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TITLE:  MODELING THE DISTRIBUTION OF MEADOWS IN ARID AND SEMI-ARID 

PATAGONIA, ARGENTINA: ASSESSING CURRENT DISTRIBUTION AND PREDICTING 

RESPONSE TO CLIMATE CHANGE 

 

MAJOR PROFESSOR:  Dr. Clayton K. Nielsen 

 

Meadows are critical in arid and semi-arid Argentinean Patagonia because of their 

importance for regional biodiversity.  Despite this, little information on the spatial distribution of 

meadows is available and no analysis of the potential effect of climate change on meadows has 

been performed, which hampers conservation planning.  In this study, I modeled the spatial 

distribution of meadows and investigated how climate change may affect the current distribution 

of meadows in arid and semiarid Patagonia by 2050.  In addition, I investigated conservation 

status and areas of desertification vulnerability of those areas predicted to contain meadows.  I 

used high-resolution imagery available in Google Earth software to visually estimate presence 

and absence of meadows.  To model current and future distribution of meadows I used these 

observations and different socio-environmental predictor variables.  I implemented generalized 

linear, additive, boosting, and random forest models, as the basis for a mean ensemble 

technique.  I predicted future distribution of meadows using four different general circulation 

models and the A2 SERES scenario.  The final ensemble model was an accurate representation 

of the current distribution of meadows in Patagonia and indicates they are severely under-

represented within protected areas.  I determined that overall meadow abundance is going to 

decrease by 2050 given the changes in climate.  However, there were two contrasting trends: 

severe reduction of meadows in northwest Patagonia and Tierra del Fuego Island, and an 

expansion of suitable areas for meadows in the south and a small section in the northwest.  This 
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first regional map of meadow distribution across Argentinean Patagonia and information on 

meadows vulnerability to climate change represent key information for planning actions to 

conserve this critical habitat. 
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CHAPTER 1 

MEADOWS IN PATAGONIA: A BACKGROUND 

 

Arid and semi-arid landscapes 

Arid and semi-arid landscapes encompass approximately 41% of Earth´s terrestrial 

surface, and are expanding (Schlesinger et al. 1990; Millenium Ecosystem Assessment 2005).  

Since more than three decades ago, desertification, understood as “land degradation in arid, 

semi-arid and dry sub-humid areas resulting from various factors including climate variation and 

human activities” (ICCD 1994), has been identified as the main environmental problem in these 

landscapes (Dregne 2002).  Biophysical processes are important forces driving natural 

desertification (Hartley & Chong 2002; Hillel & Rosenzweig 2002), however, agricultural, 

extractive (e.g., mining) and industrial activities have increased land degradation to 

unprecedented levels (de Sherbinin 2002).  In agricultural landscapes, overgrazing by livestock 

appears to be one of the most important disturbances, promoting losses in vegetative cover and 

simplification of vegetation structure, which together exposes soil surfaces to the erosive 

processes that drive desertification (de Sherbinin 2002; Ares 2003; Paruelo et al. 2008).   

Even though wetlands encompass a relatively small portion of arid and semi-arid 

landscapes, they are the central drivers of many arid-ecosystem processes, such as weathering, 

soil formation, biological activity and nutrient pools, and distribution of vegetation and 

associated fauna (Newman et al. 2006).  In addition, in arid areas human activities concentrate 

near wetlands.  Such constant human pressure by land use, water withdrawal, pollution, and 

exotic species introduction trigger desertification processes and loss of biodiversity.  

Furthermore, current global warming trends may accelerate the desertification process and loss 
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of wetlands (Sala et al. 2000; Brönmark & Hansson 2002), which will affect even more of the 

biodiversity associated with them.  Consequently, interest in protecting wetlands in arid and 

semi-arid regions of the world to address such problems has increased recently (Saunders et al. 

2002; Brinson & Malvárez 2002; Brönmark & Hansson 2002; Lytle & Poff 2004; Revenga et al. 

2005).   

Patagonian meadows 

About two-thirds of Argentina´s continental surface is associated with arid and semi-arid 

ecosystems (UNESCO 2010).  The arid and semi-arid Patagonia region (excluding the 

subantarctic andino-patagonic forest strip and the seacoast) encompasses >700,000 km
2
 and 

makes up 28% of the country (Soriano 1983).  Approximately 5% of this area is composed of 

wetlands (Iriondo 1989).  Among the different wetlands, azonal meadows are scattered on the 

landscape.  Meadows are small dimension grasslands primarily composed of grasses and reeds, 

where occurrence is associated with the permanent presence of water near the ground surface 

(Mazzoni & Vázquez 2004).  These wetlands are important habitats in Patagonia, with soils rich 

in nutrients and organic matter, and act as important water reservoirs (Ayesa et al. 1999; Perotti 

et al. 2005).  In accordance with world desertification trends, meadows in Patagonia appear to be 

degraded, with numerous threats existing to their continued health and persistence.  Overgrazing 

by livestock is the main cause of meadow degradation, because this activity reduces vegetation 

cover, encourages evaporation, reduces soil water retention, and therefore, increases fluvial and 

aeolian erosion patterns (Paruelo & Aguiar 2003; Perotti et al. 2005).  Given the aridity of 

Patagonia, most human settlements occur near rivers where meadows are more abundant.  The 

number of dams are increasing, changing the sedimentation and flow rates on main rivers 

(Fundación Torcuato Di Tella 2006).  Moreover, gas and oil extraction activities often pollute an 
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enormous amount of both superficial and underground water (i.e., Fiori & Zalba 2000), 

indirectly affecting the provision of water and its quality on meadows.  Furthermore, human 

activities encourage the introduction of exotic species, which has been identified as another 

important threat to the biodiversity of meadows in Patagonia (Iglesias & Pérez 1998; Pascual et 

al. 2002; Perotti et al. 2005).  Finally, predicted increases in temperature and decreases in 

precipitation and river water flows in the area would likely accelerate all degradation processes 

(Vera et al. 2006; Nuñez et al. 2008; Kitoh et al. 2011). 

Previous studies 

 The first research on meadows in Patagonia began in the late 1950s (Boelke 1957), with 

research ongoing today.  Most research has assessed productivity, fertility, and other agricultural 

attributes at very specific locations, including assessments of desertification due to livestock 

overgrazing (Lanciotti et al. 1993).  Additionally, during the last 14 years the National Institute 

of Agricultural Technology (INTA) has started to use remote sensing to assess meadow status in 

Patagonia.  Several projects have been performed in Río Negro province and a Neuquén 

province covering an area of approximately 27,000 km
2 

(3.35% of arid and semi-arid Patagonia).  

In these studies, meadow distribution and classification into utility types were performed.  

Landsat TM images for the years 1985/88/89/2002 were used to conduct supervised 

classification and visual interpretation, given the Normalized Difference Vegetation Index 

(NDVI) and band combinations (Bran et al. 1998; Ayesa et al. 1999; López et al. 2005; Gaitán et 

al. 2009).  In addition, Mazzoni & Vázquez (2004) developed a complete map of meadows cover 

for Santa Cruz province using Landsat TM images for the years 1984/85/86.  However, no 

current and complete assessment of meadows distribution exists for the arid and semi-arid 

Patagonia, nor does any consider the vulnerability of meadows to future changes in climate. 
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Climate change 

Growing evidence indicates that recent climatic variations are due to an increase of 

anthropogenic greenhouse gases.  Global surface temperatures have already risen 0.74ºC since 

the beginning of the 20th century, with 0.61ºC of the increase occurring in the past 30 years 

(Trenberth et al. 2007), and current models predict at least another increase of 1.1 to 6.4ºC for 

the next century (Meehl et at. 2007).  Precipitation patterns have also been altered around the 

world due to climate change (Trenberth et al. 2007).  

Specifically in central and northern Patagonia, Labraga (1994) reported a temperature 

increase of 0.5 ºC at five main weather stations between 1900 and 1980.  In addition, Rusticucci 

and Barrucand (2004) reported an increase in minimum temperature of 0.2 to 0.8 ºC per 10 years 

during the period between 1959 and 1998 for Patagonia, and an increase in maximum 

temperature of 0.2 to 0.4 ºC per 10 years during the same period of time.  According to different 

climate models with different emission scenarios, increases from 1 to 4 ºC or 2 to 6 ºC are 

predicted for South America by the year 2100 (Nuñez et al. 2009).  In addition, a declining trend 

in precipitation has been observed in southern Chile and southwest Argentina, and predictions 

for the Patagonian Andes indicate a decrease in annual mean precipitation (Nuñez et al. 2009).  

Patagonia conservation status 

Even though the arid and semi-arid Patagonia region encompasses >700,000 km
2
 and 

represents 28% of the country, protected areas make up only 4.7% of the area, with < 1% of 

these reserves being IUCN Level I, II, or III protected areas (Burkart et al. 2007).  Arid and 

semi-arid Patagonia is one of the 200 world ecosystems classified as priority for conservation 

(Olson & Dinerstein 2002) and has a recognized conservation importance by different 

institutions.  BirdLife International selected Southern Patagonia as a high-priority site for 
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conservation (Stattersfield et al. 1998).  In addition, one of the recent biodiversity centers of 

plants is located in Patagonia (WWF/IUCN 1997).  

Given the importance of Patagonia for biodiversity and its lack of protection, a project 

called “Identification of sites with high values for biodiversity in arid and semi-arid Patagonia” is 

being developed by the National Park Administration of Argentina in conjunction with the 

Wildlife Conservation Society (WCS) and The Nature Conservancy.  The goal of this project is 

to prioritize areas for conservation based on a simulation-based optimization approach, using the 

decision-support software Marxan (Tamone 2010).  This software attempts to find a network of 

conservation areas that reach quantitative objectives for a set of conservation targets for a 

minimum total cost (see Ball et al. 2009).  Input information to Marxan consists of different 

biodiversity features such as species distributions and land cover data.  Given the importance of 

meadows to the biodiversity of this region and its restricted distribution, a map of meadow 

distribution is highly important and a derived branch of this conservation project.  In addition, 

meadows distribution could be used as a surrogate to include endemic or restricted range species 

in the reserve prioritization design.  Moreover, studies of how climate change would affect 

species and community distributions are gaining importance in the field of conservation 

planning, providing, for instance, information for designing potential corridors (Williams et al. 

2005) or assessing the effectiveness of reserve networks (Araujo et al. 2004; Hannah et al. 2005; 

Lee & Jetz 2008).  Estimates of future trends in meadows distribution under climate change will 

provide important information to allocate properly conservation efforts for the mentioned 

project. 
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The need for further research 

Land degradation due to anthropogenic activities and climate change is affecting the arid 

and semi-arid Patagonian landscape.  Meadows, which are rare and declining in Patagonia, are 

important habitat, maintaining high levels of biodiversity and providing high levels of primary 

productivity and ample water sources relative to the surrounding landscape.  Even though local 

studies have been conducted to map meadows, a current and large-scale study to assess which 

areas of arid and semi-arid Patagonia contain meadows is needed.  

