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AN ABSTRACT OF THE THESIS OF  

Baikuntha Silwal, for the Master of Science degree in Civil Engineering, presented on February 

8, 2013, at Southern Illinois University Carbondale. 

 

TITLE:  AN INVESTIGATION OF THE BEAM-COLUMN AND THE FINITE-ELEMENT 

FORMULATIONS FOR ANALYZING GEOMETRICALLY NONLINEAR 

THERMAL RESPONSE OF PLANE FRAMES 

 

MAJOR PROFESSOR: Dr. Aslam Kassimali, Ph.D. 

The objective of this study is to investigate the accuracy and computational efficiency of 

two commonly used formulations for performing the geometrically nonlinear thermal analysis of 

plane framed structures. The formulations considered are the followings: the Beam-Column 

formulation and the updated Lagrangian version of the finite element formulation that has been 

adopted in the commercially well-known software SAP2000. These two formulations are used to 

generate extensive numerical data for three plane frame configurations, which are then compared 

to evaluate the performance of the two formulations. 

The Beam-Column method is based on an Eulerian formulation that incorporates the 

effects of large joint displacements. In addition, local member force-deformation relationships 

are based on the Beam-Column approach that includes the axial strain, flexural bowing, and 

thermal strain. The other formulation, the SAP2000, is based on the updated Lagrangian finite 

element formulation. The results for nonlinear thermal responses were generated for three plane 

structures by these formulations. Then, the data were compared for accuracy of deflection 
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responses and for computational efficiency of the Newton-Raphson iteration cycles required for 

the thermal analysis. 

The results of this study indicate that the Beam-Column method is quite efficient and 

powerful for the thermal analysis of plane frames since the method is based on the exact solution 

of the differential equations. In comparison to the SAP2000 software, the Beam-Column method 

requires fewer iteration cycles and fewer elements per natural member, even when the structures 

are subjected to significant curvature effects and to restrained support conditions. The accuracy 

of the SAP2000 generally depends on the number of steps and/or the number of elements per 

natural member (especially four or more elements per member may be needed when a structure 

member encounters a significant curvature effect). Succinctly, the Beam-Column formulation 

requires considerably fewer elements per member, fewer iteration cycles, and less time for 

thermal analysis than the SAP2000 when the structures are subjected to significant bending 

effects.  
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CHAPTER 1  

INTRODUCTION 

1.1 General 

Fundamentally, structural analyses involve the assessment of the response 

characteristics of a structure under the applied load effects. Although the conventional linear 

analysis of structures seems acceptable for most common structures, it cannot precisely 

predict the structural response in the large deformation, instability, and failure range in which 

the applied external loads exceed the service limit. This limitation of the first-order analysis 

exists inherently based on the two fundamental assumptions adopted in the linear analysis: 

material linearity, represented by linear stress-strain laws; and geometric linearity, 

characterized by a linear strain-displacement relationship. Furthermore, the equilibrium 

equations are also expressed in the un-deformed state of a structure. Despite these limitations, 

the linear analysis could be a good approximation of the portions of the nonlinear response 

near the reference state. Hence, there is an increase in the application of the nonlinear 

analysis for the structural design in order to study the true response of the structure. In this 

study, the focus of the investigation is on the geometrically nonlinear analysis. 

Two approaches are used to formulate the geometrically nonlinear analysis: the 

Beam-Column formulation and the finite element formulation. In the Beam-Column theory, 

the member force-deflection relations are based on the exact solution of the underlying 

differential equations (Kassimali, 2010), which are more complicated and require iterations to 

obtain the dimensionless axial force parameter q. In the finite element formulation, an 

approximate solution to the differential equation (shape function) is assumed, and force-

deformation relations are simple, and are the functions of polynomial equations. The Beam-

Column formulation generally requires fewer iterations and load/temperature steps with the 
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natural structural members at the system level. However, the finite element formulation 

demands more elements, iterations and/or temperature steps to get adequate results. While the 

literature does contain studies comparing the performance of the Beam-Column and the finite 

element formulations for framed structures subjected to external loads (Kassimali, 1976), no 

such studies seem to have been reported for the frames subjected to temperature changes. 

1.2 A Brief Review of Literature 

An excellent review of the recent literature on the subject of nonlinear analysis 

subject to thermal effect can be found in the journal published by the American Society of 

Civil Engineers (ASCE) in 2010 (Kassimali, 2010). This nonlinear analysis procedure is an 

extension of a previous formulation for static loads (Kassimali, 1976) since it includes the 

thermal loading. The local element force-deformation relation with the inclusion of the 

stability and bowing functions originally expressed was extended to incorporate the effect of 

changes in chord lengths in the presence of thermal strain and bowing effects due to a 

temperature gradient. Using this method, the numerical studies were carried out on structures 

composed of prismatic, elastic, and straight elements that were subjected to temperature 

changes uniformly along their longitudinal axis and the linear temperature gradient across the 

cross-sectional depth. The external loads were applied only at the joints of the frames and 

these loads were considered non-follower load, that is, independent of the structural 

configuration. The results for the large displacements and stability of these plane frames were 

compared to the experimental (Rubert and Schaumann, 1986) and the analytical results (Chan 

and Chan, 2001) available in the literature, and they were found in general agreement with 

the previous results. However, it was noted that the procedure is not valid for an analysis 

involving yielding and material nonlinearity. 
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1.3 Objective and Scope 

The objective of this study is to investigate the accuracy and computational efficiency 

of two commonly used formulations for performing the geometrically nonlinear thermal 

analysis of framed structures. The formulations considered are the followings: the Beam-

Column formulation and the updated Lagrangian version of the finite element formulation 

that has been adopted in the widely used commercial software SAP2000. These two 

formulations are used to generate extensive numerical data for three plane frame 

configurations, which are then compared to evaluate the performance of the two 

formulations. 

The Beam-Column formulation used in this study was recently published in ASCE 

journal (Kassimali, 2010). For finite element formulation, it was decided to use the well-

known commercial software SAP2000, which is based on Updated Lagrangian formulation 

(CSI SAP2000). 

The specific objectives are to examine: (1) the accuracy of the results yielded by the 

two formulations when a minimum number (one or two) of elements per natural members 

and/or temperature steps are used in the analysis, and (2) how the accuracy of the results 

improves as the number of elements and/or steps are increased. The number of Newton-

Raphson iteration cycles required for convergence at each temperature step is also monitored, 

as well as the computer run time required for each analysis. The numerical results thus 

obtained for three benchmark structures are presented in this report. 
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CHAPTER 2  

THE BEAM-COLUMN FORMULATION 

The Beam-Column formulation used in this study for large displacement analysis of 

elastic plane frames subjected to temperature changes is presented in this chapter. This 

method of analysis was initially published by Kassimali (2010).  

