
Southern Illinois University Carbondale
OpenSIUC

Theses Theses and Dissertations

12-1-2011

Common Crowd Dynamics: Shaping Behavioral
Intention Models
Marcel Bouchard
Southern Illinois University Carbondale, mbo9472@gmail.com

Follow this and additional works at: http://opensiuc.lib.siu.edu/theses

This Open Access Thesis is brought to you for free and open access by the Theses and Dissertations at OpenSIUC. It has been accepted for inclusion in
Theses by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Bouchard, Marcel, "Common Crowd Dynamics: Shaping Behavioral Intention Models" (2011). Theses. Paper 723.

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/etd?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/theses?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/theses/723?utm_source=opensiuc.lib.siu.edu%2Ftheses%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


COMMON CROWD DYNAMICS: SHAPING BEHAVIORAL INTENTION MODELS

by

Marcel Bouchard

B.S., University of Georgia, 2009

A Thesis
Submitted in Partial Fulfillment of the Requirements for the

Master of Science Degree

Department of Computer Science
in the Graduate School

Southern Illinois University Carbondale
December 2011



THESIS APPROVAL

COMMON CROWD DYNAMICS: SHAPING BEHAVIORAL INTENTION MODELS

By

Marcel Bouchard

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Science

in the field of Computer Science

Approved by:

Dr. Henry Hexmoor, Chair

Dr. Namdar Mogharreban

Dr. Mengxia Zhu

Graduate School
Southern Illinois University Carbondale

July 14, 2011



AN ABSTRACT OF THE THESIS OF

Marcel Bouchard, for the Master of Science degree in Computer Science, presented on July 14, 
2011, at Southern Illinois University Carbondale.

TITLE:  COMMON CROWD DYNAMICS: SHAPING BEHAVIORAL INTENTION
MODELS

MAJOR PROFESSOR:  Dr. Henry Hexmoor

As the human population grows, so too does the need to understand human behavior. 

One particularly important aspect of human behavior is how it changes within conglomerations 

of people, i.e. crowds.  In this thesis, a method for modeling crowd behavior is proposed.  This 

method draws inspiration from the concept of behavioral intention and the related forces of 

attitudes, influences, and social norms.  These topics are first defined and detailed, followed by a 

survey of related research.  Next, the model is presented and adapted to three common crowd 

dynamics, each stressing a different component of behavioral intention.  Observations are made 

about these models, and extensions to the models and directions for future research are 

considered.
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CHAPTER 1

INTRODUCTION

The capacity to predict and better understand human behavior is a powerful tool for 

improving nearly any computational endeavor that involves human interaction: architecture 

design, evacuation planning, crowd control, disaster response, anti-drug campaigns, etc.  The 

opportunity for such study has never been better.  As the human population has grown in number 

and spread across the planet, so too has the opportunity for humanity to demonstrate special 

forms of behavior observed when masses of people gather together and form crowds.  Crowd 

studies have been further augmented by the maturation of the social and psychological sciences 

and by the development of computer technology powerful enough for modeling and simulation.

Alongside contributing factors such as industrialization and the rise of cities, Reicher 

(2001) marks the French Third Republic as the “birthplace of crowd psychology”.  Reicher 

supports this claim with an example of the debate between Scipio Sighele and Gabriel Tarde in 

the 1890s.  This debate concerned how to determine criminal responsibility in the crowd, 

struggling to distinguish between individual and crowd forces.  It is a problem that merits 

investigation to this day.  The 1890s also saw Gustave le Bon (1895) develop his theories of the 

crowd mind, observing that concentrated masses of people are more than just the sum of their 

component individuals; other forces must be at work.  The rising prevalence of crowds and 

opportunities to observe them have continued to spawn new lines of research and debate 

throughout the twentieth century and into the twenty-first.

Related to and often part of crowd research is the study and modeling of individual 

behavior.  The term “individual” does not imply that such models isolate a person from others. 

Rather, individual behavior models incorporate endogenous attitudes originating from within the 
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person and account for the outside effects of physical and social influences.  Which forces are 

most important, their effects, and how they interact with each other is a target of extensive study, 

and many different models have been proposed.  Among these models are Ajzen and Fishbein's 

theory of reasoned action (1981) and other models descended from and inspired by it.  The 

variety of model components – the different types of attitudes, influences, and social norms – are 

also the subjects of their own studies.

In this thesis, the concepts of behavioral intention and the theory of reasoned action are 

applied to crowd behavior, more specifically three common crowd dynamics.  The first and 

current section provides an overview of the types of research and the applicability of said 

research.  The second section provides background information about crowds and behavioral 

intention.  Two models of behavioral intention, the theory of reasoned action and the theory of 

planned behavior, are detailed, and the models' components of attitudes, influences, and social 

norms are each investigated further.  The third section describes some of the latest state of the art 

related research concerning behavior models and crowd dynamics, from social studies to 

proposed models to simulations in virtual environments.  The fourth section proposes a model 

for crowd behavior inspired by the theory of reasoned action and its adaptation to three scenarios 

commonly found in human societies.  Lastly, the fifth section draws some final conclusions and 

suggestions for extension and future areas of study.
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CHAPTER 2

BACKGROUND

The concepts of “crowd” and “intention” may seem intuitive, but nevertheless, an 

accumulated literature has served to weed out inaccuracies and misconceptions, providing a firm 

foundation on which researchers may communicate.  First, crowds are defined and their 

importance, internal processes, relationships, and simulation are investigated.  Some historical 

context is also provided, showing some trends in opinion over the past century.  Next, behavioral 

intention is described in greater detail, and various models of intention are also explored. 

Behavioral intention may be viewed as a complex web of interacting internal and external 

factors.  Among these factors are attitude, influence, and social norms.  These factors are 

examined more closely at the end of this section.

Crowds

As the world approaches (or has exceeded, by some estimates) seven billion people, 

planet Earth has become increasingly crowded.  A crowd exists wherever humans gather en 

masse: sports stadiums, stock exchange floors, enthusiasts conventions, political protests, etc. 

Musse and Thalmann (1997) define crowds as “a large group of individuals in the same physical 

environment, sharing a common goal”.  These crowds may be viewed as a hierarchy: individuals 

are collected into groups, and the resulting groups are collected into a crowd (Musse & 

Thalmann, 2001).

The ubiquity of human crowds means research and understanding has a wide variety of 

applications, from psychology to transportation research and architecture (Treuille, Cooper, & 

Popivic, 2006).  Sociologists often study crowds' responses to extreme stimuli, such as natural 

disasters and social upheaval, but Musse and Thalmann (1997) stress the importance of studying 
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normal crowd behavior.  “Normal” refers to the type of behavior that is not a response to change 

but the typical response to a constant environment.  Another reason that improving the current 

understanding of crowd behavior is so important lies with the unavoidable nature of social 

interaction.  The purest, most elemental form of individual behavior is difficult to model due to 

social interference; the complexities of interrelationships always exist (Musse & Thalmann, 

2001).  Therefore, a better understanding of crowd behavior may also reveal new avenues for 

thinking about individual behavior.

Crowd behavior is the set of actions resulting from people's intentions (i.e. planned 

actions not yet committed), beliefs (i.e. internal status), knowledge (i.e. information about the 

environment), and perceptions (i.e. sensory input of the environment).  When crowd behavior is 

treated as a set of actions, the question remains of how to interpret human control in a crowd. 

Do the actions produce effects analogous to a particle system, or maybe crowds are more akin to 

a flock or behavioral system?

Musse and Thalmann observe that these micro and macro approaches have different 

properties.  A particle system has no hierarchy and follows simple rules much like a physical 

particle system employing charged fields.  Flocks on the other hand consist of two levels, the 

flock and the agent, where individuals in the flock express limited intelligence and act according 

to their local surroundings.  Lastly, a behavioral system uses defined rules, organizational 

structures, and assumes a greater level of human intelligence of its agents than either flocks or 

particle systems.

The study of crowd behavior involves observing a variety of group effects on the crowd. 

These effects may be classified into a number of categories, among which are polarization, the 

sharing and adding effects, and domination (Musse & Thalmann, 1997).  Polarization is the 
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formation of two or more groups within the crowd that possess diverging characteristics.  The 

sharing effect involves others' actions influencing individuals, while the adding effect involves 

others' actions influencing entire groups.  The domination group effect occurs during the rise of a 

leader or leaders in the social hierarchy, their influence spreading to lower members of the 

hierarchy.

Observing the above effects and attempting to quantify them is a delicate process. 

Translating observations of real-world crowds into models and simulations can be similarly 

delicate, and Berk (1974) argues that many of the problems in simulating crowds result from 

epistemological issues.  Quantifying the concept of the mind is a difficult endeavor, especially 

when it comes to crowd behavior.  This difficulty fosters different interpretations and approaches 

to a working model, starting at a fundamental level: Berk notes that early researchers disagreed 

concerning the rationality of crowd behavior.

Reicher (2001) argues that the scarce study of crowds has largely been separated from 

psychological research.  In Le Bon's (1895) classic work on crowds, individuals lose their 

normal psychological capacities when in a crowd and act with a primal irrationality.  Individuals 

trade their sense of self and responsibility in exchange for strength of numbers, and the loss of 

self-interest leads to the irrational behavior of the group mind, even leading to putting one's own 

health at risk (similar thinking is expressed in deindividuation theory).  Into the early 1900s, 

crowd psychology consisted merely of explanations that served only to reinforce unscientific 

assumptions about crowd behavior; the crowd was anonymous, random, and unknowable 

(Reicher, 2001).  Reicher's main criticism of this approach is that Le Bon's arguments are too 

divorced from social context and give the crowd too much credit for its behavior.
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Two principles which support the above criticism have grown stronger over the past 

century.  The first principle is that crowd behavior mirrors its culture and society.  Reicher 

provides an example of the English food riots in the early 1800s.  The riots were triggered not by 

primitive hunger but by the social transition to a market-based economy and the wrongdoing 

perceived by the population.  The second principle is that crowd behavior in turn alters society. 

The resulting social changes of the crowd-society relationship may be viewed on three levels.  At 

the individual level, crowd behavior changes how people view themselves as social actors; 

participation strengthens ideology.  Secondly, crowds serve as a fertile ground for new ideas to 

develop and spread.  Lastly and most drastically, crowds can alter whole societies.  Reicher 

points to any revolution for evidence of the powerful potential inherent in a crowd-society 

relationship.

In addition to Le Bon's idea of the irrational group mind, another common theme in early 

crowd research is that collective behavior entails deviant behavior (Couch, 1968).  This theme 

followed from how Le Bon viewed collective behavior as a pathological form of behavior. 

Among these old ideas, Couch identifies several stereotypes and provides arguments against 

them.  The suggestibility stereotype indicates that the passions of the crowd cause it to be easily 

manipulated by outside forces.  Couch counters that if crowds are so suggestible, then why do 

outside authorities have so many problems dispersing them?  Crowds are often ill prone to 

acquiesce to authority.  Against the destructiveness stereotype, while the crowd may be 

responsible for relatively minor property damage, most of the destruction is caused by the 

established authority which often causes loss of life.  Against the emotionality stereotype, the 

forces acting against the crowd are often as emotional as the crowd they face, and individuals 

often encounter emotionally charged situations outside the crowd, so there is little to distinguish 
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the emotion in a crowd from any other emotional event.  Couch too suggests abandoning the line 

of thought that crowd behavior is abnormal and instead recognize crowds as a legitimate social 

system with unique qualities.

Granovetter (1978) proposes an improvement to the classic way of thinking about 

collective behavior, that collective behavior somehow strips away “civilized” behavior and 

exposes some feral element underneath.  Instead, outcomes are explained by norms, beliefs, 

preferences, motives, etc., and failing crowd norms and beliefs are replaced with new ones. 

However, knowing the new (or possibly old) norms and beliefs is necessary but not sufficient for 

explaining outcomes.  Also needed is a model for how individual preferences interact with each 

other.  This model differs from a simple “everyone joined group A because they all believed in 

A”. Instead, it addresses how a heterogeneous collection of beliefs interacts and aggregates 

across a rational, heterogeneous population.

Thresholds form a crucial part of Granovetter's model for decision-making processes. 

For example, should a person join a riot?  The affirmative decision becomes more appealing as 

the size of the riot increases; a larger riot means a lesser chance of getting personally identified 

and apprehended.  Even individuals with opposing beliefs may find themselves in the same 

crowd if they possess similar thresholds.  Granovetter suggests a variety of applicable situations 

for the threshold model: “diffusion of innovations” such as technology adoption, population 

migration, leaving a social gathering, the voting bandwagon effect, worker strikes, etc.  Other 

examples include the spread of rumors, where people need to hear from multiple sources before 

believing new information, and the spread of diseases, where people need to contact a number of 

infected before contracting the illness.
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The above discussion of crowds has proposed a few arguments against the early ideas of 

crowd irrationality and deviancy.  If at one end of the spectrum is impulsive crowds acting in a 

haze of passion, then at the other end of the spectrum is the use of game theory and its rational 

players' strategies used to describe crowd behavior.  In decision theory, a player acts to 

maximizes rewards or minimize costs.  Berk (1974) approaches crowd behavior using both 

decision theory and collective decision-making, crediting individuals with a large degree of 

rationality.  It should be noted, however, that it is possible to simultaneously act rationally and 

incorrectly and that the rationality of a person may be measured in degrees.

Treated as a game, a player is a single person, and individuals increase their payoffs when 

they collaborate.  This rationality is justified by a series of examples where groups of people are 

intuitively attributed as incapable of rational behavior but exhibit the opposite.  Mental patients 

have been observed to develop a value system that minimizes discipline by authorities while 

simultaneously maximizing their ability to coerce each other.  Other examples include the 

calculation behind conflict among gang members, the proposed rational self-interest in juvenile 

property crimes, and civil disorders that communicate social problems to an outside audience.

While crowds may be naturally observed in the real world, simulating models on a 

computer serves as a way to more easily compare model behavior with observed behavior.  The 

simulation of crowds started gaining momentum in the 1990s due to the rise in cheap computing 

power and research's applicability to planning areas for human traffic (Briano & Revetria, 2008). 

The simulation of human crowds, however, is made difficult by both complexity and subtlety 

(Treuille et al., 2006).  An individual's motion and their interaction with the surrounding 

environment is relatively simple in simulation; the interactions and relationships between a 

network of individuals is not.
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One popular type of model used in computer simulations is the agent-based system. 

Agent-based simulations possess a strength for mirroring real-world individual decisions.  They 

account for each individual's unique state and allow for unique parameters which lead to 

interesting heterogeneous behavior.  However, agent-based simulations can be difficult to 

develop behavioral rules for and are computationally expensive.  Local path planning often 

yields unrealistic movement as well.

