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Many government bodies have raised concerns regarding preservation of existing 

public roadway systems from infrastructure damage, and roadway degradation in 

particular, due to the impact of fracking-related truck traffic on roads that are simply not 

designed for that level and intensity of usage. This significant heavy usage imposes both 

immediate and long-term cost burdens on taxpayers, and can create unfunded liabilities 

for the wide range of levels of government (jurisdictions) responsible for maintaining the 

roadways (from township to federal). This acceleration in roadway consumption has 

manifested a financial need that is not easily funded by traditional fee mechanisms. 

 This paper’s purpose is to provide a critical assessment of the literature regarding 

the public costs of fracking-related roadway damage beyond what a given road system 

would sustain under normal traffic conditions, which would assist in accurate 

monetization of the roadway damage for assessment and predictive purposes. Utilizing 

the theoretical frameworks of prior published research studies and reports examined, 

relevant independent variables and their associated hypotheses are elucidated.  

Fracking will continue to strain jurisdictional resources at all levels of government 

until accountability measures in the form of comprehensive infrastructure financing 

mechanisms are in place. This current research recommends the best practice approach to 

maintaining a community’s infrastructure during fracking while removing the tax payers 

from the equation is an industry-funded proactive armoring of the roadways. Resources at 
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all levels of government will continue to be strained until accountability measures that 

require comprehensive infrastructure upgrades, prior to the inception of energy 

development, are put in place to hand full responsibility to the industry that plans on 

subjecting roadways to predictable undue heavy truck traffic weights and volumes
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 CHAPTER 1 

INTRODUCTION 

 
On May 31, 2013, the Illinois Senate passed SB1715, the Hydraulic Fracturing 

Regulation Act, by a vote of 52-3, the day after it passed the House by a vote of 108-9. The 

passage of this bill, signed by then Illinois Governor Pat Quinn into law on June 17, 2013, will 

potentially open the doors to fracking of Southern Illinois once regulations and the regulatory 

infrastructure are in place (Kasper & Maloney, 2013). The initial draft fracking regulations, 

which are drafted by the Illinois Department of Natural Resources [IDNR] without the benefit of 

a single scientific study, received 35,000 public comments during a 45-day public comment 

period that ended on January 3, 2014. It took the IDNR more than nine months to edit the 

regulations to integrate the vast array of public input delivered during that public comment 

period, during which scores of peer-reviewed studies and scientific reports introduced by the 

general public were brought to bear on Illinois fracking regulations (Fortino, 2014). 

Hydraulic fracturing, or fracking, is a mining technology that involves the extraction of 

natural gas and/or oil from a targeted shale deposit by forcing typically several million gallons of 

water (along with sand and chemicals) under high pressures to re-fracture the rock formation to 

allow gas/oil to flow through the fractures that are propped open with the sand. Approximately 

half of the water returns to the surface through the well as flowback from days to weeks 

following injection accompanied by the natural gas/oil (Howarth, Santoro, & Ingraffea, 2011). 

Although hydraulic fracturing was first patented by Halliburton in 1949, modern hydraulic 

fracturing is the result of the development and realization of four distinct technological advances 

that combined together has led to an explosion in shale oil and gas mining that started in 2003.  

These include the utilization of high volumes of water (2 to 8 million gallons per fracked well), 
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slick water (chemical lubricants to decrease fracking fluid viscosity), horizontal drilling and 

multi-well drilling pads (Cantarow, 2013). 

 While hydraulic fracturing or fracking itself is technically one-step of the mining process 

that lies in-between the insertion of well casings and the removal of flowback waters that just lasts 

several hours to a couple of days, in popular parlance the term fracking is used to reference the 

entire process that accompanies this mining technology. This includes, but is not limited to, the 

“processes of excavation, drilling, dehumidification, compression, processing and pipeline 

transport” (Cantarow, 2013, p. 4). Anthony Ingraffea, Cornell University engineering professor and 

president of Physicians, Scientists and Engineers for Healthy Energy, clarifies that because fracking 

is “a spatially intense, heavy industrial activity which involves far more than drill-the-well-frack-

the-well-connect-the-pipeline-and-go-away, it results in much more land clearing, much more 

devastation of forests and fields” (Cantarow, 2013, p. 4). Ingraffea continues that fracking requires 

the construction of many industrial facilities known as compressor stations, which compress natural 

gas in preparation for transport, in addition to construction of both fresh-water ponds and waste pits, 

and the heavy truck traffic that necessarily accompanies these various activities (Cantarow, 2013).  

 While the potential benefits of fracking for Southern Illinois have been frequently highlighted 

by the oil and gas industry, Illinois politicians, and mainstream media (e.g., jobs, lease fees, 

severance tax revenues, energy independence), the potential negative impacts of fracking on 

Southern Illinois have been de-emphasized by these parties. This launch of fracking does not 

particularly have popular public support in Southern Illinois, with 40.7% supporting it, 39.7% 

opposed, and 19.6% with no opinion (Leonard, 2013) or nationwide, with 44% favoring increased 

fracking and 49% being opposed. In the six-month period from March to September, 2013 public 

opposition to fracking grew by 11% (Pew Research Center, 2013). This nationwide public disfavor 
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to expanding fracking has continued to grow, according to a November 2014 Pew Research Center 

poll, with 41% favoring increased fracking and 47% being opposed, with the greatest demographic 

shift occurring in the Midwest, which saw a 16% drop from March 2013 to November 2014 in those 

favoring increased fracking, from 55% to 39% (Pew Research Center, 2014). 

 This shift is at least in part due to increased public awareness of the many potential 

consequences that accompany fracking. Some of these consequences include threats to the 

environment, including habitat segmentation and ecosystem degradation (Burton et al, 2014), 

permanent removal of water from the hydrological cycle (Adgate, Goldstein, & McKenzie, 2014), 

and increased greenhouse gas emissions (Howarth, Santoro, & Ingraffea, 2011). Some of these 

consequences include threats to infrastructure, including fracking wastewater disposal induced 

earthquakes (Ellsworth, 2013) and roadway degradation accompanied by infrastructure destruction 

(Ridlington & Rumpler, 2013). Some of these consequences include threats to public health, 

including air pollution due to methane leakage and industrial equipment operation (Howarth, 

Santoro, & Ingraffea, 2011), water contamination from methane migration and leaks, spills and 

intentional dumping of frack fluid (Ridlington & Rumpler, 2013), and toxic and radioactive fracking 

flowback and produced water (Fair, 2014). And finally, some of these consequences include threats 

to communities, including social ills like increased crime, drugs, prostitution, homelessness (Schafft, 

Borlu, & Glenna, 2013), and the most dangerous workplace in the United States, featuring seven 

times the national on-the-job death rate of the average occupation (Goldstein et al, 2014). 

 Though readily monetizable, general efforts to attach price tags to these various 

economic, environmental and social ills have lagged immensely behind efforts to project 

potential revenues from fracking. One realm of public interest that has particularly faced these 

impacts is that of transportation, having experienced various challenges to safety (dangerous 
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degraded roadway and bridge conditions, increasing gravelization of rural U.S.), quality of life 

(traffic congestion, dust and air pollution), and economic vitality (primarily rural taxpayers 

subjected to unfunded liabilities such a road repairs and reconstruction) (Tidd, 2003). As 

fracking continues to proliferate around the United States, these concerns are starting to become 

more and more of an issue nationwide. 

Several State Departments of Transportation (including Montana, Wyoming, North 

Dakota, Texas, West Virginia, New York, and Ohio) have especially raised concerns regarding 

preservation of existing roadway systems from infrastructure damage, and roadway degradation 

in particular, due to the immense drilling and fracking-related truck traffic on roads that are 

simply not designed for that level and intensity of usage. This includes a variety of specific road 

damage issues, such as base failures, potholes, rutting, distress, edge damage, and shoulder 

degradation (Quiroga, Fernando, & Oh, 2012). 

The volume of fracking-related truck traffic has greatly accelerated consumption of 

roadways that are the responsibility of a wide range of levels of government (jurisdictions from 

townships to federal), “creating a financial need not easily funded from traditional highway user 

fee mechanisms” (Boske, Gamkhar, & Harrison, 2013, p.1). This heavy use of public infrastructure 

and services in fact imposes both an immediate and long-term cost burden on taxpayers (Dutzik, 

Davis, Van Heeke, & Rumpler, 2013). This is especially true of rural roads designed for a low 

volume of traffic of less than 400 vehicles per day carrying loads far below that of the average 

80,000 pound (40 ton) fracking-related truck traffic, at times tipping the scales at as much as 

115,000 pounds (57.5 tons). These pavement surfaces generally have “base layers thicknesses that 

fail to provide adequate structural support for heavy truck traffic encountered on rural roads” 

(Miller & Sassin, 2013, p. 3). Under normal operating conditions persistent rehabilitation and 
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reconstruction is not anticipated, and “complete pavement restoration costs” are not typically 

included in maintenance cost plans (Huntington & Ksaibati, 2009, p. 17). Rebuilding just a typical 

county paved road can cost in excess of $1 million per mile, and that amount alone can match the 

total for many rural counties’ annual Road Departments budgets (Wilson, 2012). 

