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Some of the most problematic agricultural weeds found in the Midwest United States are 

found in the Amaranthaceae family, such as Amaranthus palmeri and A. tuberculatus. These 

summer annual weeds are troublesome due to their competitive ability, high seed 

production, and resistance to herbicides from several modes of action which complicates 

management in field crops and has led to significant yield loss. Achyranthes japonica and 

Iresine rhizomatosa are two perennial species in the same family as A. palmeri and A. 

tuberculatus that occur in similar habitats as one another, but differ in invasiveness. 

Achyranthes japonica is a non-native, invasive species that is becoming a threat to forested 

areas and has been observed along agricultural field margins. Iresine rhizomatosa also 

occurs in forest habitats but is an endangered species in Illinois. This research seeks to 

determine the comparative life history and relative competitiveness of closely related 

weedy species when challenged with a dominant species. Specifically, select, closely related 

weedy species in the Amaranthaceae plant family that occur in southern Illinois were 

compared, i.e., Achyranthes japonica, Amaranthus palmeri, Amaranthus tuberculatus, and 

Iresine rhizomatosa. The first study examined the life history characteristics of A. japonica 

in regards to survivorship, growth and fecundity at two sites in southern Illinois (Chapter 

2). Achyranthes japonica is a relatively new invasive species that has been poorly studied. 

This experiment showed that regardless of site, environmental factors had a significant 
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effect on seedling emergence and seed viability, which decreased from 2012 to 2013 during 

a drought year and rebounded from 2013 to 2014 following flooding. On average, 

individuals at the driest site had higher performance and fecundity, regardless of year. The 

second experiment tested the relative competitive effect and response of the 

Amaranthaceae species to Glycine max, first in a greenhouse study that tested shading and 

nitrogen resource drawdown for each species, and second in a controlled field experiment 

that tested intraspecific competition (Chapter 3). In addition, A. japonica seedlings were 

planted as either unmanipulated seedlings (uncut A. japonica) or as a seedling cut back to 

the soil surface at the four-node stage (cut A. japonica) at which point seedlings have 

reached a perennial growth stage. The greenhouse experiment showed that the four 

species each drew down light significantly, but not nitrogen. Shading decreased the 

aboveground biomass of the species in comparison to unshaded controls. Supplemental 

nitrogen, however, increased the aboveground biomass of A. palmeri and A. japonica. The 

supporting controlled field experiment showed that the competitive response of the weed 

species to the presence of G. max showed a reduction in height compared to the weed 

species grown in monocultures. Glycine max and the weed species, except I. rhizomatosa, 

showed a similar competitive effect and response when aboveground biomass was 

measured.  Achyranthes japonica attained the highest belowground biomass when grown 

as a monoculture and in the presence of G. max. A competitive effect ranking was 

determined to be A. palmeri > A. tuberculatus > cut A. japonica = uncut A. japonica = I. 

rhizomatosa with the competitive response ranking being the inverse. The third study 

implemented an integral projection model (IPM) to determine the population growth rate 

of each species and how they compared to one another (Chapter 4). This experiment 
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showed that A. palmeri, A. tuberculatus and A. japonica each had a population growth rate 

greater than one indicating rapidly growing populations. By contrast, I. rhizomatosa had a 

population growth rate less than one indicating a declining population. The results suggest 

that A. japonica has not yet shown the ability to escape management strategies in 

agricultural fields implemented by farmers, but it is still an aggressive invasive species that 

farmers and land owners need to be able to identify. This species has many similar 

characteristics to the Amaranthus species, such as the ability to colonize in areas with 

limiting resources, continual flushes of germination throughout the growing season, the 

ability to outcompete other weed species, and high fecundity but, A. japonica also is a 

perennial species that can withstand removal of shoot material and has a high germination 

rate. Based on these results, only early detection and rapid response methods should be 

relied on to keep these species out of areas in and around agricultural fields. Iresine 

rhizomatosa’s performance in these studies was consistent with its rarity. 
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CHAPTER 1 

INTRODUCTION 

 

LITERATURE REVIEW 

Plant Life Histories 

Communities can be classified on the basis of several aspects, i.e. physiognomy, species 

composition, dominance, and habitat (Whittaker 1960, 1970). Plant life history 

characteristics can provide insight to the nature of communities and species interactions. 

These characteristics include age or size specific fecundity and survival, number and size of 

offspring, time to reproduction, frequency of reproduction, longevity and senescence 

(Boutin and Harper 1991). 

Biotic factors and abiotic factors have a direct effect on individuals through their 

action on germination, growth, reproduction and death. The consequences, however, 

appear at the population level (Boutin and Harper 1991). The emergence, mortality, 

immigration, and emigration rates within a population, determine population size in a 

community (Bierzychudek 1982). The regulation of community structure is related to the 

population size of the component species (Klank et al. 2010). Demographics is an approach 

that is necessary to assess the magnitude and effect of these factors that operate within and 

among species (Harper and White 1974; Werner and Caswell 1977; Solbrig 1980). The 

determination of birth and death rates is necessary, as well as fecundity rates to accurately 

analyze demographics (Boutin and Harper 1991).  

Many studies have used stage or size-based, as opposed to age-based, classification 

schemes to quantify population dynamics (Silvertown and Charlesworth 2001). Stage-



2 
 

based schemes are morphological characteristics that tend to not correlate with age after 

germination (Lefkovitch 1965; Gatsuk et al. 1980; Caswell 2001; Silvertown and 

Charlesworth 2001). Each successive stage is characterized by changes in morphological 

structure, such as leaves, tiller density, and reproduction. Quantitative (i.e. growth, 

longevity, fecundity, height) changes are continuous during the life cycle, and normally 

follow a unimodal distribution curve (Gatsuk et al. 1980).  

The demographics of various taxa are diverse from region to region. Species react to 

stochastic abiotic and biotic disturbances on small spatial and temporal scales. The 

diversity of life history characteristics is associated with species that are a result of long 

evolutionary responses to natural selection over larger scales. Understanding life history 

characteristics is important because they allow researchers to observe and understand 

how species behave in relation to their environment, and how species interact with one 

another. Also, studies of closely related species may be informative in this respect.  For 

example, Boutin and Harper (1991) did a comparative study of five species of Veronica in 

terms of their population dynamics. They found that the species could be ranked in terms 

of their growth, their ability to form adventitious roots, their reduced degree of self-

pollination, and openness of their habitats. Each species had varying life cycles and life 

history traits. 

 

Integral Projection Modelling: A way to understand population dynamics 

Matrix population models (MPM) (Caswell 2001) provide an important and powerful tool 

for population ecologists to establish parameters that are important to population 

dynamics by modelling demographic data based off of stage/age transitions (Metcalf et al. 
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2013). Using commonly collected data MPMs have limitations primarily due to biases or 

the lack of an ability to input various stochastic variables (Metcalf et al. 2013; Merow et al. 

2014a) and may omit complexities of tradeoffs in resource allocation that vary across 

different environments (Merow et al. 2014b). Other limitations of MPM include the limited 

capabilities to incorporate variation among individuals within a size/age category and the 

outputs (i.e. lambda and elasticity values) are very sensitive to various categories, which 

include but are not limited to environmental and demographic stochasticity (Zuidema et al. 

2010). 

Integral projection models (IPM), however, offer tools that can incorporate stage, 

age, and continuous size/age states into a similar analysis of population dynamics 

(Easterling et al. 2000). Additionally, IPMs accommodate for both discrete and continuous 

variables as opposed to only discrete stages like MPMs. Other differences between MPMs 

and IPMs are that IPMs require fewer parameters than MPMs because IPMs are fitted to 

simple regressions, and IPMs allow for mechanistic insights into population-level patterns 

by modelling the ecological factors that influence various vital rates (i.e., survivorship, 

growth, fecundity) (Merow et al. 2014a). The development of an IPM, for a given 

population, allows for predictions to be made about changes in structure and population 

numbers and to learn about the sensitivity of these predictions. A straightforward IPM 

considers growth, survival, and fecundity of a particular species, typically as a function of 

size. 

The multi-species IPM is an extension of the single-species model. This model allows 

for changes of interacting coexisting individuals to be predicted. These interactions are 

typically from negative effects on demographic functions, such as reduced survival 
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probability, reduced growth, or reduced fecundity. It is important to note that competitive 

interactions may also have positive effects on these demographic functions. Multi-species 

IPMs have been used to determine the effects of niche differences on coexistence (Adler et 

al. 2010) and by determining the relative importance of those differences in order to 

determine when it is necessary to use multi-species models as opposed to single species 

models (Adler et al. 2012). Other extensions of the basic IPM include complex demography 

through kernel dependence on other variables affecting demography (Ellner and Rees 

2006) and the incorporation of environmental stochasticity (Rees and Ellner 2009; Childs 

et al. 2004). 

In a simple IPM formulation for a single-species, the population is assumed to 

depend on a continuous variable x. The model maps a population distribution n(x; t) to the 

next time t + 1 using an integral operator 

𝑛(𝑦, 𝑡 + 1) =  ∫ 𝑘(𝑥, 𝑦)𝑛(𝑥, 𝑡)𝑑𝑥.
𝑈

𝐿

 

The size of an individual (x) at time t and y is the size of an individual at time t + 1 

(Rees et al. 2014). To describe these processes, two kernels are defined: P and F. The P 

kernel represents survival and growth and F represents fecundity. The function F is 

equivalent to the mean number of offspring from an individual in a specific size class and is 

the probability distribution of offspring size y for a reproductive individual of size x. Thus, 

the net result of survival and reproduction can be summarized by the function k, the IPM 

kernel (Rees et al. 2014). The k kernel acts as the projection matrix in the model that 

simulates the projected population growth of a population forwards in time. From the k 

kernel, the population growth rate (ʎ).  
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Plant Interactions 

There are many types of plant interactions. This study focuses on the competitive response 

and effect of plant interaction. 

Competitive Response and Effect 

Competition has been defined as “the tendency of neighboring plants to utilize the same 

quantum of light, ion of a mineral nutrient, molecule of water, or volume of space” (Grime 

1979). Competitors are species with adaptations allowing them to maximize their relative 

growth rate (RGR) (Gibson 2009). Competitors quickly will make use of both the above and 

belowground resources.  

Competition can be compared between species in two ways: first, in their 

competitive effect or their ability to suppress other individuals, and second in their 

competitive response or their ability to avoid being suppressed (Goldberg and Landa 1991; 

Violle et al. 2009; Zhang and Lamb 2011). Newman (1973) and Tilman (1987, 1988) 

argued that competition is equally important throughout productive gradients, although 

the resources concerned may differ (Goldberg and Novoplansky 1997). Thus, in 

unproductive environments, competition is primarily for belowground resources (i.e. 

nutrients and water), while in productive environments competition is primarily for light 

(Wilson and Tilman 1993; Goldberg and Novoplasky 1997).  

Competitive response and effect abilities vary with each life-stage (Wang et al. 

2010). Zhang and Lamb (2011) showed that competitive ability is correlated with traits 

such as plant height, plant size, leaf shape, and RGR. The C4 photosynthetic pathway has 

been associated with a greater competitive ability than plants with a C3 photosynthetic 

pathway (Black 1971). Competitive response rankings, however, are more difficult to 
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predict (Zhang and Lamb 2011). Biomass may be important in determining the adult 

competitive response ranking in some plants (Weigelt et al. 2002), and time until flowering 

and root length ratio may be used to determine the competitive response ability in plants 

with a rosette growth form (Wardle et al. 1998). Juvenile plants have three broad 

competitive response strategies: (1) persistence to maintain a slow growth rate until 

resources become available, (2) rapid growth to overreach surrounding vegetation, and (3) 

foraging for patchy resources as they become available (Keddy et al. 1998; Zhang and Lamb 

2011).  

 The form of competition, effect or response, is important in determining a positive 

or negative relationship between competitive response and effect (Zhang and Lamb 2011). 

A negative relationship between competitive response and effect ability could result from 

size-asymmetrical competition coming from either competition for light (Weiner 1986) or 

from root-shoot competition interactions (Cahill 2002; Lamb et al. 2009). In this form of 

asymmetrical interactions, size related traits (i.e., RGR) will allow for a strong competitive 

effect ability whereas, traits unrelated to size could be associated with a species’ ability to 

survive (Zhang and Lamb 2011). Examples of these traits include the ability to reproduce at 

a small size even with competitive suppression from other species (Chambers and Aarssen 

2009) and the formation of a seed bank (Thompson et al. 1998). In contrast, a positive 

relationship between competitive response and effect is the product of size-symmetrical 

competition for limiting resources (Cahill and Casper 2000; Zhang and Lamb 2011). In this 

form of symmetrical competition, investment in size is a strategy for both dominant and 

subordinate species (Zhang and Lamb 2011). This investment strategy suggests that a 

positive relationship between competitive response and effect ability is more likely to be 
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found in species growing in communities with greater belowground biomass than 

aboveground biomass (Zhang and Lamb 2011), such as grasslands and tundras (Mokany et 

al. 2006). Negative relationships between competitive response and effect abilities can be 

found in old-field and wetland species from communities that can have higher 

aboveground biomass and stronger shoot competition than root competition (Goldberg 

and Landa 1991; Keddy et al. 1994; Frasier and Miletti 2008). There are some studies that 

do not fit either pattern, as these studies found consistent relationships among annual crop 

and weed species and early-succession old-field species (Goldberg and Fleetwood 1987; 

Miller and Werner 1987). These are community types with strong aboveground biomass 

competition (Zhang and Lamb 2011). 

Tilman’s R* Model: an approach to quantify competitiveness  

All plants require light, water, and the same set of approximately 15 essential elements (i.e. 

N, C, K, P, Ca, Mg, S) (Gibson 2009). The individual growth rate within a population, which 

is usually best measured in terms of the specific rate of biomass change (Kruger-Magold et 

al. 2006), depends on the concentration of these resources in a habitat. The growth rate of 

an individual is determined by the one resource at the lowest availability relative to the 

plant’s requirement for all resources; this is known as the plant’s limiting resource (Tilman 

1982, 1988, 1997; Lehman and Tilman 2000). In general, the specific rate of biomass 

change of a species is an increasing function of the environmental condition of its limiting 

resource (Kruger-Mangold et al. 2006). The growth of a plant would decrease in the 

presence of a neighboring plant if these plants consumed the same limiting resource 

(Tilman 1997). 
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  There are two main elements to the Lotka-Volterra hypothesis that underlie 

Tilman’s model: interspecific competition for resources and the long-term pattern of 

supply of limiting resources (Tilman 1985, 1997). The resource-ratio hypothesis of 

succession states that individual plant species are dependent upon varying proportions of a 

limiting resource (i.e., light and nitrogen). In addition, the composition of the surrounding 

plant community is affected whenever the availability of a limiting resource is altered 

(Tilman 1980; Miller et al. 2005).  Thus, if resource levels are sufficient, then consumers 

will have a positive growth, which will eventually drive down resource levels and lead to a 

reduction in population growth (Miller et al. 2005). Since plant species use the same 

resources, then the resource-ratio hypothesis predicts that the species that can maintain a 

positive growth rate at the lower resource level will be the better competitor for that 

resource (Lehman and Tilman 2000). This relationship is expressed in terms of R*. The 

minimum resource level that can support a producer population is known as the zero net 

growth isocline (ZNGI). 

 

Invasive Species 

An invasive species can be defined as a species that is not native to the ecosystem under 

consideration and is harmful to the environment. Non-native species, or exotic species, are 

defined as species from other “continents arriving in North America after the time of 

Columbus” (Great Plains Flora Association 1986). Not all invasive species are exotic, and 

not all exotic species are invasive. Invasive species can quickly evolve in areas of 

disturbance through founder effects and hybridization by responding to selection 

pressures in the environment (Sakai et al. 2001). Variables that can influence a rapid 
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invasion include life history, latitude, climate, interactions with new species, and release 

from competitive species and pathogens in the original habitat (Sakai et al. 2001).  

Predicting whether or not a species will become invasive is difficult. Williamson’s 

Tens Rule, however, states that only 10% of invasive species survive introduction into a 

new ecosystem and that only 10% of those species that survive will become invasive 

(Williamson 1996). Some common characteristics that invasive species have include: 

broad-niched, self or wind pollination or non-specialized pollinators, rapid growth to 

reproductive maturity, high allocation of resources to reproduction, short life cycle, 

resistance or opportunistic response to disturbance, ability to spread rapidly, prolific 

vegetative reproduction, an ability to outcompete natives, and a rapid response to resource 

availability (Baker 1965; Bazzaz 1986; Simberloff et al. 1997). Few invasive species possess 

all or most of these characteristics. Possession of these characteristics, however, does not 

necessarily mean that a plant will become invasive (Groves and Burdon 1986; Sakai 2001). 

There are many additional factors that contribute to an exotic species becoming invasive to 

a new environment (i.e., the health of the ecosystem, climate similarity to original habitat, 

whether or not predators and pollinators are present, disturbance in the new ecosystem, 

and the competitiveness of the native species present (Devine 1998; Lonsdale 1999). 

 Invasive species are introduced into a new ecosystem in many ways. They may 

arrive accidentally mixed in shipments from overseas (i.e., in lawn or pasture seed) (Baker 

1986). Plants can also spread naturally beyond their native ranges, by migratory birds 

carrying seeds and by water or wind dispersal. Human intervention is the primary method 

of introduction for invasive species and human disturbance is almost always necessary for 

a successful invasion by an invasive species because most cannot invade already well-
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established locations (Baker 1986; Silvertown and Doust 1993). Invasive species can 

spread into areas where they were not planted, persist without human interaction, and 

displace native species (Simberloff et al. 1997). Davis and Thompson (2000) devised a 

classification scheme to rate the colonization of plants based on three criteria: dispersal 

distance, origin, and impact on the environment. According to this classification scheme, 

dispersal distance can be short or long and a colonizer can only be called an invasive 

species if it is novel to the region being colonized and if it has a great impact on the new 

environment. From this, Sakai et al. (2001) devised a classification of the steps of invasion 

process, which include steps for prevention, eradication, and control/restoration. 