Realistic movement involves simulated crowd behaviors consistent with observed real-

world crowds using collision avoidance and response at the individual level (Pelechano, Allbeck, 

& Badler, 2007).  Animating a large crowd involves studying locomotion, path planning, and 

navigation as well as simulating behavior using cognitive models.  Different model approaches 

struggle in different ways to define the motion of a crowd of agents.  The social forces model 

looks approximately like particle movement; it is unrealistic but handles high densities.  Rule-

based models typically do not use collision detection or repulsion, instead using waiting rules 

which work better with low-density crowds.  They are realistic but work best when handling low 

densities.  Cellular automata models limit spatial movement to a grid.  This cell grid interferes 

with high-density crowds, causing it to be both unrealistic and best for low densities.

Behavioral Intention

Human decision behavior has been studied by researchers hailing from a variety of fields: 

artificial intelligence, psychology, cognitive science, and decision science (Lee & Son, 2008). 

This research has also yielded a variety of behavior models.  For simulating crowd behavior, Lee 

and Son used the Belief-Desire-Intention (BDI) framework.  The BDI model is based on folk 

psychology, meaning it does not use cognition theories which incorporate the physical processes 

of thought.  Instead, it describes human behavior and reasoning using terms common in human 
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language: belief is the information assumed by the individual and may be incomplete or 

incorrect, desire is the state a person wishes to achieve, and intention is the person's committed 

desire.  Using the BDI model as inspiration, Briano and Revetria (2008) worked with another 

framework called PECS (Physical, Emotional, Cognitive, Social).  An evolution of the BDI 

framework, the PECS model incorporates human social behavior.

The Theory of Reasoned Action

Another model for human behavior is the Theory of Reasoned Action (TRA), developed 

by Ajzen and Fishbein (1981).  In the TRA, behavioral decisions are determined by intention. 

Intention in turn is composed of two components: attitude, which Bock et al. (2005) describe as 

“behavioral beliefs”, and social norms, which Bock et al. describe as reflections of “normative 

beliefs and [the] motivation to comply with [those] beliefs”.  Muduganti, Sogani, and Hexmoor 

(2005) take these terms and interpret behavioral intention as the weighted sum of attributes 

shown in Equation 1.  When endogenous attitude is affected by outside social forces, subjective 

norms in the TRA serve the purpose of bridging the gap between attitude and behavior (Ryan, 

1982).

Equation 1. A Behavioral Intention Model. Behavioral intention is represented as a weighted sum 

of attributes.

As the TRA's focus is on behavioral intention, a distinction should be made between 

behavioral intention and goal intention (Sheppard, Hartwick, & Warshaw, 1988).  Behavioral 

intention is limited to an individual's committed desire to perform an action and does not involve 

what the longer term goals resulting from that action may be.  As an example from the domain of 

Behavioral intention=Weight Attitude∗Attitude
+Weight Subjective Norms∗Subjective Norms+Error
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education, a behavioral intention may be to attend class.  This differs from the goal intention of 

attaining an A grade, which is a possible outcome of the behavior.

Ryan (1982) argues that belief formation and change drive the TRA forward and 

distinguishes between different types of beliefs.  Descriptive beliefs are formed by direct 

experience.  Information beliefs involve accepted information from an indirect source, while 

inferential beliefs are derived via inference.  These inferential forces allow attitudinal beliefs and 

normative beliefs to affect each other.

Bock et al. (2005) also identify different motivational forces behind intention, which they 

divide into three categories: economic, social-psychological, and sociological.  Economic forces 

exist when people are motivated by some form of utility, such as wealth, resources, or other 

forms of satisfaction.  Social-psychological forces spur people to action because, by 

participating, people feel better about themselves and desire to strengthen their relationship with 

others as well as their access to the benefits such a relationship may entail.  Lastly, sociological 

forces improve the working atmosphere of the organization.  Bock et al. include terms such as 

“fairness, innovativeness, and affiliation” in this latter category.

The TRA has been used with success to model consumer behavior (Sheppard et al., 

1988).  Not only predicting intention and behavior, the TRA located consumers' attempts to 

change their behavior, answering the where and how of behavioral change in relatively simple 

terms.  With these results, Sheppard et al. summarize the goal of the TRA as:

[to] predict the performance of any voluntary act, unless intent changes prior to 

performance or unless the intention measure does not correspond to the behavioral  

criterion in terms of action, target, context, time-frame and/or specificity. (p. 325; 

emphasis theirs)
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As long as the component terms are used within limits of compatibility, the TRA becomes a 

powerful tool in predicting human behavior and revealing the process by which that behavior 

arose.

Interest also exists in testing the limits of this model by applying it to situations 

somewhat outside the familiar framework, such as when committed actions are not entirely under 

the performer's control or when the target person is not in a situation to possess a fully formed 

intention.  Since the model applies only to behavioral intention, the model's power weakens from 

interference by external factors, otherwise known as uncertainty in the intention-performance 

relationship.  As an example in consumer behavior, a person may have the intention to buy a 

certain item, but the item may become too expensive or is physically unavailable.  Therefore, the 

intention cannot lead to the desired action.

Since the TRA concerns itself with a single behavior, modifications need to be introduced 

for choosing among alternatives.  Sheppard et al. mention a greedy approach in which intention 

is measured towards each competing option and the strongest one is chosen.  Another method 

selects the choice with the most positive attitude and subjective norm.

The TRA model struggles to represent the importance of intending actions which are 

doomed to failure as well as the consequences of that failure.  A distinction needs to be made 

between behavioral intention and committed intention; the model weakens when predicting what 

a person actually ends up doing.  An intention may fail due to the reasons described above: 

uncontrollable interference or choosing an alternative.  In these situations, intentions should 

become estimates, and estimates require additional considerations.



13

The Theory of Planned Behavior

To address some of these identified weaknesses, Ajzen (1991) proposed the Theory of 

Planned Behavior (TPB) which is an extension of the theory of reasoned action.  The TPB 

focuses on what Ajzen calls “cognitive self-regulation”, using a dispositional approach to 

prediction.  The theory still measures behavioral intention, what Ajzen calls “motivational factors 

that influence a behavior”, but it incorporates Perceived Behavioral Control (PCB) into the 

model, the belief in ease of execution of a behavior.  The concept of PBC originates from 

previous studies investigating behavioral control's relationship with predicting behavior.  For 

example, Ajzen and Madden (1986) demonstrated that the addition of behavioral control 

contributed to the more accurate predicting of class attendance and final grades in students.  As 

in the TRA, attitudes and subjective norms continue their role as predictors in the TPB.

Both the TRA and TPB imply that a person's attitudes are formed after careful 

consideration of the available information (Conner & Sparks, 2005).  General attitudes on their 

own fail to accurately predict specific behaviors (Ajzen, 1991).  Traits, discussed in the 

“Attitude” section, similarly fail.  One workaround to this problem has been to combine many 

behaviors together and use the aggregate as an indicator of behavioral disposition, but this overly 

broadens predictive power.  Generalizations and aggregations may not help directly with 

specifics, but they do inform other factors that do help with specifics.  Behavioral intention 

serves as a buffer between attitudes and behavior since attitudes were found to poorly predict 

behavior directly (Conner & Sparks, 2005).  However, how attitudes translate into intentions is 

less clear.  Conner stresses the need for compatibility, “when both are assessed at the same level 

of specificity with regard to [action, target, context, and time]”.
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An attitude may be viewed as the sum of products: beliefs that an action will lead to some 

consequence times the evaluation of that consequence.  This calculation is not performed by the 

individual every single time but rather is stored in memory.  A subjective norm may be viewed as 

another sum of products: the perceived significant other's normative belief times the motivation 

to comply with the significant other.  In this case, the distinction between normative beliefs and 

behavioral beliefs may be arbitrary, but the distinction is still useful.  Lastly, PBC may also be 

viewed as a sum of products: the frequency of a factor times the inhibiting (or promoting) power 

of that factor.  These products often possess weights which vary by the target person and 

behavior.

Also important to the model are salient beliefs, the subset of beliefs that a person uses in 

a given situation (Ajzen, 1991).  Ajzen distinguishes between three kinds of salient beliefs: 

behavioral, normative, and control.  Each type of salient belief corresponds to a component of 

the TPB.  Behavioral beliefs inform attitudes.  Normative beliefs inform subjective norms, and 

control beliefs inform perceptions of behavioral control.

Ajzen stresses that given different situations, the above components may have varying 

levels of importance and admits that the relationship between the factors requires greater 

understanding.  Since PBC was introduced to account for factors outside a person's control, 

situations where a person has a high degree of volitional control typically weakens the predictive 

power of PBC (Armitage & Conner, 2001).  Similarly, in situations where intention has little 

effect on behavior (situations with low volitional control), PCB has a direct relationship with 

behavior.  The TPB may also have a weakness in not accounting for past behavior, which is 

arguably the best predictor of future behavior (Armitage, 2005).  Armitage points to such related 
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phenomena as habit formation and “practice makes perfect”, where in the latter, repetition leads 

to mastery which leads to an increase in perceived behavioral control.

Attitude

Described earlier as “behavioral beliefs”, attitudes are the psychological constructs used 

to describe an individual's perspective towards their material and immaterial environment.  Ajzen 

and Fishbein (2005) identify two types of attitude.  The first type consists of general attitudes 

towards physical objects, social groups, events, or other general targets, while the second type 

consists of specific attitudes towards specific behaviors with respect to similar targets. 

Describing attitudes as the modern day “crown jewel” of social psychology, Crano and Prislin 

(2006) write that an attitude represents “an evaluative integration of cognitions and affects 

experienced in relation to an object”.  Varying the strength of an attitude also varies an 

evaluation's persistence and the consistency of the attitude-behavior relationship.

Ajzen (2005) defines attitude as a “latent, hypothetical construct” which affects entities in 

observable ways.  This reduced definition applies to traits as well, but traits and attitudes are 

distinguished by their internalized direction.  Where traits point inwards towards the individual, 

attitudes are directed outwards into the environment.  Attitudinal responses evaluate an object, 

i.e. to have an opinion about something, where traits inform the tendency of a response, e.g. to be 

cautious.  Attitudes are considered more prone to change given new input.  Traits, however, are 

less mercurial.

Directed towards some external object, attitudes are measured by the individual’s 

responses to the object, which Ajzen divides into three categories.  Cognitive responses perceive 

object characteristics.  Affective responses indicate a change in the individual's emotional state. 

Conative responses encompass any potential or executed actions towards the object.  Classifying 
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responses into these three categories may require subjectivity, especially when distinguishing 

cognitive and affective reactions.  Which is chiefly responsible in a given situation: the 

metaphorical “heart” or “head”?

The three attitudinal responses may also be interpreted as three components that work 

together to form an attitude.  Ajzen describes this relationship as a hierarchy, where the 

cognitive, affective, and conative components form the first-order factors and attitude is the 

second-order factor.  When a response is measured using this structure, the observed attitude 

predisposes the three categories of responses.  Predisposition does not imply universal 

agreement, however.  For example, an alcoholic may possess an emotional reliance on alcohol 

despite knowing that the substance ultimately causes harm.  Though there are such exceptions, 

correlation among the three components is the rule.

The process by which an attitude forms should be distinguished from the process by 

which an attitude changes (Crano & Prislin, 2006).  Attitude formation results from conditioning 

or even mere exposure to a received message.  Attitude change, on the other hand, may be a bit 

more involved and is represented by two types of models.  Dual-process models, as the name 

suggests, use a two-step process of message reception followed by attitude change.  Examples 

include the elaboration likelihood model and the heuristic/systematic model.  Single-process 

models use a single cognitive process that accounts for both source and message effects.  An 

example single-process model is the cognition in persuasion model.

The study of attitudes formed the original basis of social psychological research (Ajzen & 

Fishbein, 2005).  From the 1930s to the 1970s, however, attitudes were shown to be poor 

predictors of behavior, and the relevance of the attitude construct in predicting behavior was 

called into question.  The attitude-behavior inconsistencies came in two varieties: literal 
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inconsistencies, where intentions do not lead to action, and evaluative inconsistencies, where the 

expressed attitude does not lead to action.

Proposed reasons for the attitude-behavior inconsistencies included response biases.  To 

avoid biased responses, researchers attempted to use indirect approaches for gathering data, but 

the updated results proved no more valid.  Another explanation attributed the inconsistencies to 

the single dimensionality of attitude.  Attitude was believed to be multi-faceted, a property which 

may have been lost when expressed in a single value.  This gave rise to attitudinal components: 

cognitive (logical attitudes), affective (emotional attitudes), and conative (volitional attitudes). 

These measures, however, strongly intercorrelated and still could not account for the 

inconsistencies.

To overcome these problems, the limits of attitudes must be understood.  Ajzen and 

Fishbein explain that attitudes despite the problems above can still predict behavior but only if 

the behavior broadly represents the attitude domain.  This idea leads to the principle of 

aggregation, that attitudes indicate broad behavioral dispositions, and the principle of 

compatibility, that attitude and behavior must involve the same action, target, context, and time. 

Using the principles of aggregation and compatibility, the resulting attitude-behavior consistency 

possesses three categories of moderators: meta-attitudinal, self-interest, and assessment related 

(Crano & Prislin, 2006).  Example moderators include accessibility, certainty, temporal stability, 

etc.

Recent research on attitudes has investigated the difference between deliberate attitudes 

and automatic attitudes, also known as explicit attitudes and implicit attitudes, respectively 

(Gawronski & Bodenhausen, 2006).  Explicit attitudes involve self-reported evaluations, while 

implicit attitudes are inferred from response latency measures.  Modern persuasion models have 
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performed well in explaining how different messages influence explicit messages.  Implicit 

attitude changes, however, are less understood.  Gawronski and Bodenhausen suggest that this 

lack of understanding is due to much of the research either not making the required distinctions 

or assuming implicit attitudes are stable, resulting from long-term experiences.

Influence

Regardless of the situation, if two individuals are within proximity to each other, the 

effects of influence are inevitable (DePaulo & Friedman, 1998).  Influence is the tendency for 

one to complement, reciprocate, converge, or compensate their behavior given the behavior of 

another.  Therefore, influence is a form of coordination, and as an individual’s social network 

changes, so too does the experienced influence.

The power of influence should not be underestimated.  Kahan (1997) argued that when 

considering committing a crime, the debate within the individual is not limited to weighing the 

costs and benefits of the crime itself.  Supplementing criminal behavior are the forces of social 

influence and the criminal tendencies of other individuals.  The power of social influence on 

criminal behavior has even been used as extenuating factors in murder trials (Colman, 1991).  As 

such, a society wishing to deter criminal behavior should enact laws that not only inflict penalties 

on the perpetrator but also mold the population's social weight ascribed to the crime (Kahan, 

1997).