Climate change models forecast an increase of temperature and decrease in precipitation 

for the region.  These environmental alterations may affect vegetation distribution.  However, no 

analysis of the potential affect of climate change on meadows has been performed for Patagonia.  

Furthermore, knowledge of where degradation processes due to climate change are inevitable 

would be important to properly focus conservation efforts.  Although a project to design a proper 

reserve network is being conducted in Patagonia (Tamone 2010), meadow distribution and future 

degradation have not been considered in any analysis.  
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CHAPTER 2 

MODELING MEADOW DISTRIBUTION FOR CONSERVATION ACTION IN 

ARID AND SEMI-ARID PATAGONIA, ARGENTINA 

 

Introduction 

Wetlands include a variety of temperate freshwater systems distributed in major 

ecoregions of the world (Brinson & Malvárez 2002) and are imperative for providing critical 

habitat for many species (Bedford et al. 2001).  Although wetlands encompass a small portion of 

arid and semi-arid landscapes, they drive many ecosystem processes, such as weathering, soil 

formation, biological activity, and nutrient pools (Newman et al. 2006).  Worldwide, wetlands 

are strongly and negatively influenced by anthropogenic activities, because societies commonly 

settle where wetland areas occur (Brinson & Malvárez 2002). 

In Argentina, wetlands make up approximately 5% of arid and semi-arid Patagonia 

(Iriondo 1989), including lakes, ponds, peatlands (turberas), and meadows (mallines; Modenutti 

et al. 1998; Brinson & Malvárez 2002).  Meadows are grasslands located in low areas, valley 

rivers, or at sides of hills and are continually irrigated with superficial and underground water 

(Mazzoni & Vázquez 2004).  Consequently, meadows can be small isolated patches on hillsides 

or form large continuous areas following the drainage system along valleys.  In a meadow, 

generally three main areas can be differentiated: a central area dominated by Juncus spp. and 

Carex spp.; an intermediate area dominated by Festuca pallescens, Poa patensis, and Distichlis 

spp.; and an outermost transition area with the surrounding steppe, normally dominated by Stipa 

spp. and sometimes shrubs like Senecio filaginoides (Ciari 2009).  Although meadows 

encompass a small portion of Patagonia, they are important systems in the arid landscape.  
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Vegetation found in meadows present rates of primary production three to five times higher than 

the surrounding steppe (Irisarri et al. 2012), which together with the permanent source of water, 

creates important resources and habitat for native terrestrial species.  These grasslands are highly 

used by guanacos (Lama guanicoe), the largest herbivore of Patagonia (Ortega & Franklin 1988; 

Puig et al. 2008), and by several bird species that use them for feeding, reproduction, and resting 

(Mazzoni 2000).  Furthermore, many studies suggest the importance of meadows for regional 

biodiversity in general (Iglesias & Pérez 1998; Brinson & Malvárez 2002; Perotti et al. 2005).  

Nevertheless, because meadows are highly productive and provide permanent access to water, 

they are prime locations for anthropogenic development.  As a consequence, meadows are 

threatened in Patagonia, with water erosion and overgrazing by livestock the major cause of 

degradation (Paruelo & Aguiar 2003; Perotti et al. 2005). 

Several studies have been conducted in Patagonia across relatively small areas (i.e., 

10,000 km
2
) where meadows were mapped using remote sensing techniques (Bran et al. 1998; 

Ayesa et al. 1999; Mazzoni & Vázquez 2004; López et al. 2005; Gaitán et al. 2009).  Because 

meadows are rare on the landscape, moderate spatial resolution imagery (i.e., Landsat TM, 30 m 

spatial resolution) is necessary to identify them in an image classification process.  This issue 

limits the area to map meadows using classification techniques to the size of the image swath 

(i.e, a mosaic of about 52 Landsat TM images would be necessary to cover Patagonia).  

However, the recent improvement of Geographic Information Systems (GIS) together with 

powerful statistical tools has led to development of predictive species distributions models 

(SDMs), which make it possible to map the  broad scale distribution of biological entities and 

consequently improve management decisions and conservation strategies (see Peterson 2006).  

Species distribution models are empirical models that relate species occurrence data with 
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environmental predictor variables such as climate, geology, and topography (Guisan & 

Zimmermann 2000; Guisan & Thuiller 2005).  Such modeling techniques have been used 

broadly to model distributions of individual species, but also entire communities such as 

grasslands, thereby producing information on spatial patterns in distribution of biodiversity 

(Ferrier & Guisan 2006). 

Much of Patagonia is altogether unprotected from anthropogenic degradation, thus 

making meadows even more vulnerable to degradation.  Only 4.7% of arid and semi-arid 

Patagonia is protected and <1% is protected by IUCN Level I, II, or III reserves (Burkart et al. 

2007).  Furthermore, the extent of meadow protection is entirely unknown.  In Patagonia, a 

current and broader-scale study is necessary to truly assess meadows distribution.  Given the 

significance of meadows to regional biodiversity, a current distribution model would be an 

important data layer to include in future conservation planning projects, and could be also used 

as a surrogate to account for endemic or restricted range species associated with this environment 

(Ferrier 2002).  In this study I used a SDM approach within the platform BIOMOD (Thuiller et 

al. 2009) to model the current distribution of meadows in arid and semi-arid Patagonia.  I used 

four modeling techniques, generalized linear models (GLM), generalized additive models 

(GAM), general boosting models (GBM), and random forests (RF), to generate individual 

predictive distributions.  I then used these predictive distributions as the basis of a mean 

ensemble method (Marmion et al. 2009) to create our final model.  The main aims of this study 

were to (i) generate a final ensemble distribution model of the distribution of meadows in arid 

and semi-arid Patagonia; and (ii) investigate conservation status of those areas predicted to 

contain meadows.  
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Study area 

Arid and semi-arid Patagonia (excluding the subantartic andino-patagonic forest strip and 

the seacoast) is >700,000 km
2
 in area and extends from 39º to 55º S and from the Atlantic Ocean 

to the Andean piedmont in the west.  This study area includes two major phytogeographic 

provinces: Patagonia, a mixed of grass-shrub steppes and semideserts in central and southern 

Patagonia, and the Monte, composed by shrub steppes in northern Patagonia (León et al. 1998).  

The climate of the area is cold-temperate.  The mean annual temperature ranges from 12º C in 

the north to 3º C in the south, with absolute minimum temperatures below -20º C (Paruelo et al. 

1998).  From the Andes to the coast, annual precipitation decreases considerably, with a mean 

annual precipitation for central Patagonia of 200 mm per year (Paruelo et al. 1998).  This 

combination of low rainfall, high-summer temperatures and strong winds result in high 

evapotranspiration rates, which is responsible for the dryness of the region (Fernández & Busso 

1999). 

Material and methods 

Presence/absence data for model calibration 

Meadows present high spectral contrast with respect to the surrounding steppe, thus they 

can be easily distinguished from surrounding land cover if satellite imagery is sufficiently high in 

spatial resolution.  During December 2011-January 2012 I used high-spatial-resolution imagery 

(<4 m) compiled in the Google Earth database (version 6.1, Google Inc., Mountain View, CA, 

USA) to identify presence of meadows across the study area.  Google Earth is one among many 

Virtual Globe software systems that are being used with growing frequency in many research 

fields (Sheppard & Cizek 2009).  The Google Earth model of the world consists of hundreds of 

thousands of satellite and aerial images combined from different sources, including non-
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commercial satellites (e.g. Landsat, Spot) and commercial satellites (e.g. Digital Globe’s 

QuickBird) and also many providers of aerial photographs.  For this reason, I could not 

determine the year of each image used for assessing meadows presence; however, Google Earth 

ensures the best image available, which typically included images 1-3 years old (Google 

Corporation 2012). 

I assessed the presence or absence of meadows across the study area by overlaying it with 

a grid of 1 km
2
 cells and visually assessed a sample of those cells for meadows.  I knew a priori 

that they occurred in a small portion of the study region (approximately 5%) and were more 

likely to be abundant in river valleys and closer to the Andes Mountains.  To ensure that my 

training/validation data set had a sufficient number of presences, I used an equal-stratified 

sampling strategy; this design ensures more accurate model predictions than the proportional-

stratified design (Hirzel & Guisan 2002).  I stratified the study area based on elevation (east-west 

gradient) and distance from rivers given their known influence on potential meadow locations 

(Bran et al. 1998).  I defined three strata for elevation (stratum 1: 0-400 m; stratum 2: 401-800 

m; stratum 3: >801 m) and two strata for distance from rivers (stratum 1: 0-2,000 m; stratum 2: 

>2,001 m).  From the study area grid, I randomly selected 167 cells per stratum using the 

NOAA’s Biogeography Branch Sampling Design Tool for ArcGIS 

(http://ccma.nos.noaa.gov/products/biogeography/sampling/, accessed 13 Nov 2011).  In total, I 

randomly selected 1,002 cells, aiming to ensure >100 presences. 

High resolution imageries provided by Google Earth make it possible to differentiate 

meadows, which appear visually as continuous patches of different shades of green, from the 

surrounding gray and brown steppe.  To determine if a meadow was present (1) or absent (0) in a 

particular 1 km
2
 cell, I first examined the quality of Google Earth imagery within the 1,002 cells 



12 
 

 

 

chosen for sampling.  Only cells completely covered by high resolution imagery were kept; 

others were discarded if covered by snow or clouds or unclear.  If the cell was covered by ≥5% 

of meadows, I considered meadows to be present, otherwise, I considered that meadows were 

absent. 

I was concerned that my ability to detect meadows when present may be imperfect and, 

further, that detection ability may vary by image context (e.g., meadow quality, surrounding 

habitat types, overall wetness of the region).  Imperfect detection could result in an inaccurate 

estimate of presence probability of a feature, such as meadows, which may cause errors in 

mapping their distribution (Vaughan & Ormerod 2003; Reese et al. 2005).  Therefore, I 

examined my ability to detect meadows when they were present by repeatedly searching a 

subsample of 20 randomly-selected cells per stratum.  I then visually assessed each cell three 

times (“visits”) for the presence of meadows, with three weeks between each visit, to minimize 

the chance that recollection from previous visits influenced the probability of detection in 

subsequent visits.  I obtained an overall detection probability of 97.5%; only 2.5% of the time 

did I fail to detect a meadow in one visit when I detected it in another, indicating that my 

probability of detection was very high.  Based on this high detection probability, I decided it was 

not necessary to use occupancy models that adjust for probability of detection (MacKenzie et al. 

2006) for analysis. 