 Invasive species have large ecological impacts on native species, communities, and 

ecosystems (Elton 1958; Lodge 1993; Simberloff 1997). There are approximately 50,000 

invasive species and the number is steadily increasing (Sakai et al. 2001). About 42% of the 

species on the Threatened and Endangered species list are at risk primarily because of 

invasive species (Pimentel et al. 2005, Sakai et al. 2001).  Invasive species are now viewed 

as a significant influence on global change (Vitousek et al. 1996). As well as ecological 

impacts, invasive species have an economic impact. Costs of invasive species are estimated 

to be almost $120 billion dollars annually (Pimentel et al. 2005). Ecosystem biodiversity 

has been negatively impacted by the presence of invasive species. Numerous studies have 

been done on the impacts of invasive species on community and population structure 

(MacDougall et al. 2009; Stein et al. 2000; Williamson 1996; Simberloff et al. 1997; Parker 

et al. 1999) which have indicated that invasive species can reduce the amount of resources 

available for native species, alter soil chemistry, alter fire cycles and hydrological patterns 

(Vitousek et al. 1996). These changes in the environment can result in the loss of 
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threatened and endangered species, loss of habitat, loss of food sources for wildlife, and 

disruption of native plant-animal interactions (i.e., pollination), seed dispersal, and host 

plant relationships (Vitousek et al. 1996; Sakai et al. 2001). 

 Resource availability is also important to the location of an invasive species 

(Seabloom et al. 2003), such that a plant community becomes more susceptible to invasion 

as the amounts of available resources increase (Davis et al. 2000). This response could be 

due to a decreased use by the current vegetation or because of an increased supply of 

resources. Research has suggested, however, that after resource availability has been 

accounted for, there is no other significant interaction between the native species and the 

invasive species (Mack 2003; Maron and Marler 2007). 

 

Invasive Species in Illinois 

The Illinois Department of Natural Resources (IDNR 1994) reports that the invasion of 

exotic species is one of the most serious threats to Illinois, especially in forests. Forests in 

Illinois contain over half of the native flora and over half of the endangered plant species 

(IDNR 1994). These forests also provide about 75% of the state’s wildlife habitat (IDNR 

1994). 

 Illinois, as of 2014, had 1,156 exotic plant species that had escaped cultivation and 

became naturalized. This number is equivalent to 32.1% of the state’s total flora 

(Mohlenbrock 2014). Of the 32.1%, 78% of the species were introduced from outside of 

North America (IDNR 1994). One-fifth of the Illinois flora can be classified as non-native 

invasive species. These plants can alter the ecosystem and decrease the biodiversity (Sakai 
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et al. 2001). The rate of introduction for exotic species has increased, as well as the rate of 

exotic species that have become invasive in Illinois (Henry and Scott 1981; IDNR 1994). 

 The Illinois Exotic Weed Act (IEWA) was passed in 1991 and makes it illegal to buy, 

sell, distribute or plant seeds, plants, or plant parts of exotic species recognized by Illinois 

(IDNR 1994). The IEWA defines exotic species as “those plants not native to North America 

which, when planted, either spread vegetatively or naturalize and degrade natural 

communities, reduce the value of fish and wildlife and wildlife habitat, or threaten an 

Illinois endangered species.” There are ten species that fit this definition today. These 

species are Japanese honeysuckle (Lonicera japonica), multiflora rose (Rosa multiflora), 

purple loosestrife (Lythrum salicaria), autumn olive (Elaeagnus umbellata), Japanese stilt 

grass (Microstegium vimmineum), oriental bittersweet (Celastrus orbiculatus), garlic 

mustard (Alliaria petiolata), Johnsongrass (Sorghum halepense), Chinese yam (Dioscorea 

oppositifolia), and kudzu (Pueraria lobata). 

 

Agricultural Weeds 

An understanding of the population biology of agricultural weeds assists in developing 

management protocols, and vice versa, agricultural weeds can provide useful models to 

test the basic tenets of life history theory. Weeds are a constant limitation to crop 

production. Most of the attributes that contribute to weed success are common plant 

characteristics: rapid growth rates, high fecundity, continual flushes of germination, and 

herbicide tolerance or resistance (Tranel and Trucco 2009).  

 Seed production is an important part of weed biology, especially for annual species 

(Holst et al. 2007). Fecundity is not fixed and depends on a variety of factors (i.e., weather, 
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precipitation, weed density, crop yield, harvest time in relation to weed maturity, as well as 

other factors) (Holst et al. 2007). In agricultural demography, fecundity is often translated 

into seedbank input by a fixed survival rate, although several abiotic (climate, 

precipitation) and biotic (predation, disease, failed germination) factors affect the rate 

(Snaydon 1980; Holst et al. 2007). Some models determine the seed bank in two or more 

soil layers, but four layers (to a maximum depth of 20 cm) are usually chosen for the use of 

soil tillage (Cousens and Moss 1990). Seeds have also been divided into yearly age classes 

(Kunisch et al. 1990) to describe age-dependent seed survival and germination. 

 Seedlings can be the most competitive life stage for weedy species in an agronomic 

habitat. Empirical studies (Mann and Barnes 1947; Bowden and Friesen 1967; Hakansson 

1986) and simulation models (Kropff et al. 1993) have demonstrated that an advantage of a 

few days can shift the competitive ability between crops and weeds. Kasasian and Seeyave 

(1969) proposed the critical weed-free hypothesis that states that crops require a weed-

free period of one-fourth to one-third of their growing period. This hypothesis was 

confirmed for G. max in a study (Nierto et al. 1968) that reported the crop was most 

susceptible to weed competition during the first 30 days of a 130- to 135-day growth 

period (Zimdahl 2004). A competition study done by Klingman and Oliver (1994) between 

A. palmeri and G. max showed that G. max yield was highly correlated with A. palmeri 

biomass and to the weed’s density. Within eight weeks, roughly seedling to juvenile 

growth, A. palmeri densitites of 1, 2, and 10 plants/meter of row reduced G. max yield 32, 

48, and 68 percent, respectively (Klingman and Oliver 1994). 

 Resistance to various herbicide mode of actions (MOAs) are often developed in 

weed populations (Holst et al. 2007; Tranel and Trucco 2009). As of 2012, 372 unique 
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herbicide-resistant weed species have been confirmed worldwide. The U.S. has 139 of these 

weed species, with 1 to 19 in most other countries with intensive agriculture (Vencill et al. 

2012). Each of these species is resistant to at least one herbicide MOA, and many MOAs 

have selected for a number of resistant weeds. For example, 116 weed biotypes are 

resistant to the acetolactate synthase (ALS)-inhibiting herbicides and 21 glyphosate-

resistant biotypes (13 of them in the U.S.) (Vencill et al. 2012). 

 

Amaranthaceae 

Amaranthaceae (pigweed family) is a widely established plant family consisting of annual 

or perennial herbs (Blunden et al. 1999).  There are about 71 genera worldwide and about 

900 species in the family (Pai et al. 2011). Species are primarily found in the tropics and 

subtropics, but can be found worldwide. Several species are grown as ornamentals or for 

their grains (Flora of North America 2015). 

 Species in this family are highly variable: leaves can be alternate, opposite, simple or 

entire, monoecious or dioecious (Flora of North America 2015). Both monoecious and 

dioecious species can be highly successful invaders. Inflorescences are often arranged into 

spikes, which are often aggregated into panicles, or glomerules. A single plant can produce 

well over 100,000 seeds even when growing in competition with a crop; species can 

average several thousand seeds per plant (Massinga et al. 2001; Steckel and Sprague 2004; 

Tranel and Trucco 2009). Fruits are either dehiscent or indehiscent (Flora of North 

America 2015). 

Amaranthaceae species invade a variety of habitats, including most agricultural 

systems, pastures, rangelands, waste areas, and fence-rows and are highly adaptable. These 
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species also are notorious for evolving a resistance to herbicides (Tranel and Trucco 2009; 

Heap 2012). These characteristics make Amaranthaceae a model family to study and 

understand the population dynamics of closely related species. 

Phylogeny 

Amaranthaceae (Schinz 1893) and Chenopodiaceae (Bentham and Hooker 1883) have been 

considered closely related within the Order Caryophyllales (Takhtajan 1997; Sanchez del-

Pino et al. 2009), and this was confirmed by morphological and molecular phylogenetic 

analysis (Rodman 1990; Downie and Palmer 1994; Cuenoud et al. 2002). This two-family 

treatment differs from the proposed APGII (2003) to merge both families under the name 

Amaranthaceae. Relationships between the two families are still unresolved, although the 

monophyly of Amaranthaceae has been shown convincingly (Kadereit et al. 2003; Muller 

and Borsch 2005; Sage et al. 2007).  

 Phylogenetic analysis using rbcL and matK/trnK sequences have been used to better 

resolve the relationships within Amaranthaceae. Muller and Borsch (2005) used matK/trnK 

sequences to uncover previously unknown clades. Kadereit et al. (2003) used rbcL 

sequences to detemine three independent origins of C4 photosynthesis in this family. Gene 

sequencing was used to determine three major clades: Gomphrenoids, Alterantheroids, and 

Iresinoids by using trnL-F and rpl16 sequencing analysis (Sanchez del-Pino 2009). 

 A majority rule parsimony tree based on matK/trnK sequence data depicted the 

relationship in Amaranthaceae with nine clades: Achyranthoids, Gomphrenoidea, Aervoids, 

Allmaniopsis, Psilotrichum, Amaranthoids, Celosieae, Charoentiera, and Bosea. The two 

annual species of this study, A. palmeri and A. tuberculatus, fall within the Amaranthoids 
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clade. Achyranthes japonica falls within the Achyranthoids clade and I. rhizomatosa falls 

within the Gomphrenoideae clade, which are sister clades (Sage et al. 2007). 

 

Amaranthus L. 

Amaranthus is comprised of 70 species (Mosyakin and Robertson 2003). The Amaranthus 

species are widely distributed, abundant, and among the worst weeds in the world (Tranel 

and Trucco 2009). This genus includes grain and ornamental species, but is best known for 

its weedy species (Table 1.1).  

The various Amaranthus species can be difficult to distinguish (Horak et al. 1994) 

and there are documented cases of misidentification (Sauer 1953; Ahrens et al. 1981). 

Much of the difficulty in identifying species can be attributed to seedlings that look 

morphologically similar (Cai et al. 1998). Diagnostics of the floral structure or a larger 

individual can be used to distinguish each species (Tranel and Trucco 2009). These 

characteristics are the basis for the three subgenera that are currently recognized: 

Amaranthus, which includes monoecious weeds and crop species; Acnida, which includes 

dioecious weeds; and Albersia, which includes many of the poorly characterized species 

(Tranel and Trucco 2009). 

 

Subgenus Amaranthus 

The subgenus Amaranthus includes weeds and crop species (primarily consisting of 

grains). Most of the species are agronomic weeds. They are primarily summer annual, 

monoecious species capable of competing with crop plants (Moysakin and Robertson 

2003). Amaranthus species express high plasticity to environmental changes, and ensure 
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their fitness by producing a large amount of seeds (Zimdahl 2004). The seeds are typically 

very small (averaging 1 mm in diameter), making them easily dispersed by wind and water. 

Seeds may also be transported long distances by humans, through machinery, animal feed 

and clothing, and birds (Weaver and McWilliams 1980). 

 

Amaranthus palmeri L. 

Amaranthus palmeri (Palmer amaranth) is a native, weedy dioecious C4 summer annual 

(Ehleringer 1983; Horak and Loughin 2000; Sellars et al. 2003). Prior to 1955, this species 

was found from southern California to central Texas and from the Texas-Oklahoma border 

to central Mexico (Sauer 1957). Today, A. palmeri is distributed in 29 states and has moved 

beyond its native range to invade the midsouth, midwest (including Illinois), and 

southeastern United States (Webster 2005; Sosnoskie et al. 2009).  

This species can grow erect up to 2 to 3 meters tall (Horak et al. 1994; Wax 1995) 

and produces unbranched terminal seedheads that can produce anywhere from 60,000 

(Bensch et al. 2003) to 500,000 seeds m-2 (Sellars et al. 2003), depending on the density 

and plant size. Seed germination is typically high, compared to other Amaranthus species, 

with maximum germination occurring within three days at 30°C (Steckel et al. 2004; Jha et 

al. 2010). Amaranthus palmeri has a terminal spike inflorescence (Culpepper et al. 2006). 

Compared with Amaranthus tuberculatus, A. retroflexus, and A. albus, A. palmeri had the 

greatest values for plant volume, dry weight, and leaf area (Horak and Loughin 2000). In 

addition, A. palermi grew 24 to 62% greater than the other Amaranthus species each day 

(Horak and Loughin 2000). The rooting structure for this species is a shallow taproot. 



18 
 

However, in heavily disturbed areas this plant can produce thick lateral roots for 

stabilization (Moore and Franklin 2011). 

Amaranthus palmeri commonly invades disturbed habitats, waste places, railroads, 

streambanks, sandy areas, and agricultural fields (Guo and Al-Khatib 2003; Moore and 

Franklin 2011). The species has spread to become one of the primary competitive crop 

weeds in the United States (Horak 2000; Culpepper 2006). Amaranthus palmeri reduced 

corn (Zea mays L.) yields 11 to 91% with 0.5 to 8 plants per m-1 (Massinga et al. 2001; 

Massinga and Currie 2002) and reduced soybean (Glycine max L.) yield 17 to 68% with 0.33 

to 10 plants per m-1 (Klingman and Oliver 1994). In addition, cotton yields, in Texas, 

decreased from 13 to 54% as A. palmeri increased from 1 to 10 plants per 9.1 m-1 (Morgan 

et al. 2001). 

As of 2012, A. palmeri has exhibited resistance to five different herbicide 

mechanisms of action (MOAs): ALS-inhibiting herbicides, dinitroanilines, triazines, 

glyphosate, and HPPD inhibitors (Heap 2012). In addition, numerous A. palmeri 

populations that have been reported as having evolved resistance to multiple herbicide 

modes of action. For example, in 2013 and 2014, Illinois, Florida, Maryland and Delaware 

all had reports of populations showing resistance to both ALS-inhibiters and glyphosate in 

Glycine max populations (Heap 2015). 

 

Amaranthus tuberculatus L. 

Amaranthus tuberculatus is an annual, dioecious C4 weed species that has rapid growth 

characteristics and extended seedling emergence (Horak and Loghin 2000; Duff et al. 

2009). This species can grow up to 2 m tall. Amaranthus tuberculatus has an elongated 
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taproot, erect, slender stems and unisexual flowers (Mohlenbrock 2014). Native to North 

America, A. tuberculatus is believed to have been introduced into the Chicago, Illinois 

region (Swink and Wilhelm 1994). Today, A. tuberculatus ranges from Michigan to South 

Dakota, south to New Mexico, Texas, and Arkansas, and is moving into the eastern United 

States (Mohlenbrock 2014). The habitat includes moist, disturbed soils and sandy 

riverbanks (Mohlenbrock 2014). This species flowers from July to October (Mohlenbrock 

2014). Without competition, A. tuberculatus can produce more than 1 million seeds per 

plant (Nordby et al. 2007). A study done by Sellars et al. (2003) found that A. tuberculatus 

produces more than 1.5 times more seed than other Amaranthaceae species with the same 

seed size.  

Amaranthus tuberculatus is a weedy species for several reasons. First, reduced 

tillage systems in corn and soybean fields have been adopted and is more favorable for 

small-seeded weed species, such as A. tuberculatus and A. palmeri (Trucco and Tranel 

2009). Secondly, populations of A. tuberculatus are resistant to many herbicide modes of 

action, including glyphosate, PSI-inhibiting herbicides, dinitroanilies, acetolactate synthase 

(ALS)-inhibiting herbicides, and protoporphyrinogen oxidase (protox) (PPO)-inhibiting 

herbicides (Duff et al. 2009; Hartzler et al. 2004; Mayo et al. 1995; Shoup and Al-Khatib 

2004). In addition, Heap (2015) reports that biotypes of A. tuberculatus show resistance to 

multiple modes of action simultaneously in the United States. For example, in 2009 Illinois 

had a population that was resistant to ALS-inhibitors, PPO-inhibitors, glyphosate and PSII 

inhibitors. Furthermore, in 2011 Iowa also had a population that showed resistance to four 

MOAs (ALS-inhibitors, HPPD-inhibitors, glyphosate and PSII-inhibitors). 
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Finally, A. tuberculatus emerges later in the growing season, and emergence occurs 

during a longer period than many other summer annual weedy species (Hartzler et al. 

1999). The delayed and prolonged emergence is advantageous under current weed 

management systems that rely less on residual herbicides and cultivation (Hager et al 

1997; Hartzler et al. 2004). Late emergence, however, places this weed at a competitive 

disadvantage with the crop (Hartzler et al. 2004). Species emerging at the V2 to V3 soybean 

stages were approximately 25% as competitive as plants emerging with the crop (Cowan et 

al. 1998). Seedling emergence of A. tuberculatus is also greatly affected by the emergence 

period of the crop, with reductions ranging from 15,000 to 32,000 seeds per plant-1 when 

emerging up to the four-leaf stage of corn to about 5,000 seeds or less per plant-1 when 

emergence was delayed to the four to seven-leaf stage of corn (Knezevic et al. 1994). 

