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AN ABSTRACT OF THE THESIS OF 

William Barrett, for the Master of Science degree in Geography and Environmental Resources, 

presented on November 5
th

  2012, at Southern Illinois University Carbondale. 

Title: SOUTHERN ILLINOIS GIS MAPPING FOR NEXT GENERATION 9-1-1 BASED ON 

NENA STANDARD DATA FORMAT 

MAJOR PROFESSOR: Dr. Guangxing Wang 

Next Generation 9-1-1 (NG 9-1-1) will revolutionize how the public accesses emergency 

services and will alter the technological landscape within which existing public safety agencies 

operate. A lack of systematic methodologies exists for quality control of the required geospatial 

data layers for NG 9-1-1 systems. The primary objective of this study was to develop and 

systematize a highly accurate NG 9-1-1 GIS database for Counties of Southern Illinois (CSI).  

The project goals included mapping relevant geospatial data layers required by and based on 

NENA standard data formats; conducting data quality control and standardization; and providing 

standardized spatial datasets for NG 9-1-1 to relevant stakeholders. The approach was developed 

using a conceptual model for error and uncertainty analysis of the GIS-based NG 9-1-1 system. 

This included the identification of various sources of input uncertainties often associated with 

spatial data layers; modeling the accumulation and propagation of errors; analyzing their impact 

on the quality of the spatial data layers; and correcting the errors. Modeling uncertainty 

propagation focused on positional errors and was conducted through a simulation procedure. The 

results showed that the original spatial datasets possessed a large account of uncertainties, 

especially location errors of railroads and roads.  The errors had different sources, including 

input map errors, the use of different map projection and coordinate systems, a lack of 

topological structures, etc.  In addition, they varied from county to county. From the error 

propagation simulation, it was also found that the location errors measured as root mean square 
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error (RMSE) fluctuated when the perturbed distance of the ground control points (GCP) was 

less than 15 m.  After that, the RMSE increased as the perturbed distance of GCPs increased. 

This relationship was significantly linear. In addition, the location errors from railroads were 

larger than those from roads. 
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CHAPTER 1 

INTRODUCTION 

 

BACKGROUND 

 For the last few decades, 9-1-1 has been known as the number to dial in emergency 

situations across America.  This number has provided an invaluable service to numerous citizens 

who have found themselves in need of fire, police, or medical assistance.  In the last few years, 

communications technology has become more and more sophisticated and has offered users a 

wide variety of methods in which to stay connected (e.g. voice, text, video, & picture).  

Emergency service agencies must keep up and be able to respond to these technologies.  Next 

Generation 9-1-1 (NG 9-1-1) will revolutionize how the public accesses emergency services and 

will alter the technological landscape within which existing public safety agencies operate. NG 

9-1-1 requires specific address information in the form of spatially geo-referenced datasets or 

maps, typically including Emergency Service Numbers (ESN), Public Safety Answering Points 

(PSAP), structures (9-1-1 information address point layer), cell towers, roads, railroads, mile 

markers, lakes/streams, city and county boundaries, etc. In Southern Illinois, several county 

agencies have begun taking steps necessary to ensure that they are prepared to receive 

communications in these various formats.  These counties have formed a not-for-profit 

organization, known as Counties of Southern Illinois (CSI), and are working together to establish 

a Next Generation system with multiple redundancies.  Each county has developed the required 

datasets mentioned above, but many are incomplete. In addition, many have different map 

projections and coordinate systems.  They also contain different data format standards with 
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inconsistent data quality controls that are not compatible with National Emergency Number 

Association (NENA) standards.  These differences will lead to uncertainties within NG 9-1-1 

systems. The standardization, accuracy assessment, and quality control of the geospatial datasets 

is thus critical in the development of NG 9-1-1 systems so that the information is accurate and 

can be shared between counties, allowing it to come together seamlessly to ensure public safety. 

 

SIGNIFICANCE OF THE STUDY   

  Today’s 9-1-1 systems in the state of Illinois are built, operated, and maintained locally, 

usually by counties.  Only recently has there been any federal involvement in 9-1-1 matters, and 

there has never been any interconnection among 9-1-1 systems to allow the transferring of calls. 

Experts in the 9-1-1 community have realized that today’s systems need a considerable advance 

in order to continue to efficiently handle today’s level of traffic and to meet the new 

technological requirements of the future. The system will need to handle video, photos, and text, 

and have the ability to transfer 9-1-1 calls among communication centers. There are several 

major agencies who are working on NG 9-1-1, including NENA, the Association of Public 

Safety Communications Officials (APCO), the U.S. Department of Transportation (DOT), and 

the Internet Engineering Task Force (IETF). It is imperative that these agencies share the 

standards, methods, communications, and datasets. 

  The overall project for improvement, Next Generation 9-1-1, involves many aspects and 

topics.  These include: i) Standardizing the underlying technology of the group called CSI, LLC 

using IP technology and Internet-based communication links; ii) Creating two mirrored data 

centers for handling calls--one in Jackson County and the other in Saline County; iii) 
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Interconnecting PSAPs to allow the unlimited transfer of calls, the distribution of overflow 9-1-1 

calls, and other call-handling features; iv) Allowing the system to accept and handle advanced 

information from citizens, including video, photos, text messages, etc.  There also needs to be a 

component that allows for interconnecting with private services, such as telematics providers, to 

handle automatic crash notifications (ACN) and other similar data.  

The significance of this project is that it works to integrate and standardize geospatial 

data from each 9-1-1 entity’s GIS. In addition, it provides quality assurance of this data to meet 

accuracy standards and makes it possible to bridge the gaps that currently exist so that the NG 9-

1-1 system will be greatly advanced, both theoretically and practically. 

 

RESEARCH STATEMENT  

New communications devices that are wireless and IP-based are being produced at a 

rapid rate. These devices offer text and video messaging capabilities that provide the potential 

for emergency agencies to accelerate responses to incidents. Unfortunately, the existing 9-1-1 

system was never intended to receive calls and data from these types of technology.  As a result, 

it must experience a significant overhaul in order to remain effective. 

Scientifically, a lack of systematic methodologies exists for quality control of the 

required geospatial data layers for NG 9-1-1 systems. This study will develop a conceptual 

methodology and thus, to some extent, bridge some of the significant gaps that currently exist.  

Through this study, the author intends to answer the following questions: 
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RESEARCH QUESTIONS 

i) What are the minimum map quality requirements for a NG 9-1-1 system? 

ii) What are the major uncertainty sources of the existing geospatial data layers? 

iii) How do location errors affect the quality of the maps, and is there a threshold value of location 

errors that significantly decrease map accuracy? 

iv) What is the best systematic methodology for conducting quality control of data layers across the 

9-1-1 system created by CSI? 
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CHAPTER 2 

LITERATURE REVIEW 

 

QUALITY CONTROL & ERROR SOURCES   

 Data quality control and standardization are critical for the development of geospatial 

datasets within GIS and for their application in environmental management, transportation, and 

emergency response systems such as 9-1-1.  The decisions that 9-1-1 system managers make are 

often based on “maps” which show spatial information, spatial patterns, and distributions of 

relevant objects and variables, including the relationships between them. The data should be 

accurately geo-referenced and positioned, clearly visualized, and easily updated. However, GIS 

map products are frequently generated using a variety of different methods and multiple sources 

of data. Among these are field measurements and derived data sets, including those taken from 

remotely sensed images.  This means that most of the values used are estimates of the variables, 

and therefore, have associated errors and uncertainties (Crosetto and Tarantola, 2001; Goodchild 

and Gopal, 1992; Gertner et al., 2002a; Heuvelink et al., 1989; Lanter and Veregin, 1992; 

Lilburne and Tarantola, 2009; Lunetta et al., 1991; Wang et al., 2005). The map products thus 

possess multiple sources of uncertainty that may vary spatially and temporally. When 

management decisions are made using the maps, the users potentially face risks because of these 

uncertainties. Quality control and standardization of the map products are both critical for 

decision-making. 

