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Introduction 

 Noise-induced hearing loss is a loss of hearing caused by exposure to noise. It is 

estimated that around 26 million Americans suffer from noise-induced hearing loss. The specific 

causes of NIHL can vary from individual to individual. A single highly impulsive noise can 

damage hearing, as can long term exposure to continuous noise. Highly impulsive noises can 

produce acoustic trauma, which is defined as permanent cochlear damage caused by a single 

impulsive noise event (Crocker, 1998). Acoustic trauma generally occurs when sound levels 

average about 130-140 decibels for most people (Rosen, 2001).  Exposure to continuous noise 

can cause permanent hearing loss at sound levels as low as 80 decibels. In addition, Pierson 

(1996) suggests that maternal exposure to occupational noise may have damaging effects on 

fetal hearing. 

Noise Exposure Safety Guidelines 

 Current occupational noise exposure limits require hearing protection for sound levels 

of 90 dB over an eight hour exposure time, but for sounds of less than fifteen minutes duration 

hearing protection is only required for sound levels over 115 dB (OSHA, 2012). The differences 

in sound levels requiring protection is based on the Equal Energy Hypothesis. 

 The Equal Energy Hypothesis, initially proposed in 1955, states that hearing loss is 

proportional to the total sound energy of a noise. This implies that different exposures with 

identical total energies will have the same effect on hearing and that amplitude fluctuations 

during a prolonged exposure do not affect hearing loss (Danielson, et. al. 1991). However 

Hammernik et.al. (2003) demonstrated that non-Gaussian noise causes more hearing damage 

than a Gaussian noise of equivalent energy. While this indicates that revision of current safety 



2 

 

 

guidelines is needed, more research is necessary to determine how to classify complex noises 

and assess the damage potential before new guidelines can be introduced. 

 One of the emerging methods for predicting the level of hearing loss caused by a noise 

is the kurtosis metric (Qui, et. al. 2006; Hammernik et. al. 2003; Goley et. al 2010; Davis et. al. 

2009; Zhao et. al 2010). The kurtosis statistic is used to determine the deviation of non-

Gaussian noise from the Gaussian. Because non-Gaussian noise is more damaging than 

Gaussian noise, this can help determine how much more damaging a noise is to hearing 

compared to Gaussian noise of equal energy. By using both the total sound energy and the 

kurtosis value a more accurate assessment of potential hearing damage can be made. Hopefully 

applicable industrial guidelines can be drafted from research results. 

Anatomy and physiology of the ear

  

Figure 1: Detailed anatomy of the human ear 
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 The ear has three main parts: the outer, middle and inner ear. The outer ear consists of 

the pinna and the ear canal. The tympanic membrane lies at the end of the ear canal, and 

serves as the boundary between the outer ear and the middle ear. The tympanic membrane is 

attached in turn to the three bones in the middle ear. These bones, the ossicles, are called the 

malleus, the incus, and the stapes. The inner ear consists of the cochlea, the cochlear vestibule, 

and the semicircular canals. The cochlea itself is divided into three tubes, the scala tympani, the 

scala media and the scala vestibuli, which all run the length of the cochlea. The stapes is 

connected to the scala vestibuli by way of the oval window. The scala tympani connected to the 

middle ear through the membrane of the round window. 

 The scala media is lined on one side by the basilar membrane, upon which lies the organ 

of corti. The organ of corti contains the inner and outer hair cells, which are the means by 

which sound pressure waves are converted into electrical signals and transmitted to the brain 

by the auditory nerve. There are three rows of outer hair cells and a single row of inner hair 

cells. Each hair cell has group of stereovilli projecting upward into the scala media. The 

stereovilli of each hair cell are graduated in length, and the longest stereovilli on the outer hair 

cells contact the tectorial membrane, which is a gelatinous membrane that lies just above the 

organ of corti (Boron & Boulpaep, 2009).  

 Sound pressure waves are directed down the ear canal by the shape of the pinna, where 

they cause the tympanic membrane to vibrate. The vibration is transmitted to the bones of the 

middle ear, and then to the inner ear through the oval and round windows. During the 

compression phase of the sound wave the tympanic membrane is pushed inward which causes 

the middle ear bones to push the oval window inward. This increases pressure within the scala 
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vestibuli which places pressure on the scala tympani and causes the round window to bulge 

outward into the middle ear. In the rarefaction phase of a sound wave, the tympanic 

membrane is pulled outward. The bones of the middle ear then pull the oval window outward 

which pushes the round window inward. 

 The movement of the round and oval windows disturbs the perilymph fluid in the scala 

vestibuli and the scala tympani.  Movement of the oval window outward causes the basilar 

membrane to lift. This creates a shear force between the outer hair cells and the tectorial 

membrane (Boron & Boulpaep, 2009). The stereovilli bundles tilt in the direction of the longer 

stereovilli. This opens transduction channels in the outer hair cells and depolarizes them. 