There has been some controversy over A. tuberculatus (tall waterhemp) and A. rudis 

(common waterhemp) being the same or different species. Pratt and Clark (2001) 

proposed that A. rudis and A. tuberculatus be considered as one species due to their high 

degree of hybridization, their sympatric geographic distribution, and that their 

morphological characteristics are very similar, making differences subtle if not 

indistinguishable. Nevertheless, some scientists consider the two species to be different. 

For the purposes of this dissertation A. tuberculatus will be used to refer to both 

waterhemp species. 

 

Achyranthes L. 

Achyranthes consists of 15 species that are distributed primarily in tropical and subtropical 

regions of the word (Pai et al. 2011). These species can be perennials or annuals and 
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consist of herbs. Leaves are opposite with perfect flowers. The seeds are generally oblong 

and lenticular (Shu 2003). All of the species within this genus have the C3 photosynthetic 

pathway (Sage et al. 2007).  

 

Achyranthes japonica (Miq.) Nakai  

Japanese chaff flower, Achyranthes japonica (Miq.) Nakai (syn. A. bidentata var. japonica 

Miq.), is a perennial, C3 herb that is native to Korea, China and Japan (Sage et al. 2007; Choi 

et al. 2010; Evans and Taylor 2011). This species is a member of the Amaranthaceae family 

and is one of the two species in the Achyranthes genus that is found in the United States 

(along with Achyranthes aspera) (Evans and Taylor 2011).  

Achyranthes japonica is considered to be an exotic, weedy species in the United 

States and on many Korean islands as well (Choi et al. 2010). This species competes with 

native herbs and increases the mortality rates and breeding failure rates among seabirds, 

particularly the Swinhoe’s Storm Petrel (Oceanodroma monorhis) by its seeds attaching to 

the birds feathers (Lee et al. 2009). In addition, A. japonica is widely used in traditional 

Asian medicines and as a food additive (Choi et al. 2010; Jung et al. 2008).   

This species was first discovered in the United States on the 16th of August 1981 

along the banks of the Tug Fork of the Big Sandy River at Warfield, Martin County, 

Kentucky (Evans and Taylor 2011; Medley et al. 1985). In 2010, a survey conducted by the 

River to River Cooperative Weed Management Area (CWMA) and by the IDNR found that it 

was present in every county adjacent to the Ohio River in Illinois and is commonly found in 

floodplain forests alongside the river (Evans and Taylor 2011). Currently, A. japonica has 
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been identified in over 50 counties in 9 states (Alabama, Georgia, Illinois, Indiana, 

Kentucky, Missouri, Ohio, Tennessee, and West Virginia) (Schwartz et al. 2015a, 2015c). 

Achyranthes japonica is a perennial, herbaceous species that can grow up to three 

meters high and is easy to identify (Schwartz et al. 2015c). It becomes perennial at an early 

growth stage by the time it reaches three or four nodes. Achyranthes japonica’s leaves are 

opposite and simple (Mohlenbrock 2014). The stem at ground level and nodes are red, 

which is a characteristic that is seen in other members of the pigweed family the flowers 

occur on erect spikes at the end of the stems and upper branches. The flowers, which lack 

petals, occur in tight clusters and diverge at nearly a right angle, which gives the flowers a 

bottle-brush look. As the fruits mature, the spikes elongate and the fruits lay flat against the 

spike. The fruits have two stiff bracts that help in dispersal by attaching to clothing, shoes, 

hair, or animal feathers and fur. Populations that have been browsed by deer or damaged 

by insects will resprout and it will overcompensate its growth and amount of seeds 

produced (Schwartz et al. 2015a). Achyranthes japonica can be found growing in areas with 

partial sun and moist soils, but can also grow in heavily shaded and dry areas. Populations 

of this species have been found in bottomland and upland forests, along riverbanks, along 

agricultural field margins, and in roadside ditches.  

Achyranthes japonica starts growing in late spring and flowers in the late summer 

(Schwartz et al. 2015a). Flowers can continue to develop into the early fall, even when seed 

is starting to be produced. The seeds are mature in mid to late fall. As the plants die off in 

late fall or early winter, the stems and remaining seed turn an orange-brown color. The 

dead plant stand can remain erect even into the winter until heavy snow, ice, or floods 

cause the stems to break. The high germination rate (~ 62% in drought years and ~94% in 
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average years) and the high seed output (up to 2,000/plant) of this species make it a strong 

competitor for the following year (Schwartz et al. 2015c). Additionally, about 60% of new 

seedlings survive to produce seed-bearing adult plants. Achyranthes japonica can reach 

densities over 80 stems per meter squared (which is over ~16,000 seeds). This species has 

continual germination throughout the growing season and the ability to outcompete other 

native and invasive species (i.e., Microstegium viminuem). Dense populations of A. japonica 

allow very little to grow underneath it (Schwartz et al. 2015a).  

 

Iresine P. Browne 

Iresine is comprised of about eighty species that are primarily found in subtropical and 

tropical America (including the Galapagos Islands), Asia, and West Africa (Flora of North 

America 2015). There are five species found in North America, which include I. leptoclada, 

I. palmeri, I. diffusa, I. rhizomatosa, and I. heterophylla (Flora of North America 2015). These 

five species are found in seventeen states (Alaska, Arkansas, Florida, Georgia, Illinois, 

Indiana, Kansas, Kentucky, Louisiana, Maryland, Mississippi, Missouri, North Carolina, 

Oklahoma, South Carolina, Tennessee, Texas, and Virginia) (Flora of North America 2015). 

Species in this genus can be annual or perennial, monoecious or dioecious herbs. The 

leaves are opposite and simple, and the flowers are perfect or unisexual. Flowers are 

crowded into spikes arranged in panicles (Flora of North America 2015). In Illinois and 

Maryland, there is only one species that is endangered I. rhizomatosa (bloodleaf or Juda’s 

bush). In Indiana, I. rhizomatosa is considered to be a rare species. There is one species of 

Iresine that occurs in Illinois, I. rhizomatosa (Mohlenbrock 2014). 
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Iresine rhizomatosa Standl.   

Iresine rhizomatosa is a C4, perennial dioecious herb. This native species has erect stems 

and can grow up to 1.5 m tall (Gibson and Schwartz 2014; Flora of North America 2015). 

The rhizomes are considered to be slender. This species is distinguished by its opposite 

leaves, its silvery-white unisexual inflorescences, and the long white hairs that subtend the 

sepals in the pistillate flowers (Flora of North America 2015). Iresine rhizomatosa is found 

in wet wooded areas and flowers from August to October (Gibson and Schwartz 2014). This 

species native range is Maryland to Kansas and south to Texas and Virginia. In Illinois, this 

state-listed endangered species is only found in four counties (Crawford, Massac, Pulaski, 

and Wabash) (IDNR 1994). 

 

RESEARCH OBJECTIVES AND HYPOTHESES 

 

The overall objective of this study was to determine the comparative life history and 

relative competitiveness of closely related species when challenged with a dominant 

species. Specifically, select closely related species in the Amaranthaceae family that occur 

in southern Illinois were compared, i.e., Achyranthes japonica, Amaranthus palmeri, 

Amaranthus tuberculatus, and Iresine rhizomatosa. These species consist of perennials and 

annuals, native and exotic species, and weedy and non-weedy species (Table 1.2). This 

study was conducted because these closely related species vary in life cycle, invasiveness, 

habitat and ecological research and understanding which characteristics are most 

important can lead to furthering our knowledge of the poorly researched species and 

possibly developing management or conservation strategies. 
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The first objective of this study was to assess the importance of seed survivorship in 

the soil of A. japonica and to compare survivorship, fecundity, and morphological 

characteristics within populations at two different sites in southern Illinois. The hypothesis 

(H1) for this objective was that the two sites would differ in their characteristics based on 

environmental factors and habitat.  

The second objective of this study was to determine the relative competitive effect 

and response of A. japonica, A. palmeri, A. tuberculatus, and I. rhizomatosa to G. max as a 

consistent competitor that has relevance for the Amaranthus species, and could potentially 

be relevant for A. japonica, with Iresine rhizomatosa versus G. max acting as a ‘control’. The 

first hypothesis (H2) for this objective was that the perennials, A. japonica and I. 

rhizomatosa, will have the lower requirement than the annual Amaranthus species for 

limiting resources when competing with interspecific neighbors, thereby enabling them to 

displace competitor species. The second hypothesis (H3) was that the competitive effect 

and the competitive response rankings will be inversely related among the four species. 

The competitive effect ranking was predicted to be: A. tuberculatus > A. palmeri > A. 

japonica = I. rhizomatosa whereas the competitive response ranking will be the opposite. 

The third objective was to undertake a comparative life history analysis of A. 

japonica, A. palmeri, A. tuberculatus, and I. rhizomatosa in habitats where they occur 

(including crop fields for species in agricultural settings). The first hypothesis (H4) for this 

objective was that the population growth rate (λ) for A. japonica will be similar to the 

Amaranthus species and greater than I. rhizomatosa. The second hypothesis (H5) was that 

the population growth rate (λ) will be higher for the exotic species rather than the native 

species, because of differences in the demographic process (i.e., growth and fecundity being 
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more important for invaders; whereas for the natives, survivorship is likely the most 

important life history trait).  
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Table 1.1. Major Amaranthus agricultural weeds in North America (Tranel and Trucco 

2009). 

Species Common Name 

A. albus Tumble pigweed 

A. arenicola Sandhills amaranth 

A. australis Giant amaranth 

A. blitoides Prostrate pigweed 

A. hybridus Smooth pigweed 

A. lividus Livid amaranth 

A. palmeri Palmer amaranth 

A. powellii Powell amaranth 

A. quitensis Yuyo colorado 

A. retroflexus Redroot pigweed 

A. spinosus Spiny amaranth 

A. tuberculates var. rudis Common waterhemp 

A. tuberculates var. tuberculates Tall waterhemp 

A. viridus Slender amaranth 
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Table 1.2. Life history characteristics of study species. 

 

Species Perennial/ 
Annual 

Invasive/ 
Non-Invasive 

Native/ 
Exotic 

C3/ C4 Monoecious/ 
Dioecious 

Achyranthes 
japonica 

Perennial Invasive Exotic C3 Monoecious 

Amaranthus 
palmeri 

Annual Invasive Native C4 Dioecious 

Amaranthus 
tuberculatus 

Annual Invasive Native C4 Dioecious 

Iresine 
rhizomatosa 

Perennial Non-Invasive Native C4 Dioecious 
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CHAPTER 2 

LIFE HISTORY OF Achyranthes japonica (AMARANTHACEAE): AN INVASIVE SPECIES IN 

SOUTHERN ILLINOIS 

 

Introduction 

Invasive species are an ever increasing threat to natural plant communities (Simberloff et 

al. 2005). In Illinois, non-native species make up about 33.6% of the flora and many are 

invasive posing a serious threat to natural areas (Mohlenbrock 2014). Demographic 

processes, such as survival, growth, and reproduction, can inform us about potential 

invasion risks, extinction risks of native species, and trade-offs in life history strategies. 

Long-term dynamics of plant invasions and their impacts on the surrounding native plant 

community and ecosystem may be determined by these demographic processes. The 

diversity of life history characteristics associated with a species are the result of long 

evolutionary responses to natural selection over large scales (Merow et al. 2014). Thus, 

understanding the life history characteristics of invasive species is fundamental for land 

managers to develop management and control methods (Meyers and Bazley 2003).  

Japanese chaff flower, Achyranthes japonica (Miq.) Nakai (Amaranthaceae) is an exotic 

species, originally from Japan, Korea, and China (Jussien 2014), that is a relatively new to 

North America where it was first discovered in 1981 in Martin County, Kentucky (Medley 

et al. 1985). Since then, this species has been found in every county along the Ohio River 

down to the Mississippi River confluence. By 2014, this species had been confirmed in nine 

states (West Virginia, Tennessee, Kentucky, Indiana, Ohio, Illinois, Missouri, Alabama, and 

Georgia) and over 50 counties (EDDmapS 2014). The actual distribution of A. japonica is 
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most likely much greater than this. The lack of public awareness and land managers limits 

the knowledge of this species actual distribution. The primary mode of dispersal is through 

water and animals (Schwartz, personal observation). 

 Management tactics are lacking for A. japonica due primarily to poor public 

awareness and to the lack of literature on this relatively new invader. In addition, there are 

limited ecological studies that have been conducted on A. japonica. Many of the ecological 

studies on A. japonica in the United States have been strictly observational (Medley et al. 

1985; Evans and Taylor 2011; Schwartz et al. 2015a) with one quantitative study (Smith 

2013). Previous studies outside of the United States have reported the distribution of A. 

japonica seeds by migratory birds on Korean islands (Choi et al. 2010) and its allelopathic 

and antimicrobial properties (Kim et al. 1993, Kim et al. 2004). 

 The overall objective of this research was to assess the importance of seed 

survivorship in the soil for A. japonica and to compare survivorship, fecundity, and 

performance measurements between populations at two different sites in southern Illinois. 

 

Materials and Methods  

Study Species. Achyranthes japonica is a perennial, herbaceous species that can grow up to 

three meters in height. This species becomes established as a perennial capable of 

regrowth at an early growth stage (three or four nodes) (Smith 2013). Achyranthes 

japonica’s leaves are opposite and simple. The stem at ground level and the nodes have a 

reddish hue, which is a characteristic consistent with other members of the Amaranthaceae 

family. The flowers occur on erect inflorescences at the end of the stems and upper 

branches (Evans and Taylor 2011). The flowers, which have five reflexed tepals (Flora of 
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North America 2015; or sepals sensu Mohlenbrock 2014), occur in tight clusters and 

diverge at nearly a right angle. As the fruits mature, the spikes elongate and the fruits lay 

flat against the inflorescence branches. The fruits have two stiff bracts that help in 

dispersal by attaching to various materials such as clothing, hair, animal feathers or fur 

(Schwartz et al. 2015a). Plants browsed by deer or damaged by insects will re-sprout and 

overcompensate in terms of growth and seed production (Smith 2013). Achyranthes 

japonica can be found growing in areas with partial sun and moist soils, but it can also grow 

in heavily shaded and dry areas (Evans and Taylor 2011; Schwartz 2014). Populations of 

this species have been found in various habitats including bottomland and upland forests, 

riverbanks, agricultural field margins, and roadside ditches.  

 Achyranthes japonica starts growing in late spring and flowers in the late summer, 

but can continue to develop flowers into the early fall. Flowers can still form when the 

seeds mature in the mid to late fall (Schwartz et al. 2015a). Plants typically die off in the 

late fall or early winter, but the dead plant stand can remain erect even into the winter. 

Dense populations of A. japonica allow very little to grow underneath them (Schwartz et al. 

2015a) displacing native plant species and altering soil nutrient levels (Yates et al. 2004; 

Zedler and Kercher 2004). 

Experiment Sites. The primary focus was on two abundant populations of A. japonica at 

the Bellrose Waterfowl Reserve in Union County and Chestnut Hills Nature Preserve in 

Pulaski County in Illinois. Species at each site differed but did have some overlap (Schwartz 

2015: Appendix A). Although there were similar species at each site, the sites differed in 

habitat type. The Bellrose Waterfowl Reserve is considered to be a bottomland hardwood 
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forest or wetland and Chestnut Hills Nature Preserve is an upland forest that is located 

near the Ohio River and receives some flooding in lowland areas. 

 The Bellrose Waterfowl Reserve (BWR: 37°17’N, 89°06’W) site is a part of the 

Cypress Creek National Wildlife Refuge (CCNWR) found within the Cache River wetlands 

system. The population studied was within 15 meters of the banks of the Cache River 

(Smith 2013). This site was historically bottomland hardwood forest (McLane et al. 2012). 

Regular flooding occurs at BWR primarily through the winter and spring seasons creating 

scour on the forest floor and allowing only minimal organic matter accumulation. The soil 

type is a wheeling silt loam (USDA Soil Survey 2015). Hardwood trees such as Quercus 

palustris Münchh. and Acer saccharum Marshall dominate the canopy with a large amount 

of Taxodium distichum (L.) Rich. (McLane et al. 2012; Smith 2013). Dominant ground layer 

species found within the A. japonica population include Toxicodendron radicans (L.) 

Kuntze., Urtica dioica L., Tradescantia virginiana L. and Polygonum hydropiperoides Michx.. 

 The Chestnut Hills Nature Preserve (CH: 37°11’N, 89°3’W) site is an 86 hectare 

upland forest (IDNR 1994). This preserve has several unique features include a rare 

eroding river bluff community and several rare plants and animals (i.e., Halesia diptera 

Ellis, dusky salamander [Desmognathus fuscus Conanti.]), and wintering bald eagle 

[Haliaeetus leucocephalus L.]. This upland forest has a menfro silt loam soil (USDA Soil 

Survey 2015). The overstory community is dominated by Fagus grandifolia Ehrh., Quercus 

rubra L., and Acer saccharum Marshall; whereas, the understory community is dominated 

by A. japonica, Toxicodendron radicans and Urtica dioica. 
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Populations and Plot Establishment. At each site, a population of A. japonica was 

sampled for three consecutive years (2012 to 2014). Within each population, ten 1 m2 plots 

were established in October/November. In addition to the annually established plots, the 

previous years’ plots remained for observations (i.e., 2012 = 10 plots/site; 2013 = 10 new 

plots/site + 2012 plots/site; 2014 = 10 new plots/site + 2012/2013 plots/site). 