 There is a long history of studies that have explored the impact of heavy truck usage on 

U.S. roadways in industrial, extraction and agricultural development. Some of these key peer-

reviewed analyses include Purnell, Yoder, & Sinha (1978), Mason (1983), Tolliver (1989), 

Stephens & Hafferman (1993), Russell, Babcock, & Mauler (1995), Prozzi, Harrison, & Prozzi 

(2003), and Babcock, Bunch, Sanderson, & Witt (2003). The Mason (1983) study in particular 

estimates the reduction in life of Farm-to-Market road pavement in Texas due to oil development 

related traffic, along with the associated “increase in annual cost due to a reduced pavement 

serviceability” (Mason, 1983, p. 16). However, this study only concerns Farm-to-Market roads in 

Texas, and additionally, predates the very atypical and intense comprehensive demands of shale 

oil and gas production that has only very recently come under the scrutiny of scientific study 

(Dybing, Lee, DeHaan, & Dharmadhikari, 2013).  

While there have been several scattered reports from State Departments of 

Transportation, counties, and universities in the past decade aimed at estimating the long-term 

costs of road damage associated with fracking, there has generally been a dearth of peer-

reviewed studies analyzing this relationship. The disparate and diverse reports and studies that do 

exist on this topic, however, focus on variety of different infrastructure and roadway jurisdictions 

(township, municipality, county, farm-to-market, state, interstate, federal) in a number of 

different states (Texas, Pennsylvania, New York, West Virginia, Arkansas, Ohio, North Dakota, 

Wyoming, Montana, Colorado). Additionally, each of these reports and studies often explores its 
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own unique variables or combination of variables, often dependent upon the data available, the 

theoretical framework of those conducting the research, or the specific research question being 

pursued by the report/study principle(s). 

 The current research addresses the gap in the literature by developing a critical 

assessment of the literature regarding the public costs of fracking-related roadway damage. 

Freilich and Popowitz (2012) indicate that both the “isolated and cumulative adverse effects and 

impacts” of fracking “on the traffic shed need to be understood regarding the existing and future 

required capacity of the county and state road system” (Freilich & Popowitz, 2012, p. 570). 

However, one of the challenges of this current research, as noted by Quiroga et al (2012), is that 

“many short-term and long-term impacts on the state’s transportation infrastructure are not 

properly documented” (Quiroga, Fernando, & Oh, 2012, p. 134). Critical assessment of literature 

will assist in the development of a model that may provide the tools necessary to determine the 

degree and intensity of roadway damage due to fracking in a particular region over a specific 

time period, beyond what that given road system would sustain under normal traffic conditions, 

and to accurately monetize that damage for evaluatory or predictive purposes. 

The research question of the current research paper is what are the total cost burdens on 

the public of roadway damage due to fracking in a given region over a given period of time? The 

purpose of the current study is to provide a critical assessment of the literature regarding the 

public costs of fracking-related roadway damage, based upon the theoretical frameworks of prior 

research studies and reports examined regarding this issue, in order to render a useful system of 

roadway-related infrastructure harms for the purposes of establishing economic accountability. 

The methodology of the current study is to conduct an inventory of existing literature to 

determine potentially relevant independent variables. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Scale of Fracking 

The most comprehensive list of total high-volume hydraulic fracturing [HVHF] 

(fracking) wells by state has been compiled by Ridlington and Rumpler (2013), who find that 

between 2005 and 2012 more than 82,000 fracking wells are drilled or permitted in 17 states, 

with 22,326 fracking wells being drilled in 2012, 13,540 of which are drilled in Texas.  

Current industry plans for continued fracking nationwide include the drilling of one to 

two million wells over the next 10 to 20 years, with production at each well running for 

approximately 30 years. The estimate for total projected wells for individual states include 

100,000 in Pennsylvania (Yeoman, 2013), 26,450 to 50,000 in North Dakota (Tolliver & 

Dybing, 2010; Scheyder, 2013), and 40,000 for the State of New York (Kennedy & Gallay, 

2012). In terms of total fracking wells already drilled, Texas has more than 33,000 wells, 

followed by Colorado with in excess of 18,000, and Pennsylvania with nearly 7,000 (Ridlington 

& Rumpler, 2013). The rate of growth of drilled wells in Pennsylvania has been accurately 

described as “exponential,” with Marcellus shale fracking wells increasing from 2 drilled in 

2005, to 11 drilled in 2006, to 34 drilled in 2007, to 210 drilled in 2008, to 768 drilled in 2009 

and 1454 drilled in 2010 (Pifer, 2011; Meng, 2014). 

With more than $250 million invested in buying up drilling leases on a half million acres of 

private land in southeastern Illinois (Yeagle, 2013), the oil and gas industry is planning on fracking 

50,000 to 100,000 wells in a 19-county area of state’s southeast corner including Jasper, Crawford, 

Clay, Richland, Lawrence, Wayne, Edwards, Wabash, Franklin, Hamilton, White, Williamson, 

Saline, Gallatin, Johnson, Pope, Hardin, Pulaski and Massac Counties (Bieneman, 2013). 
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High Density of Well Placement 

The cause of greatest harm is not particularly the high volume hydraulic fracturing (HVHF) 

or “fracking” technology itself, as it is the scale of mining required to engage in this form of fossil 

fuel extraction. As Columbia University’s Dr. Anthony Ingraffea relates, the problem with shale 

gas and oil is that it is fundamentally distributed everywhere equally throughout a shale play, 

which means that the industry has to drill everywhere to access it (Law & Hays, 2013).  

Everywhere can mean a five to fifteen-acre drilling pad, with each one supporting six to 

twelve wells and spacing of one well for every 40 (in the Marcellus Shale Play) to 65-acre (in the 

Eagle Ford Shale Play) area in a given county to be fracked (Arthur, Bohm, & Layne, 2009; Dukes, 

2012). With the industry standard of fracking 70% of targeted counties, individual rural counties in 

southeastern Illinois in the sweet spot of the New Albany Shale Play could conservatively be looking 

at upwards of 3,500 wells each. This total is based upon one well for every 65-acres, clustered in 6-

well drilling pads over 70% of a county, with an average of 14 townships per county and each 

township averaging 36 square miles in area (Podulka, S. G. & W. J. Podulka, 2010).  

 
Intensity of Fracking-Related Truck Traffic 

 The amount of truck traffic required to service each individual fracking well is immense, 

though it does indeed vary from site to site according to “well type and depth, geology, drilling 

technology, and water need” (Quiroga, Fernando, & Oh, 2012, p. 5). Other factors that can impact 

total truck trips required are whether water delivery and/or waste water disposal is by truck or 

pipeline, how many wells are being drilled per well pad, the specific equipment and materials that 

are required for each site, and the relative location of additional key inputs like fracking sand and 

chemicals (Tidd, 2013; Abramzon, Samaras, Curtright, Litovitz, & Burger, 2014).  
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 Truck traffic generally consists of a fully loaded 80,000 pound (40 ton) inbound trip in the 

case of fracking well inputs (or outbound trip in the case of fracking well outputs such as waste water 

disposal or rig removal), and an ‘empty’ 35,000 pound (17.5 ton) outbound trip upon completion of 

delivery of inputs (or inbound trip once again in the case of the fracking well outputs of waste water 

disposal or rig removal) (Schiller, 2008). Special overweight truck load permits are often readily 

available for a very low cost (Wilson, 2012), meanwhile, drilling-rig related truck traffic can consist 

of oversized loads weighing as much as 115,000 pounds (57.5 tons) (Locher, 2012). Roads facing 

that kind of truck traffic can have 20-year life spans reduced to days, as “all it takes is one pass of 6 

million pounds of drilling equipment to destroy a road like that” (Fowler, 2012, p. 1) 

S. G. Podulka & W. J. Podulka (2010) estimate that it takes between 1,760 and 1,904 

truck trips hauling equipment, materials and water to build, drill and high volume hydraulically 

fracture a single well. A typical Marcellus fracked well requires 5.6 millions gallons of water 

during the hydraulic fracturing of the shale, of which approximately half returns to the surface as 

flowback and produced wastewater, which is summarily shipped away in tanker trucks to 

disposal wells. Currently more than 95% of fracking wastewater produced in the United States is 

injected into deep disposal wells (Clark & Veil, 2009). 

 Moss (2008) estimates that it can require more than 3,000 truck trips to bring water to 

and remove waste from a single typical fracking well, with an additional 220 to 364 trips being 

necessary for hauling equipment, materials and employees. The New York State Department of 

Transportation (2011) finds that while the drilling phase can require 290 truck trips over a 28 day 

period, due to total water and waste needs, the hydraulic fracturing of a single well can require 

more than 2,300 truck trips in just a 3 day period. The New York State Department of 

Environmental Conservation [NYSDEC] estimates a single well requires 1,800 to 2,600 total 
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truck drive-bys (truck trips) through all phases, with an 8 well site requiring 14,400 to 20,800 

total truck trips. A “Revised Draft Supplemental Generic Environmental Impact Statement” from 

NYSDEC (2011) estimates that early horizontal well pad development generates 1,148 heavy 

truck and 831 light-truck one-way loaded trips, and peak well pad development generates 625 

heavy truck and 795 light-truck one-way loaded trips. This results in 3,950 one-way trips in early 

well pad development and 2,840 one-way trips during peak well pad development, for a total of 

6,790 one-way trips per fracked well (ALL Consulting, 2010). 

A report prepared by Underbrink (2012) of Naismith Engineering for the DeWitt County 

Texas Commissioners utilizes Equivalent Axle Load Factors (EALF), roughly equivalent to both 

a truck trip and an Equivalent Single Axle Load (ESAL), to define traffic demand in the Eagle 

Ford Shale region. One ESAL represents a single axle load of 18,000 pounds (PDOT, 2010). The 

roadway damage caused by a given load is roughly a function of pavement characteristics, 

number of axles, and load per axle by a power of four (AASHTO, 1993). A typical country road 

will last about twenty years when being subjected to about 500 EALF’s per year, requiring 

reconstruction after a total of 10,000 EALF’s. Underbrink estimates that the total EALF’s in the 

first year of a single fracking well’s development and production is 2,430, with annual EALF 

total of 1,250 thereafter, for a total of 26,680 EAFL’s for one single well in production over 20 

years. This means that a county road designed to last 20 years would only last 7 years when 

subjected to the typical fracking of just one single well. 

