.362 -1.976 1.400 -1.921 1.426 -1.887 1.423 -1.889 

6 1.445 -1.970 1.862 -1.846 1.845 -1.837 1.837 -1.840 

7 1.514 -1.910 1.754 -1.788 1.737 -1.781 1.742 -1.775 

8 1.212 -1.956 0.961 -2.251 1.014 -2.154 1.016 -2.152 

9 0.909 -1.958 0.952 -1.896 0.979 -1.850 0.982 -1.846 

10 1.538 -1.995 1.641 -1.984 1.644 -1.967 1.644 -1.965 

MSE   0.055 0.039 0.045 0.032 0.045 0.033 

 

 

 

 

Table A5. The true and estimated values of the item parameters in the 2PL UIRT model using MML, Gibbs 

sampling, and NUTS when N=1000 and extremely difficult items. 

 True  MML  Gibbs 

sampling 

 NUTS  

Item a b 𝑎̂ 𝑏̂ 𝑎̂ 𝑏̂ 𝑎̂ 𝑏̂ 

1 0.710 1.972 0.908 1.740 0.927 1.706 0.930 1.703 

2 1.910 1.949 2.378 1.792 2.224 1.821 2.238 1.815 

3 1.380 1.986 1.571 1.894 1.587 1.872 1.589 1.869 

4 1.217 1.960 1.439 1.834 1.454 1.810 1.447 1.816 

5 0.181 1.930 0.238 1.132 0.258 1.038 0.261 1.023 

6 1.563 1.942 1.806 1.832 1.787 1.826 1.790 1.824 

7 0.440 1.938 0.270 3.102 0.385 2.189 0.384 2.198 

8 1.732 1.925 1.389 2.180 1.408 2.155 1.418 2.142 

9 0.781 1.972 0.895 1.791 0.917 1.755 0.927 1.738 

10 1.706 1.948 1.784 1.941 1.757 1.943 1.762 1.939 

MSE   0.057 0.220 0.043 0.109 0.044 0.113 
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APPENDIX B 

Table B1. ANOVA effect sizes (𝜔̂2) for logRMSE in estimating the discrimination (a) parameters in the 2PL UIRT 

model. 

Variable df Sum of Squares 𝜔̂2 

Prior specifications for 𝑎𝑗 (P) 2 1.364 0.015 

Test length (K) 2 2.817 0.031 

Sample size (N) 3 40.950 0.462 

Algorithm (A) 1 0.249 0.003 

P×K 4 0.099 0.000 

P×N 6 1.549 0.016 

P×A 2 0.491 0.005 

K×N 6 0.159 0.001 

K×A 2 0.061 0.000 

N×A 3 0.615 0.006 

P×K×N 12 0.337 0.002 

P×K×A 4 0.121 0.001 

P×N×A 6 1.228 0.013 

K×N×A 6 0.145 0.001 

P×K×N×A 12 0.284 0.001 

Residual 1608 23.838  

Total 1679 88.509  

 

 

Table B2. ANOVA effect sizes (𝜔̂2) for logMAE in estimating the discrimination (a) parameters in the 2PL UIRT 

model. 

Variable df Sum of Squares 𝜔̂2 

Prior specifications for 𝑎𝑗 (P) 2 1.157 0.015 

Test length (K) 2 2.190 0.029 

Sample size (N) 3 37.055 0.494 

Algorithm (A) 1 0.034 0.000 

P×K 4 0.090 0.001 

P×N 6 0.876 0.011 

P×A 2 0.066 0.001 

K×N 6 0.129 0.001 

K×A 2 0.025 0.000 

N×A 3 0.269 0.003 

P×K×N 12 0.152 0.000 

P×K×A 4 0.049 0.000 

P×N×A 6 0.540 0.006 

K×N×A 6 0.076 0.000 

P×K×N×A 12 0.152 0.000 

Residual 1608 18.918  

Total 1679 74.904  
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Table B3. ANOVA effect sizes (𝜔̂2) for logRMSE in estimating the difficulty (b) parameters in the 2PL UIRT 

model. 