2.1 Element Force-Deformation Relations 

Consider an arbitrary element of a plane frame structure subjected to a temperature 

increase varying linearly over its depth, d, from Tt at the top to Tb at the bottom as shown in 

Fig. 2.1. The element is assumed straight, prismatic, and elastic and is subjected to uniform 

temperature changes along the length L of the element. The relationships between the element 

end-forces, element end moments Q1 and Q2 as well as element axial force Q3, and the 

relative end rotations,    and   , can be determined by solving the differential equation for 

the bending of the element subjected to prescribed temperature effects, which can be written 

as follows: 

              
 
 
 

  
             

     
 

       
     
 

           (2.1) 

in which   

 E  = modulus of elasticity;  

I  = moment of inertia;  

 = coefficient of thermal expansion; and  

y = deflection of the element’s centroidal axis with respect to its chord, in 

the local coordinate system, due to the combined effect of end moments, axial force, 

and temperature change. 
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 The relations between end moments, axial force, and end rotations can be obtained by 

solving Eq. 2.1 and applying the boundary conditions, which are as follows: 

   
  
 
                

     
 

      (2.2) 

   
  
 
                

     
 

       (2.3) 

with        = stability functions Livesley and Chandler (1956). 

The element axial force Q3 can be expressed as 

      
  
 
      

     
 

         (2.4) 

in which             
           

      
(2.5) 

The term    denotes the axial strain due to flexural bowing action, with   ,   = 

bowing functions (Saafan, 1963). The axial strain (  ) expressed in Eq. (2.5) comprises of the 

bowing effect due to temperature gradient via Eqs. (2.2) and (2.3): it seems analogous to the 

form used by (Oran, 1973). From a pragmatic viewpoint, the stability and bowing functions 

are explicitly expressed in terms of a dimensionless axial force parameter (q). 

   
  

      
 

   
 

             (2.6) 

It is worthwhile mentioning that in the absence of an axial force,    = 0, the stability 

functions   and    becomes 4 and 2 respectively. Then, the end moments so obtained become 

the familiar expression used in the slope-deflection equation for linear analysis. 

The global member-forces F in Fig. 2.2 can be related to an element’s local forces Q 

(Oran, 1973). 
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          (2.7) 

in which B= Transformation matrix 

   
 

  

 
 
 
 
 
 
       
     
    

      
        
     

 
 
 
 
 

      
 (2.8) 

in which 

 
        ;               (2.9) 

In Eqs. (2.8) and (2.9),    and    represent the length and orientation of the chord of the 

element in its deformed configuration, respectively, as shown in Fig. 2.2. The method to 

obtain   , m, n, and u from the element’s global end-displacements, v, has been previously 

published by (Kassimali, 1983). 

2.2 Element Incremental Stiffness Relations 

By differentiating the element force-deformation relations [Eqs. (2.2) – (2.4)], term by 

term, with respect to u, Tb, and Tt, the tangent-stiffness relationships in local coordinates (Fig. 

2.1) can be determined and expressed in concise form as follows: 

                    (2.10) 

in which k = element tangent-stiffness matrix in local coordinates (Oran 1973); and 

QT = the element fixed end-forces due to temperature increment Tb and Tt 

For an element with no hinges, the QT can be expressed as follows: 
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    (2.11) 

in which 

        
                  (2.12) 

        
                  (2.13) 

   
  


             

             
      (2.14) 

Where     
  
 

        (2.15) 

The prime superscript used in above Equations shows a differentiation with respect to 

q (See Appendix).  

2.3 Member Tangent-Stiffness Matrices 

It is pertinent to establish element tangent-stiffness relationship between global end-

forces and element’s global end-displacements developed due to temperature effect. The 

incremental relationship between member end-forces, end-displacement, and member end-

forces due to temperature effect can be expressed as  

                      (2.16)  

in which the element tangent-stiffness, K, is given by (Oran, 1973) 

            
   

 

          

(2.17)

 

with      represents the geometric matrices (Appendix); the superscript T denotes the 

transpose; and 
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                   (2.18) 

With     indicates global end-forces due to temperature increments Tb and Tt . 

2.4 Structural Equilibrium Equations 

For a plane frame subjected to external joint loads P and temperature changes T, the 

following nonlinear equations of equilibrium of the entire structure can be written as 

        = P        (2.19) 

in which f(x, T) represents resultant internal forces; x denotes generalized coordinates 

consisting of translations and rotations of the joints; and P refers to the applied external joint 

forces. 

It has already mentioned that the member force-deformation relations are nonlinear 

that would lead to a highly nonlinear relationship between f and x. In order to perform the 

computations, a differential form of Eq. 2.19 can be expressed as 

                     (2.20) 

In the presence of thermal effects, it can be rewritten as 

                    (2.21) 

in which    and    refer to incremental values of external joint loads and joint 

displacements, respectively; S represents the structural tangent-stiffness matrix; and the 

vector     denotes the structural fixed-joint forces due to the effect of temperature 

increment. These matrices S and    can be expediently assembled from their element 

tangent-stiffness matrix K and global end-forces     respectively, with the aid of the element 

code number technique (Kassimali, 1999). 
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2.5 Computational Procedure 

It has been mentioned in the literature that two types of computational techniques are 

commonly applied to solve the nonlinear problems: linearized incremental procedure and the 

Newton-Raphson iteration technique. In this study, the geometrically nonlinear analysis of 

plane frame structures is performed by using an incremental load approach. The above-

mentioned conventional Newton-Raphson type of iteration technique is applied at each load 

level or temperature step until the joint equilibrium equations on the deformed configuration 

are satisfied within a prescribed tolerance limit.  

Consider a specified set of external joint loads represented by {P} is applied on a 

plane frame, and our objective is to determine the deformed configuration i.e. the joint 

displacement x of a plane frame. The solution technique is shown in Fig. 2.3. 