Error means the difference of a measured or computed value from its true or theoretically 

correct value of a variable (Longley et al. 2011). Uncertainty implies the lack of certainty and is 
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considered as a measure of the difference between the contents of a dataset and the real 

phenomena. Uncertainty is usually represented using a set of possible states with probabilities 

assigned to each possible outcome. In practice, the correct value is known in very few cases and 

a value that has higher accuracy is thus often used as its reference.   

Errors in GIS products can be grouped into inherent and operational errors or into 

position and thematic errors (Khorram et al., 1999; Pontius, 2000 and 2002; Walsh et al., 1987). 

The inherent errors include those related to source data (e.g. the use of different map projections 

and coordinate systems, different data formats, etc.) Operational errors are often introduced 

during data collection or during its input, processing, manipulation, and analysis. Additionally, 

editing errors, errors due to map overlap, and merging or mosaic-ing, as well as sampling errors, 

and other measurement errors are common. 

On the other hand, thematic errors mean the differences between the map values and 

observations of an interest variable, while position errors deal with the movement of true 

locations of objects caused by incorrect positioning of a global positioning system (GPS), map 

projections, geometric referencing of images or maps, etc. (Pontius, 2000 and 2002). The 

position errors in turn result in thematic errors. The inaccuracy from ground control and 

geometric rectification of map coordination leads to position errors (Wang et al., 2009 and 

2011). Position errors can be caused by inaccurately locating the field plots used to collect 

ground data and the ground control points used to geo-reference remotely sensed images using 

global positioning system (GPS) technology. Geometric errors often occur when images and 

maps are geo-referenced to projected coordinate systems such as Universal Transverse Mercator 

(UTM). Incorrect transformations of map projection and coordinate systems result in position 
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errors. Position errors are also due to the inaccurate digitizing of thematic maps. Position errors 

shift the maps in GIS and result in serious problems in 9-1-1 emergency systems. 

 Lunetta et al. (1991) systematically discussed the sources of the errors and uncertainties, 

and suggested priorities for error quantification research topics. Moreover, Davis et al. (1991) 

developed a flow chart for analysis of potential errors and uncertainties from ground and survey 

measurements to a map. GIS mapping is a complex process including data collection and 

processing, geo-referencing, symbolization, data representation and generalization, model 

development and prediction, etc. During the operations, subjective and objective errors and 

uncertainties are inevitably created and propagated into the final maps. Some of them may 

accumulate in the maps and others may be cancelled out.  The accuracy of the output map can 

only be as accurate as the least accurate individual layers. 

 

ERROR AND UNCERTAINTY ANALYSIS   

Quality assessment of GIS maps can be conducted using uncertainty analysis and 

sensitivity analysis (Arbia et al., 1998; Crosetto and Tarantola, 2001; Heuvelink et al., 1989; 

Heuvelink and Burrough, 1993; Heuvelink, 1998; Lanter and Veregin, 1992; Lilburne and 

Tarantola, 2009). In uncertainty analysis, the uncertainty propagation from inputs to outputs 

through mapping systems is modeled and assessed, while in sensitivity analysis, the output 

uncertainties of the mapping system are apportioned into different components of the input 

uncertainties.  

Several authors have proposed methods that can be used to improve data quality control 

through error and uncertainty analysis, including identifying error sources, modeling error 
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propagation, and calculating contributions of input errors to the uncertainties in the output maps 

(Congalton and Green, 1999; Goodchild and Gopal, 1992; Heuvelink, 1989 Walsh et al., 1987; 

Wang et al., 2005). For example, Pontius (2000, 2002) proposed a method to identify and 

quantify location and quantity errors for a categorical map. Lanter and Vergin (1992) suggested a 

research paradigm for error and uncertainty propagation in layer-based GIS. Wang et al. (2005) 

proposed a general uncertainty analysis framework in which the accumulation and propagation 

of input errors are modeled and their contributions to the output uncertainties are calculated. 

Crosetto and Tarantola (2001) and Heuvelink (1998), and Lilburne and Tarantola (2009) also 

emphasized the general framework of uncertainty and sensitivity analysis. Especially, Gertner et 

al. (2002) and Wang et al. (2011) developed a polynomial regression in which the relationship of 

the uncertainties of an output map with various input errors is modeled and apportioning of the 

output uncertainties into the input components is then conducted. These methods can be applied 

to the quality control of the geospatial datasets required by a NG 9-1-1 program. 

 

STANDARDIZATION & GIS IN EMERGENCY SERVICE   

 NENA has published national standard data formats that can be used as guidelines for the 

designers and manufactures of systems for processing emergency calls from any device (9-1-1). 

The goal of this standard is to give every Emergency Telephone System Board (ETSB) in the 

nation the ability to develop new map products that they are able to share with other public 

safety agencies. 

GIS is a computer-based system that is designed and used to collect, store, analyze, 

manage, and display spatially geo-referenced data and their attributes (Lonley et al. 2005), and it 
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provides great potential to accurately position objects and standardize spatial data layers. Using 

GIS in emergency service has been a major topic of discussion for many years. Remembering 

that new products drive changes in the 9-1-1 world (Innes 1992), planners that are working 

toward NG 9-1-1 must understand GIS. There will be a major investment in GIS over the next 

few years.  It is a powerful tool for emergency management (Ertug 2000). The future of 9-1-1 

has many things to do with GIS, including disaster forecast, vulnerability analysis, damage 

assessment, and personnel resources deployment, etc.  With GIS, there is a way to understand 

and manage the size of the data, and there is a method by which a standard operating procedure 

(SOP) can be put into place. GIS technology gives people the ability to have much more data 

than before. The State of Vermont was able to put a statewide 9-1-1 system in place in 1994 

(Westcott 1999).  GIS was a big part of the project.  The manner in which they were able to 

implement their 9-1-1 system on a large scale should provide valuable insight to this project. 

Ontology plays an important role in how standardization and GIS in emergency service is 

managed.  Inter-operability is a concern in emergency service. Geographic information that is 

processed from different information sources must be able to work together.  Ontology began as 

a philosophical tradition but has found widespread application in many diverse disciplines 

(Agarwal 2005). Ontology is used in one way to give a clear understanding of vocabulary. If 

sharing geospatial information across disparate systems and designs is going to be successful, an 

in-depth study of the current research on metadata and semantics needs to be conducted. One 

way to look at this is through ontology. (Arpinar et al 2006)  
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CHAPTER 3 

MATERIALS AND METHODS 

 

STUDY AREA & DATASETS   

 The proposed CSI study area consisted of 23 counties in Southern Illinois, including 

Alexander, Clay, Edwards, Franklin, Gallatin, Hamilton, Hardin, Jackson, Jefferson, Johnson, 

Marion, Massac, Perry, Pope, Pulaski, Randolph, Richland, Saline, Union, Wabash, Wayne, 

White, and Williamson (Figure 1). 