Depolarization of the outer hair cells causes contraction which amplifies the movement of the 

basilar membrane. When the basilar membrane lifts, it also pushes endolymph fluid from 

beneath the tectorial membrane. The movement of the fluid sweeps the inner hair cell bundles 

toward the lower stereovilli. This opens transduction channels in the inner hair cells and 

depolarizes them. Voltage gated Ca
2+

 channels then open and trigger release of glutamate 

which fires an action potential in the afferent neurons connected to the inner hair cells. These 

processes reverse when the oval window moves inward. 

 When discussing NIHL, the most common hearing loss occurs at higher frequency ranges, 

as well as frequencies around 4 kHz (Crocker, 1998). Different frequencies cause vibrations to 

concentrate at different places along the basilar membrane within the cochlea. Each area of the 

cochlea is sensitive to a different frequency, with low frequencies at one end and high 

frequencies at the other. This is the result of the shape and stiffness of the basilar membrane. 

When the cochlea is uncoiled, a triangular shape of the basilar membrane can be seen. The 
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point of the triangular shape lies at the beginning of the coil and is 100 times stiffer than it is at 

the wide end (Boron & Boulpaep, 2009). 

 The human body also has ways to reduce hearing loss by damping loud sounds. The 

stapedius muscle moves the stapes and the tensor tympani moves the malleus. High intensity 

sounds trigger the acoustic reflex, which is a contraction of these two muscles. This stiffens the 

ossicular chain and muffles the sound. The strength of contraction depends not on intensity but 

on loudness of the sound (Raichel, 2006). For sounds with duration of greater than one half of a 

second, the contraction begins at 85-90 decibels of a pure tone and 70-75 decibels of complex 

noise. Full contraction strength is achieved when sounds are 30 decibels louder than the initial 

noise stimulus. The acoustic reflex occurs within 150 milliseconds (Crocker, 1998). It should be 

noted that the acoustic reflex is able to attenuate low frequency sounds best. When sounds 

have a frequency greater than 1000 Hz, the attenuating effect begins to wane. 

Hearing Loss  

 The acoustic reflex generates hearing loss in the form of Temporary Threshold Shift 

(TTS).  Hearing threshold is the minimum sound level in decibels that the ear can hear. For most 

people the hearing threshold is taken to be 0 dB (Raichel, 2006). Temporary threshold shift is a 

temporary upward shift of the hearing threshold. Severity of TTS depends on the stimulus. For 

short bursts of intense noise, TTS can last several minutes. Repeated impulses or loud 

continuous noise can cause TTS that may take several days to recover.  

 If the body does not gets sufficient time to recover between sound exposures, 

permanent hearing loss may result. This can be in the form of Permanent Threshold Shift (PTS) 

or loss of sensitivity to a particular frequency range. Permanent threshold shift is a permanent 
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loss of sensitivity to low sound levels. Damage to particular cochlear regions will result in loss of 

hearing in the frequency range detected by the damaged region. It is thought some hearing loss 

is from excessive vibration causing mechanical damage to the hair cells. Hearing protective 

devices can dampen the sound, lessening the vibration and preventing damage that leads to 

permanent hearing loss. 

 There are three main types of physical hearing protection devices: ear plugs, ear muffs, 

and helmets (Crocker, 1998). Ear plugs have been used for thousands of years. In Homer’s 

Odyssey, Odysseus uses ear plugs to evade the song of the sirens. Ear plugs are small devices, 

usually made of foam or a similar material that fit into the ear canal. Unfortunately, while ear 

plugs are small and convenient to use, some people find the pressure in their ear canals 

uncomfortable. In that case ear muffs are another option. Ear muffs encompass the entire ear 

and are easier to fit than ear plugs. Helmets combine head protection with earmuffs for a 

streamlined fit. 

 Other studies have shown that there is a biochemical component to NIHL. Systemic 

effects of loud noises include pupil dilation in the eyes, vasoconstriction, and increased heart 

rate. Within the ear exposure to noise can increase mitochondrial activity and free radical 

formation, reduce cochlear blood flow, and cause necrotic and apoptotic cell death in the organ 

of corti (Le Prell et. al. 2007). Free radicals include reactive oxygen species (ROS) and reactive 

nitrogen species (RNS). Both are highly reactive substances that can damage lipid membranes, 

proteins and DNA within the cell. They also serve to upregulate apoptotic pathways which 

increases cellular death. 
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 Ohlemiller et.al. (1999) probed hydroxyl radical levels in the cochlea and showed that 

hydroxyl levels increase four fold after noise exposure. Hydroxyl radicals initiate lipid 

peroxidation which damages cell membranes. Because of the damaging effects of free radicals, 

many studies have been done researching the use of antioxidants to protect hearing. Ohinata et. 