Behaviors driven by social influence may be viewed as goal-oriented (Cialdini & Trost, 

1998).  The force of social influence is strongest when a behavior services multiple goals. 

Cialdini and Trost list three goal categories: “to behave effectively, to build and maintain 

relationships, and to manage self-concept”.  Effective behavior is a rational goal because it 

allows people to reap greater payoffs from their actions.  Social relationships need to be built and 
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maintained due to the perceived social rewards that come with conformity, as social deviants are 

shunned.  The dominant culture is not necessarily the target of conformity; the higher valued 

culture of a peer group may substitute.  The third goal category, self-concept, is the positive 

image of oneself, i.e. self-esteem or an established identity.  Without an objective means to 

establish self-concept, one must look to similar others as a means for self-evaluation.

Social influence consists of three major components: social norms, conformity, and 

compliance.  (Social norms are addressed in the next section.)  Conformity involves changing 

one's behavior to match the behavior of others (Cialdini & Goldstein, 2004), and serves three 

powerful personal goals: to improve accuracy of perception, gain approval of desirable others, 

and to avoid a deviant self-concept (Cialdini & Trost, 1998).  When the motivation is to increase 

correctness of perceptions and behavior, the influence component is known as informational 

conformity (Cialdini & Goldstein, 2004).  When the motivation is to gain societal approval, it is 

known as normative conformity.  These two motivations, while conceptually distinct, appear 

with less distinction theoretically and empirically, and overall, the goal of accuracy simply 

causes one to conform to a perceived consensus.

The last major component of social influence, compliance, refers to an acquiescence to a 

request, either implicitly or explicitly (Cialdini & Trost, 1998).  Cialdini and Trost list six 

psychological principles popular among compliance professionals: reciprocity, consistency, 

social validation, liking, authority, and scarcity.  Compliance, like conformity, also has a goal of 

accuracy (Cialdini & Goldstein, 2004).  A rational individual desires to achieve goals efficiently 

and reap the most rewards, and to do so requires interpreting information accurately.  By 

complying with incoming messages, the expected result is to improve accuracy of perceptions. 

Another goal of compliance is the goal of affiliation.  A fundamental aspect of humans is to 
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associate with one another.  By complying with social cues, the expected result is to build a 

stronger social network.

Influence is not necessarily a one-way process with the large group influencing the small 

group; it works both ways (Cialdini & Trost, 1998).  During conflict arising from challenging the 

status quo, an individual may choose the minority opinion, which confers some informational 

advantage (a process known as “conversion”).  The majority opinion may also be a viable option 

when it offers a larger network of social support (a form of compliance).  When a majority 

opinion is contrary to a person's existing beliefs, a comparison process begins where internal 

ideals are compared to the external ideals of the majority opinion.  When a contrary minority 

opinion is perceived, the individual undergoes a more rigorous validation process that tests for 

accuracy.  After this process, the message is either internalized or rejected.  However, a 

distinction should be made between internalization and the public expression of an internal 

status.  Majority influences appear to favor both public and private, direct forms of expression, 

while minority influences favor private, indirect expression.  No matter the case, when accuracy 

is the salient goal, people tend to rely on the consensus heuristic/majority position.

The consensus heuristic, however, does not guarantee accuracy.  Postmes, Spears, and 

Cihangir (2001) investigated the effect of group norms on the quality of group decisions, more 

specifically the effect of consensus norms versus critical thought.  It was found that groups 

relying on consensus norms unreliably arrived at correct decisions.  The poor performance of 

consensus groups was attributed to their preference for shared information, i.e. they overvalued 

information known to all group members.  Though consensus norms are the result of group 

cohesion, Postmes et al. argue that cohesion is ultimately not the source of poor decisions. 
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Rather, a group’s history plays an important role in the formation of consensus norms, critical 

group norms, and the quality of group decisions.

Helbing and Molnar (1995) incorporated concepts from social influences into a social 

force model.  The social force model subjects pedestrians to social forces and has been shown to 

describe self-organization of observed pedestrian behavior.  This pedestrian model shares many 

similarities with the behavior of gases and fluids.  People are simulated as particles that behave 

according to social rules, i.e. changes in velocity are attributed to changes in motivation, not 

changes in physical force applied to the person (Kirkland & Maciejewski, 2003).

Using three different types of force terms, the model's forces are a measure of internal 

motivations to move a certain way (Helbing & Molnar, 1995).  Each particle is motivated to 

acquire a certain velocity which represents the rational desire to take the shortest route at a 

comfortable speed.  Particles also maintain a certain distance from other pedestrians and 

environmental borders.  This represents the “private sphere” or “territorial effect” of the 

pedestrian.  Getting too close to these spheres increases discomfort, caused in part by the 

increased risk of collision.  Particles also respond to different types of attractive effects which 

represent movements towards friends, a street performer, a visually appealing window display, 

etc.

Social Norms

A standard part of collective action theory, the zero contribution thesis postulates that 

rational agents require externally enforced rules in order to cooperate and achieve group 

interests, even when the group interests would benefit the rational agent (Ostrom, 2000). 

Situations involving the zero contribution thesis have the structure of an n-person prisoner's 

dilemma game.  Despite the dilemma, cooperative behavior is observably widespread.  People 
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have been commonly observed to organize themselves to benefit the group.  Examples include 

labor unions, tax payers, voters, etc.  Research has struggled to synthesize this observed behavior 

with the zero contribution thesis into a revised theory of collective action.  Among the proposed 

revisions is to add two additional types of norm-using players which facilitate opportunities for 

collective action and cooperation: conditional cooperators and willing punishers.  How did these 

types of players come into existence?  An evolutionary approach proposes humans evolved to 

naturally learn social norms and indirectly to generate norm-using players.

In cooperation norms, the use of sanctions is a key part of enforcement and may even be 

driven by non-selfish motives (Fehr & Fischbacher, 2004).  Human cooperation is based 

specifically on the conditional cooperation norm: cooperate if the group cooperates; defect if the 

group defects.  Conditional cooperators are players that cooperate only when they believe others 

will reciprocate (Ostrom, 2000).  They compose a large proportion of the population, 

experiments suggesting 40-60 percent.  Such players occupy an important roll in the early rounds 

of games by convincing others to contribute.  The threshold in required belief that others will 

reciprocate varies over the population.  Regardless of the threshold, accumulated disappointment 

leads to decreased numbers of participating conditional cooperators.  Therefore, it is beneficial to 

incorporate mechanisms that prevent this downward cascade.

The second type of norm-using player is the willing punisher.  Willing punishers punish 

those who under-perform or free ride.  Free riders are a common problem in cooperative 

scenarios that involve the public good problem, where a good becomes “public” when no group 

member can be excluded from the good's consumption (Fehr & Fischbacher, 2004).  Punishment 

often takes the form of sanctions and is an important component of an organization's survival 

(Ostrom, 2000).  One common form of punishment is shame.  Shame is not equivalent to guilt, 
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the former being imposed by others, while the latter is a self-imposed punishment for failing to 

uphold a social norm.  Willing punishers may also reward those who perform above the 

minimum required, assuming the role of “willing rewarders”.

Conditional cooperators and willing punishers may use social norms to promote 

collective action, but what exactly defines a social norm?  Kandori (1992) defines social norms 

as “the specification of desirable behavior together with sanction rules in a community”.  Social 

norms are an understanding shared across a group of people concerning which actions are 

required, acceptable, or forbidden (Ostrom, 2000) and generally consist of the traditions and 

taboos within a society (Cialdini & Trost, 1998).  However, a social norm consists not of codified 

laws but of understood rules and expectations of behavior, deriving its power from the social 

network, not the legal system.  A norm is considered “social” when it is shared by multiple 

people and is sustained by the people's approval or disapproval (Elster, 1989).  It should be noted 

that individuals within a society may adhere to norms to different degrees and that norms may be 

more representative of the collective as a whole rather than a random member individual 

(Cialdini & Trost, 1998).  Individuals use the norms of their peers as the standard by which they 

assess their own behavior (Schultz, Nolan, Cialdini, Goldstein, & Griskevicius, 2007).  The 

group affected by a social norm can vary widely in size, from a small family to a national society 

(Fehr & Fischbacher, 2004).

Social norms, though frequently discussed and used in research, still require additional 

study in terms of their origins, what defines their content, and how they are enforced. 

Concerning origins, social norms may form whenever an individual's action affects others in a 

positive or negative way, though Fehr and Fischbacher admit this view is not wholly 

uncontested.  A norm may arise from survival techniques, which evolve into traditions distanced 
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from their original function (Cialdini & Trost, 1998).  Another possibility is that norms arise 

from a set of rules that society has agreed upon, forming the standard of interaction between 

individuals.  From a societal-value perspective, social norms originate arbitrarily and gain power 

through cultural acceptance.  Therefore, the social norm is not inherently beneficial.  Antithetical 

to this approach, social norms may originate from behaviors that accomplish group goals, 

proposing an inherent beneficial quality to the social norm.

Social norms are compatible with the economics axiom that agents are rational (Kandori, 

1992).  Therefore, social norms must exist because the self-interested community sustains them. 

They must provide certain benefits to those that follow them, what Kandori calls “proper 

incentives... in every respect”.  To provide such incentives, deviants must be punished and the 

failure to punish must also be punished.

Two opposing lines of thought straddle the extreme ends of economic theory (Elster, 

1989).  On one end is Adam Smith's instrumental rationality, that human behavior is pulled by 

the prospect of future rewards.  On the other end is Emile Durkheim, who advocated social 

norms as a behavioral motivator, that humans are pushed from behind by “quasi-inertial forces”. 

These opposing views draw the distinction that social norms are not outcome-oriented like 

typical rational actions.  Rather, they are either unconditional or the conditions are not future-

oriented, fueled by the strong emotions that they can trigger.  However, social norms can be 

guided by self-interest when self-interest determines which norms among many are chosen for a 

given situation.

The above principles separate social norms from other types of norms.  Where social 

norms are not outcome-oriented, moral norms involve consequences and outcomes.  Legal norms 

require an enforcer motivated by self-interest, whereas social norms are enforced by community 
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sanctions.  Private norms are similarly enforced by guilt but typically are not shared with others. 

Additionally, social norms should be distinguished from habits and compulsive neuroses which 

are kept private and do not generate guilt on their own.

Social norms both incite and guide human action (Schultz et al., 2007).  Therefore, they 

have actively been used in marketing campaigns and used as a tool in changing drug and alcohol 

consumption, eating disorders, gambling, littering, etc.  Normative messages deployed in the 

field have had mixed success in changing behavior, sometimes encountering boomerang effects 

where the person affected acts in an opposite manner in order to assert their freedom.

In broadcasting normative messages, it is important to distinguish between the different 

types of social norms a message may target.  The following norm types, however, are not disjoint 

sets (Cialdini & Trost, 1998).  Some messages target the descriptive norm, a behavioral factor 

that describes “perception of prevalence”, the behavior common to a given situation (Schultz et 

al., 2007).  Descriptive norm messaging may attempt to correct the perception that certain 

behaviors are more widespread than they actually are.  However, since deviant behavior is 

considered to be both above or below the descriptive norm, the message may discourage some 

while actually encouraging others.  Aside from descriptive norms, other messages target the 

injunctive norm, what Schultz et al. describe as “perceptions of what is commonly approved or 

disapproved within a culture”.  Injunctive normative messages can reduce the boomerang effect 

by strengthening an injunctive norm so that it overrides a related descriptive norm.  Lastly, the 

subjective norm, defined by the belief that others desire a certain course of action, is particularly 

important in predicting behaviors and intentions (Cialdini & Trost, 1998).  Defining a subjective 

norm using other norms is relatively simple.  The target individual determines the injunctive 
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norms of significant others in their social network and the others' willingness to adhere to those 

norms.  This perception of other's injunctive norms results in a subjective norm.
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CHAPTER 3

RELATED WORK

In this section a survey of related work pertaining to behavior models, behavioral 

intention, and crowd simulation is described and discussed.  The behavior models interpret 

human action in some interesting ways, and they are accompanied by practical applications and 

meta-analyses.  Following the studies of intention, a more in-depth look of the studies of crowds 

is performed, beginning with crowd formation and transitioning into crowd simulation, human 

user involvement, macro-level approaches, and simulated evacuations.

Behavior Models

The theory of reasoned action has inspired many models for human behavior.  The 

technology acceptance model draws inspiration from the TRA (Schepers & Wetzels, 2007).  In 

the technology acceptance model, “perceived usefulness” and “perceived ease of use” gauge an 

individual's attitude towards the use of a technology.  The subjective norm's predictive power in 

this model has possessed mixed results.  Schepers' and Wetzels' meta-analysis of a variety of 

studies showed, however, that the subjective norm possessed significant influence over perceived 

usefulness of a technology and the behavioral intention to use that technology.

Another model related to the the theory of reasoned action is the MODE model, which 

stands for “Motivation and Opportunity as DEterminants” (Fazio & Towles-Schwen, 1999).  The 

MODE model typically requires broad motivations to be accurate.  In the MODE model, 

attitudes are activated either consciously or spontaneously, and the activated attitude biases 

perception of information concerning the attitude object (Ajzen & Fishbein, 2005).  This 

property of attitudes results in the model distinguishing between two classes of attitude-behavior 

processes (Fazio & Towles-Schwen, 1999).  The first class is behaviors involving conscious 
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deliberation.  In this class, relevant attitudes are compared to the behavior in question, and 

alternative behaviors are considered.  The second class is spontaneous reaction where attitudes 

immediately inform a behavior without being consciously considered.  Ajzen and Fishbein 

(2005) concede the work shows encouraging results but point out the model's assumption that 

only strong attitudes (as opposed to all attitudes) are activated may be false.  They also indicate 

other issues with linking general attitudes to specific behaviors.

Gawronski and Bodenhausen (2006) also worked with attitudes, proposing the 

associative-propositional evaluation model which assumes a distinction between explicit and 

implicit attitudes. In doing so, it provides theoretical backing for ideas such as evaluative 

conditioning, cognitive dissonance, priming, and persuasion.

Lee and Son (2008) attempted to build a comprehensive model for human decision 

behavior (which includes decision making and decision planning), integrating aspects of 

previous models which Lee and Son categorize as engineering, psychological, and economical. 

Their model used Bayesian belief networks, decision field theory, and probabilistic depth first 

search.  Their extensions to the BDI framework showed promising results of simulated human 

behavior in dynamic and intricate situations.