Variable df Sum of Squares 𝜔̂2 

Prior specifications for 𝑎𝑗 (P) 2 0.208 0.002 

Test length (K) 2 0.558 0.006 

Sample size (N) 3 18.811 0.228 

Algorithm (A) 1 0.016 0.000 

P×K 4 0.202 0.001 

P×N 6 0.281 0.001 

P×A 2 0.029 0.000 

K×N 6 0.440 0.003 

K×A 2 0.005 0.000 

N×A 3 0.007 0.000 

P×K×N 12 1.213 0.010 

P×K×A 4 0.007 0.000 

P×N×A 6 0.012 0.000 

K×N×A 6 0.006 0.000 

P×K×N×A 12 0.009 0.000 

Residual 1608 49.110  

Total 1679 81.909  
 

 

Table B4. ANOVA effect sizes (𝜔̂2) for logMAE in estimating the difficulty (b) parameters in the 2PL UIRT model. 

Variable df Sum of Squares 𝜔̂2 

Prior specifications for 𝑎𝑗 (P) 2 0.224 0.003 

Test length (K) 2 0.488 0.007 

Sample size (N) 3 19.112 0.285 

Algorithm (A) 1 0.007 0.000 

P×K 4 0.158 0.001 

P×N 6 0.121 0.000 

P×A 2 0.012 0.000 

K×N 6 0.402 0.004 

K×A 2 0.004 0.000 

N×A 3 0.007 0.000 

P×K×N 12 0.812 0.008 

P×K×A 4 0.005 0.000 

P×N×A 6 0.011 0.000 

K×N×A 6 0.005 0.000 

P×K×N×A 12 0.008 0.000 

Residual 1608 34.482  

Total 1679 66.733  
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Table B5. ANOVA effect sizes (𝜔̂2) for correlations between 𝜃 and 𝜃 in the 2PL UIRT model. 

Variable df Sum of Squares 𝜔̂2 

Prior specifications for 𝑎𝑗 (P) 2 0.005 0.000 

Test length (K) 2 4.153 0.640 

Sample size (N) 3 0.013 0.001 

Algorithm (A) 1 0.000 0.000 

P×K 4 0.005 0.000 

P×N 6 0.020 0.002 

P×A 2 0.000 0.000 

K×N 6 0.009 0.000 

K×A 2 0.000 0.000 

N×A 3 0.000 0.000 

P×K×N 12 0.062 0.007 

P×K×A 4 0.000 0.000 

P×N×A 6 0.000 0.000 

K×N×A 6 0.000 0.000 

P×K×N×A 12 0.000 0.000 

Residual 1188 1.350  

Total 1259 6.487  

 

 

Table B6. ANOVA effect sizes (𝜔̂2) for logRMSE in estimating the discrimination (𝑎1) parameters in the 2PL multi-

unidimensional IRT model. 

Variable df Sum of Squares 𝜔̂2 
Test length (K) 2 2.808 0.117 

Sample size (N) 3 5.784 0.241 

Algorithm (A) 1 0.000 0.000 

Intertrait correlation (𝜌) 2 0.541 0.021 

K×N 6 0.283 0.008 

K×A 2 0.003 0.000 

K×𝜌 4 0.206 0.006 

N×A 3 0.000 0.000 

N×𝜌 6 0.245 0.007 

A×𝜌 2 0.004 0.000 

K×N×A 6 0.008 0.000 

K×N×𝜌 12 0.368 0.008 

K×A×𝜌 4 0.006 0.000 

N×A×𝜌 6 0.004 0.000 

K×N×A×𝜌 12 0.007 0.000 

Residual 768 11.106  

Total 839 23.814  
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Table B7. ANOVA effect sizes (𝜔̂2) for logMAE in estimating the discrimination (𝑎1) parameters in the 2PL multi-

unidimensional IRT model. 