Additionally, five seedlings per plot (for a total of 50 plants per site per year) were tagged 

and monitored by taking node counts every two weeks throughout each growing season 

and the following years where applicable. Tagged plants were classified into stage groups 

based on node counts: 1 to 4 nodes were seedlings, 5 to 7 nodes were juveniles, and 8+ 

nodes were adults. Adult plants were further classified into reproductive and non-

reproductive plants. Mortality was recorded, but the reason for mortality was not 

determined (i.e., mammal browsing or natural death from environmental conditions). The 

same tagged plants were monitored the following years. 

Seedling Emergence. Achyranthes japonica occurred in the plots established in 2012. In 

subsequent years, additional plots were seeded in October/November to simulate natural 

seed rain and the overwintering of seeds (i.e., initial measurements were made in 2012, in 

the fall of 2012 the plots for 2013 were established and seeded). Seeds were collected from 

plants at each site to use for the seeded treatment plots. Seven of the ten plots (seeded 

treatment plots) were each seeded with 1,000 seeds and the remaining three plots were 

not seeded and are considered to be unseeded controls. These control plots allowed for a 

baseline to be established to determine seedling emergence from the soil seed bank and did 

not previously have A. japonica present in the plots. The number of seedlings and regrowth 

of plants from previous years were recorded within each plot every other week. The 2012 
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field season ran from April 1 through November 2 (216 days); whereas the 2013 and 2014 

field seasons ran from June 16 through October 16 (122 days) and from May 23 through 

September 13 (113 days), respectively. The difference in field season length depended on 

weather conditions and seedlings were monitored as soon as they emerged until after the 

first frost date of that year. Sites were monitored weekly until seedlings emerged.  

Seed Viability. Seed bags each containing 100 seeds each were buried in all ten plots, 

regardless of seeding, just below the soil surface at the end of each growing season and 

were retrieved at the beginning of the following growing season. Seed bags were kept in 

place in the soil by the wire from a stake wire flag, which also aided in retrieval of the bags. 

The retrieved seeds were tested for viability using a Tetrazolium test (1% 2,3,5-Triphenyl-

2H-Tetrazolium Chloride from MP Biomedicals). The seed coats and surrounding bracts 

were removed and the seeds were dampened in a wet paper towel over night. The next day, 

a dissecting pin was used to puncture the seed coat under a dissecting microscope. Then, 

the seeds were placed in a dark place in a Petri dish to soak in the tetrazolium solution 

overnight. The following day, the seeds were observed under the dissecting microscope to 

determine viability. Seed viability was based on the amount of dark purple stained areas, 

which indicated living tissue. However, light pink areas represented unstained, dead tissue 

(Grabe 1970). More than half of an individual seed had to be stained dark purple to be 

considered living. 

Plant Performance. Flowering of A. japonica was measured each year at each site. 

Morphological characteristics and fecundity of twenty randomly selected flowering plants 

outside of plots was recorded. Seed production was assessed by counting seed on these 
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twenty randomly chosen plants. In all years, each of the twenty plants was measured and 

the height, inflorescence length (cm), and number of nodes, stems, and inflorescences were 

recorded.  

Data Analysis. A two-way mixed model (SAS Institute, 2003) was used to determine the 

effects of site and year on performance measurements (plant height, number of nodes, 

number of stems, inflorescence length, and number of inflorescences) and seed viability 

and fecundity. Seedling emergence was analyzed using a repeated measures mixed model 

in SAS (PROC MIXED, SAS Institute, 2003) to determine significant differences in site or 

year. Significance was assessed at P < 0.05. A Tukey’s test was used to determine significant 

differences among means.  

 

Results 

Performance of A. japonica varied between sites. At CH, the mean plant height in 2012 was 

64.7 ± 3.7 cm, while at BWR mean height in the same year was 84.4 ± 5.9 cm (Table 2.1). 

The following year, mean height decreased by 7.1 cm at CH, but increased by 24.5 cm at 

BWR. In 2014, plants at CH showed an increase in mean height of 32.3 cm, whereas plants 

at BWR only increased in height by 0.4 cm, when compared to 2013. The number of nodes 

and the number of stems also varied between sites and years (Table 2.1). The mean 

number of nodes at CH and BWR, pooled over years, was 8.7 ± 2.2 and 10.7 ± 3.5 per plant, 

respectively; while the mean number of stems was 9.7 ± 1.7 per m2 and 9.3 ± 1.6 per m2, 

respectively (Table 2.1). Overall, at the CH site plant size, seed viability and plant density 

dropped in 2013, but was consistently high in 2014.  By contrast height, stem and 
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inflorescence number, and fecundity per plant at BWR consistently increased all three 

years.    

 There was a highly significant interaction between seeding treatments and years (P 

= 0.0001) with a mean of 17.5 ± 2.5 seedlings per m2 emerging in 2013 and 4.1 ± 0.9 

seedlings per m2 emerging in 2014. Seedling emergence at CH increased from a mean of 

20.4 ± 2.7 seedlings per m2 in 2013 to 52.5 ± 5.1 seedlings per m2 in 2014 (Figure 2.1a). 

The BWR site, however, had no emergence in 2013 and had a mean of 19.3 ± 2.7 seedlings 

per m2 emerge in the seeded plots in 2014 with 9.7 ± 1.4 seedlings per m2 emerging in the 

unseeded plots (Figure 2.1b). Seed viability corresponded with seedling emergence at each 

site. Regardless of site, there was a decline in seed viability from 2012 to 2013, with 

viability decreasing 24% and 31% at CH and BWR, respectively (Table 2.1). An increase in 

seed viability was apparent at both sites from 2013 to 2014 with seeds from plants at CH 

increasing in viability by 44% and seeds from plants at BWR increasing by 47%. 

 End of growing season survivorship of tagged seedlings at CH was the lowest in 

2012 with an overall seedling survivorship of 62% (Figure 2.2a). In 2013 and 2014, 

seedling survivorship at CH was 96% and 100%, respectively. At BWR there was a much 

lower overall seedling survivorship over the three-year experiment. In 2012, seedling 

survivorship at BWR was 52% (Figure 2.2b). The following years, seedling survivorship 

was 46% and 60%, respectively. At both sites regardless of year, seedlings that survived 

became reproductive at the end of the growing season. Additionally, tagged seedlings in 

2012 and 2013 were monitored through the end of the 2014 growing season (Table 2.2). 

Overall, the highest seedling survival to reproduction was at CH regardless of the year the 

seedlings were initially tagged. For example at CH, 44% of the 2012 tagged seedlings 
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survived through 2014, whereas 26% survived at BWR. In addition, of the seedlings tagged 

the following year 74% and 38% survived through 2014, at CH and BWR respectively. 

 Fecundity differed among years (Table 2.1) with an annual increase regardless of 

site (Figure 2.3). There was about a five times increase from 2012 to 2014, regardless of 

site. However, the inflorescence number (4.3 ± 1.1) and average length (CH: 10.0 ± 1.7 cm; 

BWR: 13.7 ± 3.2 cm) relatively did not change much. The density of plants at CH was 53% 

greater than at BWR (CH: 22.6 ± 3.7 m2; BWR: 12.0 ± 2.0 m2). 

 

Discussion 

A simple schematic model summarizing the seed dynamics of A. japonica was developed 

based on our observations of seed viability, seedling emergence, seedling survival to 

reproduction, and plant fecundity from both sites (Figure 2.4). This model shows that there 

is a large potential input of A. japonica seeds into the seedbank from reproductive plants, 

but only a small percentage of seeds emerge the following spring (CH: 0.43%; BWR: 

0.82%); it should be noted that this low emergence of seedlings does not take into account 

seed loss. The longevity of seed in the seedbank is unknown and research is needed to 

understand this part of the life history. This model provides context for the following 

interpretation of results from CH and BWR in 2012 to 2014. 

This study demonstrates the highly variable nature of A. japonica plant performance 

within and among sites and between years in southern Illinois. Variation in performance of 

this invasive plant had not been demonstrated quantitatively before this study. However, a 

previous observational study (Evans and Taylor 2011) showed relatively similar seed 

germination (65%), seed viability (almost 100%) and fecundity (16,000 seeds/m2) of A. 
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japonica albeit with a higher density of plants (70 plants/m2).Variation in performance can 

be partially attributed to environmental factors. In 2012, southern Illinois underwent a 

drought in which over the growing season (May-October) 33 cm of rainfall occurred; 

whereas in 2013 and 2014, southern Illinois received 47 cm and 54 cm, respectively, of 

rainfall (National Weather Service 2015). In addition to the drought year that was 

experienced in 2012, there were also higher mean temperatures in 2012 compared with 

2013 and 2014. The mean growing season temperature in 2012 was 25°C; whereas in 2013 

and 2014, the mean growing season temperature was 22°C both years. Both of these 

environmental factors likely increased plant stress in 2012, which is potentially why 

seedling survival was lower in 2012 compared with 2013 and 2014. The young seedlings 

were susceptible to drought. Thus, reallocation of plant resources for survival, in terms of 

vegetative and root growth, rather than fecundity likely occurred during these periods of 

environmental stress (Grime 1979). Several previous studies report variable performance 

of invasive species related to environmental stress. For example, Gibson et al. (2002) 

showed that the invasive exotic grass Microstegium viminium (Trin.) A. Camus had 

decreased fecundity in drought years. However, demographic buffering is provided to A. 

japonica by a seedbank through between-year survival. Between-year survival offers 

different resource allocation approaches to perennial species than to annual species, like M. 

viminium. Additionally, an experiment on the invasive shrub Anthriscus caucalis M. Bieb. 

demonstrated that spatial variance of survival varied among types of communities that the 

shrub was invading (Wallace and Pranther 2013). Fecundity of the invasive shrub was 

lowest in grazed sites (a trampling effect) in drought years. In this study, fecundity and 

seedling survivorship were lowest, regardless of site, in 2012 compared to the following 
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years, whereas seed viability was lowest in 2013. These trends could be attributed to 

environmental stresses. 

 Habitat type was another variable that could have influenced plant performance 

since the BWR population was located within 15 meters of the banks of the Cache River, 

which was stagnant with a high risk for flooding. In 2011 and 2013, this site was heavily 

flooded with low species diversity and a lot of bare ground (Smith 2013). Frequent 

disturbance at BWR led to compacted soils and bare ground that ultimately could have 

affected the ability of A. japonica seeds to germinate limiting competition with other 

species; thus, allowing for a greater amount of resources to become available. An increase 

is resources may have allowed the plants to grow taller at BWR than at CH. The BWR plants 

had reduced fecundity compared with plants at CH possibly due to lower light levels and 

more frequent disturbance. The CH site was located in a forest that had a higher species 

diversity than BWR and limited disturbance. Since the CH Nature Preserve is ‘landlocked’ 

by surrounding private land on three sides and the Ohio River to the south, it is not easily 

accessed by the public and the site is rarely used. The presence of the state endangered 

dusky salamander (Desmognathus fuscus) also limits disturbance at CH because the site 

was protected. 

 Achyranthes japonica has shown the ability to re-sprout and overcompensate in 

areas that are browsed or mowed (Smith 2013; Schwartz et al. 2015a), which allows for an 

increase in seed output. Little information is known about A. japonica’s ability to persist in 

the soil seedbank.  However, from this study and from other studies conducted on other 

species in the Amaranthaceae family (Schwartz et al. 2015b), one can hypothesize that with 

its large seed size, in comparison to other species in the family, A. japonica seeds may not 
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persist in the soil as long as smaller-seeded members of the Amaranthaceae family. 

However, large-seeded species may show enhanced survival during seedling establishment 

compared with small-seeded species (Moles and Westoby 2004). Thompson et al. (1993) 

proposed a method to predict seed persistence in the soil based upon the variance of fruit 

length, width and depth, and weight. Accordingly, we examined 50 A. japonica fruits and 

determined a mean weight of 126 mg and a total variance of 0.207 (L.M. Schwartz, 

unpublished data), implying seed persistence in the soil seedbank for less than five years. 

 Seedling survivorship at both sites in 2012 appeared to exhibit a Type II 

survivorship curve which indicates a constant mortality risk throughout the life of the 

cohort (Gibson 2014). This type of survivorship curve is typical for some herbaceous 

perennial plant species (Gibson 2014). For example, Meyer and Schmid (1999) found a 

Type II survivorship curve for the perennial invasive species Solidago altissima when 

determining the transitions between various reproductive stages to assess colonization 

potential to new habitats by seed.  Survivorship in 2013 and 2014 appeared to be moving 

more towards a Type I survivorship curve which indicates that mortality risk increases as 

the maximum life span is reached (Gibson 2014). The constant mortality risk associated 

with 2012 is more than likely due to the extreme drought that southern Illinois underwent. 

Early season conditions, in 2013 and 2014, were conducive for seedling survivorship 

possibly due to a higher amount of precipitation, than in 2012, and a colder winter that 

could be important for the seeds in the soil seedbank. Understanding how the mortality of 

this species couples with high fecundity, germination, and seed viability provides a 

foundation to further investigate the persistence and establishment of A. japonica. This 

reasoning can lead to the suggestion that it may not be worth trying to control seedlings or 
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that if seedlings cannot be controlled, then natural mortality could help control the 

remaining survivors (i.e., land managers should prioritize managing reproductive plants 

over seedlings). Although percent emergence is low, this species compensates for it with 

very high propagule pressure and relatively high seed viability. Populations of the invasive 

exotic Microstegium vimineum had similarly high propagule pressure and low seedling 

emergence rate supporting the findings of this study (Cheplick 2010).  

 Arguments have been expressed against the need for population biology to be a 

fundamental tool in early detection rapid response (EDRR) situations (Simberloff 2003). 

These arguments have been based on many unsuccessful eradications that typically only 

provide an additional problem (i.e., Hydrilla verticallata (Langeland 1996)) or that do not 

address the entire problem at hand. However, understanding the basic knowledge of a new 

invader, such as A. japonica, is fundamental in taking the first step towards a 

comprehensive and effective management plan without risking the surrounding ecosystem. 

It is important to understand that there is a distinct difference between a new invasion site 

within a state for a species that was introduced into the United States 150 years ago, where 

there is an abundance of information, versus the first comprehensive study to document 

the life history of a relatively new invasive species. This study is not comparing existing 

management strategies of a well-studied species to what can and should be implemented 

for the control of A. japonica. Rather, this study demonstrates the invasive nature of a 

poorly studied species that should be of concern in many naturalized areas. Stopping or 

limiting the spread of a new invasive species is important from an economic and ecological 

stand point.  
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 This study is the first to empirically assess the invasibility of A. japonica in terms of 

general survivorship, fecundity, and performance measurements. Achyranthes japonica has 

been the subject of relatively few investigations, which justifies further research on the 

basic life history characteristics and competitive abilities. For example, this study showed 

that 0.4% to 0.8% of the viable seeds produced by mature plants in a year emerge as 

seedlings; this leads to several additional questions 1. What happens to the remaining 

seeds, do they persist in the existing seedbank or do they die, 2. How long do seeds persist 

in the soil seedbank, and 3. How much does anthropogenic disturbance truly affect this 

species? However, the schematic model (Figure 2.4) does not account for seed loss which 

could be due to seed predation, decay, dissemination, hitch hiking on people or animals, or 

environmental factors such as flooding. Thus, the actual number of viable seeds in the soil 

is likely less than number of seeds produced shown in Figure 2.4. In addition, this research 

suggests that the age of the plant plays a major role in fecundity, which is further effected 

by disturbance and environmental stochasticity.   

 Achyranthes japonica is an aggressive invasive species that quickly spreads and can 

invade high quality natural areas. We have already seen it invade into the Cache River 

watershed which is considered to be the last remaining high quality wetland in southern 

Illinois (Suloway and Hubbell 1994). How far this species can spread both geographically 

and into various habitat types is still unknown. More knowledge is needed on this species 

to generate a more rapid and efficacious management strategy that can be implemented to 

better control this species in the future.



 

 
 

4
3

 

Table 2.1. Mean morphological and seed characteristics of A. japonica at Chestnut Hills Nature Preserve (CH) and Bellrose 

Waterfowl Reserve (BWR) in southern Illinois from 2012 to 2014. The F and P values are associated with the interaction 

between site, year and seed/plant characteristic. Different letters indicate significant difference among years between sites. 

 CH BWR  

 2012 2013 2014 2012 2013 2014 Fdf, P 

Plant Height 
(cm) 

64.7±3.7c 57.6±4.6c 89.9±6.1b 84.5±5.9b 109.1±7.4a 108.5±7.7a 4.97 5,48.5, 0.0063 

Number of 
Nodes 

8±2b 8±2b 10±3ab 10±3ab 11±3a 10±3ab 2.24 5,33.4, 0.0031 

Number of 
Stems 

11±3a 10±2b 8±1bc 7±1c 11±3a 10±2b 1.89 5,33.4, 0.0047 

Inflorescence 
Length (cm) 

7.4±0.9c 8.0±1.2c 14.7±3.1a 12.1±2.8b 14.5±3.4a 14.6±3.3a 2.23 5,38.5, 0.0013 

Number of 
Inflorescences 

3±0.4bc 5±1b 5±1b 2±0.3c 4±1.2bc 7±2.1a 4.55 5,33.8, 0.0128 

Seed Viability 
(%) 

78±7b 54±18c 98±3a 67±17c 36±28d 83±6b 5.19 5,65.1, 0.0021 

Fecundity 
(seeds/plant) 

151±17c 264±9b 632±23a 112±21c 263±8b 564±32a 3.35 5,65.1, 0.0001 

Density of 
Plants (m2) 

15±3bc 18±3b 35±5a 13±2c 6±1d 17±3b 8.27 5,44.2, 0.0001 
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Table 2.2. Percentage of seedlings that survived to reproduction of Achyranthes japonica 

(seedlings that survived to flower/seedling mortality) at Chestnut Hills Nature Preserve 

(CH) and Bellrose Waterfowl Reserve (BWR) in southern Illinois from 2012 to 2014. Fifty 

seedlings were tagged and monitored at each site for each for the three years. 