From above mentioned Eq. 2.19, 

                

By analogy to a first order Taylor series expansion, we can write as 

                                  (2.22) 

in which       denotes a small increment to previous displacement and           

represent internal joint forces corresponding to x. The above equation can be written as 

                         (2.23) 

in which    = tangent-stiffness matrix for the structure; and 

                           (2.24) 
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in which     denotes the updated unbalanced joint force vector. These unbalanced 

joint forces are treated as a load increment and the corresponding correction vector    is 

determined by applying the linearized incremental relationship used in Eq. 2.23.  

                          (2.25) 

                         (2.26) 

In this step,      represented the updated tangent-stiffness matrix corresponding to 

joint displacement vector    , and a new configuration       is then evaluated by adding the 

correction vector     to the current configuration   . This iterative process is repeated until 

the updated correction vector    becomes sufficiently small so that the equations of 

equilibrium are satisfied within the prescribed tolerance. 

Various criteria can be used to check whether the iterative process has converged. In 

this study, we adopted a convergence criteria based on a comparison of the changes in joint 

displacement,    , to their cumulative displacement   . In applying this criteria, translations 

and rotations of the joints are treated as separate groups, and convergence criteria is assumed 

to have occurred when the following inequality is satisfied independently for each groups. 

      
     

 

     
     

 

           (2.27) 

in which the dimensionless quantity e denotes a specified tolerance adopted in the 

analysis. A value of e = 0.001 has been used in all the numerical solutions for the bench 

marked structures selected in this study. 

In this nonlinear thermal analysis, we have performed two different types of 

iterations: the first iteration is employed to calculate the axial forces of elements from their 
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known deformed configuration at the element level; and the other iteration is applied to 

determine the joint displacements of the deformed structure after determining the joint load 

vectors. The first iteration becomes essential to determine axial forces because the equation 

for element axial forces Q3 [Eq. 2.4] consist of bowing functions, which are highly nonlinear 

function of axial force parameter q. At the element level, the iteration is required to solve Eq. 

2.4, which can be expediently rewritten in terms of q, as 

      
  

 
      

  

 
   

     

 
        (2.28) 

Initially, an appropriate qi can be selected, and is updated successively using the 

relation developed by Kassimali (1983) 

)('

)(
1

i

i

iiii
qJ

qJ
qqqq 

       (2.29) 

until the increment q is sufficiently small 

eq           (2.30) 

in which 

bcqJ ')('
2

2





        (2.31) 

and 

)'')((2)'')((2)(')('' 2121221211

2

212

2

211 uuuubuuuubuubuubc b   (2.32) 

In which     terms are zero at elements ends rigidly connected to the joints. After 

evaluating the axial force using the forgoing iteration, the element end moments can be 

obtained using Eqs. 2.2 and 2.3. 
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2.6 Computer Program 

The computer program was initially developed by Kassimali (2010) for the 

geometrically nonlinear thermal analysis of plane framed-structures adopted in this study. 

This program was developed to implement the general method of geometrically nonlinear 

thermal analysis based on the Beam-Column formulation including stability and bowing 

functions. This program was developed to incorporated temperature effect for fire analysis 

(Kassimali, 2010), in which total temperature loading and the number of temperature 

increments, the convergence tolerance, and the maximum number of iteration cycles that can 

be performed at any given temperature level can be specified. The temperature-depended 

material properties are adopted from (AISC 2005). It is imperative to mention that this 

program contributes results explicitly and efficiently at prescribed temperature range in a 

single analysis. It means that the program can update the temperature-depended material 

properties automatically as long as temperature changes. In this study, the computer program 

was used for two different phenomenon: one nonlinear thermal analysis for temperature 

change without the inclusion of strength degradation, and the other for thermal analysis 

incorporating the temperature-depended material properties. The former phenomenon is 

considered to generate data for the cantilever beam and the axially restrained column, and the 

later one is employed for the one-story frame analysis.  
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CHAPTER 3  

FINITE-ELEMENT FORMULATION (SAP2000) 

The commercial software SAP2000 was selected to perform the finite element 

analysis because it is widely used in industries. The SAP2000 uses the updated Lagrangian 

finite element formulation to track the deformed position of the elements. As this software 

SAP2000 is very sensitive to specified convergence tolerance in large displacement analysis, 

it necessities smaller steps and convergence tolerance to get the adequate results (CSI 

SAP2000). This chapter describes some of the options for nonlinear static analysis available 

in the SAP2000 which were used to generate the nonlinear data in this study.  

3.1 Nonlinear Solution Control Parameters 

The SAP2000 has several nonlinear solution control parameters available to control 

the iteration and sub-stepping process. However, the following solution control parameters 

were selected to simulate the identical nonlinear parameters for the two formulations used in 

this study: Maximum Total Steps per Stage, Maximum Null (Zero) Steps per Stage, 

Maximum Constant-Stiffness Iterations per Step, Maximum Newton-Raphson Iterations per 

Step, and Iteration Convergence Tolerance (Relative). 

Maximum Total Steps is the maximum number of steps allowed in the analysis that 

includes the saved steps as well as intermediate sub-steps. In this study, the maximum 

number of total steps was assigned to apply the each temperature step in single step. 

Maximum Null (Zero) steps are the total null (zero) steps that occur in presence of 

catastrophic failure or numerical instability during the nonlinear solution procedure. In this 

study, Maximum Null (Zero) step was assigned to zero that means there is no convergence 

trouble due to unexpected causes in solution. 
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Two types of iteration are used to satisfy the equilibrium equations in the deformed 

state at each step of the analysis in the SAP2000: a Constant-Stiffness Iteration and a 

Newton-Raphson Iteration. For each step, the former one is tried first in the SAP2000, and 

then the Newton-Raphson iteration is applied if the convergence is not achieved with the 

former. In this study, the maximum constant-stiffness iteration per step parameter is set to 

zero to prevent that type of iterations from being performed in each step since the 

computational technique adopted in this study is the Newton-Raphson iteration. The literature 

shows that the Newton-Raphson iteration is more effective for geometric nonlinearity. It is 

imperative that the maximum number of Newton-Raphson iteration specified must be greater 

than the actual number of iteration required in each step. 

Iteration Convergence Tolerance available in the SAP2000 is the relative tolerance 

limit which compares the magnitude of force error with the magnitude of the load acting on 

the structure. For large-displacement analysis, a small value of iteration convergence 

tolerance is desirable to achieve good results. 