Similarly, Cho et al. (2008) used the BDI framework for crowd simulation.  In their 

model-based approach, an agent's beliefs represented their perceptions of the environment, while 

their desires and intentions represented candidate and selected actions, respectively.  This 

perception-action relationship empowered agents to adaptively react to a dynamic environment. 

Two weaknesses to their approach, however, were the lack sequential actions and cooperative 

leadership.  Cho et al. suggest the addition of planning mechanisms to strengthen the model.
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Bock et al. (2005) observed diffusion of knowledge within a firm where knowledge was 

stored within individuals and must be shared across the organization.  They found that people are 

prone to hoard knowledge rather than share it and are influenced by personal and contextual 

forces.  Even if there exists a system to share knowledge, people have to be encouraged to use it, 

and counter to intuition, extrinsic rewards may actually suppress an individual's tendency to 

share knowledge.  Bock et al. interviewed executives concerned with knowledge management to 

determine motivations and beliefs of individuals.  They classified the types of motivational 

forces into three categories (see the “Background” section) and hypothesized that increasing 

these motivational forces would lead to a greater intention to share knowledge.

Muduganti, Sogani, and Hexmoor (2005) attempted to better understand the reasons why 

people are accepting of certain technologies while rejecting others.  Also under investigation was 

what causes the “middle ground” situation of a technology being used for a short time or 

experiencing an oscillating degree of use.  Attitudes, subjective norms, and behavioral intentions 

were distributed on a bell curve ranging from 1 to 7, while an error term ranged from -1 to 1. 

The subjective norm was adjusted when intention exceeded a threshold.  One of the goals was to 

avoid the use of cumbersome questionnaires to gather data, instead using a computer model.  The 

model tried to improve beyond existing models of user acceptance of information technology. 

Causal models were considered too “cross-sectional” and temporally “static”, while individual 

reasoning models' narrow focus missed social influences and group decision making.

In other work with behavioral intention, Ryan (1982) explored the model by testing for 

variable interdependencies.  The resulting data indicated that the interdependencies were very 

complex and formed a variable network.  Why not combine the variables if they are so related? 
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Ryan argued that the data indicated variables that were “distinct but related” and that the merging 

of variables would be an oversimplification.

Sheppard, Hartwick, and Warshaw (1988) analyzed the TRA in terms of its applications 

to situations not entirely suited to the original framework.  They surveyed a long list of previous 

studies and assessed the intention-performance relationship as well as the attitude/subjective 

norm-intention relationship.  Ultimately, they found many instances where researchers may have 

stretched the model's capabilities a bit far, yet the model's predictive power did not collapse 

under the stress.

The elements of the TPB – attitudes, subjective norms, and PBC – have been used to 

predict non-donors' intentions to donate blood (Robinson, Masser, White, Hyde, & Terry, 2008). 

Robinson et al. proposed that the subjective norm may inconsistently contribute to the predictive 

power of the TPB when surveying donors and non-donors.  They extended the TPB by adding 

factors known to be important in blood donor research: descriptive norms (what behavior 

significant others ultimately choose), moral norms (the moral obligation to donate blood), 

anticipated regret (an affective component), and donation anxiety (another affective component). 

A questionnaire was used to measure the above components on a 1 to 7 scale.  In the end, the 

extended model performed better than the original standard model with 70% variance in 

donation intention accounted for.  Also, it was found that negative feelings of regret made strong 

motivators to donate blood.

The TPB has also been used in the domain of physical activity research (Armitage, 2005). 

Regular physical activity is an excellent cancer and disease deterrent, yet many people still do 

not get enough exercise.  While the TPB has been successfully used to predict initiation of an 

exercise plan, Armitage was curious about longer term maintenance.  The paper addresses two 
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TPB limitations in particular: the TPB's ability to predict sustained physical activity as 

mentioned above and the TPB's weakness in not using past behavior information.  Results 

showed that PBC was a very important contributor to committing exercise, and that a successful 

exercise plan also enhanced PBC.

The TPB has been tested by meta-analysis for its effectiveness (Armitage & Conner, 

2001).  Armitage and Conner collected 185 studies and tracked how well results were predicted 

by the TPB.  The model was found to account for 27% variance in behavior and 39% variance in 

intention.  PBC accounted for more variance in studies where behavior measures were self-

reported as opposed to objectively reported or observed.  It was also determined that the 

subjective norm was a weak predictor in intention, but this may have been due to poor measuring 

techniques or the construct of subjective norms requiring expansion.

Crowd Models

The nature of the crowd's life cycle, how crowds form and disperse, has accrued some 

interest.  Lacks, Gordon, and McCue (2005) investigated crowd formation at the scene of a 

crime.  They discovered a relationship between the nature of a homicide, the resulting crowd 

size, and how that crowd interacts with law enforcement.  Murder scenes provoked increasingly 

unusual behavior from gathering crowds, indicating the emergence of new norms in the society.

Christou (2010) observed that the life cycle of a crowd is composed of three basic stages. 

Crowds start with the individual, which grows into a crowd (i.e. “formation”) and eventually 

decays back into separate individuals (i.e. “dispersion”) as shown in Figure 1.  The goal of the 

project was to build a generic model representing these stages and transitions.  Individuals in the 

model are represented as a vector of attribute values and a personal goal they need to achieve. 

Crowds are then formed by a set of individuals with similar goals; the crowd disperses after the 
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goal is satisfied.  The model was applied to situations of crowd formation around a point of 

interest, e.g. a car accident, and the crowd continued to grow due to a compulsion by people to 

join crowds even if they cannot perceive the original point of interest.

Figure 1. The Crowd Life Cycle Model. Crowds form and disperse in response to a variety of 

stimuli.

Some researchers identify the many available computer models as being overly simplistic 

or too focused on a single phenomenon.  Fridman and Kaminka (2007) applied Festinger’s 

(1954) social comparison theory, which generalizes across social phenomena, to a model for 

crowd behavior with the expressed purpose of addressing this problem.  The basic principle of 

the model is that when humans are unable to objectively determine their internal state, they will 

turn to similar members and evaluate their behavior via comparison, i.e. imitation. The supposed 

prevalence of such behavior strengthens the model's generality.  The model demonstrates many 

natural behaviors similar to real-world human crowd behavior.
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Continuing with perceived narrow focus as a recurring weakness in existing models, 

Fridman and Kaminka (2009) developed another general cognitive crowd model based on social 

comparison theory as well as a method for evaluating the model’s behavior.  The model uses a 

“contagion” algorithm to simulate social comparison behavior and was developed using the Soar 

cognitive architecture combined with the GameBots virtual environment.  This environment 

provided a dynamic, 3D world for the agents to move in.  The method for evaluation consisted of 

questionnaires given to humans observing the model simulation, with question format 

resembling “Were any agents working together?” and “Were there any leaders?”.  The gathered 

data suggests that the computer model matches many characteristics observed in a real-world 

scenario.

Guy et al. (2010) proposed a new algorithm called “PLEdestrians” for simulating large 

heterogeneous crowds.  The goal of this particular simulation was to achieve interactive rates 

using the Principle of Least Effort; hence the “PLE”.  A desktop PC could simulate crowds 

consisting of thousands of agents.  Using PLEdestrians, each agent in the crowd calculates a 

trajectory that is energy efficient and avoids collisions.  The model exhibits emergent phenomena 

observed in real-world crowds: lane formation, crowd compression, and edge and wake effects. 

Results were compared with previous studies and real-world video of crowds.  Both quantitative 

performance analysis and qualitative comparisons to the video data showed promising results. 

Limitations to the model include an over-simplified means of calculating energy efficiency based 

on walking in a straight line.  Also, the human representation is a simplified rigid disc instead of 

the relatively pliable shape humans actually are.

In a similar effort to improve simulation runtime, Guy, Lin, and Manocha (2010) 

proposed a new trajectory planning algorithm simulating human movement, called RCAP 
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(Reciprocal Collision Avoidance for Pedestrians).  The algorithm assumes implicit cooperation 

among agents, resulting in a sharing of the collision avoidance workload.  Based on a provably 

sound algorithm for simulating robots, it adds a “human touch” by incorporating human traits to 

better simulate human collision avoidance, e.g. adding personal space, delayed response times, 

etc.  The model was evaluated against human walking data.  In terms of path similarity, real-

world data fit well with the simulated data, and the improvements added negligible computation 

time over the original algorithm.  In terms of collision response, the model was observed to 

match a similar human response pattern of observe and react, followed by a maintenance phase.

Pelechano et al. (2007) faced the problem of simulating both the crowd's local motion 

and global wayfinding behavior in a dynamically changing environment.  Their attempt to 

realistically and naturally simulate the above motion while maintaining a high crowd density 

required the combination of psychological and physiological rules into a social forces model. 

The resulting model is heterogeneous with different traits distributed among the agents.  Over 

long distances, “tangential” forces steer the agents, while over short distances, motion is 

achieved through collision avoidance and pushing due to conflicts in personal space tolerances.

Balancing local motion and global navigation is a common problem.  In another 

approach, a precomputed roadmap of the static environment is used for global wayfinding on the 

macroscopic level (Van den Berg, Patil, Sewall, Manocha, & Lin, 2008).  The model has built-in 

safeguards against unnatural oscillatory behaviors, and individual agents have local runtime 

planning and collision avoidance but do not coordinate with each other, instead performing their 

own calculations.  Agents do not repel each other.  Rather, they focus only on collision avoidance 

and reaching the desired destination. Van den Berg et al. credited this property with generating 

realistic emergent behaviors.  They applied the model to three scenarios: a stadium, an office 
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evacuation, and city crosswalks.  Natural behaviors were observed, including lane formation. 

The model’s strengths and weaknesses were credited to its simplicity: speedy computation at the 

cost of no rules of thumb and some unnatural behaviors demonstrated in specific circumstances. 

Performance evaluations showed that the distributed model scaled nearly linearly.

The above crowd models have all attempted to simulate crowds in a generic context.  The 

next two research projects, however, apply crowd modeling to more specific domains.  The first 

was by Sarmady, Haron, and Talib (2007).  They used a multi-agent model to simulate the 

crowds of the Tawaf area, which becomes extremely crowded during the Hajj season.  While 

more detailed human behavior models were available, they ultimately opted to incorporate a 

simpler one due to the need to simulate tens of thousands of individuals.  As a result, instead of a 

a more complex social forces model (which is considered for use in future studies), a cellular 

automata model is used for microscopic movement.  Individuals are given parameters and 

intentions which map to a series of actions, which in turn map to a series of macroscopic 

movements.  Static path tables are used for macroscopic behaviors so that a circular movement 

around the simulated Kaaba is maintained.  It is hoped that this continued research will produce a 

better understanding of this social phenomenon and increase the safety of the Kaaba's millions of 

annual pilgrims.

In addition to situations of extreme crowding like the example above, it has been 

observed that drunkenness mixed with crowds can also lead to injury.  Moore, Flajslik, Rosin, 

and Marshall (2008) investigated the causes of violence in intoxicated crowds by building a 

model that could help answer the how and why intoxication increases aggressive behavior.  They 

argued that intoxication disrupts social behaviors, and by disrupting social behaviors, emergent 

affiliative behaviors that would minimize stress are also disrupted.  Therefore, intoxication leads 



36

to increased stress in crowded environments, and increased stress leads to aggression and 

violence.  The above ideas were incorporated into a particle model of human behavior, 

representing intoxication by destabilizing particle trajectories.  When simulating the model, two 

groups were placed on opposite ends of a narrow hallway, and each particle was given a point at 

the opposite end of the hallway to walk towards.  In “sober” trials, the model displayed emergent 

lane-forming behavior.  In “intoxicated” trials, lane formation was disrupted and velocities 

towards goals were reduced.  However, the model is based on data obtained from real-world 

sober crowds only, and Moore et al. argued that better data was needed based on real-world 

intoxicated crowds.

In some situations, it is useful to effect change within the crowd by applying external 

forces.  Kirkland and Maciejewski (2003) used the social force model to simulate pedestrian 

flow and human crowds.  They introduced into the simulation autonomous robots to directly 

influence the behavior of the crowds, encouraging lane formation, while discouraging chaos and 

traffic jams.  These robots, attracted by the crowds of people, attempt to influence behavior by 

moving at a velocity different from the surrounding people and by using auditory and visual 

cues.  Though their work was very preliminary, Kirkland and Maciejewski showed that 

introducing a heterogeneous element like a robot can alter the dynamics of a situation.  Their 

next goal became to deploy a robot that could create an attractive social force.

A similar project proposed a method for directing virtual crowds using navigation fields 

(Patil, Van den Berg, Curtis, Lin, & Manocha, 2010).  This method uses a social force model to 

handle local collision avoidance.  Agents are directed by user-defined guidance fields, even at 

interactive rates, while still retaining individual goals.  Guidance fields can also be obtained from 

video data of real-world crowds.  Regardless of how they are created, these fields are then 
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unified into a smooth navigation field.  The transition from guidance field to navigation field 

eases manipulation of the navigation field while still maintaining precision.  While the 

combination of interactivity and real-time feedback allows users to more effectively control 

crowd behavior, the model may not be capable of exhibiting certain macroscopic crowd 

behaviors.

Another possible application of human-computer interaction involves the populating of 

virtual spaces with simulated crowds.  Gayle and Manocha (2008) observed a problem in 

sparsely populated virtual worlds such as Second Life, which reduces immersion of human 

players and creates an undesired sense of lifelessness.  They developed techniques to populate 

the world with agents capable of autonomously avoiding collisions while navigating virtual 

paths, leading groups, and sometimes participating in a group.  Their approach is based on a 

centralized server network topology where each agent is connected to the server (or a group of 

servers with a shared database).  Agents possess local and global navigation models: the local 

model is based on social forces with the workload placed on client machines, and the global 

model is based on cell decomposition with the workload handled by server.  Up to 18 agents 

were simulated (the maximum number of available Second Life accounts), and real-time 

interactive performance was achieved.  Bandwidth posed a limiting factor, but it was estimated 

that one client could support 8-15 agents and still maintain desired performance.

Rather than use virtual crowds to serve human participants, sometimes human 

participants are used to further virtual crowd research.  A lack in commonly accepted validation 

methods for crowd simulation models has been observed (Pelechano, Stocker, Allbeck, & Badler, 

(2008).  Pelechano et al. proposed “a level of presence achieved by a human in a virtual 

environment”, i.e. immersion, as a metric for virtual crowd behavior.  Four different types of 
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models were implemented for human participants to interact with – social forces, rules based, 

cellular automata, and HiDAC (Pelechano et al., 2007) – and were evaluated for qualities that 

could harm presence in a virtual environment: shaking, discrete movement, overlapping with 

other agents, no communication between agents, agents unable to push each other, etc.  The 

researchers then created a virtual cocktail party, adding to the agents communication, 

locomotion, and idling animations.  Human participants were then inserted into the party using a 

head-mounted display, tracking sensors, etc.  Participants performed simple tasks in the virtual 

environment and then filled out a questionnaire rating the achieved presence of the different 

models.  Using the data gathered from the questionnaires and other sources, they were able to 

determine many positive qualities of the simulations, such as predictable human reactions to 

virtual crowd behaviors, as well as areas for improvement, such as improved auditory and haptic 

feedback.