[See Appendix C for a state-by-state breakdown of research on fracking-related roadway 

degradation costs.] 
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CHAPTER 3 

METHODOLOGY 

 

In order to create a critical assessment of the literature regarding the public costs of 

fracking-related roadway damage, an inventory of existing literature is conducted to determine 

potentially relevant independent variables. At the time of this research, only six peer-reviewed 

studies explain factors that influenced the total cost of roadway damage due to fracking in the 

following states where such activities are taking place or are projected to take place: Texas, 

Pennsylvania, New York, West Virginia, Arkansas, Ohio, North Dakota, Wyoming, Montana 

and Colorado. These peer-reviewed studies include Abramzon, Samaras, Curtright, Litovitz, & 

Burger (2014); Huntington & Ksaibati (2009); Mason (1983); Mitra, Tolliver, & Dybing (2012); 

Sathaye, Horvath & Madanat (2010); and Wynveen (2011). Though conducted prior to the 

advent of modern fracking that launched approximately in the year 2003, the Mason study is 

utilized in the current study as it pertains to behaviors (road damage related to truck traffic from 

oil development) still relevant to the research being conducted regarding fracking traffic in this 

study. 

Several search terms are used on the full text of each study and report to identify 

potentially relevant sections for detailed review. The search terms include “shale,” “gas,” “oil,” 

“fracking,” “road,” “highway,” “damage,” “truck traffic,” “wells,” “repair” and “reconstruct.” 

Independent variables are functionally organized according to the following categories: Physical 

Factors (truck trips, fracked wells, well development phase, roadway type, roadway condition 

and roadway improvement required) and Fiscal Factors (Road User Maintenance Agreement, 

bonding, impact fees, and additional appropriations). 

Given the dearth of relevant peer-reviewed studies published on the topic on roadway 
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damage due to fracking, eighteen relevant reports and engineering studies commissioned by 

counties and state departments of transportation conducted by universities and private firms are 

included. The purpose of this research paper is to provide a critical assessment of the literature 

regarding the public costs of fracking-related roadway damage through which oil and gas 

companies engaged in shale oil and gas drilling and the high volume hydraulic fracturing 

(HVHF) process can be held accountable for the full extent of infrastructure harms in the form of 

roadway damage (and its total associated costs) for which it is responsible. This model will allow 

for the most accurate evaluation and/or prediction of roadway costs due to fracking in a specific 

area or region over a particular time frame. This will be accomplished through identification of 

variables and their associated hypotheses that embody the theoretical backbone of the previously 

published literature on the subject. 
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CHAPTER 4 

INDEPENDENT VARIABLES 

 

Physical Factors 

Truck Trips 

According to prior research studies and reports the physical factor that has the most direct 

impact on the cost of road damage due to fracking is that of total truck trips to a given well site. 

Quiroga et al (2012) identifies several factors determinant of the total number of truckloads in 

evaluating the total cost of road damage on U.S. and interstate highways and state maintained 

roadways in Texas, including well type and depth, local geology, drilling technology utilized and 

total water needed (Quiroga, Fernando, & Oh, 2012) 

Abramzon et al (2014) examines the number of heavy truck trips required to construct 

and operate a single well, and determines that whether water is delivered or disposed of via truck 

or pipeline clearly has a significant impact on overall heavy truck traffic, and thus the total cost 

of road damage on state highways, along with the number of wells per well pad (which can vary 

between four and sixteen) and the specific equipment, materials and total water required for each 

site (Abramzon, Samaras, Curtright, Litovitz, & Burger, 2014). 

Dybing (2012), who engages in projecting the degree of increased traffic on Montana 

highways, utilizes GIS-based build-out analysis to estimate the location and degree of potential 

oil development. Specifically, Dybing utilizes historic oil production databases to predict the 

flow from oil production zones to final destinations, in addition to previous traffic data and truck 

survey results, to predict future costs of road damage. Based upon this prior research, the current 

research hypothesizes that the greater the number of total truck trips to a given well site, the 

greater the cost of road damage. 
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Total Wells 

According to prior research studies and reports the total number of fracking wells in a 

given region over a given time frame, a.k.a. the distribution of well activity, has a significant 

impact on the cost of road damage, primarily due to its direct impact on associated heavy truck 

traffic. Dybing (2012) utilizes GIS-based build-out analysis to project future drilling locations 

and production levels in order to estimate the total number of fracking wells and the associated 

heavy truck traffic that Montana is facing in the coming years.  

Likewise, Tidd (2013) utilizes GIS-based build-out analysis on a number of factors, 

including location of key inputs (water, sand and chemicals) and outputs (waste disposal); 

regulatory minimum spacing requirements; mineral leasing activity; pace of well development; 

and total well permits issued to project future well locations along with total well-development in 

a particular area. In the current research it is hypothesized that the greater the number of total 

fracking wells in a given region the greater the cost of road damage. 

 
Well Development Phase 

While most reports and studies on fracking identify several unique developmental stages 

in regards to the nature of truck traffic, various researchers model this phenomenon differently. 

Indeed truck traffic in each of these phases varies and has to be looked at distinctly, as different 

combinations of jurisdictional roadways are utilized and different loads exist for each of these 

stages, and traffic carrying inputs are fully loaded inbound and empty outbound, while traffic 

carrying outputs are empty inbound and fully loaded outbound, and thus have varying impacts on 

the cost of roadway damage according to prior research. 

Prozzi et al (2011) conceives of fracking truck traffic as falling within one of three 

general categories, those of construction traffic (that occurs during the well development process, 
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including rig-related traffic), fracking traffic, and saltwater removal traffic. Specifically, 

“construction traffic is generated during the five-step well development process: site preparation, 

rigging up, drilling, hydraulic fracturing, and rigging down” (Prozzi, Grebenschikov, Banerjee, 

& J. A. Prozzi, 2011, p. 36). Miller & Sassin (2013) conceives of the development phase of the 

oil and gas well process expansively as consisting of the inbound hauling to drilling site of 

cranes and rigging, heavy machinery, drilling equipment, pipe and other construction materials, 

sand and water (Miller & Sassin, 2013).  

A peer-reviewed study by Mitra et al (2012) presents a more comprehensive, functional 

model in determining that fracking-related truck traffic consists “largely of five types of 

movements” each of which require independent analysis, including: 

1) Inbound truck traffic consisting of movement of cement, gravel, fuel, drilling mud, 

sand and water. 

2) Inbound truck traffic consisting of movement of fracking chemicals. 

3) Outbound truck traffic consisting of movement of oil and gas, and their 

byproducts. 

4) Outbound truck traffic consisting of movements of fracking flowback wastewater. 

5) Inbound and outbound truck traffic consisting of primarily rig-related movements, 

including specialized vehicles such as utility vehicles, fracturing rigs, work-over rigs 

and cranes (Mitra, Tolliver, & Dybing, 2012). 

Given the various truck traffic differences identified in prior studies and reports in each 

stage of the fracking life cycle, the current research hypothesizes that the phase of well 

development impacts the cost of road damage, with the phases consisting of greater truck traffic 

and greater truck weights having a greater impact on the cost of road damage than phases 

consisting of lesser truck traffic and lesser truck weights. 
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Roadway Type 

Prior research studies and reports indicate that the cost of roadway damage is 

significantly influenced by the type of roadway traveled on by heavy truck traffic related to 

fracking. Mitra et al (2012) examines projected impacts and funding needs for county and 

township roads in North Dakota related to three different types of road structures: paved, gravel, 

and graded and drained. GIS-based build-out analysis was applied to well production forecasts, 

traffic data, and county road survey data sources to evaluate estimated costs of roadway 

improvements such as structural overlays and reconstruction. Abramzon et at (2014) similarly 

evaluates four different types of road structures, including paved, low type, oil/gravel and earth 

to render cost of road damage estimations. 

Dybing (2012) takes matters a step further beyond road composition in evaluating the 

specific physical characteristics of roadway types, including such factors as structure and geometry. 

Roadway structure, and therefore a roadway’s associated “structural number,” is calculated from a 

combination of layer thickness, material types and specific structural coefficients. Roadway 

geometry includes such factors as lane width, shoulder type and shoulder width. These various 

structural and geometric elements are significantly determinant of pavement condition following 

fracking-related heavy truck traffic, and thus of reconstruction and replacement costs of a particular 

roadway. Given the findings of prior research studies and reports, the current research hypothesizes 

that the specific roadway type impacts the cost of road damage, with degraded high volume paved 

roadways having the greatest impact on road damage costs, degraded moderate volume gravel 

roadways having a moderate impact on road damage costs, and degraded lower volume graded and 

drained roadways having the least impact on road damage costs. 
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Roadway Condition 

Prior research studies and reports demonstrate that not only does roadway type and 

design have an impact on the cost of road damage, but the heavily correlated element of roadway 

condition does too. Two fundamental approaches to this impact-laden factor in the prior 

literature is to either examine the total reduction in useful roadway life, a measure of the degree 

to which the roadway has already been diminished (glass half empty), or to explore the estimated 

useful remaining roadway life (glass half full). 