Socio-environmental variables 

I initially compiled a set of 30 potential predictor variables I thought likely affect the 

distribution of meadows, including climate variables; aridity and evapotranspiration indices; 

physiographic variables such as distance from rivers, Normalized Difference Vegetation Index 

(NDVI), elevation, slope, and aspect; and human impact variables, such as human population 
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density, croplands, and pasture lands.  I reduced the number of predictor variables based on a 

cluster analysis using the function Varclus within the package Hmisck in the R programming 

language  (version: 2.14.0, R Development Core Team 2011), identifying groups of variables 

that were correlated among themselves but uncorrelated to other clusters.  Finally, I arbitrarily 

selected one variable per cluster based on my understanding of biological influences on meadow 

occurrence.  Cluster analysis has been used similarly in several variable reduction approaches for 

habitat modeling (Scharine et al. 2011; Anderson et al. 2011). 

Cluster analysis resulted in the selection of 11 predictor variables for further modeling.  I 

used five climate variables (maximum temperature of the warmest month, minimum temperature 

of the coldest month, precipitation of the wettest month, precipitation of the driest month and 

precipitation seasonality) obtained from the WorldClim database, at 30 arc-seconds resolution 

(Hijmans et al. 2005; available at: http://www.worldclim.org/download).  Although temperature 

and precipitation are important determinants of meadow presence, their occurrence is also 

associated with drainage systems (Buono et al. 2010).  Therefore, I also calculated distance to 

rivers (both permanent and non-permanent) using river shapefiles provided by the Argentinean 

Geographic National Institute (C. Chehébar, Pers Comm, National Park Administration, San 

Carlos de Bariloche, Argentina); and I included soil cover information created by the National 

Institute of Agricultural Technology (INTA), Argentina, selecting soil order classification as the 

predictor variable (available at: http://geointa.inta.gov.ar/).  I also used altitude derived from a 

Digital Elevation Model (DEM) at 30 m resolution.  To account for land-use changes driven by 

human activities in areas suitable for meadows (e.g., degradation by livestock farming, wetlands 

drainage for agricultural purposes), I included a Human Influence Index (HII) variable produced 

in conjunction by the WCS and the Center for International Earth Science Information Network 
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(CIESIN).  The HII was calculated from nine global data layers considering population density, 

human land use and infrastructure (built-up areas, nighttime lights, land use and land cover) and 

human access (coastlines, roads, railroads and navigable rivers), for the year 2000 (Last of the 

Wild Data Version 2 2005; available at: http://sedac.ciesin.columbia.edu/).  Finally, I used a 

MODIS NDVI image (MYD13A1; 1 km resolution), obtained from Earth Observing System 

Data and Information System (2009) for 19 Jan 2011, a period in which meadows are obvious on 

the landscape, hence possess higher NDVI values.  

I re-projected each data layer to UTM Zone 19 South.  I down-scaled the resolution of 

altitude layer to match the 30 arc-seconds (equal to 1 x 1 km) resolution of WorldClim, HII and 

NDVI.  I used ArcGIS 9.3 (ESRI, Redlands, California, USA) for most geospatial operations.  

For NDVI data we used the Modis Reprojection Tool 4.1 

(https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath, accessed 17 Jan 2012) to mosaic 

original images and re-project them to the UTM Zone 19 South. 

BIOMOD ensemble forecasting framework 

I predicted the current distribution of meadows throughout the study area using BIOMOD 

(Thuiller et al. 2009), which works in the R programming language (version: 2.14.0, R 

Development Core Team, 2011).  I used four modeling techniques used frequently in the 

literature that perform accurately compared to other modeling techniques (Segurado & Araújo 

2004; Araújo et al. 2005; Elith et al. 2006; Cutler et al. 2007; Marmion et al. 2009): 

1. Generalized Linear Models (GLM; McCullagh & Nelder 1989) are extensions of the 

linear (regression) model, but provide more flexibility and can handle different error 

distributions in the response variable and non-constant variance functions.  I ran GLMs 

with a binomial variance and a logistic link function, and fit them using linear, quadratic 
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and polynomial terms (second and third order).  I used a stepwise procedure with 

Akaike’s Information Criterion (AIC) to select the most parsimonious models (Akaike 

1973).   

2. Generalized Additive Models (GAM; Hastie & Tibshirani 1990) are similar to GLM but 

are more flexible because they do not require fitting a parametric response function to the 

predictor variable.  Instead, GAMs use smoothing functions to locally fit a subsection of 

data.  Thus, the algorithm fits a smooth curve to each predictor variable and then 

combines the results additively.  I ran GAMs with a binomial variance and a logistic link 

function, and I used cubic-smooth splines with a degree of smoothness of ≤4 degrees of 

freedom for each variable.  Here I also used AIC for model selection.  

3. Generalized Boosting Models (GBM), also known as Boosted Regression Trees (BRT), 

seek to fit a large number of relatively simple models whose predictors are then 

combined to give more robust estimates of the response of the species’ distribution to the 

set of predictor variables. The algorithm used in BIOMOD is a boosting regression tree, 

where each simple model consists of a classification tree (Friedman 2001).  Each tree is 

built by repeatedly splitting the data into two homogeneous groups, defined by a simple 

rule based on a single explanatory variable. The GBM uses an iterative method for 

developing a final model, where trees are progressively incorporated into the model at the 

time that re-weighting the data accentuates cases poorly predicted by previous trees. As a 

result, an additive regression model in which individual terms are simple trees is 

obtained.  Boosting differs from other multi-model techniques in that it is a sequential, 

forward stage-wise procedure.  I ran GBM using a maximum number of 5,000 trees and 

five lambda fold-cross-validation to progressively grow models.   
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4. The Random Forests model (RF; Cutler et al. 2007) is an extension of classification tree 

analysis.  Instead of producing a single classification tree, it produces many trees, a 

“forest”, and then combines all the predictions into one.  At each node of the tree, a 

selected group of random variables are used, and the best split from these random 

variables is used to split the node.  The number of random variables selected is held 

constant during the forest growing and each tree is grown to the largest extent possible.  I 

ran RF with 500 trees. 

Accuracy assessment of individual models 

Proper measures of model accuracy may use independent data different from the dataset 

used to build the model.  However, because it is difficult to obtain independent locations, I 

implemented a data partitioning approach on training and validation data sets (Fielding & Bell 

1997).  Araújo et al. (2005) have shown that models´ predictive accuracy obtained from a 

splitting strategy provides a generally good assessment compared to model validation using 

independent data.  I split the data set into a 75% training data set and 25% validation data set.  

The size of the split was determined using: [1 + (p – 1)
1/2

]
-1

, where p is the number of predictor 

variables (Fielding & Bell 1997).  I used a cross-validation procedure to assess model accuracy.  

For each modeling technique I ran 10 iterations, each time with a different random split of the 

data for training and validation.  This ensures more robust estimates of the prediction 

performance and an assessment of the sensitivity of the models to the initial conditions (Thuiller 

2009).  

To assess prediction accuracy, I used area under the curve (AUC) of the receiver-

operating characteristic (ROC) plot (Fielding and Bell 1997).  AUC is not dependent on a 

threshold value to convert continuous model outputs in presence/absence data, and AUC values 
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range from 0.5 (model predicted no better than random) to 1 (perfect predictions).  I interpreted 

AUC accuracy values following Swets (1988): excellent AUC > 0.9, good 0.9 > AUC > 0.8, fair 

0.8 > AUC > 0.7, poor 0.7 > AUC > 0.6 and fail 0.6 > AUC > 0.5.  It is important to highlight 

that AUC is criticized as an accuracy assessment (see Lobo et al. 2008).  Thus, I also calculated 

sensitivity and specificity of my predictions, using the threshold that maximized the percentage 

of presence and absence cells correctly predicted for ROC curves to transform probability values 

into presence/absence format.  If AUC values for models were >0.7, then I used the whole data 

set for calculating sensitivity and specificity (W. Thuiller Pers Comm, Laboratory of Alpine 

Ecology, University Joseph Fourier, Grenoble, France).  Sensitivity measures the percentage of 

cells correctly predicted as having meadows present and specificity measures the percentage of 

cells correctly predicted as having meadows absent (Fielding & Bell 1997). 

Combining models 

Because different models may produce different results for the same data set (Segurado 

& Araújo 2004), modelers have increasingly used ensemble (also known as consensus) model 

techniques which improve prediction accuracy over single models (Araújo & New 2006; 

Marmion et al. 2009).  I used a mean ensemble approach, which is the mean value of the outputs 

of all single runs, which has been shown to perform better than other ensemble techniques 

(Marmion et al. 2009).  I first extrapolated each of the 40 individual models (10 using each 

technique) to the entire study area, obtaining 40 distribution models.  Subsequently, I calculated 

the mean ensemble model as the mean presence-probability value among the 40 individual 

models created.  I then transformed the final ensemble model in a binary presence/absence 

format using a threshold calculated as the mean value of all threshold values obtained for the 



18 
 

 

 

individual models.  To measure the accuracy of the ensemble approach, I calculated the AUC 

using the original calibration data set. 

As additional accuracy measures, I randomly selected 100 predicted presences and 100 

predicted absences (a separate set of observations than those used to train the model) from the 

final ensemble model.  Implementing the same method used previously to obtain the meadows 

presence/absence data, I visually assessed every cell in Google Earth and calculated AUC, 

sensitivity, and specificity of the ensemble model based on those 200 cells.  Finally, I also 

measured sensitivity of the final ensemble model using an independent dataset comprised of 23 

known field locations of meadows located at the west-central portion of the study area (L. Epele, 

Laboratory of Ecological and Animal Systematic Research, Esequel, Chubut, Argentina).  I 

located the cells on the final ensemble map that corresponded to those 23 locations and 

investigated whether predictions were presences or absences, and calculated the percentage of 

cells correctly predicted as having meadows present. 

Protection status 

Using ArcGIS 9.3 (ESRI, Redlands, California, USA) and based on the final 

presence/absence ensemble model, I calculated the percentage of cells containing meadows that 

were included within any existing protected area.  I considered first all existent protected areas, 

and second, only those protected areas assigned IUCN level I, II or III status, which included 

National Parks, Provincial Parks, Province Natural Monuments, Natural Reserves, and Natural 

and Cultural Reserves.  IUCN level I, II or III are the only reserves that ensure strict and 

effective protection to the area.  The layer of Patagonian-protected areas was provided by the 

National Park Administration, Argentina (C. Chehébar, Pers Comm, National Park 

Administration, San Carlos de Bariloche, Argentina). 



19 
 

 

 

Results 

I determined the presence or absence of meadows in 976 of the 1,002 cells intended for 

sampling; the other 26 cells were covered by clouds, snow, or the image was unclear.  Meadows 

were present in 146 cells (15% prevalence; Table 2.1). 