Many of the previous studies described above have largely modeled crowds on a 

microscopic level where individual behaviors are simulated in detail.  The following studies 

simplify individual behavior to varying degrees in favor of a greater macroscopic perspective. 

Musse and Thalmann (1997) explored the relationship between a crowd of autonomous virtual 

humans and their emergent behavior, where group behavior was defined by a user, but individual 

behavior was determined by a random process.  The model also incorporates sociological 

concepts to represent certain behaviors.

In future work, Musse and Thalmann (2001) addressed the problems of how to model 

crowds using a hierarchical structure, how to distribute that structure, and how to account for 

behaviors of different complexities.  In approaching these problems, crowds were treated as 

hierarchies.  Three courses of action were made available to agents in these crowds: they could 
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follow their script (i.e. “programmed behavior”), react to events (i.e. “reactive or autonomous 

behavior”), or be directed by a user (i.e. “guided behavior”).  The resulting model was called the 

ViCrowd model.  Based on a flocking system, it uses a group-based as opposed to an individual-

based approach, resulting in improved performance.

Treuille et al. (2006) developed a crowd model based on continuum dynamics using 

dynamic potential fields and velocity fields for navigating among moving obstacles.  The focus 

was on large groups with common goals.  As such, the simulation is not agent-based. Instead, it 

uses per-particle energy minimization with a continuum perspective.  The resulting model may 

not be as general, but it does require less computational power.

Reducing a model's demands for computer cycles is especially important for models that 

are best simulated at interactive rates.  Narain, Golas, Curtis, and Lin (2009) wanted to do just 

that with a model of very large crowds.  This model represents crowds simultaneously as discrete 

individuals and as a single continuous system.  The latter systems takes the form of a continuum 

fluid, complete with density and flow velocity.  Narain et al. introduced the concept of the 

“unilateral incompressibility constraint” (UIC) to the large-scale continuous system, which 

constrains fluid movement by incorporating local collision avoidance.  The UIC speeds up the 

simulation by serving as a large-scale collision avoidance step.  The model was found to 

efficiently handle hundreds of thousands of agents; it could even simulate one million agents at 3 

frames per second.  Limitations include only local/adjacent collision avoidance, and proposed 

improvements included the use of social rules for more realistic behaviors.

The above study divided the crowd into two levels and simulated both simultaneously.  In 

this next study, a similar approach was taken with three levels.  Ivancevic, Reid, and Aidman 

(2010) proposed a new model of crowd behavior dynamics that incorporates entropic 
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geometrical principles with the goal of improving the predictive theory of crowd behavior.  The 

model operates on three “synergetic” levels – macro, meso, and micro – and attempts to explain 

crowd behaviors and behavior transitions by measuring these three levels simultaneously.  The 

macro level involves individual behavior dynamics which is then generalized for behavioral-

compositional crowd dynamics using a micro-level formalism.  The meso level in between these 

two consists of aggregate statistical-field dynamics.  Crowd dynamics were formulated as 

entropy in three steps: as individual behavior, as a non-equilibrium transition phase where the 

micro-level brings changes to the macro-level, and then as collective behavior.  Future work 

looked to add 3D simulations to bring the model a visual representation and also to study abrupt 

changes in crowd behavior.

One of the most practical benefits of crowd research is the better understanding and 

planning of human evacuations.  When disaster strikes, people typically flee the danger zone as 

quickly as possible.  Problems arise at choke points, where exits leading away from danger 

become clogged with humans.  Since improving evacuation rates has a direct impact on saving 

lives, it makes for a popular research topic.  Kamkarian (2009) used a multi-agent system to 

model crowds trapped in indoor spaces.  The model is inspired by swarm behavior and grid 

communications, applying a least effort algorithm to the agents.  Agents move toward the exit as 

fast as possible and in as straight a line as possible.  The model was used to measure evacuation 

rates in different scenarios where the placement of the exit changed.

In a study of communication's effect on evacuation rates, Pelechano and Badler (2006) 

developed “Maces”: the Multi-Agent Communication for Evacuation Simulation.  Maces' focus 

is on unknown environments; agents must explore and share discoveries with each other. 

Exploration involves wayfinding, a cognitive factor of navigation which involves four 
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components: a cognitive map for remembering the environment, an orientation to position 

oneself within the map, the ability to explore and learn the environment, and navigational ability. 

Maces uses local motion driven by Helbing's model (Helbing, Farkas, & Vicsek, 2000) and inter-

agent communication, which improved evacuation rates.

In emergency evacuations, each individual has a desired velocity but is often unable to 

attain that velocity due to congestion.  Maury, Roudneff-Chupin, and Santambrogio (2010) 

interpreted these qualities as the incompressibility constraints of a fluid.  Where a micro-level 

approach would treat individuals as rigid discs, their model uses a macro-level approach, instead 

being concerned with density, gradient structure, and gradient flow.  Since it takes a macro-level 

view of the crowd, the model is unable to trace the paths taken by individuals. Therefore, 

individual strategies, such as avoiding congested areas, can not be directly incorporated into the 

model.  However, the macroscopic approach produces natural motion where no movement would 

exist in a microscopic model.

Gawronski and Kulakowski (2011) investigated virtual human crowds attempting to 

leave a room through a small exit.  They simulated this problem using the generalized force 

model and the model parameters of Helbing et al. (2000), determining that the probability of 

trying to exit the simulated room was 10 percent, given 150 people.  This suggested that in 

crowds of hundreds, the individual’s mind has little power over moving its body to a desirable 

location; numerous other forces overwhelm the individual's control.  To raise the probability 

above 50 percent required the addition of a number of helping forces, but determining the 

number of helpers was made difficult due to the problem’s complexity.
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CHAPTER 4

THE MODELS

Presented in this section are three models representing three broadly defined scenarios. 

These scenarios are common in natural settings and can be generalized to include many other 

examples of crowds.  Each model emphasizes one of the three components in the behavioral 

intention formula.  These three components may be ordered in terms of increasing social scope: 

attitude from endogenous sources, influence to the relationships between individuals, and social 

norms to the relationships between individual and society.  The first model emphasizes 

attitudinal forces when simulating an exhibition floor.  The second model emphasizes influential 

forces during an evacuation.  The third model takes a closer look at the role of different types of 

norms in the formation of seating arrangements.  No single model is used to represent all three 

scenarios because the relative importance of any one component and the relationships between 

the components vary by scenario (Ajzen, 1991).

These models are inspired by the theory of reasoned action (Ajzen & Fishbein, 1981), 

where intentions lead to behaviors.  Behavioral intention may be interpreted as the sum of 

products (Conner & Sparks, 2005) of weighted attitudes and subjective norms (Muduganti et al., 

2005).  This existing model can be extended by adding components (Robinson et al., 2008), 

resulting in Equation 2.  Further augmentation may take the form of thresholds, which form an 

important part of the decision-making process (Granovetter, 1978; Muduganti et al., 2005), and a 

greedy approach can be used for choosing among alternatives (Sheppard et al., 1988).
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Equation 2. The Modified Behavioral Intention Model. Based on Equation 1, behavioral 

intention is represented as a weighted sum of attributes of increasing scope.

The above ideas were adapted to models implemented in NetLogo, an environment for 

modeling multi-agent systems (Wilensky, 2010).  NetLogo provides a simple editor and an easy 

to use programming language where agents and a virtual environmental can be quickly defined 

and simulated.  The editor is just one tab within a larger NetLogo program.  Another tab contains 

a graphical representation of the virtual environment as well as buttons, controls, and displays 

that the user may define.  No compilation is required; the user may alter code in one tab and can 

view the effects immediately in the other.

The user interfaces and complete source code for the following three models may be 

found in the appendices.

The Museum

The setting of the first model is a museum exhibition floor, but a grocery store, hotel 

lobby, strip mall, or amusement park also serve as appropriate metaphors.  What all these settings 

have in common is an open floor on which pedestrians amble from one location to another. 

Static points of interest are spread across the floor, and overcrowding is typically not a concern. 

Keeping with the museum setting, agents represent museum attendees, and the points of interest 

represent the various artifacts which compose the exhibition.

This setting provides a conduit for chiefly observing attitude's effects on behavior by 

decreasing the importance of influence and social norms while simultaneously increasing the 

importance of attitudes.  Influence's prominence is diminished by the typical calm, open 

atmosphere.  The physically open space reduces the physical influence nearby agents may exert 

Behavioral intention=Weight Attitude∗AttitudeWeight Influence∗Influence
WeightSocial Norms∗Social NormsError
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on each other, and since each agent attends the exhibition on their own, cognitive influences are 

reduced as well by limiting an agent's social network.

The effect of social norms are diminished to different degrees depending on the norm.  As 

a social setting, museums inherently include a host of general rules.  For example, attendees are 

expected to respect the personal space of others, nor should they yell, harass, or steal; these are 

virtually universal norms.  More specific to the museum scenario, attendees understand that they 

should not touch the exhibits.  A real world museum's policy could include many additional 

norms, but they are beyond the scope of this more general model.  Most importantly, by entering 

the museum each attendee is assumed to be a willing participant and as such willingly follows 

the social contract.

The above diminishing effects leave attitude as the greatest contributing factor to an 

attendee's behavior.  The museum becomes the backdrop in which a visitor's movement is largely 

independent of external forces, instead determined by internal, endogenous attitude.  The 

attendee enters through a single entrance, wanders the show floor, and eventually leaves through 

the exit.  As they wander, attendees perceive various portions of the exhibition and make internal 

evaluations of each exhibit's compatibility with themselves.

For attitudes to function as a better predictor of behavior, general attitudes must predict 

general behaviors and specific attitudes must predict specific behaviors (Ajzen, 1991; Conner & 

Sparks, 2005).  Since the museum scenario is believed to be a situation that stresses attitudes, the 

attitude portion of the model is further divided into three subtypes – affective, conative, and 

cognitive (Ajzen and Fishbein, 2005) – as shown in Equation 3.

Equation 3. Dividing Attitude into Components for Greater Specificity.

Attitude=AttitudeAffective+AttitudeConative+AttitudeCognitive
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These attitude components are used to evaluate the attractiveness of each exhibit in the 

museum.  The affective factor represents an appreciation for a piece’s appeals to emotion.  The 

conative factor represents a willingness to react physically, and the cognitive factor represents an 

appreciation for appeals to logic.  In the simulation, each of the attendee's attitude components 

ranges from 1 to 7 and is randomly generated over a normal distribution with a mean of 4 and a 

standard deviation of 1.  A random floating point number ranging from 0 to 1 is used as an 

attitude weight.  Each museum exhibit also possesses corresponding values of appeal.  These 

values are assigned as random floating point numbers ranging from 1 to 7.  The distance between 

the attendee’s attitudes and an exhibit’s appeal represents compatibility between the two entities, 

as shown in Equation 4.  Because the affective, conative, and cognitive factors are approximated 

via equal weighting, the resulting differences are averaged together.

Equation 4. Calculating Compatibility Between Exhibit and Attendee. a is the attendee, e is the 

exhibit, and AAff, ACon, and ACog are the respective attitude components of affective, conative, and 

cognitive.

Despite their reduced roles, the museum attendee is still affected by influential and 

normative factors.  Influence is represented by pliancy, an attraction to exhibits that attendees 

nearest the target attendee express interest in.  Social norms are represented by crowd affinity, the 

willingness of the target attendee to view exhibits that have attracted a large number of viewers. 

These variables are generated using the same method as the attitude terms.

Agents are given age and energy parameters that limit their time spent at the museum. 

Energy values decay over time; the rate of decay decreases if visited exhibits are more 

compatible with the agent.  Age represents duration of agent activity, starts at 0, and simply 

Compatibility=
∣(a.AAff −e.AAff )∣+∣(a.ACon−e.ACon)∣+∣(a.ACog−e.ACog)∣

3
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increments for every tick the agent exists in the simulation.  Attendees also have an attention 

span which determines how long they will focus on a target exhibit.  When that focus is broken 

by a randomized process, the attendee targets a new exhibit, maintaining a list of unexplored 

exhibits to choose from next.

The simulation begins with a fixed number of exhibits placed in a circular configuration 

and a single attendee at the entrance.  Whenever the current population is less than the maximum 

population cap (designated as num-attendees), an additional attendee is created every tick in the 

upper right corner of the virtual space.  Upon creation, aside from their randomly determined 

parameters as described above, the attendee also selects the nearest exhibit as the initial target. 

Therefore, the simulation begins devoid of attendee agents, but after a short amount of time has 

elapsed, a large population of agents exists to amble about the exhibition floor.

Figure 2 shows an example execution of the museum simulation.  The green upper right 

and red lower left squares represent the entrance and exit, respectively, to the virtual 

environment.  Pentagons represent individual exhibits, while circles represent the attendees. 

Attitude values are represented by a color's brightness – the brighter the color, the greater the 

value.  Which attitudinal component is displayed may be manipulated by a drop-down menu in 

the simulation's user interface.  In Figure 2, attendee cognitive parameters are displayed in 

magenta and exhibits' cognitive appeal values are in cyan.



47

Figure 2. Commencing the Museum Simulation. Circular attendees visit pentagonal exhibits; 

brightness represents cognitive parameters.

The passage of time during the simulation is measured in ticks.  During each tick, each 

agent undergoes a decision-making process that determines their next action.  The first phase of 

this process involves updating their list of unvisited exhibits.  If their current location is also the 

location of an exhibit, that exhibit is removed from the list.  The second phase is the motion 

phase in which a target exhibit is chosen and pursued.  The attendee starts by checking their 

energy.  If their energy level is less than or equal to zero, they make their way towards the exit. 

Otherwise, the attendee makes a check against their attention span parameter.  The smaller their 

attention span, the greater chance the attendee has of switching to another target exhibit. 

Whether they change targets or not, the attendee then walks towards their exhibit of choice.  In 

the third and final phase, agents increment their age value and decrease their energy.  Energy 

decay is determined by a simple distance function comparing the attendee and the nearest 
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exhibit.  Exhibits with values closely resembling the corresponding values of the attendee results 

in slower energy decay.

Behavioral intention expresses itself during the second phase, specifically when choosing 

a new target exhibit.  The process of choosing an exhibit is shown in Figure 3.