 CH BWR 

 2012* 2013 2014 2012* 2013 2014 

2012+ 62%    
31/19 

- - 52% 
26/24 

- - 

2013 94%       
29/2 

96%    
48/2 

- 65%   
17/9 

256% 
8/22 

- 

2014 76%       
22/7 

77%  
37/11 

100% 
50/0 

76%   
13/4 

68%   
19/9 

60% 
30/20 

* Indicates the establishment of original cohort of seedlings 
+ Indicates the year the original cohort was continually monitored 
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Figure 2.1. Emergence of A. japonica at a) Chestnut Hills Nature Preserve (CH) in 2013 and 

2014 and at the b) Bellrose Waterfowl Reserve (BWR) in 2014. Zero seedlings emerged at 

BWR in 2013. Mean values with the same letters are not significantly different at α = 0.05.
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Figure 2.2. Seedling survivorship of A. japonica at a) Chestnut Hills Nature Preserve (CH) 

and the b) Bellrose Waterfowl Reserve (BWR) in southern Illinois from 2012 to 2014. Fifty 

seedlings were tagged and monitored at each site for each of the three years. Closed circles 

= 2012 cohort of seedlings that were followed through the 2014 field season; Open circles = 

2013 cohort of seedlings that were followed through the 2014 field season; Closed 

triangles = 2014 cohort of seedlings.  
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Figure 2.3. Fecundity, from 2012 to 2014, for twenty plants at the Chestnut Hills Nature 

Preserve (CH) and the Bellrose Waterfowl Reserve (BWR) in southern Illinois. Mean values 

with the same letters are not significantly different at α = 0.05. 
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Figure 2.4. Schematic model illustrating seed dynamics of Achyranthes japonica at a) 

Chestnut Hills Nature Preserve (CH) and the b) Bellrose Waterfowl Reserve (BWR) from 

2012 to 2014.  
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CHAPTER 3 

THE COMPETITIVE EFFECT AND RESPONSE OF SEEDLINGS OF FOUR AMARANTHACAEAE 

SPECIES ON SOYBEAN (Glycine max) 

 

Introduction 

Weeds and crops interact by competing for shared resources such as light, nutrients, and 

water. There is a long history of studying this competitive interaction in soybean (Stoller et 

al. 1987; Zimdahl 2004) spanning from investigations of the effects of weed density 

(Hyvönen and Salonen 2002), weed diversity (Gibson et al. 2008; Kruger et al. 2009), 

environmental factors such as geography (Schwartz et al. 2015a), and herbicide resistance 

(Dill et al. 2008). The competitive ability can be compared between species in two ways: 

first, in the competitive effect of plants or the ability to suppress other individuals, and 

secondly in the competitive response of plants or the ability to avoid being suppressed 

(Goldberg and Landa 1991; Violle et al. 2009; Zhang and Lamb 2011). Competitive 

response and effect traits are correlated with each life-stage (Wang et al. 2010) and with 

traits such as plant height, plant size, leaf shape, and relative growth rate (Zhang and Lamb 

2011), which are important in developing management tactics for cropping systems.  

Mechanistically, crop-weed competition can be understood in terms of Tilman’s 

resource ratio model that predicts that the growth rate of an individual is determined by 

the two resources at the lowest availability relative to the plant’s requirement for all 

resources (Tilman 1982, 1987, 1997; Lehman and Tilman 2000). In general, the specific 

rate of biomass change of a species is an increasing function of the environmental condition 

of its limiting resources (Tilamn 1985; Kruger-Mangold et al. 2006). The growth of a plant 
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would decrease in the presence of a neighboring plant if these plants consumed the same 

limiting resources (Maron and Marler 2007; Tilman 1988, 1997). While Tilman’s resource 

ratio model has been widely used in natural systems, it is less widely applied in crop 

systems although the model still applies (Miller et al. 2005; Zimdahl 2004). 

The Amaranthaceae family contains important agricultural weeds, invasive exotics, 

and rare native plants. In the United States Midwest region, Palmer amaranth and tall 

waterhemp have been widely established as two of the prominent agricultural weeds. 

These species have many characteristics that make them very successful weeds including 

the ability to grow 2 to 3 m in height (Horak and Loughin 2000; Tranel and Trucco 2011) 

and extended seed germination and seedling emergence late into the row-crop growing 

season (Hartzler et al. 1999). Competition of 8 plants m-2, starting at crop emergence, 

resulted in Palmer amaranth reducing soybean yields by 78% compared with 56% for tall 

waterhemp (Bensch et al. 2003). Furthermore, soybean yield was reduced by 10% when 

plants emerged at the V4 growth stage of soybean (Steckel and Sprague 2004; Steckel et al. 

2004; Steckel 2008). Palmer amaranth and tall waterhemp have been found not only to be 

very competitive with row crops but with other pigweed species as well.  

Japanese chaff flower is a member of the Amaranthaceae family and represents a 

relatively recent introduction spreading across the Ohio River Valley. This perennial, C3 

herb is native to Korea, China and Japan (Sage et al. 2007; Choi et al. 2010; Evans and 

Taylor 2011; Schwartz 2014). Japanese chaff flower is generally found in areas with some 

shade and moist soil. However, the species can also grow in drier areas in sun, and in 

densely shaded areas (Schwartz 2014). Dense patches of Japanese chaff flower have been 

found in bottomland forests, riverbanks, field edges, and in ditches and swales (Evans and 
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Taylor 2011; Schwartz 2014; Schwartz et al. 2015b). Large patches of Japanese chaff flower 

have shown indications of deer browsing and insect feeding but the plant will release new 

shoot growth from previously dormant axillary buds and overcompensate (Schwartz et al. 

2015b). Apart from anecdotal observations, little has been reported on this species and 

only recently has an aggressive educational campaign been launched to learn more about 

this species. The occurrence of Japanese chaff flower in row-crop field margins in southern 

Illinois has prompted concern about its potential competitive effects on crops. By contrast, 

bloodleaf is classified as endangered in Illinois and Maryland and is considered to be rare 

in Indiana (IDNR 1994; Gibson and Schwartz 2014). Despite its endangered and rare status, 

very little ecological work has been conducted on this species (Gibson and Schwartz 2014). 

The objective of this study was to determine the relative competitive effect and 

response of Japanese chaff flower, Palmer amaranth, tall waterhemp, and bloodleaf to 

soybean. This comparison has relevance for the Amaranthus species, and could potentially 

be relevant for Japanese chaff flower, with bloodleaf versus soybean acting as a non-weed 

benchmark ‘control’. Two hypotheses were tested: 1) the perennial species, Japanese chaff 

flower and bloodleaf, will have a lower requirement than the annual Amaranthus species 

for a single limiting resource when competing with interspecific neighbors, as measured by 

resource drawdown, and 2) a competitive effect ranking is predicted to be Palmer 

amaranth < tall waterhemp < cut Japanese chaff flower = Japanese chaff flower = bloodleaf. 

The competitive response rankings will be inversely related among the four species. 
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Materials and Methods 

The hypotheses were addressed by conducting two experiments. A resource drawdown 

experiment was conducted to test how each species utilizes an above- and belowground 

resource (test of hypothesis 1), and a field experiment was conducted to determine the 

competitive effect and response of the study species on soybeans at varying densities and 

soybean row spacing (test of hypothesis 2). 

 

Resource Drawdown Experiment  

Experimental Design. The drawdown of light and soil nitrogen of each species was 

determined in field soil under greenhouse conditions at the Southern Illinois University 

Tree Improvement Center (TIC) greenhouse. Seed of each of the four Amaranthaceae 

species were collected from populations within 161 km of Carbondale, IL each year. The 

Japanese chaff flower site was located at Chestnut Hills Nature Preserve (CH: 37°11’N, 

89°3’W) located in Pulaski county, IL and bloodleaf seeds were collected from Beall Woods 

Nature Preserve (BW: 38°20'N, 87°49'W). Seeds of the two annual Amaranthus species 

(Palmer amaranth (located at the Belleville Research Center (BRC 9B: 38°30'N, 89°50'W)) 

and tall waterhemp (located at BRC T4: 38°31'N, 89°50'W) were collected from glyphosate 

susceptible populations and underwent a bleach (5.25% sodium hypochlorite) scarification 

process to ensure maximum possible seed germination. The soybean, Japanese chaff 

flower, and bloodleaf seeds did not require pre-treatment. Seeds of each species were sown 

into separate flats with potting soil and allowed to germinate. Seeding rates and timing 

were determined based on the germination rate (based on already known germination 

rates/species) and the expected time to establishment for each species (i.e., Japanese chaff 
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flower was seeded ten days before tall waterhemp). When seedlings of each species had 

emerged, five seedlings per species were transplanted into each experimental pot.  

Field soil (0 to 15 cm depth) was collected from Southern Illinois University 

Agronomy Research Center (ARC). Soil was characterized as having a topsoil of silt loam (0 

to 0.25 m) and subsoil (0.25 to 1.30 m) of silt clay loam (Herman et al. 1976). Field soil was 

sterilized and mixed in the ratio of 1:1 with sterilized sand to dilute the N concentration 

and aid in permeability while watering.  The mixed soil was placed into 15-cm pots. The 

average greenhouse conditions included a photoperiod of about 8 to 12 h per day, which 

were determined by supplemental lights in the greenhouse, and a temperature of 31 ± 5 C. 

Two soybean (Asgrow Brand AG3832 plot seed, Illinois origin) seeds were planted in each 

pot for a density equivalent to soybeans grown in a 38-cm row spacing in agricultural 

fields.  

Resource manipulation treatments of nitrogen addition and light reduction 

(shading) were implemented. Nitrogen was added as granular ammonium nitrate applied 

at 1 g per pot prior to transplanting the seedlings. Shading treatments were implemented 

by surrounding the pots with a frame and then covering the frame with a 60% shade cloth 

to simulate forested canopies. A frame constructed of PVC pipe was placed around the non-

shaded pots to eliminate shade effects produced by the frames. Pots were watered twice 

daily with 75 mL. A saucer was placed under each pot to ensure a closed system and reduce 

leaching. Liquid accumulation in the saucer was added back to the soil surface when 

applicable. There were five replicates (plus one unseeded control pot) of each treatment 

with two temporal replicates. Control pots were not sown with seeds to establish a baseline 

for resource drawdown values. The temporal replicates averaged four weeks and ran 



 

54 
 

during the months of February and March 2013. Pots were placed in the greenhouse in a 

randomized complete block design. 

Sampling. Light intensity drawdown was measured under the plants at the soil surface 

using a LI-COR Light Meter (LI-COR, Lincoln, Nebraska. Model LI-250) for each pot twice 

per week (Schwartz 2015: Appendix C). Light quality was measured one time at the end of 

the experiment using an International Light 1400A radiometer/photometer (IL1400A, 

International Light, Inc., Newburyport, MA) using white, blue, red, and far-red filters below 

the leaves. Light quality was performed on a separate set of pots that did not undergo the 

nitrogen or light treatments. 

  Performance measurements (height and number of nodes) were recorded twice 

weekly to use as an indicator of early seedling growth (Schwartz 2015: Appendix B). 

Above- and belowground biomass were harvested from each pot when the seedlings of 

each species had reached four nodes, which was indicative of early seedling growth. 

Biomass was oven dried (48 h, 55 C) and weighed (Schwartz 2015: Appendix D). Inorganic 

nitrogen was measured in the soil of each pot using ion-exchange resin bags (Binkley 1984; 

Schwartz 2015: Appendix E). Resin bags were constructed from nylon hose and consisted 

of 5 g of equal amounts of an anion (Dowex 1 x 8, 50 to 100 mesh; Acros Organics) and a 

cation (Dowex 50W x 8, 50 to 100 mesh; Acros Organics) resin. In the laboratory, the resin 

was extracted with 75 mL of 2N KCl after shaking for 1 h at 200 rpm, filtered through a 0.4 

μm filter membrane, and the filtrate analyzed for NH4-N and NO3-N on a Flow IV Solution 

Autoanalyzer (O.I. Corporation, College Station, Texas, USA). Total N was determined by 

adding the NH4-N and NO3-N values. 
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Seedling Competitive Effect and Response Experiment  

Study Site. Experimental plots were established at the Southern Illinois University, 

Carbondale Tree Improvement Center (TIC) in Jackson County, IL (37°42'N, 89°16'W). The 

soil at the site was a silt clay loam, with a topsoil of silt loam and subsoil of silt clay loam 

(Herman et al. 1976). The experiment was conducted annually for three years (2012 to 

2014), with 2012 being a preliminary experiment (data not reported). 

Experimental Design. Seeds, which were collected in southern Illinois that year and were 

from the same seed source as the resource drawdown experiment, were planted in 

sterilized pots (15 cm diameter by 15 cm depth) filled with a silt clay loam soil that was 

collected from the TIC field. The soil was prepared as in the resource drawdown 

experiment. The soybean, Japanese chaff flower, and bloodleaf seeds did not require pre-

treatment. However, as in the resource drawdown experiment, the two Amaranthus species 

(Palmer amaranth and tall waterhemp) were scarified with bleach solution to promote 

germination. After seedling emergence, the seedlings were transferred to the field and the 

pots were submerged into excavated holes so the soil surface in the field and pots were 

equivalent. Pots were used to prevent the release of Japanese chaff flower into the field, 

since at the time of this experiment this species had not been found in Jackson county, IL. In 

addition, the planting of an endangered species such as bloodleaf is heavily regulated and 

the pots provided containment. Volunteer plant seedlings were removed continually 

throughout the experiment. Each year (2012 to 2014), the experiment was conducted until 

the plants reached the end of the seedling stage (denoted by the majority of each species 

reaching the four node stage) to seek consistent results. Plants in this experiment were not 
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grown beyond the seedling stage because control of agronomic weeds is frequently 

targeted at this stage. 

Each of the four invasive species (n=5 for invasive species treatment including cut- 

and uncut-Japanese chaff flower, see below) were either planted as a monoculture 

(control) or with soybean (n=2 for soybean treatment) (Asgrow Brand AG3832 plot seed, 

Illinois origin). Japanese chaff flower seedlings were planted as either un-manipulated 

seedlings (referred to as uncut-Japanese chaff flower, ACHJA), or as seedlings cut back to 

the soil surface at the four node stage (cut Japanese chaff flower, ACHJA-C) at which point 

seedlings have reached a perennial growth stage (Smith 2013). The cut Japanese chaff 

flower plants represent perennial plants that may have survived the previous winter or 

regrowth from the application of a non-systemic herbicide typically applied prior to 

commercial soybean planting. Upon emergence, the Amaranthaceae seedlings were 

thinned down to the desired seedling densities per pot (10, 30, and 90 for 38-cm rows 

(trial 1) and 10 and 30 for 76-cm rows (trial 2)). One or two equidistant (~4 cm) soybean 

seedlings were planted in each pot to simulate typical planting densities of soybean 

(Bensch et al. 2003) with the Amaranthaceae densities chosen to allow for agricultural 

conditions of crowding and competition around the soybean plants.  One soybean per pot 

represented a 76-cm row spacing for soybeans (trial 2), whereas, 2 soybean per pot 

represented a 38-cm row spacing (trial 1).  

This experimental design was an additive (AD) design with repeated measures 

(Gibson et al. 1999, Gibson 2015). The treatment design was a fully factorial combination of 

the four Amaranthaceae species including two stages of Japanese chaff flower (see below) 

(n=5), four or three different densities (n=4 (38-cm rows) or n=3 (76-cm rows)), presence 
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or absence of a soybean cultivar (n=2), and four or three replications (n=4 (38-cm rows) or 

n=3 (76-cm rows)) for a total of 5 x 4 x 2 x 4 = 160 experimental units (pots) for the 38 cm 

rows and 5 x 3 x 2 x 3 = 90 experimental units (pots) for the 76-cm rows; for a grand total 

of 250 pots (50 pots per species).  

Sampling. Height (cm), number of branches, nodes and leaves were measured twice a 

week for each individual to determine performance (Schwartz 2015: Appendices F-I). All 

seedlings in each pot were harvested when the majority of the individuals had reached the 

4-node stage, oven dried at 55 C, and both above- and belowground biomass weighed (g) 

(Schwartz 2015: Appendices L-M). Light intensity and soil moisture were measured twice 

per week in each pot using a LI-COR Light Meter (Model LI-250; LI-COR, Lincoln, Nebraska) 

and ECH20 Decagon Soil Moisture meter (Decagon Devices, Inc., Pullman, Washington), 

respectively (Schwartz 2015: Appendices J-K).  

 

Statistical Analysis 

For the resource drawdown experiment, a three-way mixed model (SAS Institute1) was 

used to determine the effects of treatment (nitrogen, light), density, and plant species. Light 

quality was analyzed using a two-way mixed model testing the effects of light wavelength 

and plant species on light reduction. The competition experiment was analyzed using a 

repeated measures three-way mixed model in SAS (PROC MIXED, SAS Institute) to detect 

treatment effects (weed density [n=2],soybean presence or absence [n=2], and weed 

species [n=5]) on the performance (height, branch numbers, nodes, and leaf numbers), 

light intensity, and soil moisture. Aboveground and belowground biomass were analyzed 

for the Amaranthaceae species and soybean separately using a two-way mixed model to 
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determine the effect of biomass and density or soybean presence or absence. Significance 

were assessed at P < 0.05. A Tukey’s test was used to determine significant differences 

among means with significant treatment effects. Based on weed species and soybean 

performance, a competitive effect and response ranking was proposed (after Bensch et al. 