Accuracy of the 40 final models was excellent, good, and fair, 37.5%, 55% and 7.5% of 

the time, respectively (Table 2.2).  Sensitivity and specificity values of all models were >80% 

and different runs were consistent, as represented by low standard deviations (Table 2.3).  

Accuracy of the final ensemble model predicting cells covered by ≥5% of meadows was 

excellent (AUC = 0.97).  Area under the curve, sensitivity, and specificity measured over 100 

predicted presences and 100 absences selected from the final ensemble model and examined in 

Google Earth were 0.88, 93% and 75%, respectively.  Sensitivity of the final ensemble model 

based on independent field locations was 78.3%.  However, one field location predicted as an 

absence by the final ensemble model was a small meadow that covered <5% of a 1 km
2
 cell 

when viewed in Google Earth.  Eliminating this cell from the analysis, as it was considered as an 

absence, would increase sensitivity to 81.8%. 

Among the 11 predictor variables, maximum temperature of the warmest month, 

precipitation of the wettest month, NDVI, distance to permanent rivers and distance to both 

permanent and non-permanent rivers were consistently selected by the four modeling techniques 

(Table 2.4), indicating their overall importance to the distribution of meadows.  General boosting 

models and RF produced the most complex single models, selecting all 12 variables in each run, 

whereas GLM and GAM produced more simple single models selecting, on average, 7.2 and 6.1 

explanatory variables, respectively. 
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A total of 11.5% (90,889 km
2
) of all 1 km

2
 cells were predicted by the final ensemble 

model to be covered by ≥5% of meadows in arid and semi arid Patagonia (Figure 2.1).  Meadows 

were more clustered in the western portion of the study area and along rivers and occurred only 

on the Patagonia phytogeographic Province, and not the Monte Province.  In the southern region, 

meadows also were located near the Atlantic coast following major rivers.  Meadows also were 

highly abundant on Tierra del Fuego Island.  From all cells predicted to be covered by ≥5% of 

meadows, only 2.74% were included in any kind of protected area, and just 0.14% were located 

in any IUCN level I, II or III protected area (Figure 2.1).  

Discussion 

Land managers require information on the spatial distribution of natural entities to ensure 

their conservation.  This study represents the first attempt to determine the distribution of 

meadows across arid and semi-arid Patagonia at a broad scale.  I found that Google Earth was a 

useful tool for studying the distribution of meadows and could be valuable for assessing 

community-level distributions elsewhere.  Furthermore, I obtained highly accurate models of the 

distribution of meadows in arid and semi-arid Patagonia, with high AUC, specificity, and 

sensitivity values.  Such accuracy was improved by the final ensemble model, which also had 

high values of AUC, sensitivity, and specificity measured for 200 cells randomly selected from 

the final ensemble model and examined in Google Earth, and high sensitivity based on 

independent field locations.  I also found that a vast majority of meadows are currently 

unprotected.  The final ensemble model provided an accurate representation of meadow 

occurrence and will be a vital piece of information to improve the conservation network in arid 

and semi-arid Patagonia. 
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When modeling the distribution of natural entities, the main source of prediction error is 

the “noise” associated with species occurrence data and predictor variables (Vaughan & 

Ormerod 2003; Reese et al. 2005).  When possible, both presence and absence records are 

preferable (Brotons et al. 2004), but presence-only data can also be useful (Elith et al. 2006).  In 

my case, existing field observations were not available for Patagonia and collection of 

presence/absence information in the field was prohibitively costly.  Therefore, I used Google 

Earth to obtain presence/absence data based on high resolution imagery, which led to accurate 

models of meadows at a low cost.  Using Google Earth also allowed me to develop an 

environmental stratification with a random sampling design to enable more accurate predictions 

(Hirzel & Guisan 2002; Vaughan & Ormerod 2003; Reese et al. 2005).  Google Earth is a novel 

technology that is increasingly being implemented in different fields (Sheppard & Cizek 2009).  

I contend that Google Earth could be used for modeling the distribution of vegetation 

communities that are homogeneous in their physiognomy and can be visually identified via high 

resolution imagery. 

Because the use of only AUC as accuracy measures on SDMs has been criticized (Lobo 

et al. 2008), I additionally performed two analyses of sensitivity and specificity to test the 

accuracy of the final ensemble model.  I found a general consensus among the different accuracy 

measures, supporting the robustness of the model.  Although the model exhibited high levels of 

sensitivity, I found that sensitivity assessed using independent field locations was low (78%), 

perhaps due to relatively few field data, compared to sensitivity measured using Google Earth 

(93%).  However, meadows present high interannual and spatial primary-production variation 

(Buono et al. 2010; Irisarri et al. 2012), and because I could not control the timing of images 

from Google Earth, it was harder to identify meadows presences on images taken during the 
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winter months of low vegetative productivity.  Hence, it was possible to miss presences if I 

confused meadows with the surrounding steppe.  This issue could explain the lower sensitivity of 

the field data.  Despite this, the ensemble model was able to correctly predict the presence of 

most of the known existing meadows; only four or five cells were misclassified.  In addition, the 

sensitivity value obtained for the ensemble model using field points was in the range of those 

values obtained for the individual GLM and GAM models. 

The final ensemble model predicted presences of meadows better than absences when 

evaluating accuracy using Google Earth for 200 cells selected from the final ensemble model.  

When I visually examined the 25% of the cells indicated as false presences (predicted as a 

presence but determined as absence when using Google Earth), I noted four possible reasons for 

these inaccuracies.  First, many of the false presences may have been confused with agricultural 

areas, as they mainly occurred in the eastern zone of the study region and near rivers.  Many of 

these areas likely corresponded to agricultural fields along river valleys that often produce high 

NDVI values similar to those produced by meadows.  Although most of these agricultural areas 

were excluded in the model by the HII layer that represents human impact, this predictor layer 

was 12 years old and may not have captured many current agricultural areas.  Second, the 

southern extreme of the study area, Tierra del Fuego Island, was predicted to have a high density 

of meadows.  Peatlands, another type of wetlands characterized by the accumulation of organic 

matter and closely related to meadows (Roig & Roig 2004), are widespread in the Magallanic 

Tundra Complex (Brinson & Malvárez 2002; Malvárez et al. 2004).  I likely could not 

differentiate peatlands from meadows, or both wetlands occur simultaneously, resulting in a high 

presence rate in that area.  Third, cells with <5% of meadow cover, when examined closely, were 

often surrounded by other cells covered with ≥5% of meadows.  This error originates from the 
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intrinsic spatial error of different predictor variables.  Finally, some cells may have been “on the 

edge” of the threshold value in terms of probability (moderate or low) of containing meadows.  It 

was inherently more difficult to accurately predict presence or absence in this threshold edge 

value.  Understanding these sources of error, I was not surprised to get a lower AUC value 

measured for the 200 cells analyzed via Google Earth in our final ensemble model (0.88) 

compared to the AUC value obtained from the total calibration data (0.97). 

Meadows are mostly unprotected in arid and semi-arid Patagonia, with only 0.14% of the 

cells predicted to be covered by ≥5% of meadows currently included in any IUCN level I, II or 

III protected area.  In northwestern Patagonia, two Provincial Parks, El Tromen and Domuyo; the 

National Park Laguna Blanca; and the Natural Provincial Monument Cañada Molina had 

meadows present.  In addition, studies conducted by INTA described different classes of 

meadows for Patagonia at smaller scales based on their quality conditions (Bran et al. 1998; 

Ayesa et al. 1999; López et al. 2005; Gaitán et al. 2009).  Specifically, Bran et al. (1998) and 

Ayesa et al. (1999) stated that 80% of meadows in northwest Patagonia were degraded.  In this 

large-scale study, I could not differentiate meadow conditions, however, it is likely that a 

significant percentage of the meadows are degraded, making the need for conservation efforts 

even more critical. 

Systematic conservation planning is the practice of locating, configuring, implementing, 

and maintaining areas with the aim of promoting the persistence of biodiversity (Margules & 

Pressey 2000), and SDMs are a powerful tool to provide the spatial information needed to 

conduct a conservation strategy (Peterson 2006).  Given the small proportion of arid and semi-

arid Patagonia that is currently protected, a multi-agency project to improve the conservation 

reserve network is currently underway, including collaborators such as WCS, The Nature 
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Conservancy (TNC) and the National Park Administration of Argentina.  This project intends to 

prioritize and eventually create areas for conservation based on a simulation-based optimization 

approach, using decision-support software Marxan.  This software attempts to find a network of 

conservation areas that reach quantitative objectives for a set of conservation targets for a 

minimum total cost (see Ball et al. 2009).  Given the importance of meadows to the biodiversity 

of arid and semi-arid Patagonia, their restricted distribution and the potential of meadows to be 

used as a surrogate to include endemic or restricted range species, my final regional map will be 

an important data layer for planning future conservation areas, ensuring protection for meadows 

and associated Patagonian biodiversity. 
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CHAPTER 3 

 

PREDICTING CLIMATE-CHANGE IMPACTS ON MEADOWS DISTRIBUTION IN 

ARID AND SEMI-ARID PATAGONIA, ARGENTINA 

 

Introduction 

Climate change has created a growing concern within the scientific community about 

how resultant environmental alterations are going to impact ecosystems.  It is well accepted in 

biogeography science that climate has a strong top-down effect on natural distributions of 

species.  Paleontological evidence (i.e., Davis & Shaw 2001; Davies et al. 2009) as well as 

current observed trends (i.e., McCarty 2001; Gian-reto et al. 2002; Parmesan 2006; Thuiller 

2007; Thomas 2010) showed that climate influences the change of species´ range.  With the wide 

acceptance of global warming and rapid environmental change, the demand for accurate 

predictions of its effects has increased, especially in the field of conservation biology (Botkin et 

al. 2007).  In addition, with this accepted influence and real impacts on biodiversity, climate 

change has become a central issue in worldwide conservation planning (McCarty 2001; Olson & 

Lindsay 2009). 

Conducting experimental research to determine how biodiversity will respond to climate 

change at the regional or global scale is difficult or even unviable (Woodward 1987).  Thus, the 

use of model simulations appears to be the most efficient and feasible method for these studies 

(Thuiller 2007).  Several models, known as Species Distribution Models (SDMs), were 

developed with the capability of assessing distributions and predicting climate-induced range 

shifts under different global change scenarios at the single-species level (Guisan & Thuiller 
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2005) and community level (Ferrier & Guisan 2006).  The main challenge when modeling 

species distribution is the variability in model outputs given by different modeling techniques 

(Segurado & Araújo 2004; Lawler et al. 2006) and differences in climate change models and 

scenarios (Pearson & Dawson 2003; Thuiller 2004; Lawler et al. 2009).  As a result, modelers 

are increasingly using ensemble (also known as consensus) modeling techniques which improve 

prediction accuracy over single models (Araújo & New 2006; Marmion et al. 2009).  By 

combining different modeling techniques with different climate-change models, more robust 

predictions can be made with an appropriate interpretation of results (Araújo & New 2006; 

Buisson et al. 2010).  However, the complexities of natural systems limit the scope of modeling 

results, as predictive errors are inevitable.  For example, although it is well known that spatial 

and time lags are a common phenomenon affecting species distributions (Pearson & Dawson 

2003; Guisan & Thuiller 2005; Lawler et al. 2006), most SDMs do not account for such lags.  