Figure 3. The Attendee Process for Choosing a Target Exhibit. wA is the attitude weight, t is the 

attendee’s target exhibit, and I is the influence component of pliancy.

First, the attendee makes a check against their attitude weight.  The greater the weight’s 

value, the better chance that attitudes will be used in making a decision.  If the check succeeds, 

the target becomes the exhibit in the unvisited list that is most compatible with the attendee.  If 

the check fails, either influence or normative parameters are used to make the decision.  Given a 

successful check against an attendee's pliancy, the attendee will choose the same target as the 

nearest other attendee (Figure 3, line 6).  If this target has already been visited, however, the 

attitude method becomes the fallback option.  Otherwise, social norms are used, and the attendee 

targets the exhibit with the most nearby attendees, i.e. the most crowded exhibit (Figure 3, line 

11).  This process is summarized in the state diagram of Figure 4.  Using the above steps, 

behavioral intention becomes a process in which each attendee forms an intention about where 

they would like to go next within the virtual environment.  This intention may not result in 

1. If rand(0, 1) < wA
2.      t = mostCompatibleExhibit()
3. Elseif rand(1, 7) < I
4.      If targetOf(nearestNeighbor) ϵ
5.           unexploredList
6.           t = targetOf(nearestNeighbor)
7.      Else
8.           t = mostCompatibleExhibit()
9.      Endif
10. Else
11.      t = mostCrowdedExhibit()
12. Endif
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committed action, however, due to the overriding compulsion to leave the environment once 

energy levels are depleted.

Figure 4. The Attendee's Decision-making Process. Random checks compared to weights 

determine how the decision is made.

This model demonstrates the importance of location when placing points of interest. 

Exhibits that appeal to the most people should be readily accessible in order to retain people’s 

attention and prolong visits.  Perhaps room planners want to direct viewers along certain paths; 

they would need to consider each exhibit’s appeal to different types of people.  Figure 5 plots the 

fluctuating average age of attendees during the exhibition.  Increasing trends represent periods 

where attendees are viewing the exhibits, while decreasing trends represent periods where 

attendees are leaving and new attendees are being created.  New attendees have age 0 and 

therefore lower the average age in the graph.  This information could be used to predict and 

control flow between an entrance and an exit via placement of points of interest.  Producing 

periodic fluctuations in average age indicates attendees entering and leaving in groups.  Very 

little fluctuation indicates a more regular flow of individuals.
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Figure 5. Museum Attendee Average Age over Time.

The Station Platform

The second model represents a station platform, which may be found near a train, bus, or 

subway depot.  The station platform is included as a common crowd scenario to represent areas 

of high density, where people push and shove as they try to reach a common Point Of Interest 

(POI), e.g. a train’s open door, an entry gate, or an exit gate.  A second dynamic arises in this 

scenario with the addition of a negative POI, which may represent a bomb or a threatening 

criminal.  The negative point creates alarm in people who perceive it, which spreads across the 

crowd and causes a change in priorities; people now desire to evacuate the premises.  This 

scenario strengthens the power of the influence component above attitude and social norms. 

Attitudes are largely the same across the crowd; they must reach the target destination.  Many 

social norms, especially those involving personal space, are weakened due to the limited 

availability of space.

In this model, influence takes two forms: physical influence and mental influence. 

Physical influence, what is termed physical enmity in the model, represents the force an agent is 

willing to exert on others to push them away.  This is inspired by the social force model (Helbing 
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and Molnar, 1995) where particles emit force fields that push and pull each other due to changes 

in motivation.  Mental influence, more specifically alarm acquisition in this model, represents 

how quickly an agent will acquire an alarmed status from others nearby.  The two forms of 

influence function as a compliance component that people use to increase the accuracy of their 

perceptions (Cialdini and Goldstein, 2004).

If influence is the means of acquiring alarm from others, attitude is the means of creating 

alarm by reacting to a negative perception.  Even if they are not directly or indirectly alarmed by 

the negative POI, a passenger that witnesses everyone else leaving in the opposite direction is 

compelled by their follow affinity parameter to due likewise, representing a social norm of 

sensitivity to crowd motion.  Similar to the parameters in the museum model, each parameter 

ranges from 1 to 7 and is randomly generated over a normal distribution with a mean of 4 and a 

standard deviation of 1.  Also, each passenger’s alarm level is initiated to zero.

The virtual environment of the station platform consists of a square field divided in half 

by a barrier, impenetrable save for a single opening in its center.  A variable number of passenger 

agents are created south of the barrier.  When the simulation begins, each agent attempts to move 

towards the bottom center of the screen, representing some POI.  This motion is countered by the 

physical influence passengers exert on each other.

Physical influence is represented by directed edges connecting the agents.  Edges are 

created as a function of an agent’s physical enmity and a globally defined physical weight.  The 

two parameters form a product which forms the radius of a “circle of influence”.  The agent at 

the center creates a directed edge towards other agents that fall within this circle.  However, 

edges only connect agents that possess line of sight, i.e. edges do not intersect the central barrier. 
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A typical execution of the station platform simulation can be viewed in Figure 6, where 

passengers push each other and try to get closer to the bottom center of the environment.

Figure 6. A Simulated Crowd at a Station Platform. The barrier is represented by gray rectangles, 

passengers by white circles, and influences by directed edges.

With the initial environment, passengers, and influence edges created, each tick of the 

simulation then proceeds to model the motion of the passengers.  This process begins by first 

calculating each passenger’s basic trajectory, ignoring the influence network.  In this step, 

passengers are placed into one of three categories: “calm and not following”, “calm and 

following”, or alerted.  The categorization process is shown in Figure 7.
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Figure 7. The Passenger Process for Choosing a Destination. A is the attitude component of 

alarm creation, wN is the norm weight, N is the norm component of follow affinity, and t is the 

passenger’s target destination.

“Calm and not following” passengers, the default state, are those who move towards the 

bottom center of the environment (Figure 7, line 3).  “Calm and following” passengers have not 

been alerted either directly or indirectly but proceed to exit the bottom half of the environment 

regardless due to a social norm of “follow the herd”, i.e. everyone else is leaving for an unknown 

reason, so the passenger leaves too (Figure 7, line 5).  This behavior is triggered when a certain 

percentage of the total population leaves the area, exceeding the passenger’s follow affinity 

threshold.  The third category of passenger, alarmed passengers, also make their way to the exit 

(Figure 7, line 8).  Alarmed passengers use their alarm creation parameter as a threshold that 

their current alarm level must exceed.  This parameter also represents the level of alarm a 

passenger assumes when directly perceiving a negative POI.  Once categorized, passengers move 

towards their appropriate destination.  Figure 8 represents this decision process as a state 

diagram.

1. If alarmLevel < A
2.      If wN * N < unevacuatedPopulation
3.           t = bottomCenter
4.      Else
5.           t = top
6.      Endif
7. Else
8.      t = top
9. Endif
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Figure 8. The Passenger's Decision-making Process. Attitudes and social norms form intentions 

after thresholds are exceeded.

A maintenance phase follows after the move step in which the influence network is 

updated.  New edges are created between agents (between passengers or a negative POI) using 

the process described earlier, and old edges that connect agents too far apart are destroyed.

With the network updated, the next step uses this network to communicate alarm between 

passengers and exert influence on the motion of the passengers.  The process of alarm creation 

and transmission is shown in Figure 9.

Figure 9. The Passenger Process for Creating and Spreading Alarm. wA is the attitude weight, A is 

the attitude component of alarm creation, alarmp is the perceived alarm, N is the set of neighbors, 

wIM is is the mental influence weight, and IM is the mental influence.

Alarm is initially created by passengers with a direct connection to a negative POI and is 

the product of a passenger’s alarm creation parameter multiplied by a global attitude weight 

(Figure 9, line 3).  Alarm may also be acquired from neighboring passengers.  Each passenger 

takes the average alarm level of its neighbors, compares the resulting mean value to its current 

1. If isNeighbor(offender)
2.      If alarmLevel < wA * A
3.           alarmLevel = wA * A
4.      Endif
5. Else
6.      alarmp = mean(N1.alarmLevel,
7.                    N2.alarmLevel,
8.                    ... ,
9.                    Nn.alarmLevel)
10.      alarmLevel += (alarmp – alarmLevel)
11.                    * wIM * IM
12. Endif



55

alarm level, and adjusts up or down accordingly (Figure 9, lines 10-11).  The result is a source of 

alarm propagating across a network, represented in Figure 10 as different shades of red.  After 

calculating mental influence, physical influence is represented by a repulsive force exerted by the 

network connections.  The force algorithm used is built into NetLogo and is similar to 

Fruchterman and Reingold’s (1991) layout algorithm.  The algorithm imbues edges with a 

spring-like elasticity and results in passengers moving themselves out of the way of others in 

order to satisfy their personal space requirements, the NetLogo procedure for which is shown in 

Equation 5.

Figure 10. Alarm Propagating Across the Crowd. Alarm is represented by shades of red. The 

target symbol represents a negative POI.
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Equation 5. Creating Passenger-passenger Repulsion. {p, N} is the set of a passenger and its 

neighbors, eO is the set of outward edges, 0.1 is the force exerted along the edges, wIP is the 

physical influence weight, IP is the physical influence, and 0 is the global passenger repulsion. A 

more detailed explanation of the layout-spring procedure may be found in the online NetLogo 

Dictionary.

In the station platform model, a passenger’s attitude towards the negative POI, mental 

influence of neighbors, and social norms forms an intention that involves reaching either the 

bottom or top of the environment.  However, physical influences often overpower these 

intentions due to other passengers sharing similar goals in a crowded space.  Figure 11 shows a 

typical execution of the simulation which demonstrates these concepts.  Passengers which were 

originally determined to reach the bottom center of the screen are alarmed either directly by the 

negative POI or indirectly by nearby passengers.  When their alarm level exceeds a threshold, 

shown in deeper shades of red, they attempt to leave the bottom half of the environment.  As 

more and more passengers similarly attempt to leave, physical crowding causes bottlenecking at 

the single exit.

layout−spring ({p ,N } ,eO ,0.1, w IP∗I P ,0)
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Figure 11. A Station Platform Crowd in Mid-evacuation.

This scenario demonstrates some interesting crowd behavior.  First, the crowd 

phenomenon of congestion around an exit is readily observed.  This congestion may be attributed 

to the interfering forces passengers apply to each other.  The size of the exit may be adjusted 

during the simulation, and wider gaps allow for decreased evacuation times.  However, the gap 

in the barrier also exposes some problems with this particular simulation specifically dealing 

with corners.  Certain collision detection problems results in a vibrating pattern of motion with 

passengers.  While this does not cause agents to become stuck, the motion is unrealistic and 

should be eliminated in future work.  Other interesting behaviors concern the transmission of 

alarm over the network.  If passengers nearest the negative POI possess particularly low alarm 

creation parameters, they fail to propagate enough alarm in others to cause a change in behavior. 

Similarly, if passengers are alarmed but possess high physical enmity values, they avoid others 

and fail to transmit the alarm.  By avoiding others, passengers may also fail to properly acquire 

alarm.
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These observations lead to possible applications for the model.  The concept of alarm 

transmission can be expanded into a more general form or made more specific to another domain 

in order to further study information diffusion across a network of people.  While the station 

platform model resembles an evacuation, it does not simulate evacuation behaviors specifically. 

However, the model and virtual environment could be tailored to better predict evacuation 

behavior, especially to investigate the importance of alerting participants that an evacuation is 

taking place.

The Classroom

The third scenario represents a school classroom, which shares some similarities with a 

seating problem or a resource allocation problem.  Students enter the classroom and one by one, 

they choose a seat.  Which seat they choose is a function of which seats are available and the 

interacting forces of personal and social preferences.  An attitude value represents the student’s 

personal feelings towards sitting near the front and center of the classroom, and an influence 

value takes into account the number of occupied seats adjacent to a candidate desk.  What this 

scenario seeks to focus on, however, is the power of social norms.

There are many different types of social norms (Schultz et al., 2007), and the subjective 

norm’s performance in predicting behavior may require expansion (Armitage & Conner, 2001). 

Therefore, different types of norms are incorporated into the student’s decision making process. 

In the classroom scenario, one social norm of particular strength is the expectation that people 

are to sit near the front and center.  Another norm is a norm of consistency, that once a person has 

chosen a seat, they are expected to choose the same seat the following day.  By incorporating 

pressures encouraging consistency, the classroom model attempts to address a perceived 

weakness in the original theory of reasoned action, which does not account for past behaviors.  If 
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this norm was absolute in its power, then the first day would determine the final seating 

arrangement, but this is rarely the case.  Instead, the strength of the norm interacts with students’ 

varying levels of norm adherence coupled with attitudinal and influential forces.

The simulation begins by creating a set of students.  Each student has their intention 

parameters initialized to values ranging from 1 to 7 and randomly generated over a normal 

distribution with a mean of 4 and a standard distribution of 1.  These students are positioned 

along the bottom of the virtual environment.  Above them are positioned a grid of desks.  During 

each tick of the simulation, one student is randomly chosen who picks a vacant desk to sit in. 

The desk selection process is shown in Figure 12.

Figure 12. The Student Process for Choosing a Desk. wN1 and N1 are the respective norm weight 

and norm of sitting towards the front and center of the classroom, wN2 and N2 are the respective 

norm weight and norm of sitting in seat used previously, and t is the student’s target desk.

The desk selection process consists of two checks.  The first check compares a random 

number to the product of the “sit near the front” norm and the student’s personal adherence to the 

norm.  If the check succeeds, then the student sits at the closest available seat to the front and 

center of the classroom (Figure 12, line 2).  If the students fail to adhere to the norm, then 

another similar check occurs using the “sit in the same seat” norm multiplied by the student’s 

adherence.  Successful adherence causes the student to sit in their previous seat (Figure 12, line 

5).  If the seat is unavailable or the student again fails to adhere to a norm, another selection 

process begins in which attitudes and influences are used to choose the desk (Figure 12, line 7). 

1. If rand(0, 100) < wN1 * N1
2.      t = mostFrontCenter(availableDesks)
3. Elseif rand(0, 100) < wN2 * N2
4.             AND previousDesk ϵ availableDesks
5.      t = previousDesk
6. Else
7.      t = mostCompatibleDesk()
8. Endif
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The overall decision process is summarized in the state diagram of Figure 13, and the attitude-

influence selection subprocess is shown in Figure 14.

Figure 13. The Student's Decision-making Process. If social norms are not used, attitudes and 

influences combine to take their place.