3.2 Result Saved Options 

Generally, after performing nonlinear analysis, the SAP2000 only saves the output for 

the final state of the structures after the full load has been applied to it. In this study to 

investigate the nonlinear response of the structures, the intermediate results were also saved 

by choosing the “multiple states” options in the results saved option menu available in the 

program. The software SAP2000 automatically determines the spacing of the steps saved by 

dividing total force or total displacement target by the specified Minimum Number of Saved 

Steps (CSI SAP2000).  
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CHAPTER 4  

NUMERICAL RESULTS AND DISCUSSION 

To compare the accuracy and computational efficiency of the Beam-Column and the 

finite element formulations, a large number of numerical solutions were generated for three 

benchmark structures shown in Fig. 4.1 under various thermal conditions, using the two 

formulations. 

The main objectives of this numerical study were to examine: (1) the accuracy of the 

results yielded by the formulations when a minimum number (one or two) of elements per 

natural members and/or temperature steps are employed in the analysis, and (2) how the 

accuracy of the results improves as the number of elements and/or steps are increased. The 

number of Newton-Raphson iteration cycles required for convergence at each temperature 

step was monitored, as well as the computer run time required for each analysis. The 

numerical results thus obtained for the three benchmark structures are summarized in this 

chapter. 

Before the SAP2000 software was used to perform any thermal analysis, it was 

validated by performing the large deformation analysis of a cantilever beam subjected to a 

concentrated load at its tip. The dimensions and properties of the beam were taken from a 

previous study by Kocaturk, Akbas, and Simsek (2010), who also analyzed the same structure 

by the SAP2000. From Fig. 4.2, it can be seen that the results obtained in the present study 

are almost identical to those reported in the literature. 

4.1 Cantilever Beam 

The first benchmark structure studied was the cantilever beam subjected to pure 

bending caused by a lateral temperature gradient, as shown in Fig. 4.1(a). The dimensions 
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and the cross-sectional and material properties used in this study are identical to those used 

by Kassimali (2010) and are listed in Table 4.1(a). For this structure, the temperature 

dependent material properties were not considered. 

The exact theoretical solution for this problem has been derived by Kassimali (2010). 

In this study, this exact solution was used a benchmark against which the numerical results 

yielded by the Beam-Column and the finite-element formulations were compared. The 

numerical results generated for the cantilever beam are presented in Figs. 4.3 to 4.6 and Table 

4.2 to 4.5. 

The temperature-deformation curves obtained for the cantilever beam, when subjected 

to a total temperature increase of 1600C applied in 40 equal increments (of 40C each), are 

depicted in Figs. 4.3 and 4.4. Of these, Fig. 4.3 shows the horizontal deflection of the free 

end, and Fig. 4.4 depicts the vertical deflection of the free end of the cantilever beam. It can 

be seen from these figures that, even when the deformations are very large, the Beam-

Column formulation with only one element yields highly accurate results which are in close 

agreement with the exact solution. 

The SAP2000 program failed to converge, even in the small deformation range, when 

one element was used to model the structure. It can be seen from Figs. 4.3 and 4.4 that when 

the beam was modeled with two elements, the SAP2000 results were in agreement with the 

exact solutions in the small deformation range, but tended to deviate away from the exact 

solutions as the deformations increased. Finally, when the 4-element and 10-element models 

were analyzed on the SAP2000, the deflection results obtained were in close agreement with 

the exact solutions (see Figs. 4.3 and 4.4). 

A commonly used measure of the computational efficiency of any nonlinear 

algorithm is its rate of convergence, i.e., the number of iteration cycles it requires to reach the 
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solution. To compare the computational efficiency of the two formulations considered in this 

study, the number of Newton-Raphson iteration cycles required by each formulation for each 

model, at each temperature level was traced. These numbers, based on a convergence 

tolerance of 0.001, are listed in Table 4.2, from which it can be seen that the Beam-Column 

formulation, with just one element, required significantly less iteration cycles for 

convergence than the 4-element model analyzed on the SAP2000. The number of cycles for 

the 10-element SAP2000 model is closer to those for the 1-element Beam-Column model. 

However, it should be recognized that 1-element model involves solving three simultaneous 

equations in each iteration cycle; whereas the 10-element model requires the solution of thirty 

equations per cycles. 

Next, to examine the effect of step size on the performance of the Beam-Column and 

the finite element formulations, the analyses performed previously were repeated with the 

number of steps reduced by half. In other words, the total temperature increase of 1600C 

was applied in 20 increments of 80C each. The numerical results thus obtained are given in 

Figs. 4.5 and 4.6 and Table 4.3. From these figures, it can be seen that with the 1-element 

model, the Beam-Column formulation predicts the horizontal deflection in close agreement 

with the exact solution, but the vertical deflection tends to deviate from the exact in the large 

deformation range. This indicates using large step sizes with 1-element model can adversely 

affect the results. As shown in Table 4.4, when beam was divided into two elements, the 

results become very close to the exact solutions. 

In addition to the 40- and 20- step temperature sequences, described in the preceding 

paragraphs, a number of other loading sequences were tried. Some of results thus obtained 

are summarized in Table 4.4. From this table, it can be seen that the Beam-Column 

formulation required only one or two elements to predict accurate results even when the 

bending deformations of the cantilever beam ware substantial, whereas the finite-element 
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formulation of the SAP2000 required a minimum of four elements to provide adequately 

accurate results. 

Finally, Table 4.5(a) lists the time required by the SAP2000 to run the various models 

of the cantilever beam. In contrast, the computer time required to perform the Beam-Column 

analyzes was significantly less. 

4.2 Axially Restrained Column 

The second benchmark structure studied was the axially restrained column subjected 

to axial temperature changes along its longitudinal axial with a small temperature gradient (e 

= 0.10) in lateral direction, as shown in Fig. 4.1(b). The dimensions and the cross-sectional 

and material properties used in this study are identical to those used by Kassimali (2010) and 

are listed in Table 4.1(b). For this structure, the temperature dependent material properties 

were not considered. 

In this study, the numerical results yielded by the Beam-Column and the finite-

element formulations were compared. The numerical results generated for the column are 

presented in Figs. 4.7 to 4.11 and Table 4.6 to 4.8. 