Variable df Sum of Squares 𝜔̂2 

Test length (K) 2 2.897 0.115 

Sample size (N) 3 6.732 0.267 

Algorithm (A) 1 0.000 0.000 

Intertrait correlation (𝜌) 2 0.647 0.025 

K×N 6 0.260 0.007 

K×A 2 0.003 0.000 

K×𝜌 4 0.233 0.007 

N×A 3 0.000 0.000 

N×𝜌 6 0.246 0.006 

A×𝜌 2 0.003 0.000 

K×N×A 6 0.008 0.000 

K×N×𝜌 12 0.369 0.008 

K×A×𝜌 4 0.005 0.000 

N×A×𝜌 6 0.004 0.000 

K×N×A×𝜌 12 0.006 0.000 

Residual 768 10.935  

Total 839 25.032  

 

 

Table B8. ANOVA effect sizes (𝜔̂2) for logRMSE in estimating the discrimination (𝑎2) parameters in the 2PL multi-

unidimensional IRT model. 

Variable df Sum of Squares 𝜔̂2 

Test length (K) 2 2.841 0.116 

Sample size (N) 3 7.651 0.314 

Algorithm (A) 1 0.001 0.000 

Intertrait correlation (𝜌) 2 0.159 0.006 

K×N 6 0.171 0.004 

K×A 2 0.001 0.000 

K×𝜌 4 0.129 0.003 

N×A 3 0.001 0.000 

N×𝜌 6 0.331 0.011 

A×𝜌 2 0.001 0.000 

K×N×A 6 0.005 0.000 

K×N×𝜌 12 0.394 0.010 

K×A×𝜌 4 0.004 0.000 

N×A×𝜌 6 0.001 0.000 

K×N×A×𝜌 12 0.004 0.000 

Residual 768 9.191  

Total 839 24.248  
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Table B9. ANOVA effect sizes (𝜔̂2) for logMAE in estimating the discrimination (𝑎2) parameters in the 2PL multi-

unidimensional IRT model. 

Variable df Sum of Squares 𝜔̂2 

Test length (K) 2 2.900 0.111 

Sample size (N) 3 8.062 0.309 

Algorithm (A) 1 0.000 0.000 

Intertrait correlation (𝜌) 2 0.112 0.003 

K×N 6 0.210 0.005 

K×A 2 0.001 0.000 

K×𝜌 4 0.133 0.003 

N×A 3 0.001 0.000 

N×𝜌 6 0.301 0.009 

A×𝜌 2 0.001 0.000 

K×N×A 6 0.006 0.000 

K×N×𝜌 12 0.350 0.007 

K×A×𝜌 4 0.005 0.000 

N×A×𝜌 6 0.001 0.000 

K×N×A×𝜌 12 0.007 0.000 

Residual 768 10.260  

Total 839 25.978  

 

 

Table B10. ANOVA effect sizes (𝜔̂2) for logRMSE in estimating the difficulty (𝑏1) parameters in the 2PL multi-

unidimensional IRT model. 

Variable df Sum of Squares 𝜔̂2 
Test length (K) 2 0.562 0.014 

Sample size (N) 3 4.714 0.129 

Algorithm (A) 1 0.000 0.000 

Intertrait correlation (𝜌) 2 0.013 0.000 

K×N 6 0.614 0.012 

K×A 2 0.001 0.000 

K×𝜌 4 0.275 0.004 

N×A 3 0.000 0.000 

N×𝜌 6 0.375 0.005 

A×𝜌 2 0.002 0.000 

K×N×A 6 0.002 0.000 

K×N×𝜌 12 0.843 0.013 

K×A×𝜌 4 0.002 0.000 

N×A×𝜌 6 0.003 0.000 

K×N×A×𝜌 12 0.003 0.000 

Residual 768 24.889  

Total 839 35.664  
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Table B11. ANOVA effect sizes (𝜔̂2) for logMAE in estimating the difficulty (𝑏1) parameters in the 2PL multi-

unidimensional IRT model. 

Variable df Sum of Squares 𝜔̂2 

Test length (K) 2 0.747 0.023 

Sample size (N) 3 5.750 0.185 

Algorithm (A) 1 0.000 0.000 

Intertrait correlation (𝜌) 2 0.000 0.000 

K×N 6 0.603 0.015 

K×A 2 0.001 0.000 

K×𝜌 4 0.213 0.004 

N×A 3 0.000 0.000 

N×𝜌 6 0.459 0.010 

A×𝜌 2 0.001 0.000 

K×N×A 6 0.004 0.000 

K×N×𝜌 12 0.539 0.008 

K×A×𝜌 4 0.002 0.000 

N×A×𝜌 6 0.002 0.000 

K×N×A×𝜌 12 0.003 0.000 

Residual 768 18.273  

Total 839 30.710  

 

 

Table B12. ANOVA effect sizes (𝜔̂2) for logRMSE in estimating the difficulty (𝑏2) parameters in the 2PL multi-

unidimensional IRT model. 