When modeling at the community level, it is also falsely assumed that species interactions will 

not change over time (Ferrier & Guisan 2006).  Notwithstanding these limitations, when an 

appropriate set of environmental predictor variables that account for natural and human effects 

are used, SDMs can provide a useful approximation to understand how species distributions may 

respond to climate change.  Predictions of SDMs should be considered a first approximation of 

potential future impact on distributions and not an accurate simulation of future range shifts 

(Pearson & Dawson 2003; Lawler et al. 2006).  Such information is crucial in developing 

countries, where threats to natural landscapes are imminent and where monetary resources are 

limited for conservation planning. 

Arid and semi-arid Patagonia encompasses >700,000 km
2
 of steppe-like plains in 

Argentina.  This arid landscape is irregularly interrupted by wetlands, covering approximately 
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5% of the total area (Iriondo 1989), counting lakes, ponds, peatlands (turberas), and meadows 

(mallines; Brinson and Malvárez 2002; Modenutti et al. 1998).  Specifically, meadows are 

grasslands whose structure and composition differ along their distribution, but in general three 

main areas can be distinguished: a center dominated by Juncus spp. and Carex spp.; an 

intermediate area dominated by Festuca pallescens, Poa patensis and Distichlis spp.; and an 

outermost transition area of steppe, normally dominated by Stipa spp. and sometimes shrubs like 

Senecio filaginoides (Ciari 2009).  Meadows occur in low areas where superficial or 

underground water continually irrigates them, mainly along river valleys or hill sides (Mazzoni 

& Vázquez 2004), and are three to five times more productive than the surrounding steppe 

(Irisarri et al. 2012).  These characteristics make meadows important ecosystems for the 

biodiversity of this arid region.  Meadows are nesting, feeding and resting areas for birds 

(Mazzoni 2000) important source of grass for guanacos (Lama guanicoe; Ortega and Frankln 

1988, Puig et al. 2008), and many studies suggest meadows’ importance to regional biodiversity 

in general (Iglesias & Pérez 1998; Hauenstein 2002; Brinson & Malvárez 2002; Perotti et al. 

2005).  However, this habitat is under high anthropogenic pressures that cause degradation,  such 

as livestock overgrazing (Paruelo & Aguiar 2003; Perotti et al. 2005).  Furthermore, climate 

change may accelerate such degradation processes (Brinson & Malvárez 2002) by increases in 

temperature and changes in precipitation regimes. 

In Patagonia, climate has a strong influence on the distribution of vegetation, mainly 

through precipitation patterns.  Relative abundance of grasses and shrubs is related to 

precipitation gradients (Bertiller et al. 1995; Jobbágy et al. 1996).  It was suggested that 

temperature and mainly precipitation influence productivity of meadows (Buono et al. 2010; 

Irisarri et al. 2012).  In addition, Bertiller et al. (1995) showed that the cover of Festuca 
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pallescens, an important grass of steppes but also encountered in meadows, increased with water 

availability, and depends on clay content of the upper soil and soil depth, which are variables 

related to water balance.  The climate of Patagonia has already changed, with increases of 

minimum and maximum temperatures (Rusticucci & Barrucand 2004) and decreases of 

precipitation with a resultant decrease of river water flows (Fundación Torcuato Di Tella 2006).  

Changes in temperature and precipitation regimes may accentuate this trend.  Southern Argentina 

might experience increases from 0.5 to 2.5 ºC for the period 2081-2090 (Nuñez et al. 2008), and 

decreases in precipitation especially on the Andes side (Vera et al. 2006; Kitoh et al. 2011). 

In Chapter 2 I assessed the current distribution of meadows; however, no analysis of the 

potential effect of climate change on meadows has been performed for Patagonia.  Furthermore, 

to mitigate climate change effects, long-term actions (i.e., reducing emission of greenhouse 

gases) as well as short-term actions are needed (Botkin et al. 2007).  The most important short-

term action is to design a proper system of natural reserves to protect threatened areas from 

human activities and target conservation activities to mitigate potential climate-change impacts.  

Only a small portion of meadow distribution is currently under protection in Patagonia (see 

Chapter 1).  Therefore, information about how the distribution of meadows will respond to 

climate change is important to properly focus conservation efforts.  The objectives of this 

Chapter were (i) to investigate how climate change might affect the current distribution of 

meadows in arid and semiarid Patagonia by 2050 and (ii) investigate change trends and areas of 

desertification vulnerability using climate-change models.  I refer to the term “change” as the 

difference in meadow distribution between the selected climatic statistics in the climate change 

scenarios and the reference distribution simulation during 2012. 
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Study area 

Arid and semi-arid Patagonia (excluding the subantartic andino-patagonic forest strip and 

the seacoast) covers an area >700,000 km
2
 and extends from 39º to 55º S and from the Atlantic 

Ocean to the Andean piedmont in the west.  The region includes two major phytogeographic 

Provinces: Patagonia, a mixed of grass-shrub steppes and semideserts in central and southern 

Patagonia, and the Monte, composed by shrub steppes in northern Patagonia (León et al. 1998).  

The climate is cold-temperate.  The mean annual temperature ranges from 12º C in the north to 

3º C in the south, with absolute minimum temperatures below -20º C (Paruelo et al. 1998).  

Annual precipitation decreases dramatically in a west-east direction, being the mean annual 

precipitation for central Patagonia of 200 mm per year (Paruelo et al. 1998). 

Materials and methods 

Meadows presence/absence data 

Meadows present high spectral contrast with respect to the surrounding steppe, thus they 

can be easily distinguished from surrounding land cover if satellite imagery is sufficiently high in 

spatial resolution.  During December 2011-January 2012 I used high-spatial-resolution imagery 

(<4 m) compiled in the Google Earth database (version 6.1, Google Inc., Mountain View, CA, 

USA) to identify presence of meadows across the study area.  Google Earth is one among many 

Virtual Globe software systems that are being used with growing frequency in many research 

fields (Sheppard & Cizek 2009).  The Google Earth model of the world consists of hundreds of 

thousands of satellite and aerial images combined from different sources, including non-

commercial satellites (e.g. Landsat, Spot) and commercial satellites (e.g. Digital Globe’s 

QuickBird) and also many providers of aerial photographs.  For this reason, I could not 

determine the year of each image used for assessing meadows presence; however, Google Earth 
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ensures the best image available, which typically included images 1-3 years old (Google 

Corporation 2012). 

I assessed the presence or absence of meadows across the study area by overlaying it with 

a grid of 1 km
2
 cells and visually assessed a sample of those cells for meadows.  I knew a priori 

that meadows occurred in a small portion of the study region (approximately 5%) and were more 

likely to be abundant in river valleys and closer to the Andes Mountains.  To ensure that my 

training/validation data set had a sufficient number of presences, I used an equal-stratified 

sampling strategy; this design ensures more accurate model predictions than the proportional-

stratified design (Hirzel & Guisan 2002).  I stratified the study area based on elevation (east-west 

gradient) and distance from rivers given their known influence on potential meadow locations 

(Bran et al. 1998).  I defined three strata for elevation (stratum 1: 0-400 m; stratum 2: 401-800 

m; stratum 3: >801 m) and two strata for distance from rivers (stratum 1: 0-2,000 m; stratum 2: 

>2,001 m).  From the study area grid, I randomly selected 167 cells per stratum using the 

NOAA’s Biogeography Branch Sampling Design Tool for ArcGIS 

(http://ccma.nos.noaa.gov/products/biogeography/sampling/, accessed 13 Nov 2011).  In total, I 

randomly selected 1,002 cells, aiming to ensure >100 presences. 

High resolution imageries provided by Google Earth make it possible to differentiate 

meadows, which appear visually as continuous patches of different shades of green, from the 

surrounding gray and brown steppe.  To determine if a meadow was present (1) or absent (0) in a 

particular 1 km
2
 cell, I first examined the quality of Google Earth imagery within the 1,002 cells 

chosen for sampling.  Only cells completely covered by high resolution imagery were kept; 

others were discarded if covered by snow or clouds or unclear.  If the cell was covered by ≥5% 
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of meadows, I considered meadows to be present, otherwise, I considered that meadows were 

absent. 

I was concerned that my ability to detect meadows when present may be imperfect and, 

further, that detection ability may vary by image context (e.g., meadow quality, surrounding 

habitat types, overall wetness of the region).  Imperfect detection could result in an inaccurate 

estimate of presence probability of a feature, such as meadows, which may cause errors in 

mapping their distribution (Vaughan & Ormerod 2003; Reese et al. 2005).  Therefore, I 

examined my ability to detect meadows when they were present by repeatedly searching a 

subsample of 20 randomly-selected cells per stratum.  I then visually assessed each cell three 

times (“visits”) for the presence of meadows, with three weeks between each visit, to minimize 

the chance that recollection from previous visits influenced the probability of detection in 

subsequent visits.  I obtained an overall detection probability of 97.5%; only 2.5% of the time 

did I fail to detect a meadow in one visit when I detected it in another, indicating that my 

probability of detection was very high.  Based on this high detection probability, I decided it was 

not necessary to use occupancy models that adjust for probability of detection (MacKenzie et al. 

2006) for analysis. 

Climate data 

I used the following seven climatic variables to evaluate climate change impact on 

meadows distribution: maximum temperature of the warmest month, minimum temperature of 

the coldest month, mean temperature of wettest quarter, mean temperature of driest quarter, 

precipitation of the wettest month, precipitation of the driest month and precipitation seasonality.  

I selected extreme variables rather than means because they represented better the ranges of 

conditions where species can occur (Zimmermann et al. 2009), hence climate change on those 
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extremes will have more impact on meadow distribution.  I simulated future meadow 

distributions using the same climate variables for the period of time 2040-2069 (2050 hereafter), 

from four General Circulation Models (GCMs) derived from IPCC (2007) Special Report 

Emission Scenarios (SRES).  The GCMs were CGCM3.1(T47), MK3.0, HadCM3 and 

MIROC3.2(hires).  I selected those four GCMs to capture existing variability among the 

different model predictions (Pearson & Dawson 2003; Thuiller 2004; Lawler et al. 2009), and 

because those models have been used in other climate-change studies in South America (Marini 

et al. 2010; Kitoh et al. 2011).  I used the A2 SRES scenario, which assumes that global carbon 

emissions will continue unconstrained given by an economy still dependent on fossil-fuel 

consumption (Nakicenovic et al. 2000).  Furthermore, this scenario is preferable because the 

current actual trajectory of emissions (1990 to present) corresponds to a high emission scenario 

(Nakicenovic et al. 2000), and it is unlikely that such emission rate will change in the near future.  