The temperature-deformation curves obtained for the column, when subjected to a 

total temperature increase of 800C applied in 40 equal increments (of 20C each), are 

depicted in Figs. 4.6 and 4.7. Of these, Fig. 4.6 shows the rotation of the hinged support, and 

Fig. 4.7 depicts the mid-span deflection of the column. It can be seen from these figures that, 

even when the deformations are very large, the Beam-Column formulation with only one 

element yields highly accurate results which are in close agreement with the Beam-Column 

formulation with 2-element model. 
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The SAP2000 program failed to provide adequate results, even in the small 

deformation range beyond the bifurcation temperature of 107.5C, when two elements was 

used to model the structure. It can be seen from Figs. 4.6 and 4.7 that when the column was 

modeled with two elements, the SAP2000 results were in agreement with the Beam-Column 

solutions in the small deformation range below the bifurcation temperature, but tended to 

deviate away from the Beam-Column solutions as the deformations increased. Finally, when 

the 4-element and 10-element models were analyzed on the SAP2000, the deflection results 

obtained were in close agreement with the Beam-Column solutions (see Figs. 4.6 and 4.7). 

A commonly used measure of the computational efficiency of any nonlinear 

algorithm is its rate of convergence, i.e., the number of iteration cycles it requires to reach the 

solution. To compare the computational efficiency of the two formulations considered in this 

study, the number of Newton-Raphson iteration cycles required by each formulation for each 

model, at each temperature level was traced. These numbers, based on a convergence 

tolerance of 0.001, are listed in Table 4.8, from which it can be seen that the Beam-Column 

formulation, with just one element, required significantly less iteration cycles for 

convergence than the 4-element model analyzed on the SAP2000. The number of cycles for 

the 10-element SAP2000 model is closer to those for the 1-element Beam-Column model. 

However, it should be recalled that 1-element model involves solving three simultaneous 

equations in each iteration cycle; whereas the 10-element model requires the solution of thirty 

equations per cycles. 

Next, to examine the effect of step size on the performance of the Beam-Column and 

the finite element formulations, the analyses performed previously were repeated with the 

number of steps reduced by half. In other words, the total temperature increase of 800C was 

applied in 20 increments of 40C each. The numerical results thus obtained are given in Figs. 

4.9 and 4.10 and Table 4.7. From these figures, it can be seen that with the 1-element model, 
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the Beam-Column formulation predicts the rotation at the hinged end and mid-span 

displacement in close agreement with the Beam-Column solution with 2-element model, but 

the SAP2000 results tends to deviate from the Beam-Column results in the large deformation 

range. This indicates using large step sizes with 1- and 2-element models in the SAP2000 can 

adversely affect the results. As shown in Table 4.8, when the column was divided into four or 

more elements in the SAP2000, the results become very close to the Beam-Column solutions. 

In addition to the 40- and 20- step temperature sequences, described in the preceding 

paragraphs, a number of other loading sequences were tried. Some of results thus obtained 

are summarized in Table 4.8. From this table, it can be seen that the Beam-Column 

formulation required only one or two elements to predict accurate results even when the 

deformations of the column were substantial, whereas the finite-element formulation of the 

SAP2000 required a minimum of four elements to provide adequately accurate results. 

Finally, the graph plotted between det S and temperature increase T illustrates in Fig. 

4.11 that the stiffness of the column structure with imperfection (e = 0.10) becomes minimum 

at temperature lower than the bifurcation temperature for the perfect column (e = 0.0). 

4.3 One-Story Frame 

The third benchmark structure studied was the one-story frame subjected to the 

temperature increase uniformly along the longitudinal axis and with initial constant joint 

loads, as shown in Fig. 4.1(c). The dimensions and the cross-sectional and material properties 

used in this study are identical to those used by Kassimali (2010) and are listed in Table 

4.1(c). For this structure, the temperature dependent material properties were incorporated.  

The temperature-dependent material properties were assigned as specified in 

Appendix 4 of the AISC Specification for Structural Steel Buildings (AISC 2005). In this 

study, the influence of elevated temperature on the modulus of elasticity and the coefficient 
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of thermal expansion was incorporated into the analysis by changing these two properties as 

the temperature was increased during the analysis. 

In this study, this Beam-Column solution was used a benchmark against which the 

numerical results yielded by the Beam-Column and the finite-element formulations were 

compared. The numerical results generated for the one-story frame are presented in Figs. 4.12 

to 4.17 and Table 4.9 to 4.11. 

The temperature-deformation curves obtained for the one-story frame, when subjected 

to a total temperature increase of 600C applied in 20 equal increments (of 30C each), are 

depicted in Figs. 4.12 to 4.14. Of these, Figs. 4.12 and 4.13 shows the horizontal deflection 

(1, 2) of the left and right joints at the top of the frame, and Fig. 4.14 depicts the horizontal 

deflection (3) at the midspan of the one-story frame. It can be seen from these figures that, 

the deformations of this frame are not very large, and consequently the Beam-Column 

formulation with only one element yields highly accurate results which are in close 

agreement with the SAP2000 solution. 

The SAP2000 program provides the satisfactory results, even when one element was 

used to model the structure. It can be seen from Figs. 4.12 to 4.14 that when the one-story 

frame was modeled with different elements, the SAP2000 results were in agreement with the 

Beam-Column solutions in the nonlinear range. Finally, even when the 1-element and 2-

element models were analyzed on the SAP2000, the deflection results obtained were in close 

agreement with the Beam-Column solutions (see Figs. 4.12 to 4.14). 

A commonly used measure of the computational efficiency of any nonlinear 

algorithm is its rate of convergence, i.e., the number of iteration cycles it requires to reach the 

solution. To compare the computational efficiency of the two formulations considered in this 

study, the number of Newton-Raphson iteration cycles required by each formulation for each 
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model, at each temperature level was traced. These numbers, based on a convergence 

tolerance of 0.001, are listed in Table 4.9, from which it can be seen that both the Beam-

Column and the SAP2000 formulations required essentially the same iteration cycles for 

convergence. 

Next, to examine the effect of step size on the performance of the Beam-Column and 

the finite element formulations, the analyses performed previously were repeated with the 

number of steps reduced by half. In other words, the total temperature increase of 600C was 

applied in 10 increments of 60C each. The numerical results thus obtained are given in Figs. 

4.15 to 4.17 and Table 4.10. From these figures, it can be seen that with the 1-element model, 

the Beam-Column formulation predicts the horizontal deflection in close agreement with the 

SAP2000 solution, even in the large deformation range. This indicates the using large step 

sizes with 1-element model do not affect the results. As shown in Table 4.11, when member 

was divided into one or two elements, the results become very close to the SAP2000 

solutions for different element models. 

In addition to the 20- and 10- step temperature sequences, described in the preceding 

paragraphs, a number of other loading sequences were tried. Some of results thus obtained 

are summarized in Table 4.11. From this table, it can be seen that both the Beam-Column and 

the SAP2000 formulations required only one or two elements to predict accurate results. 