Variable df Sum of Squares 𝜔̂2 

Test length (K) 2 1.054 0.023 

Sample size (N) 3 7.910 0.186 

Algorithm (A) 1 0.000 0.000 

Intertrait correlation (𝜌) 2 0.047 0.000 

K×N 6 0.202 0.000 

K×A 2 0.000 0.000 

K×𝜌 4 0.534 0.009 

N×A 3 0.000 0.000 

N×𝜌 6 0.255 0.001 

A×𝜌 2 0.000 0.000 

K×N×A 6 0.001 0.000 

K×N×𝜌 12 0.669 0.006 

K×A×𝜌 4 0.001 0.000 

N×A×𝜌 6 0.003 0.000 

K×N×A×𝜌 12 0.004 0.000 

Residual 768 26.736  

Total 839 41.911  
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Table B13. ANOVA effect sizes (𝜔̂2) for logMAE in estimating the difficulty (𝑏2) parameters in the 2PL multi-

unidimensional IRT model. 

Variable df Sum of Squares 𝜔̂2 

Test length (K) 2 1.327 0.034 

Sample size (N) 3 8.588 0.226 

Algorithm (A) 1 0.000 0.000 

Intertrait correlation (𝜌) 2 0.015 0.000 

K×N 6 0.309 0.004 

K×A 2 0.000 0.000 

K×𝜌 4 0.415 0.008 

N×A 3 0.000 0.000 

N×𝜌 6 0.219 0.001 

A×𝜌 2 0.000 0.000 

K×N×A 6 0.002 0.000 

K×N×𝜌 12 0.703 0.010 

K×A×𝜌 4 0.001 0.000 

N×A×𝜌 6 0.003 0.000 

K×N×A×𝜌 12 0.004 0.000 

Residual 768 20.799  

Total 839 37.651  

 

 

Table B14. ANOVA effect sizes (𝜔̂2) for correlations between 𝜃1 and 𝜃1 in the 2PL multi-unidimensional IRT 

model. 

Variable df Sum of Squares 𝜔̂2 

Test length (K) 2 4.748 0.670 

Sample size (N) 3 0.007 0.000 

Algorithm (A) 1 0.000 0.000 

Intertrait correlation (𝜌) 2 0.449 0.063 

K×N 6 0.009 0.000 

K×A 2 0.000 0.000 

K×𝜌 4 0.147 0.019 

N×A 3 0.000 0.000 

N×𝜌 6 0.004 0.000 

A×𝜌 2 0.000 0.000 

K×N×A 6 0.000 0.000 

K×N×𝜌 12 0.045 0.002 

K×A×𝜌 4 0.000 0.000 

N×A×𝜌 6 0.000 0.000 

K×N×A×𝜌 12 0.000 0.000 

Residual 648 1.665  

Total 719 7.074  

 

 



114 
 

 

Table B15. ANOVA effect sizes (𝜔̂2) for correlations between 𝜃2 and 𝜃2 in the 2PL multi-unidimensional IRT 

model. 

Variable df Sum of Squares 𝜔̂2 
Test length (K) 2 3.831 0.616 

Sample size (N) 3 0.021 0.002 

Algorithm (A) 1 0.000 0.000 

Intertrait correlation (𝜌) 2 0.416 0.066 

K×N 6 0.042 0.004 

K×A 2 0.000 0.000 

K×𝜌 4 0.079 0.011 

N×A 3 0.000 0.000 

N×𝜌 6 0.040 0.004 

A×𝜌 2 0.000 0.000 

K×N×A 6 0.000 0.000 

K×N×𝜌 12 0.035 0.000 

K×A×𝜌 4 0.000 0.000 

N×A×𝜌 6 0.000 0.000 

K×N×A×𝜌 12 0.000 0.000 

Residual 648 1.752  

Total 719 6.216  
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