Early research by Mason (1983) takes a look at the impacts of oil field development on lower 

volume Farm-to-Market roads in Texas. This peer-reviewed study finds that the estimated pavement 

life reduction, which has a direct impact on costs insofar as the greater the pavement life reduction 

due to heavy truck traffic the greater the cost of roadway damage, is determined by a combination of 

truck weight and traffic volume. Prozzi et al (2011) also examine reductions in service life of 

roadways in Texas, concluding that such traffic-induced reductions manifest “shorter time intervals 

between maintenance cycles, resulting in increased maintenance expenses by the TxDOT districts” 

(Prozzi, Grebenschikov, Banerjee, & J. A. Prozzi, 2011, p. 106). The study frames its results in terms 

of “terminal distress value,” which is the total estimated road life until roadway maintenance or 

repair intervention is required. This research also determines that the overall reduction in service life 

varies according to phase of well completion, with rig traffic causing a 5.6% decrease in service life, 

construction traffic leading to a 29.5% reduction, and saltwater disposal traffic decreasing service life 

by 15.7% (Prozzi, Grebenschikov, Banerjee, & J. A. Prozzi, 2011, p. 126). 

According to the Texas Department of Transportation, unexpected or unplanned heavy truck 

traffic consumes pavement life faster than what roadways are originally designed for, as “Pavements 

are designed to carry the amount of traffic expected to travel that roadway over a specific period of 
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time, usually 20 years, without significant deterioration or damage” (TxDOT, 2012). Given that 

standard, other studies choose to examine estimated useful remaining roadway life. Like Mason 

(1983), Abramzon et al (2014) limit their analysis to weight and frequency of truck traffic, while 

acknowledging that other studies examine factors such as the thickness of pavement structure layers, 

drainage characteristics, predicted loading patterns of truck traffic, and road maintenance schedule 

(Quiroga, Fernando, & Oh, 2012; Abramzon, Samaras, Curtright, Litovitz, & Burger, 2014). 

The equivalent single axle load (ESAL) approach is utilized by the North Dakota 

Department of Transportation (NDDOT, 2006) to determine that heavy truck traffic related to 

fracking produces very high ESAL values per mile, so high (3.95 to 9.94 ESALs per mile) that 

one four-axle workover rigs could potentially account for a year’s worth of roadway wear in just 

a few passes on a county or township road (Dybing, Lee, DeHaan, & Dharmadhikari, 2013). The 

Gas Drilling Task Force (2009) specifically refers to this American Association of State 

Highway Transportation Officials (AASHTO) standard as being “useful in establishing the 

percentage of road damage attributable to truck traffic resulting from gas development and may 

provide baseline data for establishing the costs associated with this type of development” (Gas 

Drilling Task Force, 2009, p. 37). Due to the conclusions of prior studies and reports, this 

research hypothesizes that the greater the reduction in useful roadway life, the greater the 

increase in diminished road capacity, the greater the cost of road damage. 

 
Roadway Improvements Required 

 
The final key physical factor, according to prior research studies and reports, to 

determining the cost of road damage associated with fracking is that of the particular roadway 

improvement required by a given degraded strip of pavement. Several studies, including 

Huntington & Ksaibati (2009), Tolliver & Dybing (2010), Wray (2011), Underbrink (2012), 
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Quiroga, Fernando, & Oh (2012), Huntington, Pearce, Stroud, Jones, & Ksaibati (2013) and 

Stroud & Ksaibati (2013) identify three major categories or levels of roadway improvement, 

from lowest cost to highest cost, and least extensive to most extensive: 1) Maintenance, 2) 

Rehabilitation, and 3) Reconstruction (see Table 1 below). Tolliver (2010) specifically frames 

these road improvement levels as being the result of fracking-related heavy truck traffic 

reduction in pavement life, and further distinguishes between levels 2 and 3 as being roads with 

lower traffic volumes (the former) versus paved routes with the greatest direct traffic impacts 

(the latter). Due to the clear findings of prior research studies and reports, the results of which 

are included in Table 1, this research hypothesizes that the greater the need for road  

 
Table 1. Roadway Improvement Categories – Average Cost Per Mile of Roadway  

  (all figures adjusted to 2014 dollars) 
 

  Underbrink 
(2012) 

Huntington 
et al (2013) 

Quiroga 
(2012) 

Stroud & 
Ksaibati 
(2013) 

Tolliver & 
Dybing 
(2010) 

State:  Texas Wyoming Texas Wyoming North Dakota 
Road type:  County 

paved 
County 
paved 

Farm-to-
Market paved 

County 
gravel 

County & 
Town paved 

Maintenance Renewal     $2,919 
 Drain Repair    $15,243  
 Seal Coat   $21,840  $12,594 
 Regravel    $30,487  
 Maintenance $82,489  $3,157  $47,124 
       

Rehabilitation  Structural 
Overlay 

  $243,040  $173,254 to 
$325,700 

 Minor Rehab.  $257,777    

 Restoration   $288,048   

 Preventative 
Rehabilitation 

 $61,866 to 
$360,887 

   

 Rehabilitation   $537,546 $152,483  
 Major Rehab.  $670,220    
       

Reconstruction Basic Recon. $948,619     
 Reconstruction     $1,232,443 to 

$1,357,083 
 Full Recon.  $1,237,329    
 Major Recon. $1,959,103     
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improvements, the greater the cost of road damage, with reconstruction having the greatest 

impact, rehabilitation having a moderate impact, and maintenance having the least impact on the 

cost of road damage. 

 
Fiscal Factors 

 
Maintenance Agreements 

The reality of infrastructure financing mechanisms related to fracking is very different in 

the Marcellus shale region than that of other regions like the Barnett and Eagle Ford Shale of 

Texas. A peer-reviewed study by Abramzon et al (2014) find that shale gas and oil development 

companies make repairs and often reconstruct roadways that are visibly damaged as required 

through Excess Use Maintenance Agreements (EUMAs) with the State and local municipalities 

in Pennsylvania (Abramzon, Samaras, Curtright, Litovitz, & Burger, 2014; Boske, Gamkhar, & 

Harrison, 2013). Boske et al (2013) also find in their report that states like Ohio and West 

Virginia have a proven successful mechanism for funding necessary road repairs due to fracking 

in the form of “Road Use Maintenance Agreements (RUMAs), “a legal agreement between the 

well operator and the state or local authority,” which varies from Pennsylvania’s mechanism in 

requiring energy companies make improvements to insufficiently prepared roads prior to 

fracking beginning, along with repairing and maintaining roads throughout the entire process 

(Boske, Gamkhar, & Harrison, 2013, p. 3).   

Ohio municipalities are free, but not required to, negotiate RUMAs with fracking 

companies (Locher, 2012), as in Ohio RUMAs are established between these companies directly 

with counties, municipalities and townships, and not the Ohio Department of Transportation. 

These fracking road improvement projects have ranged between $50,000 to $3 million (Boske, 

Gamkhar, & Harrison, 2013). Given what prior research has determined regarding use of 
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maintenance agreements in Pennsylvania, Ohio and West Virginia, the current research puts 

forth the hypothesis that the greater the utilization of maintenance agreements the lower the cost 

of road damage to municipalities, counties and the state net of the maintenance agreements. 

 
Bonding 

Both Ohio and West Virginia utilize the financial mechanism of bonding to complement 

the use of RUMAs. Boske et al (2013) reveal that while bonding in Ohio is an optional 

component of RUMAs, they are not widely utilized, as if a fracking company engages in making 

improvements upfront, a bond is not a required aspect of the RUMA. However, as a “home rule” 

state, Ohio municipalities are responsible for both the construction and maintenance of state 

highways that pass through their borders (Wray, 2011). In order to provide assurance for these 

added responsibilities, local governments in Ohio can and do pursue road bonds. When bonds are 

utilized, companies are assessed $150,000 to $400,000 per mile, contingent upon the road type 

(Boske, Gamkhar, & Harrison, 2013, p.3). 

Fracking companies are required by West Virginia state law to meet with highway 

engineers and discuss roadway maintenance needs for their heavy truck routes, and to post bonds 

that are capped at $100,000 per mile of paved roads and $25,000 per mile of unpaved roads 

(Mattox, 2012). Dybing, Lee, DeHaan and Dharmadhikari (2013) point out that there are 

shortcomings to bonding in West Virginia, as the bond is limited to secondary roads, not 

applying to state and federal highways (Associated Press, 2011), and an operator can even 

further reduce their fiscal responsibility for road repairs by covering their liabilities across a 

single District for $250,000, or across the entire state of West Virginia for a $1,000,000 bond 

(Mattox, 2012; Dutzik, Ridlington, & Rumpler, 2012).  

Pennsylvania also requires that fracking companies post bonds for their routes in addition 
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to entering in Excess Use Maintenance Agreements (Boske, Gamkhar, & Harrison, 2013). In 

fact, “whenever there is an excess maintenance agreement there is an associated bond” (Christie, 

2010a). The State of Texas, in contrast to the aforementioned states, has no requirements for 

systematic road bonding (Wilson, 2012). While according to prior research studies and reports 

there are distinct challenges to the utilization of bonding as a fiscal tool in relation to fracking in 

Pennsylvania, Ohio, West Virginia, this research hypothesizes that the greater the utilization of 

bonding the lower the cost of road damage to municipalities, counties and the state net of the 

bonding. 