Finally, both the Beam-Column and the SAP2000 formulations needed almost the 

same iterations in each temperature stage since the nonlinearity of the frame primarily 

depends on the strength degradation at elevated temperatures instead of on large 

deformations.   
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CHAPTER 5  

SUMMARY AND CONCLUSIONS 

The objective of this study was to investigate the accuracy and computational 

efficiency of two commonly used formulations for performing the geometrically nonlinear 

thermal analysis of plane framed structures. The formulations considered are the followings: 

the Beam-Column formulation and the updated Lagrangian version of the finite element 

formulation that has been adopted in the commercially well-known software SAP2000. These 

two formulations were used to generate extensive numerical data for three plane frame 

configurations, which were then compared to evaluate the performance of the two 

formulations. 

The Beam-Column method is based on an Eulerian formulation that incorporates the 

effects of large joint displacements. In addition, local member force-deformation 

relationships are based on the Beam-Column approach that includes the axial strain, flexural 

bowing, and thermal strain. The other formulation, the SAP2000, is based on the updated 

Lagrangian finite element formulation. The results for nonlinear thermal responses were 

generated for three plane structures by these formulations. Then, the data was compared for 

accuracy of deflection responses and for computational efficiency of the Newton-Raphson 

iterations required for the thermal analysis. The specific performance parameters considered 

were: (a) the number of elements per natural member required to obtain accurate results, (b) 

the number of steps in which the full thermal loading be applied, and (c) the number of 

Newton-Raphson iteration cycles required for convergence at each load step. 

The results of this study indicate that the Beam-Column method is quite efficient and 

powerful for the geometrically nonlinear thermal analysis of plane frames since the method is 
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based on the exact solution of the differential equations. In comparison to the SAP2000 

software, the Beam-Column method requires fewer (one or two) elements per natural 

member, fewer temperature steps, and fewer iteration cycles, when the deformations of the 

structures are substantial. For most practical purpose, this formulation can be expected to 

yield accurate results in the large deformation range without dividing the natural members of 

the structure into smaller elements and applying the entire thermal load in just one step. 

The finite-element formulation of the SAP2000, because of its approximate nature, generally 

requires the natural members of the structures to be divided into smaller elements to yield 

adequate results. For structures subjected to large deformations, four or more elements per 

member may be needed to obtain adequate results. Furthermore, this formulation generally 

requires that the total thermal load be applied to the structure in smaller steps in order for the 

Newton-Raphson iteration process to converge. Finally, the computer run-time required to 

analyze a structure by the SAP2000 is generally significantly larger than when the Beam-

Column formulation is used.  
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APPENDIX 

STABILITY AND BOWING FUNCTIONS AND THEIR DERIVATIES 

1 Stability Functions (Oran 1973) 

For compressive axial force, (q>0) 
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2 Bowing Functions (Oran 1973) 

q

ccc
b

2

221
1

8

)2)((






       (A1-9) 

)(8 21

2
2

cc

c
b




       (A1-10) 

3 Derivation of Stability and Bowing Functions with respect to q 

(Oran 1973: Kassimali 1976) 
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4 Series Expressions for Stability and Bowing Functions (Kassimali 

1976) 
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5 Element Tangent-stiffness Matrix in Local Coordinate (Oran 

1973) 































HLLH

G

LH

G
LH

G

H

G
c

H

GG
c

LH

G

H

GG
c

H

G
c

L

EI
k

2

2

21

2

2

2

2
12

21
2

1

2

21
22

2

1
1






     (A1-23) 

6 Element Geometric Matrices (Oran 1973) 
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Table 4.1 Properties of Plane Frames Used for Numerical Study 

(a) Cantilever Beam Properties 

L = 6100 mm 

d = 127 mm 

A = 6452 mm² 

I = 4.16 x107 mm4 

E = 69 kN/mm2 

 = 2.34 x10-5 /°C 

 
(b) Axially Restrained Column Properties 

L = 11000 mm 

d = 203 mm 

A = 5860 mm² 

I = 4.54 x107 mm4 

E = 210 kN/mm2 

 = 1.20 x10-5 /°C 

 
(c) One-Story Frame Properties 

L = 1220 mm 

H = 1170 mm 

A = 764 mm² 

I = 801400 mm4 

E = 210 kN/mm2 

 = 1.20 x10-5 /°C 
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Table 4.2 Iteration Cycles for Cantilever Beam (40 Temperature Steps) 

Temp.  
(T °C)  Temp. Step 

Beam-Column 
(1 Element) 

SAP2000  
(10 Element) 

SAP2000  
(4 Element) 

SAP2000  
(2 Element) 

40 1 3 2 3 3 
80 2 4 2 3 3 

120 3 4 2 3 3 
160 4 3 3 3 3 
200 5 3 3 3 3 
240 6 3 3 3 3 
280 7 3 3 3 5 
320 8 3 3 3 3 
360 9 3 3 3 5 
400 10 3 3 3 5 
440 11 2 3 3 5 
480 12 2 3 3 7 
520 13 2 3 3 7 
560 14 2 3 3 7 
600 15 2 3 3 7 
640 16 2 3 5 7 
680 17 2 3 3 7 
720 18 2 3 3 9 
760 19 2 3 5 11 
800 20 2 3 3 11 
840 21 2 3 5 11 
880 22 2 3 3 11 
920 23 2 3 5 12 
960 24 2 3 3 14 

1000 25 2 3 5 38 
1040 26 2 3 5 257 
1080 27 2 3 5 106 
1120 28 2 3 5 63 
1160 29 2 3 5 32 
1200 30 2 3 5 100 
1240 31 2 3 5 2031 
1280 32 2 3 5 1555 
1320 33 2 3 5 2510 
1360 34 2 3 5 2855 
1400 35 2 3 5 31749 
1440 36 2 3 5 12853 
1480 37 2 3 5 604 
1520 38 2 3 5 55377 
1560 39 2 3 5 32413 
1600 40 2 3 7 65848 
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Table 4.3 Iterations Cycles for Cantilever Beam (20 Temperature Steps) 

Temp.  
 (T°C) 

Temp. Steps 
( 80 steps) 

Beam-Column 
(1 Element) 

SAP2000  
(10 Element) 

SAP2000  
(4 Element) 

SAP2000  
(2 Element) 