 

 

Figure 1: Study Area: 23 Counties of Southern Illinois. 
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  Existing datasets included the necessary map layers of ESN, PSAP, structure, cell tower, 

road, railroad, mile marker, lake/stream, and city and county boundary for all of the counties.  

Table 1 shows, in tabular format, sample data which can be represented and used in Figures 1-3.   

Table 1: Emergency Service Number (ESN) Data for Williamson County, Illinois 

ESN NAME FIRE LAW MEDICAL 

751 Rural Makanda LAKE /MAKANDA-S WCSO LAKE 

756 Prison WCFPD /LAKE PRISON LIFELINE 

755 Primex HERRIN/ LAKE /WCFPD WCSO LAKE 

753 SIU CARTERVILLE SIU /WCSO CARTERVILLE 

734 John A Logan College CARTERVILLE     LOGAN CARTERVILLE 

729 Rural Cambria WCFPD/CAMBRIA     WCSO CAMBRIA 

750 Lake of Egypt LAKE/ WCFP-S     WCSO LAKE 

748 Rural Creal Springs WCFPD/ LAKE-S     WCSO LAKE 

761 Primex Test Range WCFPD MARION    WCSO WCA 

747 Rural Stonefort WCFPD/ STONE-S    WCSO WCA 

726 Hurst HURST    HURST HURST 

727 Bush BUSH/HURST    WCSO HURST 

 

Figure 2 provides information regarding the datasets that are important to emergency 

management agencies.  The ESN is a polygon layer showing who the appropriate responder 

would be for that area. For example, if there was a fire in the northern right corner of Figure 2, 

the New Burnside Fire Department would respond. Many of the datasets belonging to the 

aforementioned counties were incomplete. 

 



 

12 
 

 

Figure 2: Emergency Service Number Map for Johnson County, Illinois 

For example, in Franklin County, there were significant location errors of the roads due 

to different map projections (Figure 3). The community field was incomplete, and many 9-1-1 

address points were missing. In Gallatin County, some roads were not split at intersections. In 

Saline County, ESN and community fields needed to be populated. White County needed GIS 

data and ESN layers. In Williamson County, roads were not split at intersections (Figure 4). The 

NENA standards and data format were used to standardize the spatial datasets required for NG 9-

1-1.  
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Figure 3: Road Location Errors Due to Different Map Projections for Franklin County, Illinois 

 

  

 The aerial photo (Figure 4) shows Jackson County. This digital photo consists of three 

bands including blue, green, and red with a spatial reference of NAD 1983 UTM Zone 16N and a 
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1 meter spatial resolution. An aerial photo was used for each county in this study and all the 

aerial photos came from the same source and were taken in 2007 by USGS (Geological Survey).  

 

 

Figure 4: Composite Image from Three Bands (Blue, Green, and Red) of an Aerial Photo in 

NAD 1983 UTM Zone 16N with a 1 Meter Spatial Resolution 
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A total of more than 200 ground control points (GCPs) (road intersections) were 

collected using a Global Positioning System (GPS) within the study area (Figure 5).  The GCPs 

were evenly distributed within the study area. At least 5 GCPs were measured for each county. 

These points were used to geo-reference the spatial datasets, including images and maps, to 

WGS84 UTM and were also employed for assessment of the geometric correction. The GPS unit 

used for this study was a Magellan eXplorist XL. The receiver on this device has a 14 parallel 

channel that tracks up to 14 satellites to compute and update information. The update rate is 1 

second continuous with an accuracy of 7 meters, 95% 2D RMS (root mean square) 

w/WAAS/EGNOS < 3 meters, 95% 2D RMS.  The accuracy of the GPS unit was tested in the 

field by collecting the x- and y-coordinates of 30 GCPs with a time of at least 3 minutes and it 

was found that there was an average of a 4 meter error.  
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Figure 5: Ground Control Points Collected Using GPS for the Study Area 

 

METHODS 

 In this study, a conceptual model for error and uncertainty analysis of the GIS-based NG 

9-1-1 system was proposed (Figure 6). This model outlined the procedure and methods of error 

and uncertainty analysis.  These included the identification of various sources of errors that are 

associated with the spatial data layers; modeling the error propagation; analyzing their impacts 

on the quality of the spatial data layers; and correcting the errors. 
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Figure 6: A Conceptual Model for Error and Uncertainty Analysis of a  

NG 9-1-1 GIS System 

 

Many sources of errors exist (Figure 7) including errors in sampling, measurement, map 

projection, data conversion, digitizing, overlapping, classification, geometry, etc. These errors 

were divided into inherent errors and operation errors or into positional errors and attribute 

errors. Because a NG 9-1-1 system requires that object locations are significantly accurate, this 



 

18 
 

study concentrated on positional errors. In addition, focus on the consistency and standardization 

of geospatial data was a requirement for data and information sharing, exchange, and merging. 

 

 

Figure 7: Error and Uncertainty Sources of Geospatial Data Layers for a NG 9-1-1 System 

 

The positional errors led not only to the incorrect location of objects on the surface of the 

Earth, but also to uncertainties of attributes. Some of the errors may be cancelled out, and others 

may accumulate and be propagated to the output maps. The uncertainties may be minor or very 
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large depending on the amount of the input errors. The output uncertainties can result in mistakes 

in decision-making and possibly delay responses to emergency calls.  

In this study, an uncertainty and error analysis was conducted.  That meant that particular 

steps were followed, including the identification of various sources of input uncertainties, the 

modeling their accumulation and propagation, and quantification of their impacts on the quality 

of output maps. (Figure 7) (Wang, 2011). The uncertainty analysis looked at the quality 

assessment of maps with a focus on errors that result from such things as the inconsistency of 

definitions, data structures and formats, map coordinate systems, and positional errors. NENA 

standards and data formats were then used to standardize the spatial datasets required for the NG 

9-1-1 system. This study followed the defined GIS data formats and models to define geospatial 

variables, create data structures, and produce geospatial data layers. The standards included 

minimal attributes, attribute structures, data types and precision, consistent map projections and 

coordinate systems, datum, geocoding method, etc. Following these formats greatly mitigate map 

errors and improve opportunities for data sharing, exchange, and merging.  The map quality 

assessment was conducted, and the results were compared before and after the standardization. 
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Figure 8:  Uncertainty Analysis and Quality Control of Geospatial Data Layers for the   

NG 9-1-1 System 

 

 

The positional errors of geospatial data layers deal with shifts of objects (points, lines, 

and polygons) from their true locations and are mainly caused by such things as different map 

projections and coordinate systems, digitizing errors, mismatches, etc. The reduction and 

correction of positional errors can be made by geometric correction and topological editing of 

geospatial data layers, respectively. (Figure 8) For geometric correction and the assessment of 

location errors, a large sample consisting of more than 200 locations was surveyed within the 

study area using GPS technology.  This included 85 PSAPs, 9-1-1 information address points, 

and 115 road intersections used as GCPs. There were 5 GCPs within each county. This study 
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utilized WGS84 UTM as the base for map projection and the coordinate system.  The 115 GCPs, 

or road intersections, were used to geo-reference all the geospatial data layers. The 85 PSAP 9-1-

1 information address points were employed to assess the quality of the data layers.  