2003; Zhang and Lamb 2011).  

 

Results and Discussion 

Resource Drawdown. In comparison to the controls (pots with no plants), the four 

Amaranthaceae species each drew down light, but not nitrogen when treatments were 

compared (Table 3.1, Figure 3.1). In terms of light drawdown, bloodleaf drew down the 

least amount of light, indicating that this species had the least amount of plant material 

shading the soil surface. Palmer amaranth and soybean drew down the greatest amount of 

light; and tall waterhemp and Japanese chaff flower drew down an intermediate level of 

light in comparison to the other species. The low drawdown of light by bloodleaf may 

contribute to the slow growth of this perennial species with a poor ability to colonize, and 

may have contributed to its endangered status in Illinois, Maryland, and Indiana (Gibson 

and Schwartz 2014). 

There was no significant difference for aboveground biomass between nitrogen 

treatment levels and species, except for Japanese chaff flower and Palmer amaranth (Table 

3.1, Figure 3.2a). A significant aboveground biomass interaction occurred between species 

and shading treatment (Figure 3.2b). Each species produced more aboveground biomass 

without the shading than under the 60% shading treatment, except bloodleaf. Again, 

Japanese chaff flower produced a similar amount of aboveground biomass (0.75 ± 0.03 
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g/pot) to both Palmer amaranth (0.6 ± 0.04 g) or tall waterhemp (0.55 ± 0.02 g) without 

shading. Soybean produced the most aboveground biomass (2.5 ± 0.03 g), which was 

expected from a dominant crop; whereas, bloodleaf produced the lowest amount (0.3 ± 

0.01 g), possibly due to its slow seedling growth which again might contribute to its 

endangered status. Belowground biomass was affected by the shade treatment (Table 3.1), 

and there was a trend towards an increase for the Amaranthus species and a decrease for 

Japanese chaff flower and soybean in belowground biomass with additional soil nitrogen 

(Figure 3.2c). A greater amount of belowground biomass was attributed to the nitrogen 

addition for all species, especially Japanese chaff flower (2.7 ± 0.3 g). Belowground biomass 

of Palmer amaranth and tall waterhemp were similar regardless of soil nitrogen treatment 

without shading. 

The resource drawdown variation, among the four species, can be explained by R* 

theory. An R* value simply is the concentration of a resource that a species requires to 

survive (Krueger-Mangold et al. 2006). The species with the lowest R* value will 

outcompete a species with a higher R* for that specific resource (Tilman 1982, 1988). 

Under the conditions of this experiment, seedlings of Japanese chaff flower and Palmer 

amaranth drewdown the limiting resources in a similar manner, which indicates that at the 

early growth stage testing in this experiment Japanese chaff flower could potentially affect 

a dominant crop (i.e., soybeans) in a similar way as Palmer amaranth. Thus, these species 

would likely displace a species such as bloodleaf that show low rates of resource 

drawdown when grown in mixture. 

An interaction between wavelength and species (P < 0.0001) was evident for the 

mean reduction in light quality (Figure 3.3). Bloodleaf (60.7 ± 1.5%) and soybeans (57.2 ± 
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2.9%) had the largest far-red (FR) light reduction through shading; whereas Japanese chaff 

flower had the least (97.3 ± 0.5%). The Amaranthus species had a similar reduction of FR 

light (AMAPA: 54.5 ± 1.1%; AMATA: 52.4 ± 2.7%). Holt (1995) proposed that the FR 

wavelength was reflected by nearby leaves, which allowed for an early detection of 

neighboring species that signaled oncoming competition during canopy development. 

Thus, as the seedlings in this study were growing, FR reflection among neighbors could 

have been signaling competition and initiating competitive responses through the FR/R 

photoreceptor also known as phytochrome (Smith 1994). Novoplansky (1991), 

demonstrated Portulaca oleracea L. seedlings avoiding growth in the direction of species 

with higher reflected FR light. Thus, Japanese chaff flower having the lowest reduction in 

FR light implies that neighboring species would avoid growing towards it. The only species 

that had a reduction in red (R) light quality was Japanese chaff flower (57.0 ± 1.1%).  

Plants growing in the shade of neighboring taller vegetation are usually receiving 

reduced light intensity with a decreased R/FR ratio (Yang et al. 2014). Thus, plants grown 

under such conditions exhibit shade avoidance responses (i.e., elongated stem growth and 

little new leaf growth) (Smith 2000). Similar responses to decreased light intensity during 

growth has been reported for Palmer amaranth, where plasticity in acclimation to changing 

light conditions enabled Palmer amaranth to develop in shade regions (i.e., under a crop 

canopy) and to achieve high rates of growth if suddenly exposed to high light (Patterson 

1985). In this study, the R/FR ratios were comparable (P = NS) for all of the species: 

bloodleaf 1.37 ± 0.58, Japanese chaff flower 1.51 ± 0.45, Palmer amaranth 1.51 ± 0.64, tall 

waterhemp 1.56 ± 0.82, and soybean 1.43 ± 0.56. Light intensity at the soil surface coupled 
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with light quality provides important insight for understanding competitive mechanisms 

and aids in the development of weed management tactics. 

Competitive Effect and Response. The competitive response of the study species to 

soybean was similar between trials within the same year. In 2013 for both trials plant 

height was related to species, density, and days after planting (Table 3.2). Tall waterhemp 

grew the tallest at densities of 10 and 30 seedlings per pot in both trials, with Palmer 

amaranth and uncut Japanese chaff flower growing to a similar height (Figure 3.4a and 

3.4b). Both Palmer amaranth and uncut Japanese chaff flower were not affected by density; 

whereas tall waterhemp was density sensitive. The cut Japanese chaff flower plants were 

the shortest regardless of trial. In trial 1 at the 90 seedling density, both Amaranthus 

species reached the same height by the final day after planting (DAP) (Figure 3.4a). In 

2014, however, there was an interaction between species, day after planting and soybean 

(Table 3.2). Regardless of the trial, when soybeans were present, the height of bloodleaf 

was reduced (Figure 3.4c and 3.4d). This reduction, irrespective of soybean presence, could 

be due in part to the density of the species in each pot and to a general competition for 

resources. However, by DAP 23, both monocultures in both trials showed that the seedlings 

of the two Amaranthus species were the largest, with both Japanese chaff flower treatments 

only 1 cm shorter. Bloodleaf was the shortest in both trials, which is possibly due to its 

slow seedling growth again reflecting its rare status. The competitive response between 

years, regardless of trial, was comparable to each other. This similarity in response could 

be due, in part, to the very similar environmental factors during the month of May, when 

both trials were conducted. The precipitation levels did vary with 9 cm of precipitation in 

the month of May in 2013 and 12.5 cm in 2014. Temperature is an important ecological 
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factor in determining species growth and productivity. Palmer amaranth and tall 

waterhemp exhibit their highest germination rate of 30 and 50%, respectively, when mean 

air temperatures are at 25 C (Guo and Al-Khatib 2003). 

 The competitive effect of the study species on soybeans was only apparent in trial 2 

in 2013 (Figure 3.5a) and trial 1 in 2014 (Figure 3.5b). There was an interaction between 

species and density in both trials. Trial 2 in 2013 (P = 0.015) the highest density of cut 

Japanese chaff flower reduced the height of soybean the most, followed by the two 

Amaranthus species, uncut Japanese chaff flower and bloodleaf. When the density was 10 

seedlings per pot, the cut Japanese chaff flower again reduced the height of the soybeans 

the most, followed by uncut Japanese chaff flower and Palmer amaranth. Although the 

reduction in height was relatively small (1.8 to 3.1 cm), both uncut Japanese chaff flower 

and the cut Japanese chaff flower reduced the height of soybean in a similar manner to the 

two Amaranthus species with bloodleaf having no effect at all three densities. The same 

trend in soybean height reduction across all densities occurred in Trial 1 in 2014: the 

presence of tall waterhemp caused the greatest height reduction, followed by the cut 

Japanese chaff flower and uncut Japanese chaff flower, with Palmer amaranth reducing the 

height the least. Consistency in results between trials and years supports intrinsic 

differences among species rather than short-term environmental variability (phenotypic 

plasticity)  

 There was an interaction between DAP, density, and soybean (Table 3.2) affecting 

soil moisture in 2013. The soil moisture in the pots with densities of 10, 30 or 90 were 

relatively similar regardless of trial (Figure 3.6). In 2014, however, there was an 

interaction between DAP and soybean. In both trials at DAP 10, the monocultures had a 
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slightly lower mean soil moisture than soybean, but on all other consecutive DAPs, the 

opposite was apparent. Mean light intensity at the soil surface for all years and trials, 

except trial 2 in 2013 (Figure 3.7), had an interaction between density and soybean. 

Overall, light intensity at the soil surface decreased with an increase in the density (Figure 

3.7). 

 Aboveground biomass was affected by study species and soybean presence in the 

2014 trials (Figure 3.8c and 3.8d) but not the 2013 trials (Figure 3.8a and 3.8b). In both 

2014 trials, the study species monocultures generally had a greater biomass than the 

mixtures with soybean. Among the study species monocultures, Palmer amaranth had the 

greatest biomass (3.7 ± 0.7 g/pot). The cut Japanese chaff flower (trial 1: 3.4 ± 0.6 g) and 

Japanese chaff flower (trial 2: 2.5 ± 0.4 g) had the next largest biomass. In trial 2, Tall 

waterhemp showed the opposite effect with greater biomass when soybean was present. 

Data on the number of branches, nodes and leaves are not reported since these variables 

showed similar results to height.  

Competitive Rankings. Neighbor species identity had a direct effect on soybean biomass. 

Aboveground biomass of soybean was affected by the interaction between study species 

and density in only 2014 (2013: P = NS; 2014: P = 0.01). Regardless of year and density, the 

highest soybean biomass was in the presence of bloodleaf indicating that it affected 

soybean the least of the species (Figure 3.9a and 3.9c). In 2013, the ranking of study species 

effects on soybean varied with density (Figure 3.9a). For density 10 the rank order was tall 

waterhemp > Palmer amaranth > uncut Japanese chaff flower > cut Japanese chaff flower. 

At a density of 30 plants per pot, the rank order was the cut Japanese chaff flower > tall 

waterhemp > uncut Japanese chaff flower > Palmer amaranth. The highest density (90 
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seedlings) had the same rank order as a density of 30 seedlings except the Amaranthus 

species were switched. In 2014, the order was the same for all of the densities: tall 

waterhemp > cut Japanese chaff flower > uncut Japanese chaff flower > Palmer amaranth. 

This effect was also examined by Bensch et al. (2003), in which the effect of various 

densities of Amaranthus species on soybean yield loss was quantified. They determined 

that weed species emerging with soybeans were more competitive that weed species 

emerging later. However, the highest weed biomass affected yield loss with Palmer 

amaranth having the greatest effect followed by tall waterhemp (Horak and Loughin 2000; 

Bensch et al. 2003). Differences among the competitive abilities of species in the 

Amaranthaceae family, specifically the Amaranthus genus, are varied but many of those 

species can have a large effect on crop production. 

An overall competitive effect and response ranking among the study species was 

developed from this research. The competitive effect ranking was determined to be: tall 

waterhemp > Palmer amaranth = cut Japanese chaff flower ≥ uncut Japanese chaff flower > 

bloodleaf. The competitive response ranking was the inverse. This ranking is novel because 

the species that are being compared are within the same plant family, but are found in 

different habitats, and their competitiveness varies. In addition, competitive abilities have 

been based off of more than one trait (Andrew et al. 2015). Rankings based on competitive 

abilities has been used in several other studies that range from closely related weeds 

(Andrew et al. 2015), to less closely related weeds (Horak and Loughin 2000; Bensch et al. 

2003; Hock et al. 2006), or to cultivars of a single weed (Hansen et al., 2008; Andrew et al., 

2015). Although Japanese chaff flower may not be fully suited to be the newest weed 

species in agriculture by escaping management strategies implemented by farmers, (e.g. 
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current susceptibility of Japanese chaff flower to herbicides; Smith 2013, Schwartz et al. 

2015b), it is still an aggressive weed that farmers and land owners need to be able to 

identify. This species has many similar characteristics to the Amaranthus species, such as 

the ability to colonize in areas with limiting resources, continual flushes of germination 

throughout the growing season, the ability to outcompete other weed species, and high 

fecundity; but, Japanese chaff flower also is a perennial species that can withstand removal 

of shoot material and has a high germination rate (Schwartz et al. 2015b). Only early 

detection and rapid response methods can be relied on to keep Japanese chaff flower out of 

areas in and around agricultural fields. If this species evolves resistance to various 

herbicide modes of action as have other taxa in the Amaranthaceae (Heap 2014), it may 

well become a prominent weed in agriculture. 
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Table 3.1.  F and P statistics for above and belowground biomass (g), in the greenhouse 

experiment, for nitrogen and light for the four Amaranthaceae species and soybean.  

Treatment/Variable Aboveground Biomass Belowground Biomass 

 F P F P 

Shadinga 17 <0.0001 71.35 <0.0001 

Nitrogenb      17 <0.0001 61.05 <0.0001 

Shading*Nitrogen 3.71 0.0864 9.39 0.0069 

Speciesc 59.9 <0.0001 19.89 <0.0001 

Species*Shading 3.94 0.0064 6.26 0.0003 

Species*Nitrogen 2.19 0.0799 4.12 0.0051 

Species*Shading*Nitrogen 59.9 0.6753 3.68 0.0092 

a Shading: treatments with and without the 60% shade cloth (N=2) 

b Nitrogen: treatments with and without the addition of ammonium nitrate (N=2) 

c Species: all study species (N=5) 
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Table 3.2.  Significant effects and interactions among groups based upon Amaranthaceae 

species competitive effect and response (field experiment) to soybean presence/absence. 

Only significant differences are shown within a variable. Pooled over species. 

Variable/Effect Na F P 

Soil Moisture    

    T1b-2013: Speciesd*Soybeane*DAPf 60 1.76 0.0366 

    T1-2013: Densityg*Soybean*DAP 36 4.66 < 0.0001 

    T1-2014: DAP 6 214.87 < 0.0001 

    T1-2014: Density*Soybean 6 3.04 0.0548 

    T2c-2013: Species*DAP 30 2.88 < 0.0001 

    T2-2013: Density*Soybean*DAP 48 3.89 < 0.0001 

    T2-2013: Species*Density*Soybean 40 1.92 0.0034 

    T2-2014: Species*DAP 30 2.19 0.0062 

    T2-2014: Soybean*DAP 12 2.06 0.0459 

Light Intensity at the Soil Surface    

    T1-2013: Species*Density*Soybean 30 2.17 0.0351 

    T1-2014: Species*Density*DAP 90 1.52 0.0513 

    T2-2014: Species*Density  20 4.54 < 0.0001 

    T2-2014: Density*Soybean 8 7.74 0.0007 

    T2-2014: Species*DAP 30 1.75 0.043 

Weed Species Height    

    T1-2013: Density*Soybean 6 4.62 0.0379 
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    T1-2013: Species*Density*DAP 90 2.23 0.0063 

    T1-2013: Species*DAP*Soybean 60 2.94 0.0003 

    T1-2014: Species*DAP*Soybean 60 8.27 < 0.0001 

    T1-2014: Species*Density*DAP 90 3.52 0.0012 

    T2-2013: Species*Density*DAP 120 2.66 < 0.0001 

    T2-2014: Species*DAP*SB 60 1.73 0.027 

Soybean Height    

    T1-2013: Species*Density 15 3.09 0.0151 

    T1-2014: Species*DAP 30 1.94 0.0345 

    T2-2013: DAP*Density 24 5.06 < 0.0001 

    T2-2013: Species 5 2.92 0.0305 

    T2-2014: DAP 6 31.88 < 0.0001 

    T2-2014: Species*Density 20 1.98 0.0406 

Weed Species Aboveground Biomass    

    T1-2013: Species*Density 15 3.37 0.0186 

    T1-2014: Species*Soybean 10 4.92 0.0067 

    T2-2013: Species*Density*Soybean 40 2.66 0.0016 

    T2-2014: Species*Soybean 10 5.02 0.0013 

Soybean Aboveground Biomass    

    T1-2013: Density 3 6.40 0.0051 

    T1-2014: Species 5 15.01 < 0.0001 

    T2-2013: Species*Density 20 1.79 0.0757 

    T2-2014: Species*Density 20 3.75 0.001 
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Belowground Biomass    

    T1-2013: Species*Density 15 3.53 0.0026 

    T1-2014: Species*Density*Soybean 30 3.10 0.0361 

    T2-2013: Species*Density 15 3.35 0.0004 

    T2-2014: Species*Density*Soybean 30 3.75 0.001 

a N = the number of groups in a treatment or variable 
b T1 =Trial 1 
c T2 = Trial 2 
d Species = Weed species  
e Soybean = soybean(s) present 
f DAP = Day after planting 
g Density = Weed species density (T1: 10, 30, 90; T2: 10, 30) 
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Figure 3.1. Relative resource drawdown for total nitrogen and light intensity at the soil 

surface for bloodleaf (IRERH), Japanese chaff flower (ACHJA), Palmer amaranth (AMAPA), 

waterhemp (AMATA), soybean (GLYMX), and control (C) with 95% confidence intervals. 
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Figure 3.2. Mean (± se) aboveground biomass in response to a) nitrogen and b) light 

treatments, and c) below ground biomass in response to the interaction between nitrogen 

and light treatments. Mean values with the same letters are not significantly different at α = 