Impact Fees 

 According to prior research studies and reports, Pennsylvania is a state that has taken the 

lead with implementation of this fiscal tool that “charges an impact fee for each drilled well” 

(Boske, Gamkhar, & Harrison, 2013, p. 3) to offset the cost of road damage incurred as result of 

fracking with the passage of a Senate and House of Representatives approved bills in November 

2011 (Negro, 2012), which was signed into law as the Unconventional Gas Well Impact Fee Act 

(Act 13) on February 12, 2012. The impact fees imposed on companies producing gas via 

unconventional horizontal wells follow a 15-year fee schedule and are based upon the average 

annual market price of natural gas. With the average price falling between $2.26 and $2.99 per 

Mcf in 2013, this results in companies being assessed a per well impact fee of $45,000 for the 

first year of production, $35,000 for the second year of production, $30,000 for the third year of 

production, $15,000 for the fourth through tenth year of production, and $5,000 for the eleventh 

through fifteenth years of production (Sacavage, 2013). Of the total $204 million in fees 

collected in 2012, $25.5 million (12.5%) go to specific earmarked state agencies, and 60% of the 

remaining funds go directly to counties and municipalities to finance the cost of roadway damage 
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via the Unconventional Gas Well Fund, with 40% ending up in the Marcellus Legacy Fund for 

statewide initiatives “with potential local impacts and value” (Sacavage, 2013, p. 8).  

Colorado made it legal for counties and municipalities to charge such impact fees for new 

growth projects with the passage of SB15 in 2001 (RPI Consulting, 2008). These impact fees can 

be negotiated into lease agreements and provide counties with as much as $9,000 per well 

(Sassin, 2009). Ohio Governor Kasich introduced a similar plan in March 2012 that would have 

allowed for “100 percent of the proceeds staying at the local level for road maintenance” (Fields, 

2012, p. 1). What became Ohio HB 59 would have levied a $25,000 fee per well pad prior to 

start of construction, with all proceeds going to the treasurer of the county the drilling is taking 

place in, which can be utilized for any purpose (Hickman, 2013). Ultimately, Governor Kasich’s 

proposal is rejected by the Ohio General Assembly and is not included in the HB 59 that is 

adopted on June 30, 2013 (Atlas Resource Partners, L.P., 2014). Given the conclusions of prior 

literature regarding application of impact fees on roadways damaged by fracking, this research 

puts forth the hypothesis that the greater the utilization of impact fees the lower the cost of road 

damage to municipalities, counties and the state net of the impact fees. 

 

Voluntary Participation 

Traditionally, Texas has been dependent upon the voluntary participation of the industry 

to finance road repairs, and Dewitt County Judge Daryl Fowler indicates that his county does 

consistently receive economic contributions from two fracking companies for each well drilled, 

with others contributing on an ad hoc basis (Fowler, 2012). However, a peer-reviewed study of 

two Texas counties located in the Barnett Shale region conducted by Wynveen (2011) finds that 

fracking related road repairs funded by industry revenues are “disparately undertaken, neglecting 

certain areas and attending to others,” identifying an unequal distribution of revenue that favored 
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the oil companies and their employees, in addition to lease holders, as “the only benefactors of 

the natural gas industry in Wise County” (Wynveen, 2011, p. 17). As Dutzik et al (2013) 

elucidates, “Voluntary donations from fracking companies are far from reliable sources of 

revenue to repair and maintain crumbling roads,” referencing the reality of large fracking 

operations like Devon Energy Corp. and Chesapeake Energy (Dutzik, Ridlington, & Rumpler, 

2012, p. 24). Described by Johnson County (Texas) Judge Roger Harmon as being “early to 

voluntarily cover repairs to roads if presented with before-and-after assessments,” Johnson 

County Commissioner Rick Bailey finds that as drilling activity slowed, natural gas prices 

declined, and smaller subcontractors moved in to service wells, it becomes difficult to get anyone 

to cover further road maintenance costs (Shlachter, 2012, p. 1). Due to the inconsistency and 

arbitrariness of this mechanism in prior studies and reports, the current research did not include 

voluntary participation as a potential independent variable. 

 
Additional Appropriations 

Fracking will continue to strain jurisdictional resources until accountability measures in the 

form of infrastructure financing mechanisms are in place (Miller & Sassin, 2013). While Texas 

currently lacks a statewide strategy for managing roadway damage due to fracking (Boske, Gamkhar, 

& Harrison, 2013), the Texas Department of Transportation requested an additional $400 million in 

appropriations in 2012 to repair existing roadway and bridge damage to State highways and Farm-to-

Market roads due to fracking. These are the findings of studies conducted by the Texas A&M 

University Transportation Institute and the University of Texas Center for Transportation Research. 

Six hundred million will follow each year of the proceeding biennium to further prepare roadways 

and bridges for projected fracking truck traffic related degradation (TxDOT, 2012). The Texas State 

legislature set aside an additional $225 million in early 2013 for a two-year grant program 
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administered by the Texas Department of Transportation targeted at county roadways in west and 

south Texas, marking the first time that state has been utilized in the repair of county roads (Dukes, 

2013).  

Judge Fowler reiterates, “It is high time to do something about the inequity” in the Eagle 

Ford Shale region of Texas. Fowler offers that the same fiscal year only $112,000 is returned 

from the state in appropriations towards fracking-related impacts for his county via Overweight 

Axle Fees and gasoline tax collections, the State of Texas collected more than $57.5 million in 

severance tax from his county for fracking-related activities (Dukes, 2012, p. 2). The fact is that 

while fracking companies can receive overweight load permits from the Texas Department of 

Transportation, the permits themselves specifically state that revenue from the permits will not 

necessarily go back to the counties that are facing the related industry caused road damage: “It is 

expressly understood that the Texas Department of Transportation shall not be responsible in any 

way for any damage of whatever nature that may result from the movement of the described 

vehicle and load over state highways” (TxDOT, 2008, p.1). Given the results of prior research 

studies and reports, this study hypothesizes that the cost of road damage decreases as the 

additional appropriations to assist in covering those costs increases. 
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CHAPTER 5 

THE MODEL 

 

The dependent variable of Cost of Road Damage on the public in this critical assessment 

breaks down into four distinct dimensions in terms of unit of measurement (per well, per lane mile of 

roadway, per year and per roadway lifetime), and seven distinct dimensions of roadway jurisdictions 

by level of governments responsible for maintaining the given infrastructure (U.S. highways, 

Interstate highways, State highways, Farm-to-Market roadways, County roadways, Municipal 

roadways and Township roadways). Each of these dimensions illustrates further interrelationships 

between the ten independent variables discussed above, and the dependent variable of Cost of Road 

Damage due to fracking that is the subject of this critical assessment. The bottom line is the cost of 

road damage, as illustrated by the prior research, can be framed according to a number of different 

unit measurements each responsive to its own unique set of independent variables, as well as being 

analyzed from a number of unique jurisdictions when it comes to levels of government physically 

and fiscally responsible for maintaining the impacted roadways. 

 
Unit Factors 

Cost of Road Damage Per Well 

 In 2008 Rio Blanco County enlisted RPI Consulting to produce a report regarding new 

growth road impact fees in light of Colorado’s 2001 SB15 allowing for the legal imposition of 

such fees by counties and municipalities. This study estimates that the per well cost of road 

impact for a gas or oil well is $22,032 in 2014 dollars, with it being reduced to $13,194 in 2014 

dollars per well with on-site produced water disposal (thus eliminating all outbound wastewater 

heavy truck traffic), with a further reduction to $12,821 in 2014 dollars per shallow well less 
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than 5,500 feet deep, due to fewer inbound and outbound water deliveries being required (RPI 

Consulting, 2008). 

 The RAND Corporation published the study “Estimating The Consumptive Use Costs of 

Shale Natural Gas Extraction on Pennsylvania Roadways” in 2014 that estimates the 

consumptive use costs on Pennsylvania state-maintained roadways of additional heavy truck 

traffic due to fracking of the Marcellus Shale during 2011. Abramzon et al (2014) determines 

that the cost of road damage per well for all state roadway types is between $13,682 and $24,206 

in 2014 dollars, while if the lowest heavy truck traffic volume state roads are excluded the cost is 

$5,262 to $10,524 in 2014 dollars per well. This is because the bonded higher volume traffic 

state roadways generally do not have reconstruction agreements in place and thus “are typically 

not charged for consumptive use; only visual damages to the roadway require repairs under the 

excess maintenance agreements” (Abramzon, Samaras, Curtright, Litovitz, & Burger, 2014). 

 The DeWitt County Commissioners Court enlisted Naismith Engineering to create a 

“Road Damage Cost Allocation Study” to estimate the total cost of providing a County Road 

system that will serve both public and fracking industry needs in the face of their plans to drill 

3,250 wells. Their conclusion is that based on 45 miles of anticipated Road Maintenance at 

$82,489 in 2014 dollars per mile per year, 187 miles of anticipated Basic Reconstruction at 

$949,619 in 2014 dollars per mile of road, and 99 miles of anticipated Major Reconstruction at 

$1,959,103 in 2014 dollars per mile of road, that the total cost to provide a County Road system 

for DeWitt County is $445,582,620 in 2014 dollars, or approximately $137,137 in 2014 dollars 

per well (Underbrink, 2012). 
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Table 2. Cost of Road Damage Per Well (Dependent Variable Unit Factor Dimension #1) 
  (all figures adjusted to 2014 dollars) 

 

Cost Per Well State Road Type(s) Source 
    

$22,032 Colorado Rio Blanco County roads RPI Consulting (2008) 

$13,682 to 
$24,206 

Pennsylvania State maintained 
roadways 

Abramzon et al (2014) 

$137,137 Texas Dewitt County roads Underbrink (2012) 
 
 

Cost of Road Damage Per Mile 
 

A peer-reviewed study, Abramzon et al (2014), examines consumptive roadway use costs 

due to shale has activity for all types of roadways in Pennsylvania and derives that the total road 

damage for each well per mile of travel across all roadways is $558 in 2014 dollars for a low 

number of truck trips scenarios, and $1,221 in 2014 dollars for a high number of truck trip 

scenarios above normal background road damage. An early study by Mason (1983) entitled 

“Effects of Oil Field Development on Low Volume Roadways: An Overlooked Energy Related 

Cost” concludes that the increase in annual additional pavement cost due to oil industry activities 

on light duty, low volume Farm-to-Market roads in Texas is $30,665 in 2014 dollars per mile.  