The root mean square error (RMSE) of X- and Y-coordinates was calculated for the 

assessment of location errors using the following equation: 
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Where xio and yio are the column and row coordinates of original input maps or those before 

geometric correction. The xi and yi are true x- and y-coordinates of information address points or 

GCPs (Jensen 2005). 

 Moreover, topological editing of the geospatial data layers was conducted after the geo-

referencing of images and maps using different perturbed distances. The topological editing 

process included corrections of overshoots, undershoots, dangling segments, sliver polygons, 

etc., through rubber-sheeting. The idea behind the editing was to use the topology to create a 

vector data model (including no duplicated nodes and line segments), unique identification of all 

polygons, defined adjacency relationships between polygons, and the use of a geo-relational 

model. 
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 Modeling uncertainty propagation focused on positional errors and was conducted 

through a simulation procedure. Jackson County was used as a case study for this modeling. The 

simulation procedure consisted of two parts: the simulation of different GCP location errors for 

the geometric correction of maps and topological editing. Several perturbed distances for the 

location errors, including 1m, 2m, 5m, 10m, 20m, 30m, 40m, 50m, 100m, 300m, 500m, and 

1000m, were used for geometric editing (Figure 9). For each given perturbed value, the map 

editing and error corrections were done and the quality of the resulting map was assessed using 

GCPs. 

 In Jackson County, 30 GCPs were collected using GPS. Out of them, 10 were used for 

geometric corrections of maps and the other 20 were employed for an assessment of map quality. 

The locations of 10 GCPs were randomly moved within each of thirteen different distance 

intervals including  1m, 2m, 5m, 10m, 15m, 20m, 30m, 40m, 50m, 100m, 300m, 500, and 1000m 

(Figure 9). Randomly moving the location of a GCP within a given distance interval meant that 

the X- and Y-coordinates of the GCP were changed.  The amounts of the changes were 

determined using random numbers with the maximum amount corresponding to the given 

distance interval. Furthermore, the changes in direction of the X- and Y-coordinates were 

determined by randomly choosing -1 and 1. For a given moving distance of the GCPs, the 

geometric correction of maps was conducted and the quality of the resulting map was assessed 

using the 20 GCPs. 
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Figure 9: Simulation of Location Errors for Ground Control Points by Randomly Moving Their 

Locations at Different Distances 

 

The above thirteen perturbed distances were used for topological editing and geometric 

correction to model.  The propagation of location errors formed various combinations of input 

uncertainties. It was assumed that the errors in the input were propagated to the output maps. For 
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each combination, the map quality assessment was done and the corresponding RMSE was 

obtained. A polynomial regression model was then developed and used to build the linkage of 

the input location errors with the output uncertainties (RMSE): 

 

),( TDTGCPmap IUIUfOU 
       (2)

 

 

Where OUmap is the output uncertainty of the resulting maps, IUGCP and IUTDT are the 

input uncertainties of GCPs’ locations and geometric editing of perturbed distances. Modeling 

error propagation means measuring the impact of uncertainty from input errors on the results of 

GIS operations. The relationship of the input location errors from GCPs and perturbed distances, 

with the uncertainty of the output maps, was built. The statistical significance of the models was 

tested based on the student’s distribution 
)2( 2

2




 tn
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  where α is the risk level (5%) and 

n is the number of sample plots used.  Furthermore, the relative contribution of each type of 

location error to the output uncertainty was calculated. Together with map quality assessment for 

standardization, the main error sources were identified.  

The standardization of geospatial data will greatly improve the quality of GIS map 

products and promote data sharing and exchange.Therefore, standardized geospatial data 

becomes an important component of a NG9-1-1 system. For example, the U.S. National Map 

Accuracy Standard is defined as 0.5mm for map distance with the ground distance allowed to 

vary depending on map scale (e.g., the allowed ground distance is 2.5 m for maps at a scale of 

1:5,000). In 1992, the United States Geological Survey  (USGS)  set up and approved the Spatial 
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Data Transfer System (SDTS) to promote and facilitate the transfer and sharing of digital spatial 

data (http://mcmcweb.er.usgs.gov/sdts/). The SDTS increases the users’ potential for access to 

and sharing of spatial data.  It reduces loss of information in data exchange, eliminates the 

duplication of data acquisition, and improves the quality and integrity of spatial data. Thus, the 

standards in SDTS are of significant interest to users and producers of geospatial data.  NENA 

has published national standard data formats used as a guide for the designers and manufacturers 

of systems for processing emergency calls from any device. 

After standardization, topological editing, and geometric correction, all the data layers of 

the same type of map from all the counties were then merged in ArcMap. The complete and 

accuracy-improved maps of the study area, having consistent standards and quality controls, 

were output.  
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CHAPTER 4  

RESULTS   

GEO-REFERENCING AND UNCERTAINTY PROPAGATION MODELING   

 The original images were geo-referenced with the 10 GCPs, and the corresponding 

RMSE values were obtained. Table 2 shows the results (RMSE) of the geometric correction 

using the 10 GCPs. The residual error ranges from 10.85 m through 44.50m. 

 Table 2: An Example of the Results (RMSE) of Geometric Correction Using 10 GPS for 

Jackson County, Illinois 

 

X Source Y source 

X 

Destination 

Y 

Destination 

Residual 

(m) 

284041.90 4167523.43 283981.91 4167522.36 26.49 

283798.49 4196699.05 283792.09 4196690.59 22.07 

274604.56 4183565.33 274577.40 4183601.66 17.71 

306421.27 4171802.85 306459.47 4171747.36 44.50 

297682.44 4182741.36 297692.57 4182742.62 10.85 

297426.47 4193100.15 297424.15 4193101.32 27.06 

286761.64 4181208.53 286779.26 4181228.65 32.82 

311042.27 4188463.19 311055.76 4188465.22 37.23 

271839.69 4200043.07 271842.06 4200056.42 16.36 

306137.66 4200970.82 306205.88 4200942.30 23.02 
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Location errors were simulated using the random function in Microsoft Excel. For 

example, in Jackson County, a total of 10 GCPs were randomly moved by changing their X- and 

Y- coordinates within the intervals of 1, 2, 5, 10, 15, 20, 30, 40, 50, 100, 300, 500, and 1000 

meters. The moving directions of the points were also determined using random numbers. Given 

a moving distance such as 100 m, the new X-coordinate of each GCP was obtained by selecting 

one random number times 100 and moving directions (-1 or 1) plus the original GPS X-

coordinate. Using the same method, the new Y-coordinate was calculated. Table 3 shows the 

random numbers, moving directions, and X- and Y- coordinates that were obtained after the 

points were randomly moved within the interval of 100m. 