Figure 14. The Student Process for Determining the Most Compatible Desk. closestDesk is the 

desk closest to the front and center, furthestDesk is the desk furthest from the front and center, 

and d is the distance between the two. A is the attitude towards sitting near the front, and dpreferred 

is the transformation of that attitude into a distance. candidateDesks is the set of 3 desks with a 

distance from the front and center closest to dpreffered. t is the student’s target desk, the candidate 

desk with a crowding level closest to I, the influence exerted by neighboring occupied desks.

A student’s attitude parameter represents their personal feelings towards sitting near the 

front of the class.  This attitude is translated into a region of space pivoting around the closest 

front and center desk (Figure 14, line 2). Larger values form regions closer to the front and 

center, while smaller values form regions further away.  The three vacant desks closest to this 

region form a list of candidates (Figure 14, line 3), and a single desk is chosen from the list by 

comparing the number of occupied desks near each candidate to the student’s preference for 

crowding (Figure 14, line 4), e.g. if a student possesses a low tolerance for crowding, then the 

candidate desk with the least number of adjacent occupied desks will be selected.

1. d = distance(closestDesk, furthestDesk)
2. dpreferred = A * d
3. candidateDesks = closest3(desks, dpreffered)
4. t = closest(candidateDesks, I)
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The decision process repeats until all students are seated.  A resulting seating arrangement 

may be found in Figure 15 which shows 20 students seated after their second round of choosing 

desks.  Desks are represented by small, brown squares.  Students are represented by person-

shaped symbols and an identification number.  After choosing a desk, a color code indicates how 

the choice was made.  Purple follows the “sit in the same seat” norm, red follows the “sit nearest 

the front” norm, and blue indicates that a combination of attitude and influence factors were 

used.

Figure 15. A Classroom of Seated Students. Purple, red, and blue indicate “sit in the same seat” 

and “sit near the front” norms and using attitudes and influences, respectively.

The classroom model explores a couple scenario-specific norms and their interaction with 

attitudes, influences, and behavior.  Even when social norm strength was made very strong, 

however, individual moderate adherence diminished overall impact on behavior.  If attitude, 

influence, and social norms are evaluated by scope, then the social norms – the outermost “shell” 

– were likely too broad to generate the desired crowd behaviors on their own.  This model also 
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attempted to improve a possible weakness of the theory of reasoned action by combining norms 

with knowledge of past behavior.  However, the model only accounts for the most recent desk 

choice and might be improved with an expanded memory of past actions.
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CHAPTER 5

CONCLUSION

In this thesis, behavioral intention and attitude, influence, and social norm components 

were applied to three scenarios that represent common crowd dynamics: ambulation about an 

open hall, high density evacuation, and crowd resource allocation.  The result was three related 

models that explored different facets of crowd behavior by stressing the different components. 

Some properties of crowd behavior were simulated directly, while others emerged from the 

interaction between agents.  Phenomena of interest included oscillating population levels in the 

museum, weakened norm adherence in the classroom, congestion at the exit of the station 

platform, and the (lack of) propagation of alarm.

These phenomena showed that the intention components of attitude, influence, and social 

norms are applicable and flexible when simulating crowd behavior.  However, these components 

are best utilized within certain limits represented as expanding levels of scope.  The model was 

shown to be highly adaptable, though the ease of adaptation varied among the scenarios.  Certain 

successes found in one model – particularly the model of the station platform, which 

demonstrated some of the most promising displays of crowd behavior – could be adapted for use 

in the other models.

The flexibility demonstrated by the concepts underlying all three models also means that 

many future modifications can be made to either improve existing performance or to investigate 

new ideas.  For example, past behavior is also an important factor for predicting future behavior 

(Armitage, 2005), so future work could involve adding dynamic components to the agents where 

internal parameters are adjusted by perceptions of the environment.  Other work could involve 
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attempting to replicate additional emergent crowd behaviors, such as lane formation, using 

behavioral intention.

These models may be adapted for point of interest placement, information diffusion, or 

different types of social networks.  Ultimately, a better understanding of crowd behavior leads to 

better models of human behavior both in the crowd and as individuals, and that means improved 

evacuation planning, architecture design, etc. for anywhere humans gather.
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APPENDIX A

USER INTERFACES

Some variables in NetLogo are neither declared nor initialized within the NetLogo code. 

These variables are declared and initialized from the NetLogo user interface.  Therefore, in 

addition to the source code made available in appendices B through D, reproductions of the 

NetLogo user interfaces, found on the following pages, are also necessary to run the simulations.
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Figure A1. The NetLogo User Interface for the Museum Model.
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Figure A2. The NetLogo User Interface for the Station Platform Model.
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Figure A3. The NetLogo User Interface for the Classroom Model.
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APPENDIX B

THE MUSEUM SOURCE CODE

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; File: The Museum.nlogo
;; Author: Marcel Bouchard
;; Date: 19 July 2011
;;
;; The purpose of this model is to incorporate behavioral intention
;; concepts into an exhibition floor simulation, stressing attitude
;; components
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; turtle breed: the exhibit
breed [exhibits exhibit]
exhibits-own [
  ;; each exhibit possesses three types of appeal
  affective-appeal  ;; emotional appeal
  conative-appeal   ;; behavioral appeal
  cognitive-appeal  ;; cognitive appeal
]

;; turtle breed: the attendee
breed [attendees attendee]
attendees-own [
  ;; the three factors that compose attitude
  affective-factor ;; appreciation for appeals to emotion
  conative-factor  ;; willingness / prone to react physically
  cognitive-factor ;; appreciation for appeals to thought
  attitude-weight
  ;; representations of influence and social norms
  pliancy        ;; attraction to exhibits targetted by nearest attendees
  crowd-affinity ;; attraction to exhibits with many nearby attendees
  ;; other simulation components
  age            ;; the number of ticks the agent has been alive
  energy         ;; overall willingness to remain at the exhibition
  attn-span      ;; likelihood to remain at an exhibit
  target-exhibit ;; current exhibit to travel towards
  unexplored     ;; the set of exhibits not yet visited
]

;; prepare the simulation
to setup
  clear-all
  setup-patches
  setup-turtles
  setup-colors
  display-labels
  do-plots
end

;; set all the patches to their default state
to setup-patches
  ask patches [
    set pcolor (brown - 3)
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    ;; paint the NE and SW corners to designate entrance and exit
    if (pxcor > max-pxcor - 2) and
      (pycor > max-pycor - 2) [set pcolor (green - 1)]
    if (pxcor < min-pxcor + 2) and
      (pycor < min-pycor + 2) [set pcolor (red - 1)]
  ]
end

;; set all the exhibits and attendees to their default state
to setup-turtles
  ;; first, set up the exhibits
  set-default-shape exhibits "pentagon"
  create-exhibits num-exhibits [
    set affective-appeal ((random-float 6) + 1)
    set conative-appeal ((random-float 6) + 1)
    set cognitive-appeal ((random-float 6) + 1)
  ]
  ;; arrangement depends on the chosen type from the drop-down menu
  if (exhibit-arrangement = "random") [
    ask exhibits [setxy random-xcor random-ycor]
  ]
  if (exhibit-arrangement = "circular") [
    layout-circle exhibits (max-pxcor * circle-size)
  ]
  ;; second, set up the first attendees
  set-default-shape attendees "circle"
  create-attendees 1
  ask attendees [
    setup-default-attendee
  ]
end

;; set default values for a given attendee
to setup-default-attendee
  set age 0
  ;; set position
  setxy max-pxcor max-pycor ;; move to north east corner
  set heading 180           ;; face south
  ;; set behavioral intention components
  set affective-factor (random-normal-1-7 4 1)
  set conative-factor (random-normal-1-7 4 1)
  set cognitive-factor (random-normal-1-7 4 1)
  set attitude-weight (random-float 1)
  set pliancy (random-normal-1-7 4 1)
  set crowd-affinity (random-normal-1-7 4 1)
  ;; set other variables
  set energy initial-energy
  set attn-span (random-float 1)
  ;; initially target closest exhibit
  set target-exhibit (min-one-of exhibits [distance myself])
  ;; initialize the set of unexplored exhibits to all exhibits
  set unexplored exhibits
end

;; produce a random number from 1 to 7 using a normal distribution
;; arg1 is the mean, arg2 the standard deviation
to-report random-normal-1-7 [arg1 arg2]
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  let number (random-normal arg1 arg2)
  if (number < 1) [set number 1]
  if (number > 7) [set number 7]
  report number
end

;; select the appropriate coloring scheme
to setup-colors
  if (color-mode = "affective") [
    ask exhibits [set color (scale-color green affective-appeal 1 7)]
    ask attendees [set color (scale-color violet affective-factor 1 7)]
  ]
  if (color-mode = "conative") [
    ask exhibits [set color (scale-color blue conative-appeal 1 7)]
    ask attendees [set color (scale-color orange conative-factor 1 7)]
  ]
  if (color-mode = "cognitive") [
    ask exhibits [set color (scale-color cyan cognitive-appeal 1 7)]
    ask attendees [set color (scale-color magenta cognitive-factor 1 7)]
  ]
end

;; draw indicator labels
to display-labels
  ask turtles [set label ""]
  if labels? [
    ask attendees [set label age]
    if (color-mode = "affective") [
      ask exhibits [set label (precision affective-appeal 2)]
    ]
    if (color-mode = "conative") [
      ask exhibits [set label (precision conative-appeal 2)]
    ]
    if (color-mode = "cognitive") [
      ask exhibits [set label (precision cognitive-appeal 2)]
    ]
  ]
end

;; draw various data to graphs
to do-plots
  set-current-plot "Average Age"
  set-current-plot-pen "age"
  if (any? attendees) [
    plot mean ([age] of attendees)
  ]
end

;; advance the entire simulation by one tick
to step
  ask attendees [
    update-exhibit-list
    move-attendee
    alter-energy
    set age (age + 1)
  ]
  equalize-attendance
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  exit-attendees
  setup-colors
  display-labels
  tick
  do-plots
end

;; remove explored exhibit from unexplored list
to update-exhibit-list
  if (any? exhibits-here) [
    ;; unexplored is updated to remove the exhibit at the attendee's
    ;; location
    let current-exhibit (one-of exhibits-here)
    set unexplored (unexplored with [who != [who] of current-exhibit])
  ]
end

;; move the attendee towards the appropriate destination
to move-attendee
  ifelse (energy > 0)
  [
    ;; possibly change targets
    if ((random-float 1) > attn-span) [
      change-target
    ]
    face target-exhibit
    ;; move toward target exhibit
    ifelse (distance target-exhibit < 1)
      [move-to target-exhibit]
      [forward 1]
  ]
  [
    ;; energy expired, so proceed to exit
    facexy min-pxcor min-pycor
    forward 1
  ]
end

;; choose the target exhibit depending on a variety
;; of internal and external forces
to change-target
  ifelse ((random-float 1) < attitude-weight)
    ;; using attitude
    [set target-exhibit (best-exhibit-for self unexplored)]
    [
      ifelse (((random-float 6) + 1) < pliancy)
        ;; using influence: attempt to let nearest neighbor pick target
        [
          let nearest-neighbor (min-one-of attendees [distance myself])
          let possible-target ([target-exhibit] of nearest-neighbor)
          ;; if target is not on unexplored list, revert to attitude
          ifelse (any? (unexplored with [who = [who] of possible-target]))
            [set target-exhibit possible-target]
            [set target-exhibit (best-exhibit-for self unexplored)]
        ]
        ;; using norms: target most crowded exhibit
        [



81

          set target-exhibit (max-one-of exhibits [
            count (attendees with [(distance myself) < 2])
          ])
        ]
    ]
end

;; given an attendee and set of exhibits, report the most compatible exhibit
;; most compatible exhibit is the exhibit with most similar attributes
to-report best-exhibit-for [attnd exhibit-set]
  report min-one-of exhibit-set [(
    abs ([affective-appeal] of self - [affective-factor] of attnd) +
    abs ([conative-appeal] of self - [conative-factor] of attnd) +
    abs ([cognitive-appeal] of self - [cognitive-factor] of attnd)
    ) / 3
  ]
end

;; decay energy depending on attributes of nearest exhibit
to alter-energy
  ;; find nearest exhibit
  let nearest (min-one-of exhibits [distance myself])
  ;; energy decay is the mean of differences
  set energy (
    energy - (
      abs ([affective-appeal] of nearest - affective-factor) +
      abs ([conative-appeal] of nearest - conative-factor) +
      abs ([cognitive-appeal] of nearest - cognitive-factor)
    ) / 3
  )
end

;; create a new attendee if below maximum population
to equalize-attendance
  if (count attendees < num-attendees) [
    create-attendees 1 [
      setup-default-attendee
    ]
  ]
end

;; remove attendees at the exit
to exit-attendees
  ask attendees [
    if (pcolor = ([pcolor] of patch min-pxcor min-pycor)) [die]
  ]
end

;; advance simulation indefinitely
to go
  if ticks >= tick-limit [stop]
  step
end
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APPENDIX C

THE STATION PLATFORM SOURCE CODE

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; File: The Station Platform.nlogo
;; Author: Marcel Bouchard
;; Date: 19 July 2011
;;
;; The purpose of this model is to incorporate behavioral intention
;; concepts into a station platform simulation, stressing influence
;; components
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; turtle breed: the passenger
breed [passengers passenger]
passengers-own [
  ;; attitude: degree of reaction towards offender
  alarm-creation ;; also doubles as a threshold for fleeing
  ;; influences:
  physical-enmity   ;; physical
  alarm-acquisition ;; mental
  ;; social norm: join mass exodus
  follow-affinity
  ;; other variables
  alarm-level
]
;; link breed: passenger-to-passenger links
directed-link-breed [passenger-links passenger-link]

;; turtle breed: the offender
breed [offenders offender]
;; link breed: links with the offender
directed-link-breed [offender-links offender-link]

;; prepare the simulation
to setup
  clear-all
  setup-patches
  setup-passengers
end

;; set all the patches to their default state
to setup-patches
  ask patches [
    set pcolor black
    ;; divide the world in half with a barrier
    ifelse (gap-size = 0)
      ;; barrier with no gap
      [if (pycor = 0) [set pcolor grey]]
      ;; barrier with gap
      [if (pycor = 0)
        and ((pxcor < gap-size / -2)
          or (pxcor >= gap-size / 2)) [set pcolor grey]
      ]
  ]
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end

;; set all the passengers to their default state
to setup-passengers
  set-default-shape passengers "circle"
  ;; create passengers on unique patches
  create-passengers num-passengers [
    set color white
    ;; place passengers below the barrier
    set xcor random-xcor
    set ycor (random-float (min-pycor + 1)) - 1
    correct-position
    ;; set behavioral intention attributes
    set alarm-creation (random-normal-1-7 4 1)
    set physical-enmity (random-normal-1-7 4 1)
    set alarm-acquisition (random-normal-1-7 4 1)
    set follow-affinity (random-normal-1-7 4 1)
    set alarm-level 0
  ]
  setup-passenger-links
end