All data were obtained from the WorldClim database, at a 30 arc-seconds resolution (Hijmans et 

al. 2005; available at: http://www.worldclim.org/download).  I obtained future climate-data 

resolution at a resolution of 30 arc-seconds (1 x 1 km), which was statistically downscaled by the 

Delta Method (Ramirez-Villegas and Jarvis 2010).  

Because meadows are rare on the landscape, relatively small cell sizes are needed to 

predict their presence or absence.  In addition, climate change that occurs in small areas may 

have high impact on species locations, and fine-resolution grids are necessary to account for this 

in ecological models (Zhang 2005).  When SDMs are used in conservation planning under future 

climate scenarios, high-resolution data sets are also needed to account for change in small 

regions (Kremen et al. 2008), especially because 75% of globally recognized protected parks and 

reserves are <300 km
2
 in area (WDPA 2006).  This creates a problem when modeling future 
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climate scenarios, because GCMs are often created with coarse resolutions (100 or 200 km), and 

downscaling such resolution incorporates uncertainties (Ramirez-Villegas & Jarvis 2010).  

However, given my goal of a first broad-ensemble assessment of climate change impacts on 

meadows, and given the impossibility of using bigger cell sizes for presence/absence data, I 

decided to use downscaled-climate models, and considered these limitations acceptable. 

Environmental data 

Including static variables in SDMs when assessing climate-change effects on species 

distributions has been shown to improve or not affect model outputs (Stanton et al. 2011).  

Authors suggested excluding static variables highly correlated with climate variables but that 

have indirect effects on the species distribution, such as altitude.  However, they suggested to 

include static variables that interact with climate, such as soil, even under the unrealistic 

assumption that such variables will not change with time (Stanton et al. 2011).  Consequently, I 

selected three static variables used in Chapter 1, assuming they will remain constant over time.  

Because of the importance of river and soil characteristics to the presence of meadows (Mazzoni 

& Vázquez 2004),  I included the variables distance to permanent rivers which I calculated using 

river shapefiles provided by the Argentinean Geographic National Institute (C. Chehébar Pers 

Comm, National Park Administration, San Carlos de Bariloche, Argentina).  In addition, I used a 

soil cover layer created by the National Institute of Agricultural Technology (INTA), Argentina, 

selecting soil order classification as the predictor variable (Available at: 

http://geointa.inta.gov.ar/).  Finally, I included a Human Influence Index (HII) variable to 

account for land-use changes driven by human activities in areas suitable for meadows (e.g., 

degradation by livestock farming, wetland drainage for agricultural purposes).  This layer was 

produced by the WCS and CIESIN.  The HII was calculated from nine global data layers 
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considering population density, human land use and infrastructure (built-up areas, nighttime 

lights, land use and land cover) and human access (coastlines, roads, railroads and navigable 

rivers) for the year 2000 (Last of the Wild Data Version 2 2005; available at: 

http://sedac.ciesin.columbia.edu/).  Although those characteristics will change over time, it is 

necessary to account for human impact effects, understanding that predictions would be 

conservative given the increasing pressure of human activities on the landscape.  Each layer was 

re-projected to UTM Zone 19 South.  I used ArcGIS 9.3 (ESRI, Redlands, California, USA) for 

most geospatial operations. 

Modeling procedure 

To investigate potential climate-change effects on the distribution of areas that contain 

meadows, I used SDM techniques under the platform BIOMOD (Thuiller et al. 2009).  I used 

four modeling techniques, generalized linear models (GLM), generalized additive models 

(GAM), general boosting models (GBM), and random forest (RF), to generate individual 

predictive distributions as the basis of a final mean consensus method (Araújo & New 2006; 

Marmion et al. 2009).  Such modeling techniques were shown to function accurately compared 

to other modeling techniques (Segurado and Araújo 2004, Araújo et al. 2005, Elith et al. 2006, 

Cutler et al. 2007, Marmion et al. 2009) and performed well when modeling current distribution 

of meadows in Chapter 2.  I ran GLMs and GAMs with a binomial variance and logistic link 

function.  I fit GLMs using linear, quadratic, and polynomial terms (seconds and third order) and 

GAMs using cubic-smooth splines with a degree of smoothness of ≤4 degrees of freedom for 

each variable.  In both methods, I used a stepwise procedure to select the most parsimonious 

models using Akaike’s Information Criterion (AIC; Akaike 1973).  I ran GBMs using a 
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maximum number of 5,000 trees and 5 lambda fold-cross-validation to progressively grow 

models.  Finally, I ran RF with 500 trees.   

Model evaluation 

I used a data partitioning approach on training and validation data sets for measuring 

models accuracy (Fielding & Bell 1997).  I used a 70% random sample of the observed data to 

calibrate models and the remaining 30% for model validation.  The size of the split was 

determined using the formula: [1 + (p – 1)
1/2

]
-1

, where p is the number of predictor variables 

(Fielding & Bell 1997).  To ensure robust estimations and assess sensitivity of the models to 

initial conditions, I used a cross-validation procedure, running 10 iterations per model, each time 

with a different random split of the data for training and validation (Thuiller 2009).  I used the 

area under the curve (AUC) of the receiver-operating characteristic (ROC) plot for assessing 

model accuracy (Fielding and Bell 1997).  The AUC score varies between 0.5 (model predicted 

not better than random) and 1 (model predicted perfect).  I interpreted AUC accuracy values 

following Swets (1988): excellent AUC > 0.9, good 0.9 > AUC > 0.8, fair 0.8 > AUC > 0.7, poor 

0.7 > AUC > 0.6, and fail 0.6 > AUC > 0.5.  As another measure of accuracy, if AUC values 

were >0.7, then I also estimated sensitivity (percentage of presence correctly predicted) and 

specificity (percentage of absence correctly predicted) using the whole data set (W. Thuiller Pers 

Comm, Laboratory of Alpine Ecology, University Joseph Fourier, Grenoble, France).  To 

transform probability values into presence/absence format I used the threshold that maximized 

the percentage of presence and absence cells correctly predicted for ROC curves. 

Ensemble forecasting 

To build the final model of current distribution of meadows, I used a mean ensemble 

approach, where the output model is calculated as the mean value of the outputs of all single 
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runs, and has been shown to perform well compared to other ensemble techniques (Marmion et 

al. 2009).  To estimate the current meadow distribution of the entire study area and predict the 

future distribution under each GCM, I used the model trained with the presence/absence data to 

project the 40 individual models (10 using each technique) to the entire study area.  Afterward, I 

calculated the mean ensemble model as the mean presence-probability value among the 40 

individual models created.  I then transformed the final ensemble model in a binary 

presence/absence format using a threshold calculated as the mean value of the threshold values 

obtained for the individual models.  Overall, I produced one ensemble model projection for the 

year 2012 and four ensemble models for each of the four GCMs.  I then combined those four 

models from the GCMs into a final mean ensemble model for the year 2050.  To project future 

meadow distributions I assumed that the plant species that compose meadows would be able to 

disperse into any new geographic range. 

To investigate the source of variation of the different predictions used in the ensemble 

forecast, I calculated uncertainty maps.  I computed the standard deviation per cell within each 

global circulation model using the 40 single predictions coming from the 40 training models (the 

four techniques and 10 iterations).  I also computed the standard deviation among the predictions 

for the four GCMs.  

Predicting future distribution of species can be problematic when future climatic 

variables fall outside the range under which the model was trained.  This is because the observed 

distribution does not provide information about how species might respond to the novel 

conditions, thus, such forecasting has been considered by several authors as ecologically and 

statistically invalid (Fitzpatrick & Hargrove 2009).  In this study, all future variables presented 

values outside the training-value range (Table 3.1).  In order to indicate the areas where my 
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model projections present limitations and may not be reliable (Fitzpatrick & Hargrove 2009), I 

created a map showing the total number of variables (seven variables x four GCMs) per cell that 

fall outside the training-value range.  I assumed that areas were reliable if <10 variables were 

outside the training-value range.  Because similarity among variables form different GCMs, a 

maximum of 10 variables means that no more than two variables per model where outside the 

training-value range. 

Vulnerability analysis 

I analyzed changes in meadows distribution by contrasting the final ensemble model of 

current meadow distribution (2012) versus the final mean ensemble model for year 2050.   To 

investigate shifts in meadow distribution, I first overlaid a grid over the study area with a cell 

size of 50 x 50 km.  I used a large-cell resolution aiming to obtain a broad assessment and to 

account for potential error in the final model given the high resolution of the climate change 

models.  I calculated meadow abundance given the percentage of 1 km
2
 cells with meadows 

present within each 50 x 50 km cell.  I then compared the change of meadow abundance per cell 

and defined five categories: 1- Areas without meadows: cells that did not encompass more than 

10% of meadow presences neither for present distribution nor future distribution; 2- Areas with 

little or no change: cells between 10% increase or 10% decrease of meadow abundance; 3- Areas 

with expansions: cells with an increase >10% of meadows abundance; 4- Areas with reductions: 

cells with a reduction of 10% - 50% of meadow abundance; and 5- Areas of severe reductions: 

cells with >50% reduction of meadow abundance.  Cells that covered unreliable areas for 

predictions based on previous analyses were excluded. 

I used a layer of Patagonian-protected areas provided by the National Park 

Administration, Argentina (C. Chehébar, Pers Comm, National Park Administration, San Carlos 
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de Bariloche, Argentina) to describe viability of meadows currently under protection under 

climate change effects.   I considered only those protected areas assigned IUCN level I-II-III, 

which included National Parks, Provincial Parks, Province Natural Monuments, Natural 

Reserves and Natural and Cultural Reserves, because they are the only reserves that ensure strict 

and effective protection to the area. 

Results 

From the 1,002 cells selected for sampling, 26 cells were discarded because they were 

covered by clouds, snow, or the image was unclear.  I determined 830 absences and 146 

presences that I used for training models.  Overall, models agreed between observations and 

current predictions of meadows distribution; however, GBM and RF models performed 

consistently better than GLM and GAM models (Table 3.2).  Based on AUC values, RF, GBM 

and GAM models on average performed good and GLM models fair.  Based on sensitivity and 

specificity values RF performed better, followed by GBM, GAM and GLM models (Table 3.2).  