A Huntington and Ksaibati (2009) study of Carbon, Johnson and Sheridan Counties in 

Wyoming analyzes unpaved county roads impacted by unconventional shale oil and gas 

development and reports that those roads subjected to fracking require an average $14,824 in 2014 

dollars in improvements per mile, while baseline unpaved and non impacted road require only an 

average of $2,260 in 2014 dollars in improvements per mile, for a difference of an additional cost of 

$12,564 in road damage per mile. 69% of the improvements on fracking damaged roads are due to 

potholes, 20% of the improvements are due to rutting distress, and 10% of recommended 

improvements are due to a combination of the distresses of washboards, drainage or dust. 

A report prepared for the City of Keller, Texas by Belcheff and Associates (2010) 
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analyzes eight different city road types by total ESALs available on each based upon the total 

number of heavy truck trips required to construct and operate a single fracking well. From these 

calculations they derive a fee to cover the cost of roadway reconstruction, and thus total road 

damage, per lane-mile for each of these roadways (for this research these totals are doubled to 

match the unit measurement of two-lane roadways utilized throughout the other prior studies 

reviewed). Their examination renders the results of a per mile fee of $115 to $43,427 in 2014 

dollars to cover expected damages, contingent upon the type of roadways and trucking methods 

utilized. 

Utilizing full replacement cost per lane mile, the Denton County Oil and Gas Task Force 

Summary Report (2005) places the cost of damage due to fracking to full county roadways to be 

$100,259 in 2014 dollars per mile per well for this Texas county (DCOGTF, 2005). In addition 

to anticipating the full replacement cost for 99 miles of roadway they project to have to undergo 

Major Construction, Naismith Engineering also accounts for how many miles of DeWitt County, 

Texas roadway they anticipate will have to undergo Road Maintenance (45 miles) and Basic 

Reconstruction (187 miles) in order to create sufficient infrastructure for heavy truck traffic to 

construct and operate 3,250 fracking wells. The total estimated project cost of $445,583,000 in 

2014 dollars to create the DeWitt County road system necessary to meet the demands of 

fracking, when factored out over 331 total miles of roadway and 3,250 total wells, results in a 

total cost of road damage of $416 in 2014 dollars per well per mile (Underbrink, 2012). 
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Table 3. Cost of Road Damage Per Mile (Dependent Variable Unit Factor Dimension #2) 
  (all figures adjusted to 2014 dollars) 

 

Cost Per Mile State Road Type(s) Wells Source 
     

$663 to $1,221 Penn. All road types  1 Abramzon et al (2014) 
$12,564 Wyoming Unpaved county roads 1 Huntington & Ksaibati  

(2009) 
$30,665 Texas Farm-to-Market roads 1 Mason (1983) 

$115 to $43,427 Texas City of Keller roads 1 Belcheff & Associates  
(2010) 

Full replacement       $100,259 Texas Denton County roads 1 DCOGTF (2005) 
Road maintenance     $82,489 
Basic Reconst.         $948,619 
Major Recon.       $1,959,103 

$443 

Texas Dewitt                45 mi 
County             187 mi 
Roads                 99 mi 

3,250 
  

____ 
1 

Underbrink (2012) 
 
 
 

 
 

Cost of Road Damage Per Year 

Scott Christie, Deputy Secretary for Highway Administration at the Pennsylvania 

Department of Transportation, reports for the Pennsylvania House Transportation Funding 

Hearing on June 10, 2010 that the total required for road repairs due to fracking of the Marcellus 

Shale is $288 million in 2014 dollars. This cumulative (rather than annual) total is based upon 

the estimation that for the 1,711 miles of roadway that already have an excess maintenance 

agreement with Marcellus Shale companies that 10% require full reconstruction, 20% require 

major base repair, and 50% require minor repairs and maintenance, in combination with the same 

proportionate assumption regarding fracking-related roadway repairs for the “planned to be 

posted roadways” (Christie, 2010b, p. 3). Just three short years later, in 2013, the Pennsylvania 

Department of Transportation estimated that more than $3.6 billion in 2014 dollars is needed to 

maintain all state roadway assets, due to cumulative damage from both unconventional oil and 

gas-related heavy truck traffic and baseline, pre-existing roadway vehicle traffic (Rogers, 2013). 

In 2011 the New York State Department of Transportation (NYSDOT) produced the 

discussion paper “Transportation Impacts of Potential Marcellus Shale Gas Development,” 
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where they report that the annual projected costs of road damage from fracking to New York 

would range from $98 to $169 million in 2014 dollars for State roads and $131 to $241 million 

in 2014 dollars for local roadways (NYSDOT, 2011). These figures are based upon the 

estimation that even a lower level of development than that experienced in Pennsylvania would 

result in a heavy truck trip increase of up to 1.5 million during peak year, while increasing peak 

hour heavy truck trips by as many as 36,000 per hour throughout the New York Marcellus Shale 

region. This draft paper also explicitly concludes “there is no mechanism in place allowing State 

and local governments to absorb these additional transportation costs without major impacts to 

other programs and other municipalities in the State,” and that the NYSDOT and “local 

governments currently lack the authority and resources necessary to mitigate such problems” 

(NYSDOT, 2011, p.3). 

 The State of Arkansas has determined that the cumulative impact from 2009 to 2012 of 

fracking of the Fayetteville shale play is $464 in 2014 dollars in additional damage to Arkansas 

state highways (Heinberg, 2013). The Texas Department of Transportation, through partnerships 

with Texas A&M University Transportation Institute (TTI) and the University of Texas Center 

for Transportation Research, has conducted several research studies to quantify the annual total 

cost of road damage on Texas roads due to fracking in the Barnett and Eagle Ford shale plays. 

Results of the research indicates that the total annual cost of road damage in 2014 dollars is more 

than $2 billion on the Texas state highway system, $1 billion on Texas farm-to-market roadways, 

and $1 billion on local transportation systems, including city and county roads, for a grand total 

of more than $4 billion in 2014 dollars annually (TxDOT, 2012).  
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Table 4. Cost of Road Damage Per Year (Dependent Variable Unit Factor Dimension #3) 
    (all figures adjusted to 2014 dollars) 
 

Damage Cost Time Frame State Road Type(s) Source 
     

$288 million cumulative to 2010 Pennsylvania State highways Christie (2010b) 
$98 to $169 million 

$131 to $241 million 
annual estimate 
annual estimate 

New York State highways 
Local roadways 

NYSDOT 
(2011) 

$464 million cumulative 2009 to 
2012 

Arkansas State highways Heinberg (2013) 

*$3,557 million cumulative to 2013 Pennsylvania State roadway assets Rogers (2013) 
$2,062 million 
$1,031 million 
$1,031 million 

annual estimate 
annual estimate 
annual estimate 

Texas Interstate/State hwys. 
Farm-to-Market rds. 
County/City roads 

TxDOT (2012) 

 

* Includes both unconventional oil & gas-related and baseline (pre-existing) roadway traffic damage 
 

 
Cost of Road Damage Lifetime 

 
 Naismith Engineering has determined for DeWitt County, Texas that the upfront costs of 

preparing the county roadway infrastructure for 20 years (2013-2032) of fracking of 3,250 wells 

to be in excess of $445 million in 2014 dollars for 331 miles of county roads (Underbrink, 2012). 

The Upper Great Plains Transportation Institute produced the report “Additional Road 

Investments Needed to Support Oil & Gas Production and Distribution in North Dakota” that 

estimates the total projected roadway infrastructure investment needs over 20 years (2011-2030) 

due to fracking for all county and town road systems to be $907.1 million in 2010 dollars 

($984.8 in 2014 dollars). This projection, based on existing and future drill rig locations in 2010, 

represents $340.1 million in total paved road damage costs and $567 in total unpaved road 

damage costs. A 3% inflation rate renders a 20-year total cost of $1,099 million, while a 5% 

inflation rate renders a 20-year total cost of $1,266 million (Tolliver & Dybing, 2012). 
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Table 5. Cost of Road Damage Lifetime (Dependent Variable Unit Factor Dimension #4) 
     (all figures adjusted to 2014 dollars) 

 
Damage Cost Time Frame State Road Type(s) Source 

     

$445 million 2013 to 2032 Texas Dewitt County roads Underbrink (2012) 
 

$369.2 million 
$615.6 million 

 
2011 to 2030 

North 
Dakota 

County & town roads 
   paved roads 
   unpaved roads 

Tolliver & Dybing 
(2010) 

 

Jurisdiction Factors 

In order to accurately determine the overall cost of roadway damage that has occurred or 

will occur over a given region in a specific time frame, it is not enough to consider just one or two 

jurisdictional dimensions. As fracking ultimately impacts the roadways of all levels of government, 

the total cost within each jurisdiction must be determined, and then summed together to derive the 

overall total cost according to this critical assessment. Not one single prior research study or report 

took into consideration all seven jurisdictional dimensions identified by the current research (see 

Table 7 below), however the report from the Center for Transportation Research at the University 

of Texas at Austin by J. Prozzi, Grebenschikov, Banerjee, & J. A. Prozzi (2011) comes closest by 

taking six jurisdictional dimensions into consideration. 