;; recursively place turtle below barrier in unique position
to correct-position
  if (any? (other turtles-here)) [
    set xcor random-xcor
    set ycor (random-float (min-pycor + 1)) - 1
    correct-position
  ]
end

;; produce a random number from 1 to 7 using a normal distribution
;; arg1 is the mean, arg2 the standard deviation
to-report random-normal-1-7 [arg1 arg2]
  let number (random-normal arg1 arg2)
  if (number < 1) [set number 1]
  if (number > 7) [set number 7]
  report number
end

;; build a network based on proximity and line of sight
to setup-passenger-links
  ask passengers [
    let weighted-enmity (physical-enmity * physical-weight)
    create-passenger-links-to (other passengers with
      [((distance myself) < weighted-enmity)     ;; establish distance
        and (has-line-of-sight? self myself)]) [ ;; establish LOS
      set color ([color] of end2)
    ]
  ]
end

;; report false if the line joining two turtles intersects a barrier
to-report has-line-of-sight? [turtle1 turtle2]
  ;; turtles in the same room automatically have LOS
  if ([ycor] of turtle1 > 0) = ([ycor] of turtle2 > 0) [
    report true
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  ]
  let x1 ([xcor] of turtle1)
  let y1 ([ycor] of turtle1)
  let x2 ([xcor] of turtle2)
  let y2 ([ycor] of turtle2)
  ;; calculate the x-intercept of the line between two turtles
  let x-intercept 0
  ifelse (x2 - x1 != 0)
    [
      let slope ((y2 - y1) / (x2 - x1))
      set x-intercept (round (-1 * y1 / slope + x1))
    ]
    [set x-intercept x1]
  ;; report false if x-intercept hits a barrier
  if (x-intercept < gap-size / -2) or (x-intercept >= gap-size / 2) [
    report false
  ]
  report true
end

;; advance the entire simulation by one tick
to step
  if (mouse-down?) [
    process-mouse
  ]
  setup-patches
  move-passengers
  update-offender-connections
  update-passenger-connections
  exert-influence
  enforce-barrier
  setup-colors
  tick
end

;; move passengers depending on intenal and external factors
to move-passengers
  let below-rating ((count passengers with [ycor < 0]) / num-passengers * 7)
  ask passengers [
    ifelse (alarm-level < alarm-creation)
      [
        ifelse (follow-affinity * norm-weight < below-rating)
        [
          ;; calm passengers travel towards the bottom
          ifelse (ycor >= 0.9)
            [facexy 0 0.8]
            [facexy 0 min-pycor]
        ]
        [
          ;; not alerted, but leaving because everyone else is
          ifelse (ycor <= -0.9)
            [facexy 0 -0.8]
            [set heading 0]
        ]
        if (can-move? (ambling-force / 100)) [forward (ambling-force / 100)]
      ]
      [
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        ;; alarmed passengers travel towards the gap then fan out
        ifelse (ycor <= -0.9)
          [facexy 0 -0.8]
          [
            set heading 0
          ]
        if (can-move? (fleeing-force / 100)) [forward (fleeing-force / 100)]
      ]

  ]
end

;; kill offender links that are too long and create new ones
to update-offender-connections
    ask offender-links [
      let kill? false
      let weighted-enmity (([physical-enmity] of end2) * physical-weight)
      ifelse (link-length >= weighted-enmity)
        ;; kill links that are too long
        [set kill? true]
        ;; kill links that intersect barriers
        [set kill? (not (has-line-of-sight? end1 end2))]
      if kill? [die]
    ]
    setup-offender-links
end

;; build a network around the offenders
to setup-offender-links
  ask offenders [
    create-offender-links-to (passengers with
      [((distance myself) < (physical-enmity * physical-weight))
        and (has-line-of-sight? self myself)]) [
      set color ([color] of end2)
    ]
  ]
end

;; kill passenger links that are too long and create new ones
to update-passenger-connections
  ask passenger-links [
    let kill? false
    let weighted-enmity (([physical-enmity] of end1) * physical-weight)
    ifelse (link-length >= weighted-enmity)
      ;; kill links that are too long    
      [set kill? true]
      ;; kill links that intersect barriers
      [set kill? (not (has-line-of-sight? end1 end2))]
    if kill? [die]
  ]
  setup-passenger-links
end

;; use links to spread information and move passengers
to exert-influence
  ask passengers [
    ;; offenders create alarm in passengers
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    ifelse (any? my-in-offender-links)
      [
        if (alarm-level < (alarm-creation * attitude-weight)) [
          set alarm-level (alarm-creation * attitude-weight)
        ]
      ]
      [
        ;; spread alarm to linked passengers
        if (any? out-passenger-link-neighbors) [
          let perceived-alarm (mean
            ([alarm-level] of out-passenger-link-neighbors))
          let shift ((perceived-alarm - alarm-level)
            * alarm-acquisition * mental-weight)
          set alarm-level (alarm-level + shift / 7)
        ]
      ]
    ;; enforce boundaries on alarm-levels
    if (alarm-level > 7) [set alarm-level 7]
    if (alarm-level < 0.01) [set alarm-level 0]
    ;; offender-passenger repulsion
    layout-spring
      (turtle-set self)                    ;; the set of turtles
      my-in-offender-links                 ;; the set of links
      0.1                                  ;; force exerted by link
      (physical-enmity * physical-weight)  ;; link target length
      0                                    ;; global turtle repulsion
    ;; exert passenger-passenger influence
    layout-spring
      (turtle-set self out-passenger-link-neighbors)
      my-out-passenger-links
      0.1
      (physical-enmity * physical-weight)
      0
  ]
end

;; move any passengers within the barrier onto the correct side
to enforce-barrier
  ask turtles [
    if (ycor < 1) and (ycor > -1) [
      ifelse (pxcor >= gap-size / -2) and (pxcor < gap-size / 2)
        [
          ;; turtles within gap are adjusted left or right
          if (pycor = 0) [
            if (xcor < (ceiling (gap-size / -2)))
            or (xcor > (floor (gap-size / 2))) [
              set xcor pxcor
            ]
          ]
        ]
        ;; turtles within barrier are adjusted up or down
        [
          ifelse (ycor >= 0)
            [set ycor 1]  ;; top half
            [set ycor -1] ;; bottom half of the barrier
        ]
    ]
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  ]
end

;; color turtles and links
to setup-colors
  ;; color turtles according to their alarm-level
  ask passengers [
    set color (scale-color red alarm-level 9 0)
  ]
  ask offender-links [
    set color ([color] of end2)
  ]
  ask passenger-links [
    set color ([color] of end2)
  ]
end

;; advance the simulation indefinitely
to go
  ifelse ((count (passengers with [ycor < 0])) > 5)
    [step]
    [stop]
end

;; remove existing offenders and spawn new ones
to spawn-offenders
  ask offenders [die]
  set-default-shape offenders "target"
  create-offenders num-offenders [
    set color red
    set xcor random-xcor
    set ycor (random-float (min-pycor + 1)) - 1
    correct-position
  ]
end

;; use mouse input to create an offender
to process-mouse
  ask offenders [die]
  set-default-shape offenders "target"
  create-offenders 1 [
    set color red
    set xcor mouse-xcor
    set ycor mouse-ycor
  ]
end
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APPENDIX D

THE CLASSROOM SOURCE CODE

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; File: The Classroom.nlogo
;; Author: Marcel Bouchard
;; Date: 19 July 2011
;;
;; The purpose of this model is to incorporate behavioral intention
;; concepts into a classroom seating simulation, stressing social norm
;; components
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; turtle breed: the desk
breed [desks desk]

;; turtle breed: the students
breed [students student]
students-own [
  prefer-front         ;; preference to sit near front
  prefer-alone         ;; preference towards desks with empty neighbors
  norm-front-adherence ;; strength of adherence to norm of 
                       ;; "sit near front"
  norm-same-adherence  ;; strength of adherence to norm of
                       ;; "sit in same seat"
  previous-desk        ;; number of desk from previous turn
]

;; prepare the simulation
to setup
  clear-all
  setup-patches
  setup-students
  setup-desks
  ask links [
    if (hide-connections?) [hide-link]
  ]
  display-labels
end

;; set patches to their default state
to setup-patches
  ask patches [set pcolor (yellow + 4)]
end

;; create students along the bottom of the room
to setup-students
  set-default-shape students "person"
  create-students num-students [
    set prefer-front (random-normal-1-7 4 1)
    set prefer-alone (random-normal-1-7 4 1)
    set norm-front-adherence (random-normal-1-7 4 1)
    set norm-same-adherence (random-normal-1-7 4 1)
    set previous-desk -1
    set xcor random-xcor
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  ]
end

;; produce a random number from 1 to 7 using a normal distribution
;; arg1 is the mean, arg2 the standard deviation
to-report random-normal-1-7 [arg1 arg2]
  let number (random-normal arg1 arg2)
  if (number < 1) [set number 1]
  if (number > 7) [set number 7]
  report number
end

;; create and arrange desks
to setup-desks
  set-default-shape desks "square"
  create-desks (num-rows * num-columns) [
    setxy max-pxcor max-pycor
    set heading 0
  ]
  ask desks [
    set color (brown - 2)
  ]
  arrange-desks
  network-desks
end

;; arrange desks into a grid formation
;; note: code inspired by Uri Wilensky's "Party" model
;;       as included with NetLogo
to arrange-desks
  ;; determine the interval between rows and columns
  let row-interval (floor ((world-width * 0.75) / num-rows))
  let column-interval (floor (world-width / num-columns))
  ;; store patches that serve as points on the grid
  let grid patches with [
    ;; space rows and columns evenly
    ((pycor mod row-interval) = 0) and
    ((pxcor mod column-interval) = 0) and
    ;; only add patches under the limit
    (floor (pycor / row-interval) < num-rows) and
    (floor (pxcor / column-interval) < num-columns)
  ]
  ;; determine the shift necessary to center rows and columns
  let y-shift (floor ((max-pycor - ([pycor] of (max-one-of grid [pycor])))
      / 2))
  let x-shift (floor ((max-pxcor - ([pxcor] of (max-one-of grid [pxcor])))
      / 2))
  ;; place desks onto unique grid locations
  ask desks [
    move-to (one-of (grid with [not (any? (other desks-here))]))
  ]
  ;; shift desks to center
  ask desks [
    set xcor (pxcor + x-shift)
    set ycor (pycor + y-shift)
  ]
end
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;; link adjacent desks together
to network-desks
  ask desks [
    ;; link with nearest column neighbors
    let same-column ((other desks) with [xcor = ([xcor] of myself)])
    create-links-with (same-column with-min [distance myself]) [
      set color black
    ]
    ;; link with nearest row neighbors
    let same-row ((other desks) with [ycor = ([ycor] of myself)])
    create-links-with (same-row with-min [distance myself]) [
      set color black
    ]
    ;; link with nearest neighbors not in same row or column
    let diagonals ((other desks) with [
      (xcor != ([xcor] of myself)) and
      (ycor != ([ycor] of myself))
    ])
    create-links-with (diagonals with-min [distance myself]) [
      set color black
    ]
  ]
end

;; draw indicator labels
to display-labels
  ask turtles [set label ""]
  ask patches [set plabel ""]
  if labels? [
    ask students [
      if (patch-at 1 1 != nobody) [
        ask patch-at 1 1 [
          set plabel ([who] of myself)
          set plabel-color lime
        ]
      ]
    ]
  ]
end

;; advance the simulation by one tick
to step
  ask links [
    ifelse (hide-connections?)
      [hide-link]
      [show-link]
  ]
  ifelse (any? students with [ycor = 0])
    [
      ask one-of students with [ycor = 0] [
        choose-desk
      ]
      display-labels
      tick
    ]
    [
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      stop
    ]
end

;; move all students to the front of the classroom
to reset-students
  setup-patches
  ask students [
    setxy random-xcor min-pycor
  ]
  display-labels
end

;; sit at an unoccupied desk
to choose-desk
  ;; convert student norm adherence into weights between 0 and 1
  let weight1 ((norm-front-adherence - 1) / 6)
  let weight2 ((norm-same-adherence - 1) / 6)
  ;; isolate the set of empty desks
  let available-desks (desks with [not (any? students-here)])
  ifelse (random 100) < (norm-sit-front * weight1)
    [
      ;; follow the norm of sitting in the front
      move-to (min-one-of available-desks [distancexy (max-pxcor / 2) 0])
      ask patch-here [set pcolor red]
      ask neighbors [set pcolor red]
    ]
    [
      ifelse (previous-desk >= 0) and
      (member? (desk previous-desk) available-desks) and
      (random 100) < (norm-sit-same * weight2)
        [
          ;; follow the norm of sitting in previous seat
          move-to (desk previous-desk)
          ask patch-here [set pcolor magenta]
          ask neighbors [set pcolor magenta]
        ]
        [
          ;; isolate the most preferred desk of those available,
          ;; disregarding norms
          let pick (find-best-desk self available-desks)
          move-to pick
          set previous-desk ([who] of pick)
          ask patch-here [set pcolor blue]
          ask neighbors [set pcolor blue]
        ]
    ]
end

;; given a student and desk set, report the most preferred desk
to-report find-best-desk [arg-student arg-desks]
  ;; find desks closest and furthest to front and center
  let closest-desk (min-one-of desks [distancexy (max-pxcor / 2) 0])
  let furthest-desk (max-one-of desks [distancexy (max-pxcor / 2) 0])
  ;; define region as the distance between the above two desks
  let distance-region -1
  ask closest-desk [
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    set distance-region (distance furthest-desk)
  ]
  ;; transform prefer-front [1 7] into a
  ;; preferred distance [0 distance-region]
  let ratio (abs (([prefer-front] of arg-student) - 7) / 6)
  let preferred-distance (ratio * distance-region)
  ;; find candidate desks that are close to this preferred distance
  let candidates -1
  ifelse ((count arg-desks) < 3)
    [
      set candidates arg-desks
    ]
    [
      set candidates (min-n-of 3 arg-desks [
        abs ((distance closest-desk) - preferred-distance)
      ])
    ]
  ;; report the candidate desk with the most compatible level of crowding
  let preferred-crowding ((abs (([prefer-alone] of arg-student)
        - 7) / 6) * 8)
  report (min-one-of candidates [abs (preferred-crowding
        - find-num-student-neighbors)])
end

;; report the number of neighbor desks with seated students
to-report find-num-student-neighbors
  report (count (link-neighbors with [any? (students-here)]))
end

;; advance the simulation indefinitely
to go
  step
end
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