All runs were consistent indicating low sensitivity to training datasets.  The final current 

ensemble model improved accuracy considerably over single models (AUC = 0.95) measured on 

the total calibration dataset.  This model also exhibited high sensitivity (93%) and specificity 

(82%) values measured on the calibration dataset. The four ensemble models of the GCMs 

presented a similar general pattern in meadows distribution.  The uncertainty maps showed that 

the variation among different model techniques was higher than the variation among the four 

different GCMs (Figure 3.1).  This indicates less consensus among modeling techniques 

regarding presence probability, but more consensus among the different GCMs.  The variation 

among GCMs was higher in the southern region of the study area.  Areas without meadows 

present were generally not reliable for climate change predictions, however, prediction of 
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meadow reductions in a wide area in the central-east region of the study area were also not 

reliable (Figure 3.2). 

The final ensemble model for 2012 predicted that 11.43% of all 1 km
2
 cells were covered 

by ≥5% of meadows in arid and semi arid Patagonia.  Meadows were clustered along the western 

portion of the region and followed major river systems, especially in the south.  The same 

general pattern was observed on the predicted distribution for 2050 under the A2 SRES scenario.  

Overall meadow distribution was predicted to be reduced by 7.85% by the year 2050 based on 

the GCMs ensemble map (Figure 3.3).  Predicted suitable cells for meadows decreased from 

90,633 in 2012 to 83,519 in 2050.  However two different major trends were observed: meadows 

contracted in central and northern Patagonia while southern regions would become more suitable 

for meadows (Figure 3.3).  There was a predicted reduction of 34,950 cells (38.56%) mostly in 

the north-central region and also on Tierra del Fuego Island.  In contrast, there was a predicted 

expansion of 27,836 suitable cells (30.71%) for meadows, mostly located in the south region, but 

also in a small portion of northwestern Patagonia. 

Based on the broad vulnerability analysis and discarding areas with low reliability, 

northwestern Patagonia and Tierra del Fuego Island are likely to face reductions of meadow 

abundance; meadows are likely to expand in the southwest; and the central area region represents 

a transition zone from reductions in the north to expansions in the south (Figure 3.3).  Of the 15 

IUCN I-II-III category protected areas that constitute the effective reserve network of arid and 

semi-arid Patagonia, 11 (73.3%) are located in areas were meadows were not predicted to be 

present neither currently nor for the year 2050 (Figure 3.3).  Of the other 4 reserves, Domuyo 

and El Tromen Provincial Parks are located in areas where meadows will not be affected by 

climate change.  Laguna Blanca National Park and the Natural Provincial Monument Cañada 
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Molina will likely become ineffective at protecting meadows as they are located in an areas were 

meadows abundance would decrease (Figure 3.4), however predictions over the area of the 

Natural Provincial Monument Cañada Molina are unreliable. 

Discussion 

The mean ensemble technique allowed me to obtain a reliable model of the current 

distribution of meadows in arid and semi-arid Patagonia on the basis of four different modeling 

techniques.  GBMs and RFs performed consistently better that GLM and GAMs, however, all 

models presented AUC values over 0.75.  By averaging projections of these different regression 

and machine learning techniques, the robustness of model predictions increased and model 

accuracy was considerably improved (Araújo & New 2006; Buisson et al. 2010).  In addition, the 

ensemble projection of the four different GCMs allowed me to obtain a broad general forecast 

pattern of meadow distribution for the next half century.  On the basis of the projected 

distribution of meadows, and an understanding of the forecasting limitations in some areas of the 

study region, I determined that overall meadow abundance is going to decrease by the middle of 

the century given the changes in climate.  However, there are two contrasting trends, severe 

reductions of meadows in northwest Patagonia and Tierra del Fuego Island, and an expansion of 

suitable areas for meadows in the south and a small portion of the northwest.  Such information 

on meadow vulnerability to climate change will be important information for conservation 

planning. 

Aiming to increase the understanding of potential climate-change effects on meadows in 

arid and semi-arid Patagonia, I modeled their distribution using mainly climatic predictor 

variables.  However, I also included three static predictor variables, soil, distance to permanent 

rivers and HII.  The inclusion of static variables in SDMs to investigate climate-change effects 
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was shown to improve model performances or do not interfere in the predictive performance of 

future distributions (Stanton et al. 2011).  In this study, the exclusion of an important predictor 

variable, such as the Normalized Difference Vegetation Index (NDVI), resulted in a reduction in 

the ability of models to accurately predict the current distribution as compared to findings 

reported in Chapter 1.  However, while NDVI measured during the growing season is useful for 

predicting the current distribution of meadows in places where ground data observation do not 

exist, I choose to exclude NDVI in predictions of the future distribution.  High NDVI values are 

a useful characteristic of meadows as an indication of their presence, rather than a variable that 

may contribute to or “cause” their presence, as soil characteristics or water presence make an 

area suitable to establish wetland vegetation.  Thus, to include NDVI in future predictions would 

be highly unrealistic and would likely affect the interpretation of future distributions.  Soil, 

distance to permanent rivers and HII were important static predictor variables to consider.  Given 

that changes in soil mostly occur over long periods of time, it was possible to assume stability for 

the next half century.  Distance to permanent rivers was more problematic, because stream flow 

and riverbeds are more variable (Newman et al. 2006).  Nevertheless, given the association 

between meadows and river valleys, it was necessary to incorporate that variable in models 

under the false assumption of stability in time.  In addition, meadows will not expand in areas 

where climate becomes favorable if there is no permanent water, therefore, a distance to 

permanent rivers variable would have limited the expansion of suitable areas for meadows under 

the assumption of free dispersion capacity. 

Besides the lower performance of single models when compared to findings in Chapter 1, 

the ensemble model improved significantly model accuracy, resulting in an AUC value (0.95), 

closer to the value of the ensemble model in Chapter 1 (0.97).  In addition, the number of cells 
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containing meadows in arid and semi-arid Patagonia for 2012 was only 0.2% lower than the 

number of cells with meadows reported in Chapter 1.  Furthermore, the distribution pattern was 

similar between the two analyses, reaffirming that the ensemble models provided a reliable 

representation of the current distribution.  However, my study suffered the same methodology 

limitations of other SDM studies (Pearson & Dawson 2003; Guisan & Thuiller 2005; Araújo & 

New 2006; Araújo & Guisan 2006; Thuiller et al. 2008).  Among them, I assumed that vegetative 

species interactions with other species and with the environment will remain similar over time, 

that the species will not adapt or acclimate to climate change and that they can disperse without 

limitations (Pearson & Dawson 2003).  However, it was my goal to generate a general 

understanding of future trends of meadows distribution and not a detailed forecasting at a high 

resolution (Pearson & Dawson 2003; Lawler et al. 2006).  In addition, I accounted for those 

areas were predictions were not reliable, because future climate variables are outside the values 

used during the model training. 

My predictions indicate that meadow distribution in arid and semi-arid Patagonia will 

decline by 7.85% by the year 2050 and shift mainly toward the south.  Reductions in meadows 

will be greatest in the central and northern regions and Tierra del Fuego Island.  The predicted 

reduction of meadows goes in accordance with the predicted reduction of precipitation.  While 

the surface air temperature is predicted to increase more or less constantly in the entire region 

(Nuñez et al. 2009), significant decreases in annual precipitation are predicted to occur in 

northwest Patagonia (Nuñez et al. 2009), especially during the summer (i.e., the growing season) 

that may lead to the reduction of meadows in the area.  It is important to note that a fraction of 

these predictions were, in my opinion, not reliable.  In Tierra del Fuego, surface air temperature 

is predicted to increase more than the rest of Patagonia and annual precipitation is predicted to 
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decrease (Nuñez et al. 2009), these factors may explain the strong predicted reduction of 

meadows.  Conversely, southern regions will become more suitable for meadows.  The 

combination of predicted increases of surface air temperature with no changes in annual or 

seasonal precipitation (Nuñez et al. 2009) may benefit the establishment of new meadows.  As 

well, there is a small portion of northern Patagonia that may experience increases in suitable 

areas for meadows; nevertheless, half of these predicted areas were not reliable.  The increase of 

suitable areas could be responding to an increase of precipitation on the Chilean side of the 

Andes (Nuñez et al. 2009).  It is important to notice that climate models for Patagonia have 

overestimated precipitation, likely due to insufficient observation network (Kitoh et al. 2011).  

This potential error makes our predictions conservative given the importance of precipitation for 

meadows. 

Water plays a key role in meadow formation and persistence and from the predictions of 

this study, precipitation changes are going to be important drivers of future changes in meadow 

distribution.  Vegetation in arid environments has a limited ability to respond to changes in 

precipitation (Paruelo et al. 1999), nevertheless, meadows in arid and semi-arid Patagonia 

present a vegetation structure that corresponds to humid environments.  Therefore, meadows can 

respond to variation in precipitation (Buono et al. 2010).  This supports the predictions of 

decreasing meadows where precipitation may diminish and increasing suitable areas where 

precipitation may increase.  However, in Patagonia there are three sources of water for meadows: 

precipitation, deep percolation from steppes, and high mountain snowmelt.  I could not include 

variables for the last two sources as they were not available, therefore, it will be important to 

model such variables and include them in future research to improve the accuracy of climate 

change predictions. 
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Protected areas are important to shield biodiversity from the impact of human activities 

and to mitigate potential climate-change effects (Botkin et al. 2007).  Such protection needs are 

even higher in developing countries, where poverty increases the pressure to exploit natural 

resources and convert natural areas, such as wetlands, into agricultural use (Brinson & Malvárez 

2002).  In the Argentinean Patagonia, human pressure on meadows is high, mainly due to 

livestock production which results in severe degradation (Paruelo & Aguiar 2003; Perotti et al. 

2005).  Under these threats, the current network of IUCN I-II-III reserves results inappropriate 

for protecting meadows.  Only a small portion of arid and semi-arid Patagonia is effectively 

protected (Burkart et al. 2007) and only a small portion of meadows occur inside such protected 

areas (Chapter 1).  On the basis of my results, in the long term, one of the four reserves 

containing meadows is likely going to become ineffective because of climate change. 

Conservation planning is an effective tool to develop or improve existing reserve 

networks (Margules & Pressey 2000).  However, in the practice, protected areas are often created 

opportunistically, without any specific biodiversity objectives (Margules & Pressey 2000).  

Moreover, opportunistic procedures of reserve design may be more costly than the use of 

systematic procedures based on model information (Pressey & Cowling 2001).  Despite the 

inherent uncertainty that limits the use of SDMs (Thuiller 2004), they provide important spatial 

and forecasting information to incorporate in conservation planning (Thuiller 2007).  In addition, 

the use of ensemble approaches reduce significantly the amount of uncertainty coming from 

different GCMs, and with that, the likelihood of making wrong conservation decisions (Araújo & 

New 2006). 