Table 3: An Example of the Method Used to Obtain New X- and Y-Coordinates for 10 GCPs by 

Randomly Moving Their Locations at an Interval of 100 m 

X GPS Y GPS 

Random 

X 

Random 

Y 

Sign 

X 

Sign 

Y 

New  

X- coordinate 

New  

Y- coordinate 

271842.59 4200055.43 0.07 0.61 -1 1 271835.79 4200116.00 

274577.73 4183600.79 0.41 0.55 -1 1 274536.51 4183655.32 

283791.79 4196689.67 0.14 0.79 -1 1 283778.10 4196768.99 

297424.28 4193100.82 0.70 0.17 -1 1 297354.29 4193117.67 

306206.42 4200941.05 0.74 0.15 -1 1 306132.50 4200955.78 

311054.53 4188464.00 0.54 0.88 -1 -1 311000.69 4188376.20 

297693.40 4182742.73 0.12 0.22 -1 1 297681.06 4182764.44 

306459.38 4171747.20 0.61 0.17 -1 1 306398.53 4171764.63 

283982.84 4167522.67 0.34 0.38 -1 -1 283949.12 4167484.50 

286779.40 4181228.69 0.64 0.33 -1 1 286715.33 4181262.00 
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Once the new X- and Y- coordinates were produced for the 10 GCPs, they were used to 

geo-reference the images and maps. Table 4 shows the residual when the moved or perturbed 10 

GCPs (with an interval of 100 m) were used for geometric corrections of the image for Jackson 

County. The residual error range was from 15.18 to 63.69 m, and the average was 33.83 m.  

Table 4: An Example of Residuals and RMSE for the Geometric Correction of Image Using 10 

GCPs After Randomly Disturbing Their Locations  

 

ID X Map Y map 

X for 100 m 

interval 

Y for 100 m 

interval 

Residual 

Error 

X 

difference 

Y 

difference 

1 271842.26 4200042.47 271780.11 4200112.59 35.44 62.15 -70.12 

2 274603.78 4183563.87 274567.03 4183626.27 28.41 36.75 -62.40 

3 283796.57 4196696.11 283752.12 4196778.40 15.18 44.45 -82.29 

4 297423.90 4193099.61 297418.14 4193163.57 25.40 5.76 -63.96 

5 306139.40 4200967.22 306167.64 4201036.51 33.38 -28.24 -69.29 

6 311043.79 4188464.21 311022.47 4188412.93 63.69 21.32 51.28 

7 297685.22 4182739.64 297612.37 4182771.14 38.08 72.85 -31.50 

8 306416.92 4171801.44 306374.43 4171799.52 17.57 42.49 1.91 

9 284036.21 4167523.24 283962.23 4167504.53 24.75 73.98 18.71 

10 286763.70 4181211.46 286716.07 4181274.96 31.10 47.63 -63.50 

      

37.91 -37.12 

RMS 

Error 33.83 
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 Once all the images had been geo-referenced, a total of 20 GCPs were used to assess the 

accuracy of the corrected images and maps. The resulting values of RMSE were listed against 

the moving distances in Table 5. This table shows all the values of RMSE and the distance for 10 

GCPs and 20 reference points. The GCPs were shown in Figure 10. There is a fluctuation of 

RMSE when the perturbed distance was less than 15 m. After that, the RMSE started to slightly 

increase. Two big jumps of RMSE took place from the perturbed distance from 50 m to 100 m 

and from 100 m to 300 m. The RMSE increased from 26 m to 37 m and then to 125 m if the 

perturbed distance increased from 50 m to 100 m and then to 300 m. After 300 m, the RMSE 

became huge.  
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Table 5:  Values of RMSE for Geo-referenced Images Using 10 GCPs and for the Assessment of 

Their Accuracy Using 20 GCPs for Jackson County, Illinois 

 

ID 

RMSE 10 

Points 

RMSE 20 

Points 

No Change 26.26 14.81 

Perturbed 1 M 26.28 19.79 

Perturbed 2 M 25.87 22.57 

Perturbed 5 M 27.84 22.91 

Perturbed 10 M 26.21 21.96 

Perturbed 15 M 25.14 23.24 

Perturbed 20 M 27.91 24.56 

Perturbed 30 M 24.09 24.01 

Perturbed 40 M 26.27 24.23 

Perturbed 50 M 28.09 26.12 

Perturbed 100 M 33.83 37.16 

Perturbed 300 M 119.30 125.36 

Perturbed 500 M 274.24 290.92 

Perturbed 1000 M 302.90 291.35 
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Figure 10: Jackson County, Illinois: Original Image with GCPs 
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Obviously, the RMSE increased as the moving distance increased. Based on the values of 

RMSE from 20 GCPs in Table 5, a regression model was obtained, and it accounted for the 

relationship of the RMSE with the perturbed distance (Equation (3) and Figure 11). The 

coefficients of determination, that is, R squared values, for the location error is 0.8784, and it is 

significantly different from zero at a risk level of 5%.  

 

GCPrefGeo errorLocationRMSE _3231.0369.21_       (3) 

 

 

Figure 11: Linear Regression Model that Accounts for the Relationship of the Input Location 

Errors (Perturbed Distance in Meters) for the 10 GCPs with the Output Location Errors (RMSE) 

of the Geo-referenced Image, Obtained Using 20 GCPs, for Jackson County, Illinois 
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GEOMETRIC CORRECTIONS AND UNCERTAINTY PROPAGATION MODELING   

Once the images have been produced, the railroad and road layers from Jackson County 

were used to check for uncertainty in the datasets. The railroads were divided into 6 segments 

and then adjusted to the images. Table 6 shows the values of RMSE for the railroads under 

different perturbed distances from 0 to 1000 m. The RMSE fluctuated under the perturbed 

distance of 100 m and ranged from 14 m to 22 m. The RMSE increased rapidly from 16 m to 26 

m when the perturbed distance increased from 100 m to 300 m. After that, the RMSE was huge. 

When the original image was geo-referenced with GCPs and their locations were not perturbed, 

the RMSE of the railroad locations was 18.55 m. Figure 12 shows an example of this offering a 

good look at how closely the railroad lines up with the image. When the original image was geo-

referenced with the GCPs whose locations were perturbed at a distance interval of 500 m, the 

RMSE of the railroad locations was 55.10 m. Figure 13 shows an example of the errors of 

railroad locations when the locations of the GCPs were perturbed at a distance interval of 500 m.   
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Table 6: Values of RMSE of Railroad Locations Between the Geo-referenced Image and the 

Road Map for Jackson County, Illinois 

 

ID 

RMSE 

1 

RMSE 

2 

RMSE 

3 

RMSE 

4 

RMSE 

5 

RMSE 

6 

RMSE 

Avg 

No Change 19.24 16.71 16.16 17.20 32.89 9.09 18.55 

Perturbed 1 M 25.14 15.01 14.33 10.48 14.82 8.24 14.67 

Perturbed 2 M 27.12 15.10 13.43 10.86 26.27 13.52 17.72 

Perturbed 5 M 28.42 14.92 11.55 19.83 28.90 13.41 19.50 

Perturbed 10 M 29.04 14.36 11.95 11.10 27.61 13.12 17.86 

Perturbed 15 M 28.97 14.36 19.56 14.31 28.85 13.39 19.91 

Perturbed 20 M 28.90 14.94 12.99 11.25 27.28 13.78 18.19 

Perturbed 30 M 23.47 13.99 12.89 11.54 27.88 11.60 16.90 

Perturbed 40 M 18.46 15.96 11.98 11.68 29.06 8.32 15.91 

Perturbed 50 M 32.26 15.94 28.99 17.83 28.83 8.91 22.13 

Perturbed 100 M 18.43 15.96 12.60 11.68 29.17 8.32 16.03 

Perturbed 300 M 33.97 21.75 16.44 33.60 41.22 7.15 25.69 

Perturbed 500 M 78.13 51.92 35.52 115.75 41.71 7.58 55.10 

Perturbed 1000 M 91.37 51.09 88.43 114.46 87.18 20.11 75.44 
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Figure 12: Example of the Errors of Railroad Locations When the Original Image was Geo-

referenced with the GCPs Whose Locations Were Not Perturbed for Jackson County, Illinois 
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Figure 13: Example of the Errors of Railroad Locations When the Original Image was Geo-

referenced with the GCPs Whose Locations Were Perturbed at a Distance of 500 m for  