0 0         

80 1 4 3 3 3 

160 2 5 3 3 3 

240 3 4 3 3 5 

320 4 4 3 3 7 

400 5 4 3 5 9 

480 6 3 3 3 9 

560 7 3 3 5 10 

640 8 3 3 3 14 

720 9 3 3 5 21 

800 10 2 3 3 >100,000 

880 11 2 3 7 11 

960 12 2 5 5 >100,000 

1040 13 2 3 7 91 

1120 14 2 3 7 34 

1200 15 2 3 7 111 

1280 16 2 5 7 221 

1360 17 2 3 7  

1440 18 2 3 7  

1520 19 2 5 7  

1600 20 2 3 7  
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Table 4.4 Numerical Results for Cantilever Beam Subjected to 1600C 

Temperature Increase along Depth 

S. N. 
Formulation 

used 
No. of 

Elements 
Temp. 
steps 

Hz. Disp. 
(mm) 

V. Disp. 
(mm) 

Iteration  
Cycles 

Accuracy (%) Remarks 

Hz. Disp. V. Disp. 
 

1 
Exact 

Solution   
-6845.36 -3219.5 

 
Exact 

  

2 
Beam-

Column 

1 1 -6734.3 -2739.9 11 -1.62 -14.90 
 

 
20 -6734.3 -2740.0 55 -1.62 -14.89 

 
2 1 -6840.7 -3199.9 16 -0.07 -0.61 * 

 
20 -6840.7 -3200.0 64 -0.07 -0.61 

 

3 
FEM in 

SAP2000 

2 1 
      

2 20 -6422.82 -4131.3 >100,000 -6.11 29.11 
17 Temp. 

steps 

 
40 

  
>100,000 

  
Incomplete 

 
80 -6954.76 -3700.3 477 1.67 15.64 

 
4 20 -6870.86 -3331.1 104 0.44 4.10 

 
  40 -6871.07 -3330.6 162 0.44 4.09 

 
  80 -6869.06 -3334.7 230 0.41 4.21 

 
 10 20 -6848.71 -3238.4 66 0.12 1.20 

 
  40 -6849.26 -3237.2 117 0.13 1.17 

 
  80 -6849.38 -3237.0 182 0.13 1.16 

 

          

   
* Comparisons are with respect to the Beam-Column results 

for two elements  
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Table 4.5 Run Time Required for Plane Frame Analysis 

 Time (seconds) required for cantilever beam analysis in SAP2000 

Temperature steps 10 elements 4 elements 2 elements Remarks 

20 7.48 13.33 98905.31 27.47 Hour for 2 elements 

40 10.01 12.5 16799.34 4.66 Hour for 2 elements 

80 15.1 16.49 32.05 
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Table 4.6 Iteration Cycles for Column (40 Temperature Steps) 

Temp. 

(T C)  
Temp. 
Steps 

0 

Beam-Column SAP2000 model 
1 element 2 element 10 element 4 element 2 element 

0 0           
20 1 1 2 1 1 2 
40 2 2 2 1 2 2 
60 3 2 2 1 2 2 
80 4 3 3 1 3 2 

100 5 4 4 4 3 3 
120 6 2 2 3 3 5 
140 7 3 3 3 3 6 
160 8 2 2 3 3 7 
180 9 2 2 3 3 7 
200 10 2 2 3 3 7 
220 11 2 2 3 3 7 
240 12 2 2 2 3 8 
260 13 2 2 2 3 8 
280 14 2 2 2 3 8 
300 15 2 2 2 3 8 
320 16 2 2 2 3 8 
340 17 1 1 2 3 8 
360 18 1 1 2 3 8 
380 19 1 1 2 3 8 
400 20 1 1 2 3 8 
420 21 1 1 2 3 8 
440 22 1 1 2 3 8 
460 23 1 1 2 3 8 
480 24 1 1 2 3 8 
500 25 1 1 2 3 8 
520 26 1 1 2 3 8 
540 27 1 1 2 4 8 
560 28 1 1 2 4 8 
580 29 1 1 2 4 8 
600 30 1 1 2 4 8 
620 31 1 1 2 4 8 
640 32 1 1 2 4 8 
660 33 1 1 2 4 8 
680 34 1 1 2 4 8 
700 35 1 1 2 4 8 
720 36 1 1 2 4 8 
740 37 1 1 2 4 8 
760 38 1 1 2 4 8 
780 39 1 1 2 4 8 
800 40 1 1 1 1 8 
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Table 4.7  Iteration Cycles for Column (20 Temperature Steps) 

Newton-Raphson Iteration required for Axially Restrained Column (20 Temperature steps) 

Temp. 
(T °C)  

Temp. 
Steps 

Beam-Column SAP2000 model 

1 element 2 element 10 element 4 element 2 element 

0 0         
  
  

40 1 2 2 1 2 2 

80 2 3 3 1 2 2 

120 3 6 13 11 19 10 

160 4 3 3 5 4 3 

200 5 2 3 3 4 5 

240 6 2 2 3 4 6 

280 7 2 2 3 4 8 

320 8 2 2 3 4 8 

360 9 2 2 3 4 8 

400 10 2 2 3 4 9 

440 11 2 2 3 4 9 

480 12 2 2 3 4 9 

520 13 2 2 3 4 9 

560 14 1 2 3 4 9 

600 15 2 1 3 4 9 

640 16 1 1 3 4 9 

680 17 1 1 3 4 9 

720 18 1 1 3 4 
  
  

760 19 1 1 3 4 
  
  

800 20 1 1 3 4 
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Table 4.8 Numerical Results for Axially Restrained Column Subjected to 

800C Temperature Increase (e=0.10) 

S. N. 
Formulation 

used 
No. of 

Elements 
Temp. 
steps 

Rotation 
at joint 2 

Hz. Disp. 
At joint 3 

Iteration 
Cycles 

Accuracy (%) Remarks 

Hz. Disp. V. Disp.   