0.05 within a species. 
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Figure 3.3. Mean (± se) percent reduction of light quality in response to the species and 

soybean. Species nomenclature is as follows: bloodleaf (IRERH), Japanese chaff flower 

(ACHJA), Palmer amaranth (AMAPA), waterhemp (AMATA), and soybean (GLYMX). Mean 

values with the same letters are not significantly different at α = 0.05 within a species. 
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Figure 3.4. The competitive response of the species mean (± se) height for a) trial 2 2013, 

b) trial 1 2013, c) trial 2 2014, and d) trial 1 2014 to soybean. Species nomenclature is as 

follows: bloodleaf (IRERH), uncut Japanese chaff flower (ACHJA), cut Japanese chaff flower 

(ACHJA-C), Palmer amaranth (AMAPA), and waterhemp (AMATA). DAP is equal to day after 

planting. Mean values with the same letters are not significantly different at α = 0.05 within 

a species. 
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Figure 3.5. Competitive effect of soybean mean (± se) height for a) trial 1 2013 and b) trial 

2 2014 in response to the species bloodleaf (IRERH), uncut Japanese chaff flower (ACHJA), 

cut Japanese chaff flower (ACHJA-C), Palmer amaranth (AMAPA), and waterhemp 

(AMATA). Mean values with the same letters are not significantly different at α = 0.05 

within a species. 
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Figure 3.6. Mean (± se) soil moisture for a) trial 2 2013, b) trial 1 2013, c) trial 2 2014, and 

d) trial 1 2014. Red lines are indicative of daily average soil moisture. Mean values with the 

same letters are not significantly different at α = 0.05 within a species. 
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Figure 3.7. Mean (± se) light intensity at the soil surface for a) trial 2 2013, b) trial 1 2013, 

c) trial 2 2014, and d) trial 1 2014. Mean values with the same letters are not significantly 

different at α = 0.05 within a species. 
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Figure 3.8. Mean (± se) aboveground biomass for the species bloodleaf (IRERH), uncut 

Japanese chaff flower (ACHJA), cut Japanese chaff flower (ACHJA-C), Palmer amaranth 

(AMAPA), and waterhemp (AMATA) in response to soybean for a) trial 2 2013, b) trial 1 

2013, c) trial 2 2014, and d) trial 1 2014. Mean values with the same letters are not 

significantly different at α = 0.05 within a species. 
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Figure 3.9. Mean (± se) aboveground biomass for the soybean in response to the species 

bloodleaf (IRERH), uncut Japanese chaff flower (ACHJA), cut Japanese chaff flower (ACHJA-

C), Palmer amaranth (AMAPA), and waterhemp (AMATA) for a) trial 2 2013, b) trial 1 

2013, c) trial 2 2014, and d) trial 1 2014. Mean values with the same letters are not 

significantly different at α = 0.05 within a species. 
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CHAPTER 4 

USING INTEGRAL PROJECTION MODELS TO COMPARE POPULATION DYNAMICS OF FOUR 

CLOSELY RELATEED SPECIES  

 

Introduction 

Demographic processes, such as survival, growth, and reproduction, can inform us about 

invasion risk, extinction risk, trade-offs in life history strategies. Demography links the 

processes that affect individuals to population and community level patterns (Merow et al. 

2014b). The diversity of life history characteristics associated with a species are the result 

of long evolutionary responses to natural selection over large scales. Studies of closely 

related species, such as species in the same family, may be informative in this respect. 

Matrix population models (MPM) (Caswell 2001) provide an important and powerful tool 

to establish parameters that are important to population dynamics by modelling discrete, 

demographic stage or age data (Metcalf et al. 2013). Using commonly collected 

demographic data, MPMs have limitations primarily due to biases or they may omit the 

complexities associated with resource allocation that vary across different environments 

(Merow et al. 2014b). In addition, MPMs require a lot of parameters to incorporate 

stochasticity because they have to estimate stochasticity for each stage separately. Another 

important limitation of MPMs is that they may be inappropriate for small sample sizes 

(Salguero-Gómez and Plotkin 2010).  

In integral projection models (IPM), fewer parameters are used because the model 

is fit based on only one descriptor, the state variable, instead of using many stages. (Metcalf 

et al. 2013; Merow et al. 2014a). Integral projection models can incorporate continuous 
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stage and age variables into a similar analysis of population dynamics (Easterling et al. 

2000; Gibson 2014). Although both MPMs and IPMs allow for mechanistic insights into 

population-level patterns by modelling the ecological factors that influence various vital 

rates (i.e., survivorship, growth, fecundity), IPMs require fewer parameters than MPMs 

because IPMs are fitted to simple regressions (Merow et al. 2014a). The development of an 

IPM, for a given population, allows for predictions to be made about changes in structure 

and population numbers (both on a short-term and longer term scale), and to learn about 

the sensitivity of these predictions to parameters and inputs.  

The Amaranthaceae family contains important agricultural weeds, invasive exotics, 

and rare native plants. In the United States Midwest region, Amaranthus palmeri (S.) 

Watson and A. tuberculatus (Moq.) Sauer have been widely established as two of the 

prominent agricultural weeds. These species have many characteristics that make them 

very successful weeds including the ability to grow 2 to 3 m in height (Horak and Loughin 

2000; Trucco and Tranel 2011) and extended seed germination and seedling emergence 

late into the row-crop growing season (Hartzler et al. 1999). Achyranthes japonica (Miq.) 

Nakai is a relatively recent introduction spreading across the Ohio River Valley. This 

perennial, C3 herb is native to Korea, China and Japan (Sage et al. 2007; Choi et al. 2010; 

Evans and Taylor 2011; Schwartz 2014). Achyranthes japonica is generally found in areas 

with some shade and moist soil. However, the species can also grow in drier areas in sun, 

and in densely shaded areas (Schwartz 2014). Dense patches of A. japonica have been 

found in bottomland forests, riverbanks, field edges, and in ditches and swales (Evans and 

Taylor 2011; Schwartz 2014; Schwartz et al. 2015). Apart from anecdotal observations, 

little has been reported on this species and only recently has an aggressive educational 
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campaign been launched to learn more about this species. Iresine rhizomatosa Standl. is 

classified as endangered in Illinois and Maryland and is considered to be rare in Indiana 

(IDNR 1994; Gibson and Schwartz 2014). Despite its endangered and rare status, very little 

ecological work has been conducted on this species (Gibson and Schwartz 2014). 

 A demographic study was conducted to examine the population dynamics of four 

closely related species to determine which vital rate(s) contributed most to population 

growth rate to further develop appropriate management and conservation programs. This 

study analyzed the population dynamics of each species over a three-year period. Integral 

projection models were used to evaluate the demographic performance and identify the life 

history stage most critical for population growth rate (ʎ). The objective of this study was to 

evaluate the demographic patterns of each of the four species using an IPM to compare 

vital rates. 

 

Materials and Methods 

Study Sites. Demographic observations were made at two sites per species across 

southern Illinois. The sites were located within 145 km or less of each other (Table 4.1). 

Variation occurred in environmental factors over the three-year study. In 2012, southern 

Illinois underwent a drought in which over the growing season (May-October) only 3.3 cm 

of rainfall occurred; whereas in 2013 and 2014, southern Illinois received 9.1 cm and 9.9 

cm, respectively, of rainfall (National Weather Service records). In addition to the drought 

year that was experienced in 2012, there were also higher mean temperatures in 2012 

compared with 2013 and 2014. The mean growing season temperature in 2012 was 24.6 C; 

whereas in 2013 and 2014, the mean growing season temperature was 22 C both years. 
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Field Methods. The two populations were monitored for three consecutive years (2012 to 

2014) at each site. Within each population, ten 1-m2 plots were established randomly in 

sites where the species was known to be present in April 2012. Populations of each species 

were pooled and observed species were in an area of 200 m2. Seedlings were tagged and 

monitored by taking node counts every week throughout each growing season and the 

following years where applicable (i.e., the perennial A. japonica and I. rhizomatosa). Height 

measurements were taken at the various stages and used as the state variable. Adult plants 

were further classified into reproductive and non-reproductive plants. Individuals were 

followed for three years or until death. Demographic parameters were measured each year 

monthly from May to October. The difference in field season length depended on weather 

conditions and seedlings were monitored as soon as they emerged until after the first frost 

date of that year.  

Flowering of each individual species was measured in October of each year. In all 

years, each plant was measured in terms of plant height, number of nodes and stems; as 

well as the inflorescence length and number of inflorescences. Seed number per plant was 

determined by cleaning the seed to remove any chaff, then counting ten lots of 1,000 seeds 

per sample per site per species, and finally weighing the entire sample. The ten lots of 

1,000 seeds were averaged to determine the final seed count. 

 Seed viability and germination tests were conducted for each species at each site 

annually. To determine seed viability, seed bags containing 100 seeds each were buried in 

all plots, just below the soil surface at the end of each growing season and were retrieved at 

the beginning of the following growing season. The retrieved seeds were tested for viability 

using a Tetrazolium test (1% 2,3,5-Triphenyl-2H-Tetrazolium Chloride from MP 
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Biomedicals). The seed coats and surrounding bracts were removed and the seeds were 

dampened in a wet paper towel over night. The next day, a dissecting pin was used to 

puncture the seed coat under a dissecting microscope. Then, the seeds were soaked in the 

tetrazolium solution overnight in a Petri dish placed in the dark. The following day, the 

seeds were observed under the dissecting microscope to determine viability. Seed viability 

was based on the amount of the seed stained. Dark purple areas on the seed indicated 

stained, living tissue and light pink areas represented unstained, dead tissue (Grabe 1970). 

More than half of an individual seed had to be stained dark purple to be considered living. 

Germination tests were performed by hand seeding 10,000 seeds onto the soil surface for 

each field population in the fall and counting the number that germinated the following 

spring. The germination test was conducted each year. 

Data Analysis. Individuals can move to the next size, reduce in size, or die between times t 

and t + 1; they can also produce recruits. The size of an individual (z) at time t and z1 is the 

size of an individual at time t + 1 (Rees et al. 2014). To describe these processes, two 

kernels are defined: P(z1,z) = s(z)G(z1,z) and F(z1,z) = F1(z1) F2(z1,z). P(z1,z) represents 

survival and growth (Schwartz 2015: Appendices N and O) and F(z1,z) represents fecundity 

(Schwartz 2015: Appendices P-R). G(z1,z) is the probability of a size-z individual growing to 

be size z1.  For all years, the survival function s(z) was estimated by logistic regression of 

survival on size z (Figure 4.1). The growth function G(z1,z) was first plotted using the 

relationship between individual sizes at time t and time t + 1. A linear model was 

determined to be suitable for describing the relationship between size at time t and size at 

time t + 1 (for the slope: P < 0.05).  
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The fecundity function F(z1,z) was estimated in a similar manner to the P kernel 

(Table 4.2).  The function F1(z1) is equivalent to the mean number of offspring from an 

individual in a specific size class, whereas F2(z1,z) is the probability distribution of 

offspring size y for a reproductive individual of size x. The mean number of offspring was 

estimated from the germination trials and was fitted using a Poisson linear regression on 

adult size (P < 0.05 for all years, Figure 4.2).  

Thus, the net result of survival and reproduction can be summarized by the 

function: K(z1,z) = P(z1,z) + F(z1,z); where K is the IPM kernel (Rees et al. 2014). The K 

kernel acts as the projection matrix in the model that simulates the projected population 

growth of a population forwards in time. From the K kernel, the population growth rate (ʎ), 

or dominant eigenvalue can be calculated. Corresponding to ʎ are the dominant right and 

left eigenvectors w(z) and v(z), respectively. The right eigenvector determines the stable 

size distribution and the left eigenvector determines the size-specific reproductive values 

(Caswell 2001).  

  The implementation of IPMs requires calculating the integrals, which is most 

practically conducted by applying fine categorization (Metcalf et al. 2013). The limits of 

integration were determined from the variance of growth (described in Easterling et 

al. 2000). The maximum and minimum limits of integration was set by adding or 

subtracting three standard deviations of the growth increment based on the maximum and 

minimum observed sizes. Alternative statistical relationships for growth, survivorship, and 

fecundity as functions of plant size were calculated, then model selection methods based on 

the Akaike Information Criterion (AIC) were used to determine which provided the best fit 

to the data. Finally, for the analyses, we determined the population growth rate (λ), the P 
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and F kernels, and the elasticity analysis. Models were fitted using the R program IPMpack 

(Metcalf et al. 2013; Schwartz 2015: Appendix S), and the significance of nonlinear terms 

was tested using an ANOVA function with a χ 2 test statistic (Metcalf et al. 2013). 

Elasticity is the proportion of  resulting from the transition of each matrix element. 

Thus, the elasticity formula is 

𝑒(𝑧1, 𝑧2) =  
𝐾(𝑧1, 𝑧2)

𝜆
×

𝑣(𝑧1)𝑤(𝑧2)

[𝑤, 𝑣]
 

The elasticity function sums to unity (1) in the matrix projection model (Ferrer-Cervantes 

et al. 2012). 

 

Results 

Overall in 2012, on average, 1,334 individuals of A. japonica (density: 35 ± 4 

individuals/m2), 9,564 individuals of A. palmeri (density: 77 ± 6 individuals/m2), 11,002 

individuals of A. tuberculatus (density: 106 ± 11 individuals/m2), and 928 individuals of I. 

rhizomatosa (density: 9 ± 2 individuals/m2) were found. The following census range, 2013 

to 2014, showed that there was an overall decline in the density for all species. The density 

of individuals per m2 was 29 ± 4 for A. japonica, 61 ± 5 for A. palmeri, 92 ± 9 for A. 

tuberculatus, 5 ± 1 for I. rhizomatosa. The germination experiments resulted in an average 

germination rate of 86 ± 4.2% for A. japonica, 12 ± 2.8% for A. palmeri, 14 ± 2.2% for A. 

tuberculatus, and less than 1 ± 0.3% for I. rhizomatosa (Table 4.2). 

The population growth rates (ʎ) for A. japonica, A. palmeri, and A. tuberculatus were 

all close to or greater than one for each census period (Table 4.3). These values of ʎ 

indicate that the populations were growing. By contrast, Iresine rhizomatosa, however, had 
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ʎ values less than one (2012: 0.53; 2013: 0.68) over both census periods indicating that the 

populations were in decline.  

 The P and F kernels are shown separately (Figure 4.3) and not as the full K kernel 

because the scales were so different and it was difficult to visualize together when the full 

kernel was implemented. The P kernel for A. japonica shows that there is the highest 

survivorship probability for juvenile and adult plants, but there is not much growth of 

individuals between time t to time t + 1 (Figure 4.3a). The two Amaranthus species again 

showed a similar result in that survivorship increased with the growth of the plant (i.e., 

larger plants had a high survivorship) (Figure 4.3b and 4.3c). The endangered I. 

rhizomatosa has a similar P kernel to A. japonica in terms of relatively little growth that 

occurs from one year to the next and that large-sized reproductive individuals have the 

highest survivorship probabilities (Figure 4.3d). Juvenile plants seem to have the lowest 

survivorship. All of the F kernels indicated that the larger the individual, the higher the 

fecundity. The Amaranthus species, however, can reproduce over a wide range of plant 

sizes; whereas, I. rhizomatosa needs to be large in size to reproduce. 

In this experiment, the survival/growth functions made a greater contribution to ʎ 

than the fecundity function. The elasticity values varied among species and the Amaranthus 

species showed similar results (Figure 4.4). Achyranthes japonica and the Amaranthus 

species had higher values, than I. rhizomatosa, for the growth and survival transitions of 

small and intermediate-sized individuals. Iresine rhizomatosa, however, had high elasticity 

values for the growth and survival transitions of largest sized individuals had the best 

chance of survival compared with small, young individuals. The elasticity values are shown 

for only 2013 to 2014 because the pattern was similar the prior year. 
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Discussion 

The four closely related Amaranthaceae species showed similar IPM outputs related to life 

cycle or invasiveness. The two perennial species both had similar P and F kernels showing 

that the largest plants were the drivers of survival. The annual weedy Amaranthus species 

and the perennial A. japonica, the invasive species, were similar in survival from time t to 

time t + 1 and in fecundity, although on different temporal scales. The similarities between 

the invasive species and the annual life forms provide insight into management and 

conservation efforts. According to our results, the small-sized to intermediate-sized 

individuals are the most critical for controlling populations of the invasive species, which 

corresponds with several other studies (especially in agriculture) (Horak and Loughin 

2000; Trucco and Tranel 2011; Zimdahl 2004). This early growth stage is detrimental to 

the survival of the endangered species as well. Understanding the dynamics of these 

species individually can only enhance our knowledge when comparing species within a 

family and projecting the rate of population growth. This knowledge allows land managers 

to be pre-warned about life-stage sensitivity of a potential new invasive species coming 

into an area. Thus, this knowledge allows some time to develop an appropriate 

management plan. 

There were however, differences in seedling density, survivorship, and fecundity 

between species and years. This response could be due, in part, to varying environmental 

factors. In 2012, southern Illinois underwent a drought in which over the growing season 

(May-October) only 3.3 cm of rainfall occurred; whereas in 2013 and 2014, southern 

Illinois received 9.1 cm and 9.9 cm, respectively (National Weather Service records 2015). 