Jackson County, Illinois 
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   The linear regression model shown in Figure 14 and equation (4) accounted for the 

relationship of the location errors (RMSE) of railroads with the input location errors (perturbed 

distance) when the locations of railroads were compared to the geo-referenced image and the 

road map for Jackson County.  Overall, the RMSE of the railroads increased as the perturbed 

distance increased. The R squared value was 0.9417 and significantly differed from zero at a risk 

level of 5%.  

 

Tolerancerailroad errorLocationRMSE _0602.03302.16       (4) 

 

Figure 14: Linear Regression Model That Accounts for the Relationship of the Input Location 

Errors (Perturbed Distance) with the Location Errors of Railroads When These Locations Were 

Compared Between the Geo-referenced Image and the Road Map for Jackson County, Illinois 
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Once the images were geo-referenced, the road maps from Jackson County were used to 

check for uncertainty in the datasets. The roads were divided into 8 segments and then adjusted 

to the images. The RMSE values were obtained for each segment and each perturbed distance, 

and the average RMSEs were then calculated. Table 7 shows the values of RMSE for these roads 

when the locations of roads were compared between the geo-referenced image and the road map. 

When the perturbed distance was less than 300m, there were no big differences in terms of 

RMSE. After that, the RMSE increased quickly. But, overall, the values of RMSE were 

relatively smaller when compared to those from the railroads and geo-referenced images and 

maps.  As shown in in Figure 15, the RMSE of road locations for Jackson County was 10.17.  

The image was geo-referenced with the GCPs whose locations were not perturbed. When the 

locations of the GCPs were perturbed at a distance interval of 300 m, the RMSE of the road 

locations for Jackson County was 12.94. Figure 16 shows how far apart the road layer is from the 

road image. 
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Table 7: Values of RMSE of Road Locations When Compared Between the Geo-referenced 

Image and the Road Map for Jackson County, Illinois 

 

ID 

RMSE 

1 

RMSE 

2 

RMSE 

3 

RMSE 

4 

RMSE 

5 

RMSE 

6 

RMSE 

7 

RMSE 

8 

RMSE 

Avg 

No Change 21.40 16.01 7.26 17.96 1.71 8.40 5.98 2.60 10.17 

Perturbed 1 M 21.63 16.20 7.55 17.97 2.00 8.16 6.13 2.96 10.33 

Perturbed 2 M 21.50 17.25 7.54 18.03 2.00 9.05 6.09 2.96 10.55 

Perturbed 5 M 21.50 15.09 7.54 17.98 2.00 8.04 6.09 3.30 10.19 

Perturbed 10 M 21.48 17.29 7.92 20.43 2.00 9.61 5.71 2.78 10.90 

Perturbed 15 M 21.48 14.80 7.55 18.58 2.00 8.03 5.71 2.68 10.10 

Perturbed 20 M 21.63 18.80 7.55 17.82 2.00 8.09 6.13 2.68 10.59 

Perturbed 30 M 21.63 16.12 7.28 18.00 2.00 8.39 6.09 2.96 10.31 

Perturbed 40 M 18.36 16.29 7.95 18.27 2.80 8.41 6.09 2.57 10.09 

Perturbed 50 M 21.34 16.78 7.78 18.12 2.85 8.42 5.92 2.57 10.47 

Perturbed 100 M 29.19 8.10 6.80 19.84 2.92 9.06 5.26 3.38 10.57 

Perturbed 300 M 33.35 28.12 8.14 10.80 3.11 9.88 6.38 3.73 12.94 

Perturbed 500 M 24.88 21.59 8.79 14.09 3.32 7.77 7.68 4.05 11.52 

Perturbed 1000 M 25.31 28.88 11.51 25.43 5.27 11.31 9.42 4.74 15.23 
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Figure 15: An example for the errors of road locations when the original image was geo-

referenced with the GCPs whose locations not perturbed for Jackson County, Illinois 
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Figure 16: Example of the Errors of Road Locations When the Original Image was Geo-

referenced with the GCPs Whose Locations Were Perturbed at a Distance Interval of 300 m for 

Jackson County, Illinois 
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   In Figure 17 and equation (5), the linear relationship of the input location errors 

(perturbed distance) with the location errors of roads were compared to the geo-referenced image 

and the road map for Jackson County. Overall, the RMSE of the roads increased as the perturbed 

distance increased. The R squared value was 0.8664, and it significantly differed from zero at a 

risk level of 5%.  

 

Toleranceroad errorLocationRMSE _0047.0302.10 
     (5) 

 

 

Figure 17: Linear Regression Model That Accounts for the Relationship of the Input Location 

Errors (Perturbed Distance) with the Location Errors of Roads When They Were Compared 

Between the Geo-referenced Image and the Road Map for Jackson County, Illinois 
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A lot of time was spent conducting the topological corrections for the whole study area, 

including topological structures, rubber sheeting, overshoot, undershoot, and dangling segments, 

etc. But, the results were ignored here because of space and time limits. In addition, it should be 

noted that modeling the error propagation for topological corrections was not made in this study. 

 

DATA STANDARDIZATION 

 Standardization of the GIS road centerline data incorporated the following: North, South, 

East, West, Northeast, Northwest, Southeast, or Southwest.  These are the only prefix and suffix 

directional abbreviations which were used, when a prefix and / or suffix directional was present. 

All punctuation was avoided. Special characters were removed (dash, underscore, apostrophe, 

quotes or any other special characters that could cause problems in any of the software or 

databases). Only whole numbers were used in the house number fields (fractional house numbers 

were placed in the House Number Suffix field). Complete spelling of legal street names was 

assigned by the addressing authority (e.g. Saint Albans versus St Albans). It was important to 

spell out the complete MSAG and postal community names. The prefix directional was only 

abbreviated when it was not part of the actual street name (North Drive would not be abbreviated 

to N Dr). Post directions were abbreviated when they were not part of the actual street names. 

(Lone Pine Dr South would be abbreviated to Lone Pine Dr S, but Loop West Dr would not be 

abbreviated to Loop W Dr). 

The attribute fields within the centerline data included high and low address ranges along 

each segment of the road. The high and low addresses were further broken down into left and 

right side addresses, so that each centerline segment  had a left-side low address, a right-side low 
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address, a left-side high address, and a right-side high address. It is strongly recommended that 

actual addressing be used in the GIS street centerline. Using actual address ranges for the GIS 

street centerlines improved the location accuracy of the geocoding process. Table 8 provides an 

example of the NENA standard for the centerline data of Jackson County. 