1 
Beam-

Column 

1 

1 -0.0913 
 

4 
  

  

10 0.2403 
 

25 
  

  

20 0.2403 
 

40 
  

  

40 -0.2403 0.00 59 
  

  

2 

1 0.2402 577.27 8 
  

*  

10 -0.2135 -586.54 25 
  

  

20 0.2402 577.27 48 
  

  

40 -0.2402 577.27 60 
  

  

2 
FEM in 

SAP2000 

2 

1 -0.0119 -2.23 3 
  

  

10 0.2536 -705.85 64 5.59 -22.27   

20   
 

142 
  

  

40 -0.2876 712.57 282 -19.73 23.44   

4 

1 0.0040 0.53 4 
  

  

10 0.2254 -616.60 40 -6.15 -206.81   

20 -0.2522 607.84 91 -5.00 5.30   

40 -0.2522 607.84 127 -5.00 5.30   

10 

1 0.0031 0.12 4 
  

  

10 -0.1391 -282.23 34 42.08 51.11   

20 -0.2418 581.08 66 -0.68 0.66   

40 -0.2418 581.08 83 -0.68 0.66   

* Comparisons are with respect to the Beam-Column results for two elements 

  



40 

 

Table 4.9 Iteration Cycles for One-Story Frame (20 Temperature Steps) 

Temp  
T ( C) 

Temp. 
step 

Beam-Column SAP2000 model 

2 element 1 element 10 element 4 element 2 element 1 element 

0 0 3 3     2 2 

30 1 2 1 1 2 2 2 

60 2 2 2 2 2 2 2 

90 3 2 2 2 2 2 2 

120 4 2 2 2 2 2 2 

150 5 2 2 2 2 2 2 

180 6 2 2 2 2 2 2 

210 7 4 2 2 2 2 2 

240 8 4 3 2 2 2 2 

270 9 4 3 2 2 2 2 

300 10 3 3 2 3 3 2 

330 11 3 3 2 3 3 3 

360 12 3 3 3 3 3 3 

390 13 3 3 3 3 3 3 

420 14 3 3 3 3 3 3 

450 15 3 3 3 3 3 3 

480 16 3 3 3 3 3 3 

510 17 3 3 3 3 3 3 

540 18 4 4 3 3 3 4 

570 19 6 6 3 4 4 5 

600 20             
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Table 4.10 Iteration Cycles for One-Story Frame (10 Temperature Steps) 

Temp  
T ( C) 

Temp. 
step 

Beam-Column SAP2000 model 

2 element 1 element 10 element 4 element 2 element 1 element 

0 0 3 3         

60 1 2 2 2 2 2 2 

120 2 4 3 2 2 2 2 

180 3 4 3 2 2 3 2 

240 4 4 3 2 3 3 3 

300 5 4 3 3 3 3 3 

360 6 3 3 3 3 3 3 

420 7 3 3 3 3 3 3 

480 8 4 3 3 3 3 3 

540 9 4 4 3 3 3 4 

600 10             
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Table 4.11 Numerical Results for One-Story Frame Subjected to 540C 

Temperature Increase 

S. 
No. 

Formul-
ation 
used 

No. of 
Elements 

Temp. 
Steps 

Hz. Displacement (mm) 
Iteration 

Cycles 

Accuracy (%) Remarks 

Joint 1 Joint 2 Joint 3 
Hz. 

Disp. 
V. 

Disp. 
 

1 
Beam-

Column 

1 
 
 

1 41.09 50.33   7       

10 41.09 50.33   30       

20 41.09 50.33   53       

2 
 
 

1 41.13 50.39 31.65 7 0.09 0.13  * 

10 41.14 50.37 31.64 35 0.11 0.09   

20 41.14 50.37 31.64 58 0.11 0.09   

2 
FEM in 

SAP2000 

1 
 
 

1 39.79 50.07   7 -3.17 -0.52   

10 40.04 49.29   25 -2.57 -2.06   

20 40.04 49.29   50 -2.57 -2.06   

2 
 
 

1 40.00 50.27 31.54 6 -2.67 -0.11   

10 40.23 49.50 31.08 25 -2.09 -1.64   

20 40.24 49.49 31.07 49 -2.09 -1.67   

4 
 
 

1 40.03 50.29 31.55 5 -2.60 -0.08   

10 40.27 49.50 31.08 24 -2.02 -1.64   

20 40.27 49.50 31.08 49 -2.02 -1.64   

10 
 
 

1 40.03 50.29 31.55 4 -2.58 -0.07   

10 40.27 49.50 31.08 23 -2.00 -1.63   

20 40.27 49.50 31.08 45 -2.00 -1.63   
* Comparisons are with respect to the Beam-Column results for two elements 
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Fig. 2.2 Element Forces and Displacements in Global Coordinate System 
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 Fig. 2. 3 Block Diagram for Nonlinear Thermal Analysis for Plane Frames 
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Fig. 4.1 Plane Frame Structures Selected for Numerical Study 
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Fig. 4.2 Point Load versus Vertical-Deflection Curves for Cantilever 

Beam 
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Fig. 4.3 Temperature Increase versus Horizontal-Deflection Curves for 

Cantilever Beam (40 Temperature Steps) 
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Fig. 4.4 Temperature versus Vertical-Deflection Curves for Cantilever 

Beam (40 Temperature Steps) 
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Fig. 4.5 Temperature versus Horizontal-Deflection Curves for Cantilever 

Beam (20 Temperature steps) 
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Fig. 4.6 Temperature versus Vertical-Deflection Curves for Cantilever 

Beam (20 Temperature Steps) 
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Fig. 4.7 Temperature Increase versus Rotation Curves at Hinged End for 

Axially Restrained Column (40 Temperature Steps, and e=0.10) 
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Fig. 4.8 Temperature Increase versus Midspan-Deflection Curves for 

Axially Restrained Column (40 Temperature Steps, and e=0.10) 
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Fig. 4.9 Temperature Increase versus Rotation Curves at Hinged End for 

Axially Restrained Column (20 Temperature steps, and e=0.10) 
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Fig. 4.10 Temperature Increase versus Midspan-Deflection Curves for 

Axially Restrained Column (20 Temperature steps, and e=0.10) 
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Fig. 4.11 Determinant S versus Temperature Increase Curves for Axially 

Restrained Column
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Fig. 4.12 Temperature-Deflection Curves for One-Story Frame in 20 

Temperature steps (deflection 1) 
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Fig. 4.13 Temperature Deflection Curves for One-Story Frame in 20 

Temperature steps (deflection 2) 
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Fig. 4.14 Temperature Deflection Curves for One-Story Frame in 20 

Temperature steps (deflection 3) 
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Fig. 4.15 Temperature Deflection Curves for One-Story Frame in 10 

Temperature steps (deflection 1) 
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Fig. 4.16 Temperature Deflection Curves for One-Story Frame in 10 

Temperature steps (deflection 2) 
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Fig. 4.17 Temperature Deflection Curves for One-Story Frame in 10 

Temperature steps (deflection 3) 
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