In addition to the drought year that was experienced in 2012, there were also higher mean 
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temperatures in 2012 compared with 2013 and 2014. The mean growing season 

temperature in 2012 was 24.6 C; whereas in 2013 and 2014, the mean growing season 

temperature was 22 C both years. The small individuals were susceptible to drought, 

especially for I. rhizomatosa. Thus, reallocation of plant resources for survival, in terms of 

vegetative and root growth, rather than fecundity likely occurred during these periods of 

environmental stress (Grime 1979).  Temperature is an important ecological factor in 

determining species growth and productivity. For example A. palmeri and A. tuberculatus 

exhibit their highest germination rate of 30 and 50%, respectively, when mean air 

temperatures are at 25 C (Guo and Al-Khatib 2003). 

 Habitat type and management strongly influences plant performance (Schwartz et 

al. 2015). Although reasons of mortality were not recorded, disturbances such as flooding, 

herbicide drift, herbivory, and general human traffic resulted in high mortality of 

individuals at some sites. Furthermore, the endangered status of I. rhizomatosa is enhanced 

by anthropogenic disturbances. These types of disturbances have also increased seedling 

mortality for other endangered species, such as Mammillaria gaumeri (Britton & Rose) 

Orcutt, by altering the composition of the surrounding plant community and fragmenting 

its already restricted habitat (Ferrer-Cervantes et al. 2012). 

 The population growth rate for three of the study species was greater than one, 

which was expected for agricultural weeds and an invasive species. Lower lambdas, as seen 

in the I. rhizomatosa populations, during some years can be attributed partially to the 

higher mortality of individuals in those years, which relates to its endangered status. For 

example, in 2012, there was a higher mortality, than in other years, for all species due to 
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the extreme drought in southern Illinois. In the following years, the population remained 

more stable than in the previous year. 

Elasticity analysis on the whole IPM kernel includes survival, growth, and 

reproduction and has been used to separate these demographic functions to lambda from 

different size classes (Easterling et al. 2000). In general, the vital rates effect lambda the 

most because they represent a larger proportion of the stable stage distribution. However, 

this is altered by the assumption that smaller plants contribute almost no recruits to the 

next generation. The elasticity values in this study show that population growth of I. 

rhizomatosa and the Amaranthus species depends strongly on the retention and survival of 

larger individuals; whereas, growth of A. japonica populations are affected most by 

demography of smaller individuals. On this basis, management and conservation methods 

can be developed to target specific life history stages. A similar approach was used to 

develop long-term management strategies for Polygonum cuspidatum Siebold & Zucc., 

which targeted the largest plant sizes (Dauer and Jongejans 2013). Our current knowledge 

of A. japonica and I. rhizomatosa demography is limited to two sites with different data on 

growth, survival, and fecundity (Gibson and Schwartz 2014; Schwartz et al. 2015). There 

continues to be a need to more widely measure and model the demography of these closely 

related species to make generalizations about vital rates.  

Although the data set was relatively small, Ramula et al. (2009) showed that IPMs 

produce less bias than MPMs for small data sets. They showed that for large data sets both 

MPMs and IPMs produced the same ʎ estimates. However, for small data sets IPMs 

produced a smaller bias and variance for ʎ than MPMs. In addition Gonzales et al. (2012) 

determined that the same demographic transitions were contributing to the greater 
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changes in ʎ. The major differences between MPMs and IPMs were due to generality in the 

fecundity functions. The demographic attributes of a species must be thoroughly 

researched and incorporated into the model so that IPMs can accurately determine the 

demographic processes that affect population growth rate the most. Thus, making IPMs a 

dependable tool for developing management or conservation strategies for the future. 

As this study demonstrates, IPMs are useful for understanding population-level 

patterns that could not be determined from data solely on demographic measurements 

(Merow et al. 2014a). This approach leads to a more basic understanding of populations 

and potentially will allow for better predictions of population dynamics in an ecological 

context (Smallegange and Coulson 2013). IPMs can be a powerful tool that can utilize vital 

rate models and make inferences at the population level.
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Table 4.1. Site characteristics for each species. Data pooled over years. 

Species Site 
Name 

Location Soil Typea Land Cover Mean 
Temp (C)b 

Mean PPT 
(cm)b 

Achyranthes 
japonica 

Chestnut 
Hills 

37°11’N 
89°3’W 

Menfro 
silt loam 

Forest 22.9 27.5 

Achyranthes 
japonica 

Cypress 
Creek 

37°17’N 
89°06’W 

Wheeling 
silt loam 

Forest 22.9 27.5 

Amaranthus 
palmeri 

BRC: 9B 38°30'N 
89°50'W 

Bethalto 
silt loam 

Agriculture 
Field 

24.5 28.6 

Amaranthus 
palmeri 

Rend 
Lake 

38°7'N 
88°54'W 

Wynoose 
silt loam 

Agriculture 
Field 

23.4 27.2 

Amaranthus 
tuberculatus 

BRC: T4 38°31'N 
89°50'W 

Bethalto 
silt loam 

Agriculture 
Field 

24.5 28.6 

Amaranthus 
tuberculatus 

DeSoto 37°47'N 
89°15'W 

Hurst silt 
loam 

Agriculture 
Field 

23.5 27.3 

Iresine 
rhizomatosa 

Beall 
Woods 1 

38°20'N 
87°49'W 

Birds silt 
loam 

Forest 23.9 28.3 

Iresine 
rhizomatosa 

Beall 
Woods 2 

38°21N 
87°50'W 

Birds silt 
loam 

Forest 23.9 28.3 

a Source: USDA Soil Survey 2015 

b Source: National Weather Records 2015
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Table 4.2. Mean fecundity of A. japonica, A. palmeri, A. tuberculatus, and I. rhizomatosa. 

Measurements were averaged from 2012 to 2014 and pooled over sites per species. 

   Probability of 
 Mean 

Seeds/Plant 
Mean 

Germination 
Rate 

Seedling - 
Juvenile 

Juvenile 
- Adult 

Seed 
Viability 

Achyranthes 
japonica 

331 0.86 0.67 0.72 0.93 

Amaranthus 
palmeri 

15,880 0.12 0.55 0.80 0.64 

Amaranthus 
tuberculatus 

63,441 0.14 0.48 0.77 0.71 

Iresine 
rhizomatosa 

1,000 0.01 0.31 0.45 0.23 
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Table 4.3. Lambda values (ʎ) for the period 2012 to 2014 for all species. Populations are 

pooled by species. 

 ʎ 

 2012-

2013 

2013-

2014 

Achyranthes japonica 1.37 1.79 

Amaranthus palmeri 1.15 1.22 

Amaranthus 

tuberculatus 

0.97 1.18 

Iresine rhizomatosa 0.53 0.68 
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Figure 4.1 Fitting of survival function to each species 2014 data for a) A. japonica, b) A. 

palmeri, c) A. tuberculatus, d) I. rhizomatosa. The survival data are plotted (0 = death; 1 = 

survival) as a function of individual size x (plant height in cm). The figures represent data 

grouped over two sites per species. The x-axis scales are different among the panels. 
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Figure 4.2 Number of offspring as a function of individual size (plant height (cm)), along 

with the linear regression for the mean number of offspring for to a) A. japonica, b) A. 

palmeri, c) A. tuberculatus, d) I. rhizomatosa. Data pooled over years. The y-axis scales are 

different among the panels. 
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Figure 4.3 Elasticity surface for the integral projection model fitted to a) A. japonica, b) A. 

palmeri, c) A. tuberculatus, d) I. rhizomatosa in 2013 to 2014. The y-axis scales are different 

among the panels. 
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Figure 4.4 P and F kernels for a) A. japonica, b) A. palmeri, c) A. tuberculatus, d) I. 

rhizomatosa from 2013 to 2014. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

This final chapter first revisits the objectives and hypotheses posed at the start of this 

dissertation (Chapter 1), then briefly summarizes each data chapter (Chapters 2 – 4) before 

providing an integrated overall summary of the whole study in the context of the literature 

on invasive and weed species, competition, resource use, integrated pest management, and 

management implications. 

 

Objectives and Hypotheses 

Objectives 

Objective 1: Assess the importance of seed survivorship in the soil of A. japonica, and to 

compare survivorship, fecundity, and morphological characteristics within populations at 

two different sites in southern Illinois. 

Objective 2: Determine the relative competitive effect and response of A. japonica, A. 

palmeri, A. tuberculatus, and I. rhizomatosa to G. max. 

Objective 3: Undertake a comparative life history analysis of A. japonica, A. palmeri, A. 

tuberculatus, and I. rhizomatosa in habitats where they occur (including crop fields for 

species in agricultural settings). 

Hypotheses 

Hypothesis 1: The two sites would differ in their characteristics based on environmental 

factors and habitat. [Objective 1] 
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Hypothesis 2: The perennial species, A. japonica and I. rhizomatosa, will have the lower 

requirement than the annual Amaranthus species for limiting resources when competing 

with interspecific neighbors enabling them to displace competitor species. [Objective 2]   

Hypothesis 3: The competitive effect ranking was predicted to be: A. tuberculatus > A. 

palmeri > A. japonica = I. rhizomatosa. The competitive response ranking will be the 

opposite. [Objective 2] 

Hypothesis 4: The population growth rate (λ) for A. japonica will be similar to the 

Amaranthus species and greater than I. rhizomatosa. [Objective 3] 

Hypothesis 5: The population growth rate (λ) will be higher for the exotic species rather 

than the native species, because of differences in the demographic process. [Objective 3] 

 

Chapter 2: Life history characteristics of Achyranthes japonica [Objective 1] 

Summary 

 This study was the first to empirically assess the invasibility of A. japonica in terms 

of general survivorship, fecundity, and performance measurements. Environmental factors 

had a significant effect on seedling emergence and seed viability, which decreased from 

2012 to 2013 during a drought year and rebounded from 2013 to 2014 following flooding. 

On average, individuals at the drier CH site had higher performance and fecundity when 

compared to BWR, regardless of year. The results of this study can help establish 

management protocols for A. japonica and to hopefully limit its spread. 
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Chapter 3: Competitive effect and response [Objective 2] 

Summary 

The greenhouse experiment showed that the four species each drew down light 

significantly, but not nitrogen. Shading decreased the aboveground biomass of the species 

in comparison to unshaded controls. Supplemental nitrogen, however, increased the 

aboveground biomass of A. palmeri and A. japonica. In the field experiment, a competitive 

effect ranking was determined to be A. palmeri > A. tuberculatus > cut A. japonica = A. 

japonica = I. rhizomatosa; with the competitive response ranking being the inverse. These 

results suggest that under ideal conditions A. japonica may be as competitive with G. max 

during early vegetative growth as the two Amaranthus species; thus, A. japonica has the 

potential to cause G. max yield loss. On this basis, A. japonica requires unique management 

practices as it is a potential economic threat if it is able to colonize agricultural fields. 

 

Chapter 4: Comparative demography [Objective 3]  

Summary 

Demographic processes, such as survival, growth, and reproduction, can inform us 

about invasion risk, extinction risk, trade-offs in life history strategies. The Amaranthus 

species and A. japonica had an estimated population growth rate > 1, projecting increases 

in population size. By contrast, ʎ was < 1 for Iresine rhizomatosa, projecting a decline in 

population size reflecting its endangered status. Germination rates and seed viability were 

dependent on species and varied over time. Elasticity analyses showed that survival and 

growth contributed most to ʎ for the perennial species; whereas, for the annual species, 

population dynamics were driven primarily by survival.  
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Overall Summary 

The comparative population dynamics of four closely related Amaranthaceae species were 

both qualitatively and quantitatively examined. All of the research conducted supports the 

highly invasive nature of A. japonica (Chapter 2) in comparison to the Amaranthus species, 

and the endangered status of I. rhizomatosa, in terms of resource drawdown (Chapter 3), 

competitive effect and response to a dominant crop (Chapter 3), and life history 

characteristics (Chapter 4). In addition, the use of IPMs gave an insight into the population 

growth rate of these species, which determined specific growth stages for management; 

whether it be for the removal of invasive species or for conservation efforts for an 

endangered species. Invasion status appeared to be more important than the plant’s life 

cycles when comparing these species overall.  

Although future research directions are still needed to more clearly understand the 

population dynamics of these closely related species, this research provides several 

insights into the Amaranthaceae family. First, another Amaranthaceae species, A. japonica, 

has shown the potential to become an aggressive invasive species with the ability to 

outcompete not only native species, but other invasive species as well (Schwartz et al. 

2015a). The fact that this species shows similar invasive characteristics as the two 

Amaranthus species in this study (i.e., continuous germination throughout the growing 

season, adaptability, and high fecundity) allows for concern (Trucco and Tranel 2011). The 

high germination rate, large seed size, and the greater amount of root growth appears to 

give A. japonica a competitive advantage that the Amaranthus species do not possess. 

However, A. japonica grew more slowly than the annual species, which is reflective of a 

perennial life cycle. Thus, invasive species in this family should not be underestimated.  
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Secondly, competitive interactions can be broken down into a few general 

underlying principles: the duration of competition, weed density, biomass (both above and 

belowground), germination rate and the hardiness, or survival under harsh conditions of 

the plant (Zimdahl 2004). In G. max, the duration of competition with A. palmeri and A. 

tuberculatus is about six weeks after emergence (Feltner et al. 1969) before yield loss 

becomes inevitable. Also, the critical weed-free period has been determined to be 

anywhere from nine to thirty-eight days after emergence, or until the V-2 stage (Van Acker 

et al 1993). This study exhibits how the above mentioned principles demonstrated by the 

study species (except I. rhizomatosa), reduce the height of G. max within this six-week 

period. 

Additionally, resource use (i.e., water, light, nutrients, and space) is critical to plant 

growth and to competitive interactions between species. A plant community becomes more 

susceptible to invasion as the amounts of available resources increase (Hobbs 1989; 

D’Antonio 1993). Thus, if resource levels are sufficient, then competitors will have a 

positive growth rate, which will eventually drive down resource levels and lead to a 

reduction in population growth of the other species (Miller et al. 2005). Plants growing in 

the shade of neighboring taller vegetation are usually receiving reduced light intensity with 

a decreased R/FR ratio (Yang et al. 2014). Thus, plants grown under such conditions 

exhibit shade avoidance responses (Smith 2000). Similar responses have been reported for 

soil properties, such as water and nutrients, where invasive species can alter or 

outcompete native species for these valuable resources (Davis et al. 2000; Davis and 

Thompson 2000). Therefore, the only driving factor between native and invasive species is 

resource availability (Mack 2003; Maron and Marler 2007). 
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Finally, this research provides important insight into potential management 

strategies, especially for invasive/weedy species. The general principles of control are 

broken down into three categories: prevention, eradication and control (Sakai et al. 2001). 

To implement these principles, a grower or land manager must be able to correctly identify 

an invasive/weedy species at an early vegetative growth stage, have knowledge about the 

species life history traits, and be able to implement the appropriate control method 

(Zimdahl 2004). The use of integrated pest management (i.e., mechanical, cultural, 

biological and chemical control) is the most effective way to control current and emerging 

invasive species in any system (Swanton and Weise 1991).  

Mechanical control methods include hand pulling, mowing, herbivore grazing, 

smothering through mulches or plastic, burning, and tillage. Mechanical methods are 

usually expensive and time consuming depending on the area of control (Van Der Weide et 

al. 2008). Unfortunately, mechanical control methods are not always reliable because roots 

may not be pulled completely, which is important for perennial species, an 

overcompensation response could be triggered, and it is not always practical. Cultural 

control methods include planting date, seeding rate, irrigation, fertilization, crop row 

width, crop rotation, and the use of cover crops. These methods are primarily used in, but 

are not restricted to, horticultural and agricultural systems. Biological control is the use of 

natural enemies to control invasive/weedy species. Biological control is more effective on 

perennial species than annual species, but is not always effective because the biological 

agent (i.e., insect, pathogen, or animal) may not thrive in the new habitat or will thrive on a 

native species (Simberloff 2012). Chemical control utilizes herbicides which kills or inhibits 

plant growth through various modes of action. This method is cost effective and can be 
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selective (i.e., grass, broadleaf, or sedge species) or non-selective. The drawbacks 

associated with this control method are that there can be potential injury to non-target 

species, shifts in species composition (i.e., grasses to broadleaf weed/invasive species), and 

the development of herbicide resistant species (Johnson et al. 2012; Young et al. 2013). 

This research serves as an indication that the functional traits of closely related 

species can be very similar, especially when comparing between invasion status (Garnier 

and Navas 2012).  The invasive species of this study, A. palmeri, A. tuberculatus, and A. 

japonica, all exhibited similar competitive and general life history traits to one another. 

Thus, inferences from the very well-studied Amaranthus species could provide for further 

insight into the poorly studied A. japonica.  Furthermore, A. japonica can potentially invade 

other habitats, such as agricultural or open fields, given the right conditions. While an A. 

japonica invasion into agriculture fields is currently improbable, predetermined 

evolutionary traits, as seen in other Amaranthaceae species (Vencill et al. 2008), to develop 

herbicide resistance is an evolutionary stepping stone for this species.  Undoubtedly, 

specific management tactics implemented by individual growers or manager has a 

significant influence on the rate that herbicide resistance could occur for A. japonica.  

Overall, better weed control tactics and early detection and rapid response methods 

are imperative to preventing the spread of any weedy or invasive species. These 

precautionary tactics also aim to preserve natural areas and enhance the growth of native 

and endangered or threatened species. Invasive species management will only be improved 

by understanding the basic biology and population dynamics of an individual species and 

those species that are closely related.  
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