   All the county datasets used the same naming conventions. This allowed for consistent 

ontology across the counties. The first step for the standardization was to get all the datasets 

from the 9-1-1 coordinators for each of the 15 counties. The next step was to export the attribute 

table to Excel. After the table had been changed to meet the NENA standards, it was joined back 

to the layer. The final step was to use Xtools Pro, an extension for ArcMap, to do table 

restructures for each of the datasets for each of the counties. The final product was a 

standardized dataset for centerline, railroad, ESN, hydrology, and cell tower information for each 

county.  The process of standardizing all the datasets for the 15 counties took around 480 hours 

of work to complete. 

  Once the data was standardized it was given back to the counties for quality control 

purposes so that confirmation could be provided that all the information was transferred correctly 

to the new standard. In the NG 9-1-1 environment, all calls will be routed using GIS data.  The 

importance of the quality of the data cannot be overstated. 
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Table 8: Example of the Attribute Table of Centerline Dataset After Standardization Based on 

NENA Standards 

 
COUNTRY STATE_L STATE_R LLO LHI RLO RHI LABEL 

US IL IL 2841 3839 2842 3840 GENTRY RD 

US IL IL 3301 3799 3300 3800 N MCGEESVILLE RD 

US IL IL 11654 12194 11655 12195 DEER RUN RD 

US IL IL 13560 16684 13561 16685 CANAVILLE RD 

US IL IL 220 810 221 811 HIDDEN BAY LN 

US IL IL 2000 2500 2001 2501 W DEVILS KITCHEN RD 

US IL IL 1025 1499 1024 1498 DIMING BLVD 

US IL IL 985 1499 984 1498 SKELCHER BLVD 

US IL IL 2494 2954 2495 2955 VENUS AVE 

US IL IL 2494 2952 2493 2951 ROBLEY AVE 

US IL IL 1140 1420 1139 1421 PINE RIDGE LN 

US IL IL 2071 2805 2070 2806 S MCGEESVILLE RD 

US IL IL 2021 2149 2022 2150 APACHE DR 

US IL IL 2071 2143 2070 2144 SIOUX LN 

US IL IL 573 849 572 850 MCKINNEY CHAPEL RD 
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CHAPTER 5 

CONCLUSIONS AND DISCUSSION 

 

RESEARCH QUESTIONS REVISITED 

 Overall, the results of this study showed that the research questions were well answered. 

Below, we will discuss these questions and the answers from this study. 

 

The first question was: What are the minimum map quality requirements for a NG 9-1-1 system? 

  

 The ultimate quality of the GIS data is dependent on the source data and the methods 

used to incorporate the data into the GIS. Whether new GIS datasets are being compiled onto a 

base map or old maps are being recompiled onto a new database, certain procedures need to be 

addressed. Precise procedures, although very important, will not improve the inherent source of 

map data. The quality of input data and maps is very critical for NG 9-1-1 systems. Geo-

referenced maps, rectified photographs and images, as well as vector base maps may serve as 

sources of GIS data for a NG 9-1-1 system. As the data, maps, and images are input into the 

database of a NG 9-1-1 system, the errors are also propagated into the system. In this study, 

researchers found that the existing data and maps were associated with a large account of 

uncertainties, and the uncertainties were greatly reduced by geo-referencing, topological 

structure construction, and standardization. This study also led to the map data standards: i) GIS 

maps and vector data at a scale of 1:24,000 or larger are acceptable; and ii) Digital 
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Orthophotograph data, or raster data, shall have a spatial resolution of 15 m or finer based on the 

values of RMSE obtained with different perturbed distances of ground control points. Moreover, 

the RMSE for geo-referencing the maps and images should also be smaller than 15 m. After that, 

the quality of the spatial data will decrease.  

 This study shows that based on the minimum map quality requirements obtained in this 

study, the standards of NENA GIS data collection and maintenance (NENA July 2007) are 

adequate. These requirements are also close to the US National Map Accuracy Standard: 12 m 

derived based on the 0.05 mm standard for map distance and the scale 1:24,000.  Compared to 

the datasets that are used for NG 9-1-1 for the whole USA, the datasets that are used in this study 

are limited. More work and examination should be conducted to see how the data and map 

quality requirements react to responses in the NG 9-1-1 systems. 

 

 The second question was: What are the major uncertainty sources of the existing 

geospatial data layers? 

 

 With Jackson County being used as an example, Figures 9 through 11 showed that the 

output uncertainties had linear relationships with the input errors regardless of geo-referencing of 

maps and images and locations of railroads and roads. The linear relationships were significantly 

different from zero at a risk level of 5%. Overall, the values of RMSE for both geometric errors 

and location errors of the shifted railroads and roads increased as the perturbed distance 

increased. However, the geometric errors of the maps and images due to the location errors of 

ground control points were significantly larger than the position errors of railroads and roads.  
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 The third question was: How do location errors affect the quality of the maps, and is 

there a threshold value of location errors that significantly decrease map accuracy? 

 

 When the perturbed distance was less than 15 m, the geometric errors of the spatial 

datasets, due to the location errors of the ground control points, did not significantly change. The 

errors started to increase after the perturbed distance of 15 m, and big increases took place from 

the perturbed distance of 50 m to 100 m and 100 m to 300 m. After that, the spatial maps and 

images would be shifted to more than 100 m away. Until the shift reached the 100m threshold 

value, the map accuracy was not significantly decreased.  

  

 The final question was: What is the best systematic methodology for conducting quality 

control of data layers across the 9-1-1 system created by CSI? 

  

 Taking into account the nature of static resources, attributes and spatial features of the 

GIS data shall be validated at a minimum of once a year against one or more of the following 

data resources:  Attribute Validation,  Automatic Location Information (ALI) Data Base and 

Master Street Address Guide (MSAG,) Tax Assessment Information, and Spatial Validation. The 

map data that reside in mapping software require updates on a regular basis. The call taker 

interacts with the map data on a daily basis and can serve as a good reference when determining 

the accuracy of this data. If a street is missing or an address range is incorrect, the call taker can 

be the first line of defense. Therefore, there must be a means in place for the call taker to 
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communicate mapping issues as they arise so that they can be corrected expediently. GIS data of 

any worthwhile size contain errors. Eliminating all errors is an unrealistic expectation. The goal 

is to quickly correct any discrepancies found. What is expected is a consistently applied program 

to identify and correct these errors. The longer GIS data goes without an update, the less accurate 

the information will become, and its integrity therefore diminishes. There are several options for 

the entity that may be responsible for performing GIS data maintenance. These include such 

personnel as the PSAP staff of Local GIS department(s) (i.e. government, police, utilities, etc). 

 

MAP QUALITY AND RESPONSE OF NG 9-1-1 SYSTEMS 

 NENA data standards aim to bringing 9-1-1 agencies together in NG 9-1-1 by building 

consistent standards and requirements and providing the potential to share and access data and 

maps. This study was conducted based on NENA data standards. The results that were obtained 

thus met the NENA data standards. Among the standards, location errors are the most critical 

because the errors have large impacts on the responses to calls in the NG 9-1-1 system. 