The report compiled by Prozzi et al (2011) sponsored by the Texas Department of 

Transportation, has come closer than any other study located to researching the full range of 

roadway jurisdictions in relation to fracking, categorizing total mileage traveled according to the 

following types: Interstate highways; U.S. highways; Texas State highways; Farm-to-Market 

roads; beltways, spurs, loops, and business roads; and local and county roads (J. Prozzi, 

Grebenschikov, Banerjee, & J. A. Prozzi, 2011). 

In Texas, highways maintained by the state carry 73% of the overall traffic, while 

comprising only 26% of the total roadway mileage. These include both State Highways and 
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Farm-to-Market roadways. In excess of half of this state maintained system is comprised of 

Farm-to-Market (and Farm-to-Ranch) roads, which with nearly 41,000 miles of roadway is the 

most extensively developed of all rural highway systems in the United States (Purcell, 2012). 

The Prozzi et al (2011) report finds the average vehicle miles traveled [VMT] for moving drill 

rigs to be 33 miles, and when it comes to the movement of related construction traffic in Texas’s 

Barnett Shale, Prozzi et al (2011) determines the roadway usage to breakdown among 

jurisdictions as follows: State Highways 28%, Farm-to-Market roads 27%, U.S. Highways 23% 

and Interstates 19%. Likewise the same study finds that the average VMT for fracking 

wastewater disposal (from gas/oil well to disposal well) is 9.4 miles, with 30.7% of truck traffic 

occurring on city streets and 24.8% of the traffic happening on Farm-to-Market roads (J. Prozzi, 

Grebenschikov, Banerjee, & J. A. Prozzi, 2011). 

The reports and studies analyzed in this research focus on the jurisdictions in Table 6.  

  
Table 6. Cost of Road Damage (Dependent Variable Jurisdiction Factor Dimensions #5–#11) 

 

Jurisdiction Factors Sources 
   U.S. highways J. Prozzi, Grebenschikov, Banerjee, & J. A. Prozzi (2011) 

and Quiroga, Fernando, & Oh (2012) 
   Interstate highways J. Prozzi, Grebenschikov, Banerjee, & J. A. Prozzi (2011) 

and Quiroga, Fernando, & Oh (2012) 
   State highways NDDOT (2006); NYSDOT (2011); J. Prozzi, Grebenschikov, 

Banerjee, & J. A. Prozzi (2011); TxDOT (2012); Dybing 
(2012); Quiroga, Fernando, & Oh (2012); and Abramzon, 
Samaras, Curtright, Litovitz, & Burger (2014) 

   Farm-to-market roads Mason (1983); J. Prozzi, Grebenschikov, Banerjee, & J. A. 
Prozzi (2011) and Quiroga, Fernando, & Oh (2012) 

   County roadways DCOGTF (2005); RPI Consulting (2008); GDTF (2009); 
Huntington & Ksaibati (2009); Tolliver & Dybing (2010); J. 
Prozzi, Grebenschikov, Banerjee, & J. A. Prozzi (2011); 
Underbrink (2012); TxDOT (2012); Mitra, Tolliver & 
Dybing (2012) and Tolliver (2012) 

   Municipal roadways Belcheff & Associates (2010); NYSDOT (2011); J. Prozzi, 
Grebenschikov, Banerjee, & J. A. Prozzi (2011) and TxDOT 
(2012) 

   Township roadways Tolliver & Dybing (2010); NYSDOT (2011); Mitra, Tolliver 
& Dybing (2012) and Tolliver (2012) 
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CHAPTER 6 
 

DISCUSSION: WHO PAYS THE COSTS OF FRACKING? 

 

Freilich and Popowitz (2012) relate the story of LaSalle County, Texas that is facing 

fracking-related truck traffic requiring infrastructure improvements in the range of $100 million 

that cost more than sixteen times the entire county’s annual $6 million budget. The same year 

that DeWitt County, Texas determines that their roadway infrastructure needs to accommodate 

the planned degree of fracking would cost their county alone in excess of $445 million in 2014 

dollars, while the total collected in severance taxes from the industry on production from all 24 

Eagle Ford Shale counties combined was $333 million in 2014 dollars (Underbrink, 2012; 

Rogers, 2013). DeWitt County Judge Fowler adds further context to the issue by revealing that 

his county’s contribution to that severance tax from fracking-related activities was $57.5 million 

in 2011, while the state only returned $112,000 to the county in appropriation support for the 

roadway infrastructure damage in the form of Overweight Axle Fees and gasoline tax collections 

(Dukes, 2012). Dewitt County’s total annual budget stood at $15 million that year (Rogers, 

2013). 

During 2012 the State of Texas took in $3.6 billion in severance taxes for oil and gas 

production, approximately $1.5 billion from fracking of shale plays, while the Texas Department 

of Transportation made the determination that the total annual cost of road damage due to 

fracking for all roadways systems surpassed $4 billion (TxDOT, 2012; Rogers, 2013). A similar 

pattern has been revealed in the Fayetteville shale play of Arkansas, as between 2009 and 2012 

the state took in $188 million in 2014 dollars in severance taxes from fracking activities, while 

experiencing what is estimated to be $464 million in 2014 dollars in road damage due to 

fracking, $412 million in 2014 dollars of which has been covered directly by taxpayers 
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(Heinberg, 2013; Kandlur, 2014). 

As Freilich and Popowitz (2012) elucidate, while the liabilities associated with fracking are 

best managed by a combination of all levels of government, secondary impacts such as responding 

to and managing damage to local roadway infrastructure can only readily be dealt with through 

local regulation and intervention. Unfortunately, the notable gains that do often accompany this 

unconventional shale development in the form of severance taxes and other fiscal mechanisms 

generally do not find their way into the coffers of localities that are making the greatest sacrifices 

in terms of degraded infrastructure and loss in quality of life (Freilich & Popowitz, 2012). 

Severance taxes are thus not used exclusively, or even primarily, to compensate local counties, 

municipalities and townships for the direct impacts of fracking (Dutzik, Davis, B., Van Heeke, T., 

& Rumpler, 2013).  

Simply put, “States distribute revenues in various ways, but typically, most of the 

collected taxes are deposited into the general fund,” with the extra revenue or remainder going to 

state permanent funds, or to finance environmental clean-up and conversation projects, and then 

finally in some cases distributed to local governments (Pless, 2012, p.1). For example, Wyoming 

follows the common practice of putting the vast majority of its total severance tax revenue into 

the state’s General Fund, Budget Reserve Account, and the Permanent Mineral Trust Fund, 

leaving 3% for Counties, Cities and Towns and Capital Construction, 1% for the Highway Fund, 

and 1% for State Aid County Roads. This provides very little for the local governments that face 

the immediate impacts of fracking on a daily basis (Wyoming Taxpayers Association, 2014). 

 Due to its utilization of the publically available roadway infrastructure, fracking imposes 

a unique and significant immediate and long-term burden on taxpayers (Dutzik, Davis, B., Van 

Heeke, T., & Rumpler, 2013). A study by Kelsey et al (2011) demonstrates how this reality has 



 37 

been playing out due to impacts of the Marcellus Shale fracking efforts in Pennsylvania: “Only 18 

percent of the governments experiencing Marcellus development activity said their tax revenues 

had increased, which indicates that most local governments being affected are not seeing more 

tax revenue as a result. In comparison, 26 percent of the local governments indicated that their 

costs had increased, particularly related to road expenses” (Kelsey, Shields, Ladlee, & Ward, 

2011). 
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CHAPTER 7 
 

CONCLUSION AND RECOMMENDATIONS 

 
The current research explores how the impact of heavy truck traffic due to fracking on 

seven unique roadway dimensions (according to governmental jurisdiction) is influenced by a 

mix of both physical and fiscal factors, and points towards the utility of conducting a critical 

assessment of the literature regarding the public costs of fracking-related roadway damage. The 

findings of this study additionally elucidate the imbalance between the accrued costs (liabilities) 

of fracking and the resources derived for the various jurisdictional dimensions to manage and 

mitigate those comprehensive and well-documented risks. 

Several fiscal mechanisms have been brought into existence in an effort to manage the 

liabilities and compensate for loses, but all are met with inconsistent degrees of success from 

state to state, county to county, and municipality to municipality. While there is not a lot of 

means of controlling the physical factors, outside of some policy and regulation measures, the 

fiscal factors do present a variety of opportunities to create direct economic incentives to 

motivate fracking companies from engaging in roadway infrastructure degrading behaviors 

without specifically defined and transparent means to recompense and to make whole.  

This research takes a look at four fiscal factor mechanisms that the prior literature 

discusses and demonstrates to have impacts and some degree of success in reducing the overall 

cost of roadway damage to the various jurisdictions responsible for management and upkeep of 

these public roadways. These include road maintenance agreements, bonding, impact fees and 

additional appropriations, most of which are tools utilized in combination, depending on state 

and local laws and standards. Abramzon et al (2014) in their report for the RAND Corporation 

put forth three policy mechanisms for how to mitigate fracking-related roadway damage and its 
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associated costs. These include: 1) recovering the cost of roadway damage through fees or taxes; 

2) reduce the road damage itself through incentives / regulations that compel fracking companies 

to change their activities in order to create less damaging outcomes; 3) build-up the roadway 

infrastructure prior to start of fracking to withstand the projected roadway damage (Abramzon, 

Samaras, Curtright, Litovitz, & Burger, 2014). 

Abramzon et al’s (2014) first policy mechanism of recovering the cost of roadway 

damage via fees or taxes embodies each the fiscal factors of this research study, in additional to 

utilizing severance taxes to assist in defraying the costs of roadway damage. It is a flexible 

category that includes the vast majority of fiscal mechanisms already in play or being pursued. 