For the aim of improving protection of meadows in arid and semi-arid Patagonia and 

create new protected areas, my broad map of vulnerability analysis to climate change will be 
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important information to incorporate into conservation decisions (Groves et al. 2012).  This map 

provides broad information on trends of climate change on meadows, and thereby areas of 

potential degradation and potential climatic refugia (Groves et al. 2012).  Central and southern 

Patagonia appear to be important areas to prioritize for the creation of new reserves with the goal 

of protecting meadows, as they would likely not be affected or even favored by climate change.  

These are areas to consider more important (i.e., give more weight) at the time of performing a 

conservation planning analysis.  However, it is important for further studies to investigate 

climate impact on other Patagonian species to include in such conservation planning project.  

Nevertheless, under the limited information available on climate change effects of species for the 

region, meadows appear as important habitat for several species (Ortega & Franklin 1988; 

Mazzoni 2000; Brinson & Malvárez 2002; Perotti et al. 2005; Puig et al. 2008), thus meadows 

could act as surrogate for improve protection to those species (Ferrier 2002).  In addition, in 

those areas were meadow abundance would be reduced, management actions should be taken to 

mitigate potential desertification trends.  Because livestock is the main cause of meadow 

degradation, future management plans for reducing livestock impact should be considered (e.g., 

reduce animal charge, alter grazing patterns, or even exclude livestock from certain regions).  If 

negative effects of climate change and livestock production are combined, the results could 

exacerbate the degradation process already occurring in meadows. 

This is the first attempt to study meadow distribution response to climate change.  The 

use of the ensemble technique provided final models to assess climate-change effects on 

meadows with less uncertainty and more accuracy than single models and single GCMs.  I 

indentified a broad area of Patagonia that is likely going to face severe reduction in meadow 

abundance.  This is not only going to affect the biodiversity associated with meadows but also, 
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the economy of those areas that rely on agricultural activities.  My study is also important given 

the lack of information on climate change impacts on biodiversity in the Southern Hemisphere 

(IPCC 2007).  Although this information should not be considered alone at the time of planning 

future conservation actions, it is likely that climate change will have a deep impact on 

Patagonian meadows.  On the basis of this study and given the low representation of meadows in 

reserves, the need of improving the conservation network in arid and semi-arid Patagonia is 

imperative to ensure long-term protection of meadows and the associated biodiversity that relies 

on this habitat. 
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Table 2.1. Summary of the equal-stratified sampling results for modeling current (2012) 

meadows distribution in arid and semi-arid Patagonia. 

Stratum 
Dist. from  

river (m) 
Altitude (m) Cells sampled Cells discarded 

Number of 

presences 

1 0-2000 0-400 167 4 31 

2 0-2000 400-800 167 9 47 

3 0-2000 >800 167 4 40 

4 >2000 0-400 167 4 1 

5 >2000 400-800 167 2 10 

6 >2000 >800 167 3 18 
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Table 2.2. Performance of 40 single-model runs (10 runs per model) predicting current (2012) 

meadows distribution in arid and semi-arid Patagonia, based on three different accuracy 

categories of area under the curve (AUC). 

Model 

performance 

Modeling technique 

GAM GBM GLM RF 

Excellent 40% 50% 20% 40% 

Good 50% 50% 70% 50% 

Fair 10% 0% 10% 10% 

GAM, general additive models; GBM, general boosting models; GLM, general linear 

models; RF, random forests; excellent AUC > 0.9; good 0.9 > AUC > 0.8; fair 0.8 > AUC > 0.7. 
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Table 2.3. Mean (±SD) sensitivity and specificity across 10 repetitions for each of four different 

modeling techniques, and mean (±SD) area under the curve (AUC) for such models for 

predicting current (2012) meadows distribution in arid and semi-arid Patagonia.  Sensitivity and 

specificity were calculated for the whole data set, whereas AUC was calculated on 25% 

validation data (different from the 75% used for model training).   

Model Sensitivity (%) Specificity (%) AUC 

GAM 81.84 ± 0.68 81.71 ± 0.60 0.88 ± 0.04 

GBM 88.30 ± 1.13 88.29 ± 1.09 0.88 ± 0.04 

GLM 81.09 ± 1.17 81.06 ± 1.24 0.87 ± 0.04 

RF 93.81 ± 1.62 93.84 ± 1.59 0.87 ± 0.05 

GAM, general additive models; GBM, general boosting models; GLM, general linear 

models; RF, random forests; sensitivity: percentage of presence correctly predicted; specificity: 

percentage of absence correctly predicted. 
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Table 2.4. Frequency of the predictor variables selected in the four different modeling 

techniques for predicting current (2012) meadows distribution in arid and semi-arid Patagonia.   

Variables GLM GAM GBM RF Mean SD 

Max temp of warmest month 10 10 10 10 10 0.0 

Min temp of coldest month 0 0 10 10 5 5.8 

Precipitation of wettest month 10 10 10 10 10 0.0 

Precipitation of driest month 1 0 10 10 5.25 5.5 

Precipitation seasonality 7 1 10 10 7 4.2 

NDVI 10 10 10 10 10 0.0 

Altitude 4 0 10 10 6 4.9 

Distance to permanent rivers 10 10 10 10 10 0.0 

Distance to all rivers 

(permanent and 

non-permanent) 

10 9 10 10 9.75 0.5 

Human influence index 5 3 10 10 7 3.6 

Soil 6 7 10 10 8.25 2.1 

GAM, general additive models; GBM, general boosting models; GLM, general linear 

models; RF, random forests. 
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Table 3.1. Minimum (Min), mean (Me), and maximum (Max) values of the climate variables used for modeling current (2012) and 

future (2050) meadows distribution in arid and semi-arid Patagonia.  Values correspond to variables used for model training and for 

four General Circulation Models (CGCM3.1(T47), HadCM3, MIROC3.2(hires), and MK3.0). 

Training data CGCM3.1(T47) HadCM3 MIROC3.2(hires) MK3.0 

Min Me Max Min Me Max Min Me Max Min Me Max Min Me Max 

Max T of the warmest month 11.2 23.8 33.0 0.0 27.3 36.6 0.0 27.3 36.7 0.0 27.9 36.6 0.0 26.5 34.3 

Min T of the coldest month 10.0 -2.0 3.0 16.2 -0.3 4.5 16.3 -0.2 4.6 15.5 0.5 5.4 16.7 -0.9 4.0 

Mean T of wettest quarter -3.5 7.0 22.0 10.5 7.1 25.0 10.5 10.2 26.0 -9.2 9.7 26.3 10.9 12.4 25.1 

Mean T of driest quarter 3.3 11.7 21.5 -0.1 15.7 25.9 -2.0 13.1 25.9 -5.2 12.9 24.8 -3.5 11.5 21.7 

Prec. of the wettest month 15.0 40.0 164.0 0.0 35.7 194.0 0.0 35.6 181.0 0.0 36.3 175.0 0.0 56.2 183.0 

Prec. of the driest month 4.0 11.2 45.0 0.0 3.6 61.4 0.0 8.5 57.0 0.0 2.2 58.0 0.0 2.8 54.0 

Prec. seasonality 12.0 35.4 76.0 0.0 59.0 109.0 0.0 40.0 82.0 0.0 68.3 130.0 0.0 71.4 109.0 
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Table 3.2. Area under the curve (AUC), sensitivity and specificity statistics for four modeling 

techniques with ten repetitions for each one (me = mean, min = minimum, max = maximum) 

used for calculating a mean ensemble model for projecting current (2012) and future (2050) 

meadows distribution in arid and semi-arid Patagonia.  AUC was calculated on 30% validation 

data (different from the 70% used for model training), while sensitivity and specificity were 

calculated for the whole data set (training + validation). 

 

AUC Sensitivity (%) Specificity (%) 

 

Me Min Max Mean Me Max Me Min Max 

GAM 0.81 0.78 0.84 73.13 71.43 74.15 73.23 71.41 74.55 

GBM 0.85 0.82 0.89 84.69 82.99 85.71 84.62 82.75 85.89 

GLM 0.78 0.76 0.81 72.38 70.75 73.47 72.41 70.69 73.22 

RF 0.86 0.84 0.89 92.04 90.48 93.88 92.09 90.47 93.85 

GAM, general additive models; GBM, general boosting models; GLM, general linear 

models; RF, random forests; sensitivity: percentage of presence correctly predicted; specificity: 

percentage of absence correctly predicted. 
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Figure 2.1. Predicted distribution map for current meadows (2012) and IUCN level I, II, and III 

protected areas for arid and semi-arid Patagonia. Map (a) shows probability of each cell to be 

covered by ≥5% of meadows, whereas map (b) shows meadows presence (cell covered by ≥5% 

of meadows) or absence (cell cover by ≤5% of meadows).  Map B also shows current IUCN 

level I, II, and III protected areas. 
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Figure 3.1.  Map of prediction reliability for simulating future (2050) meadows distribution in 

arid and semi-arid Patagonia. This map shows the total number of variables (seven variables x 

four General Circulation Models) per cell which values fall outside the training-value range.  

Browns represent reliable predicting areas and blues represent unreliable predicting areas.    
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Figure 3.2.  Maps of mean predicted suitability probabilities and standard deviations obtained in 

the ensemble forecast framework for modeling current (2012) and future (2050) meadows 

distribution in arid and semi-arid Patagonia.  The fist 8 maps shows mean predicted probabilities 

and standard deviations among the 4 single models and 10 repetitions per model for each of the 4 

different General Circulation Models (GCMs).  The last 2 maps shows mean predicted 

probabilities and standard deviations among the 4 ensemble GCMs. 

GCMs Mean suitability probability Standard deviation 

CGCM3.1 

(T47) 
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Figure 3.3. Predicted distribution map for current (2012) and future (2050) meadows and IUCN 

level I, II, and III protected areas for arid and semi-arid Patagonia.  This map shows the 

distribution of cells (1 km2) that were predicted to maintain a cover ≥5% of meadows (green), 

cells that were predicted to maintain a cover <5% of meadows (orange), cells that were predicted 

to lose cover ≥5% of meadows (green), and cells that were predicted to increase cover ≥5% of 

meadows by the year 2050. 
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Figure 3.4.  Map of vulnerability to climate change for meadows abundance in arid and semi-

arid Patagonia on the basis of predictions of distribution change by the year 2050.  This map 

shows areas that were reliable predicted to change (hatch cells are not reliable predictions): do 

not encompass more than 10% of meadow presences neither for present distribution nor future 

distribution (orange); present little or no change of meadows abundance: cells between 10% 

increase or 10% decrease of meadow abundance (green); increase abundance: cells with an 

increase >10% of meadows abundance (blue); reduce abundance: cells with a reduction of 10% - 

50% of meadow abundance (light red); reduce severely abundance: cells with >50% reduction of 

meadow abundance (dark red).  Abundance was calculated as the percentage of 1 km
2
 cells with 

meadows predicted to be present within a 50 x 50 km cell. 
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