Generally, a location error of 15 m may not seriously impede the search for and location of the 

NG 9-1-1 system user. It may also not greatly delay making a response to the call whether in a 

downtown city or rural area. But, a location error of more than 100 m may seriously delay the 

response because the search of the NG 9-1-1 for the call may be problematic.  

 In addition, for an agency to begin to apply NG 911 their GIS data must be clearly 

defined.  Discrepancies between the GIS,  MSAG, and ALI data can cause call routing and 

dispatching problems. Inaccuracies in the databases could lead to a delayed or improper 
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response. By comparing GIS data to the MSAG, identifying the problems, creating discrepancy 

reports, and working to correct the discrepancies, problems can be minimized.  

 

LIMITATIONS AND FUTURE STUDIES 

 Future study in GIS for NG 9-1-1 purposes is very important. A gap still exists with 

regard to what each 9-1-1 center is currently using for GIS and what NENA says is needed. For 

the purpose of this study, Jackson County was the focus. It provided an informative look at one 

county’s data set. The method used to complete this work could be used to check the accuracy of 

the data sets for each of the other counties in Southern Illinois. Maintaining data integrity within 

the GIS and keeping the data synchronized with existing tabular files, MSAG, and ALI files 

requires high levels of coordination. Much work is needed in the study of ontology in GIS 

datasets for NG 9-1-1 to better streamline the efficiency of data usage. 

 Another future study could be to use the perturbed images that were produced for the 

railroad and road layer to check for uncertainty in the structure points of actual 9-1-1 calls. By 

using the structure points the RMSE from this information could reveal if the data produced from 

the railroad and road maps are adequate. A linear regression model could be built that would 

account for the relationship of the input location errors (perturbed distance) with the location 

errors of structures. This could add one more piece to the puzzle of uncertainty.   

 Moreover, in thus study we compared the geometric errors of the geo-referenced maps 

and images with the location errors of the railroads and roads.  However, we did not conduct a 

systematic apportioning of the output uncertainties into various input errors because of time 

limitations. In addition, because of limited space, we did not report the results for other counties. 
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RECOMMENDATION 

The main purpose of this project was to help provide accurate spatial data for the PSAPs 

of CSI to properly locate 9-1-1 calls.  Spatial information can be used for a map display which 

includes, among other functions, a display of the location of each emergency call, alternative 

means of determining emergency locations, and spatial query tolls. Computer Aided Dispatch 

Systems (CAD) may require spatial data in order to acquire the information needed for CAD 

emergency responses and operations. 

 Pinpointing emergency locations with a high degree of accuracy is one very important 

reason for the proper maintenance of GIS data. To properly represent the ever-changing real 

world, the underlying spatial data layers are required to have constant maintenance and updating 

within the GIS environment.   

 GIS data of any worthwhile size are associated with uncertainty and error.  Eliminating 

all the uncertainties and errors is an unrealistic expectation. What is expected, however, is a 

consistently applied program to identify and correct any existing errors. If a spatial database is 

used for a long time without being updated, its information will become less accurate and the 

integrity of its data will diminish. Thus, the maintenance of the spatial database for a Next 

Generation 9-1-1 system becomes very important. This statement brings to bear the question of 

who should take responsibility for performing the maintenance of the spatial database. There are 

several options: 

1) PSAP staff; 

2) Local GIS department(s) (i.e. police, fire, utilities, etc.); 

3) GIS mapping vendors; 
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4) Database management vendors 

Further, maintaining data integrity within a GIS environment and keeping the data 

synchronized with existing tabular files, MSAG, and ALI files require high levels of 

coordination.  The MSAG coordinator, PSAP personnel, and GIS personnel should work closely 

together to resolve MSAG and GIS discrepancies. 

 Moreover, creating updated timelines for the spatial data will be critical to maintaining 

accurate map data layers within a PSAP. It is important that the users of the map data retain 

confidence in its accuracy. When discussing these updates, a jurisdiction needs to remember that 

it is not only important for the data to be updated with the newest information, but also that these 

updates are made available to the telecommunicators within the system.  Without these 

precautionary steps in place, the primary goal of the NG 9-1-1 system is not being served. This is 

why a long-term solution for the maintenance and updating of the map data within the system is 

so important.  

 It is also recommended that the spatial data updates be processed within five business 

days of the receipt and verification of an address. The updated data layer should be provided to 

CSI in a timely manner. The updates must be submitted in an electronic format according to the 

GIS Data Model in NENA 02-010. 

 In the real world, roads are renamed, added, relocated, and occasionally removed. Such 

changes must be accommodated for in the spatial database. As structures are built or demolished, 

geo-coding should also be updated on the road centerline layer to accommodate for these 

changes. In order to geocode accurately, the road centerline layer requires maintenance of 

coordinate locations, name changes, new roads, and address range changes.   Changes in the road 
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centerline layer may affect the Emergency Service Zones’ (ESZ) topology. Adjustments to the 

ESZ information should reflect those changes.  It is recommended that the ESZ boundary be 

joined to the road centerline where the road forms the boundary between two different ESZs. 

 A structure point layer should match the ALI Data Base. As buildings are constructed or 

demolished, these points need to be added or deleted. Information may be received from the 

addressing authority, ALI discrepancy, or as a determined part of the spatial audit process. The 

Emergency Service Data Layer is a combination of the Point Layer, the Emergency Service 

Agency Location Layer and the ESZ Polygon Layer. This layer is used to route emergency 

service calls from the correct emergency service provider to the emergency location.  Emergency 

Service Agency Location updates are performed in a manner similar to site updates. 

 Background data layers including Hydrology, Railroad, Mile Marker Location, Electric 

Line, Petroleum/Natural Gas Line, and Water Main, etc., are optional layers used to help PSAPs’ 

call handling capabilities. The background data layers need to be maintained as individual PSAP 

jurisdiction layers. As new information becomes available from the agency responsible for its 

creation, it should be integrated. 
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CSI GIS datasets by County 

 

Alexander County 

 Roads, ESN, Address, hydrology, railroads, cities 

Clay County 

 Roads, ESN, hydrology, railroads, cell towers 

Franklin County 

 Roads, ESN, Address, hydrology, railroads, cities, cell towers 

Gallatin County 

 Roads, ESN, Address, hydrology, railroads 

Jackson County 

 Roads, ESN, Address, hydrology, railroads, cites, cell towers 

Johnson County 

 Roads, ESN, cites, hydrology, railroads, cell towers, mile markers 

Marion County 

 Roads, address, ESN, cites, hydrology, railroads 

Marion City 

 Roads, address, ESN, city, hydrology, railroads, cell towers 

Massac County 

 Roads, address, cites, hydrology, railroads 

Perry County 

 Roads, Address, cities, ESN, hydrology, railroads 
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Pulaski County 

 Roads, Address, cities, ESN, hydrology, railroads 

Richland County 

 Roads, Address, ESN, hydrology, railroads, cell towers 

Saline County 

 Roads, Address, ESN, hydrology, railroads 

Union County 

 Roads, Address, ESN, hydrology, railroads, cities, cell towers 

Wabash County 

 Roads, ESN, hydrology, railroads, cities 

Williamson County 

 Roads, address, hydrology, railroads, cities 
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