Their second policy mechanism of reducing roadway damage by “compelling companies to 

engage in less damaging activities […] through regulations or incentives” (Abramzon, Samaras, 

Curtright, Litovitz, & Burger, 2014, p. 6), including such methods as limiting truck weights, 

limiting truck traffic, or requiring pipeline usage for water transport, is not addressed in this 

research due to the general lack of viable and productive examples of this approach at work. The 

third policy mechanism address by Abramzon et al (2014) is to build-up the roadways before 

inception of fracking, to “adjust the infrastructure system in a way that could absorb the expected 

damages at lower costs (Abramzon, Samaras, Curtright, Litovitz, & Burger, 2014, p. 6). This 

strategy is precisely embodied in the Road Maintenance User Agreements that are identified in 

Ohio and West Virginia, which require energy companies make improvements to insufficiently 

prepared roads prior to all drilling and extraction activities (Boske, Gamkhar, & Harrison, 2013, 

p.3), in order to be adjusted to support the heavier truck traffic weights and volumes from 

fracking. 

 This third policy mechanism represents a proactive partnership approach to assessment, 
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and very favorably aligns with the first of three policy strategies that Miller and Sassin (2013, 

2014) develop and elucidate as the “spectrum of policies currently being advocated” for in the 

realm of mitigating the cost of roadway damage due to fracking (Miller & Sassin, 2013, p. 4). 

This particularly proactive armor-up approach that strengthens roadway pavement prior to the 

inception of energy developments, is directly contrasted with two other reactive approaches, 

which include: 2) a performance-based assessing of impact fees for specific damages after they 

have already occurred, and 3) a non-performance based assessing of impact fees that bare no 

relation to the actual roadway degradation, i.e. donations of maintenance or repair materials by 

developer after the damage is already done (Miller & Sassin, 2013; Miller & Sassin, 2014). 

The proactive approach not only ultimately removes tax payers from the equation, and 

puts the full cost of roadway degradation mitigation in the hands of the responsible parties, the 

fracking companies, but it also creates immense cost savings in the overall process of protecting 

roadways subjected to fracking. This armoring and reinforcement is essential to “maintaining 

health, welfare, and the quality of life in states where oil and gas resources can be reached by 

fracking” (Freilich & Popowitz, 2012), as the general public requires the continual functionality 

of public roadways for safe and efficient travel. Prior research also indicates that this proactive 

approach to managing roadway impacts, including “reconstructing or resurfacing a road to 

preserve it before damage occurs,” reduces overall maintenance and repair costs by 

approximately 700% (Wilson, 2012, p. 9). As Boske et al (2013) surmise: “The main lessons 

learned by both West Virginia and Ohio are the cost effectiveness of upfront road improvements 

in regions developing shale gas reserves and the importance of early coordination with energy 

companies…” (Boske, Gamkhar, & Harrison, 2013, p. 8).  
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A recommendation of this current research is that the optimal approach to maintaining 

the roadways for both public and private usage in the face of fracking, with the added economic 

benefit of reducing costs due to road damage to the general public and the fracking industry 

alike, is a proactive armoring approach that puts the full responsibility of preparing roadways for 

the known risks of fracking in the hands of industry that plans on subjecting those roadways to 

undue heavy truck traffic weights and volumes, prior to the inception of energy development. 
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Appendix C 

 
Research on Fracking-Related Roadway Degradation Costs 

New York 

 The New York State of Transportation estimates that the total road maintenance costs to 

mitigate impacts from truck traffic to 40,000 proposed wells across New York State would total 

as much as $410 million annually in 2014 dollars. This total is based upon state roads having an 

estimated cost between $98 million and $169 million per year in 2014 dollars, and local roads 

having an estimated cost between $131 million to $241 million per year in 2014 dollars, due to 

projected fracking traffic (Barth, 2013; Kennedy & Gallay, 2012; NYSDOT, 2011). 

 
Arkansas 

The Arkansas state highway department estimates that the costs between 2009 and 2012 

from road damage due to Fayetteville shale play fracking truck traffic are in excess $450 million 

($464 in 2014 dollars), finding that roads designed to last 20 years require major repairs after only 

5 years due to fracking’s constant stream of overweight vehicles ferrying water and equipment to 

and from well sites (Heinberg, 2013; Rogers, 2013). More than $400 million ($412 in 2014 

dollars) of this total cost has landed directly on the back Arkansas taxpayers (Kandlur, 2014). 

 
Colorado 

  A report completed by RPI Consulting (2008) for Rio Blanco County, Colorado, utilizing 

well lifetimes of 40-years, estimates a county roadway improvement cost of $22,032 (in 2014 

dollars) per well due to fracking. This estimated cost is actually a fee per well proposed by the 

RPI Consulting report based up maintaining level of service, and derived from a proposed fee per 

ESAL and the projected ESALs required over the estimated lifetime of the wells (Abramzon, 
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Samaras, Curtright, Litovitz, & Burger, 2014). 

 
North Dakota 

According to David Flynn, the Director of the University of North Dakota Bureau of 

Business and Economic Research, North Dakota allocated more than $1 billion (in 2014 dollars) 

for infrastructure, primarily for roads damaged by heavy energy-related truck traffic (Gunderson, 

2012; White, 2013). Alan Dybing, a researcher at the Upper Great Plains Transportation 

Institute, states, “Simply put, the roads are falling apart in many cases,” as each new well 

requires more than 2,000 truck trips, and the massive trucking rigs are demolishing the state’s 

roadways (Holeywell, 2011, p. 3). A study prepared for the North Dakota Department of 

Commerce projects that the county and township road repair costs alone in North Dakota’s 

seventeen oil and gas producing counties due to oil and gas development is $985 million over the 

next twenty years (Tolliver & Dying, 2010; Tidd, 2013), with $369 million required for paved 

roads and $616 million for unpaved roads (all figures in 2014 dollars) (Tolliver & Dying, 2010; 

Huntington, Pearce, Stroud, Jones, & Ksaibati, 2013).  

 
Wyoming 

An early three-county study of unpaved roads by the Wyoming Technology Transfer Center, 

which took place between 2004 and 2006, indicates that while non-impacted unpaved roads require 

an average of $2,260 (in 2014 dollars) in improvements per mile, unpaved roads that are impacted by 

oil and gas drilling require an average of $14,824 (in 2014 dollars) in improvements per mile. 

Potholes necessitated 69% of the improvements on drilling roads, with rutting being the road distress 

underlying 20% of the needed improvements on these same roads (Huntington & Ksaibati, 2009). 
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Pennsylvania 

Pennsylvania Department of Transportation officials report that in 2010 more than $265 

million ($288 million in 2014 dollars) was needed to repair roads damaged due to Marcellus Shale 

drilling (Christie, 2010b; Dutzik, Ridlington, & Rumpler, 2012). Related heavy truck traffic on all 

state maintained roadway types is estimated to cause an additional $13,000 to $23,000 of damage per 

well in 2011 ($13,682 to $24,206 in 2014 dollars) (Abramzon, Samaras, Curtright, Litovitz, & 

Burger, 2014). State officials also report that as their rural roads are not designed to withstand the 

volume or weight of the level of truck traffic, they have sometimes been degraded into impassability 

(Randall, 2010). By 2013, the state estimates that it would cost $3.5 billion ($3.6 billion in 2014 

dollars) just to maintain the state’s existing roadway assets, and an additional $8.7 billion ($8.8 

billion in 2014 dollars) for necessary bridge repairs, from all wear and tear (Rogers, 2013), with 

fewer than 7,000 existing wells. 

 
Texas 

An engineering study from the Eagle Ford Shale Task Force regarding anticipated 

fracking-related truck traffic in DeWitt County, Texas indicates that with an estimate of 3,250 

wells that will be accessed by county roads, the total cost for DeWitt County to provide a road 

system (331 miles) to meet projected industry and public needs is approximately $445 million in 

2014 dollars, or almost $137,000 per well, over the next twenty years (Underbrink, 2012). This 

total accounts for the total needs in regards to county roads alone. LaSalle County chief 

administrator Joel Rodriguez estimates that build-up of the county’s 230 miles of roads to 

withstand the influx of fracking-related heavy truck traffic in the heart of Eagle Ford Shale play 

would exceed $103 million in 2014 dollars, while the county’s entire annual budget is a mere 

$6.2 million in 2014 dollars (Compoy, 2012). 
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A report completed for the City of Keller, Texas by Belcheff & Associates (2010) finds 

that a fee per lane-mile between $53 to $20,000 ($58 to $21,713 in 2014 dollars), contingent 

upon type of roadway and transportation methods, would be required to offset the cost of 

expected additional damages from fracking. An earlier study by Mason (1983) determines that 

the increased annual pavement cost-per-mile for a Farm-to-Market road servicing one oil well is 

$29,711 in 2014 dollars. 

The Texas Department of Transportation [TxDOT] estimates that the cost of maintaining the 

roadway infrastructure degraded by the fracking traffic statewide is more than $4 billion a year in 

2014 dollars (Heinberg, 2013; Rogers, 2013). That includes $1 billion for farm-to-market roads, $1 

billion for local city street and county roads, and $2 billion for interstate and state highways (Barth, 

2013; Sprow, 2013; TxDOT, 2012). TxDOT additionally estimates that more than $2 billion of that 

total is road damages to the East Ford Shale region of South Texas alone (Remington, 2013). Due to 

the overwhelming extent and expense of the destruction in that area, the TxDOT plans to convert at 

least 83 miles of asphalt roads into gravel roads in those areas experiencing increased fracking-

related truck traffic (Batheja, 2013). 
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