al. (2000) studied the effects of glutathione and found it reduced PTS. Other antioxidants 

shown to reduce noise-induced hearing loss are salicylate, N-L-acetylcysteine, pravastatin, and 

1-{3-[2-(1-Benzothiophen-5-yl)ethoxy]propyl}azetidin-3-ol (T-817MA) (Kopke et. al. (2000); Park 

et.al. (2012); Yamashita et. al. (2008). Dr. Kathleen Campbell at the Southern Illinois University 

School of Medicine has studied the use of D-methionine as an otoprotective agent (Campbell 

et.al. 2007). The noise generation system described here has been developed specifically for 

her research needs. Other drugs, such as methylprednisolone, have been shown to reduce hair 

cell loss (Sendowski 2006). Finally, while not an antioxidant; inducing hypoxia can also 

potentiate PTS (Chen & Liu 2005). 

Acoustic Review 

  

 

 

 

 

 

 

Figure 2: A-duration wave (Chan, Ho, Kan & Stuhmiller, 2001) 
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There are three types of noise that are typically studied in relation to noise induced hearing loss. 

They are impulse noise, Gaussian or white noise, and complex noise. Impulse noise consists of 

short duration, high energy noises. They are characterized by an A-duration waveform with a 

positive peak time of less than 200 ms (Johnston, 2012). The strength of impulse noise can 

quickly cause acoustic trauma and permanent hearing loss. In fact, Rabinowitz (2000) 

considered a single impulse of 140-179 dB to be equal in sound energy to forty hours of 

exposure to continuous noise at 90 dB A-duration waves are used to represent the sound of 

firearms when studying military hearing loss (Johnston, 2012). This wave can be represented by 

the Friedlander equation, where PS is the peak pressure amplitude and t* is the time when the 

wave crosses the x-axis.  

 

P(t) = PSe
t/t*

(1 –t/t*) 

 

Gaussian noise is a type of continuous noise based on a normal distribution curve. In 

LabVIEW the set of random numbers is generated with µ=0 and an adjustable standard 

deviation (Schlag, 2012). Gaussian noise can accurately be used to simulate continuous 

environmental noise. Complex noise is simple combination of continuous and impulse noise. It 

is difficult to simulate in a research environment without knowing the various individual 

components.  
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Figure 3: Continuous Gaussian Noise waveform 

 

 

Figure 3: Gaussian Probability density 
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Noise Generation System 

 National Instruments' LabVIEW was used to create a virtual instrument (VI) that 

generates noise. The VI generates the signal, controls the signal's output and input, and 

monitors the signal during noise exposure experiments. The generated signal is sent by 

LabVIEW to an NI PCI-6251 multifunction data acquisition board. The data acquisition unit is 

equipped with two analog output channels with 2.86 MS/s update rate and 16 bit resolutions 

and sixteen analog input channels with sampling rate of 1.25 MS/s and 16 bit resolution. The 

digital signal generated by LabVIEW is converted to analog by the data acquisition unit and sent 

via output channel to a 750 Watt Yamaha 8Ω/Bridge P 2500 S power amplifier. This is a 

commercially available amplifier which allows for easy duplication of the system without 

needing to build all components in the lab. The amplifier's power bandwidth of 10 Hz - 40 KHz is 

more than sufficient for various noise generation needs.   

 The compression driver chosen when initially building this system is the JBL 2446 H/J 

compression driver. It has a 150 Watt power capacity on a continuous program and a frequency 

range of 500 Hz-20 kHz. Because it is a commercial compression driver, it has exceptional 

durability qualities which allow for transport and disassembling/reassembling the system as 

needed. The compression driver is connected to a 2" diameter shock tub with 1/2" thick acrylic 

walls. The system allows for varying lengths of shock tube to be used. At the end of the shock 

tube was placed a JBL 2380A flat front horn to distribute the sound evenly without distortion. 

The final component of the system is the monitoring microphone. For calibration 

purposes a PCB 426B03 pressure field microphone was chosen because it can detect high 

pressure short duration noises accurately. It is also sufficient to detect differences in highly 
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random continuous noise. This creates for a very precise and accurate picture of the signal at 

the subject level of the system. For simple monitoring of long duration signals, an Audio-

Technica ATR-3350 omnidirectional lavaliere microphone was chosen. Because this microphone 

is omnidirectional, it can be clipped to a subject cage in any orientation and still pick up the 

signal. It is also inexpensive, which allows for easy replacement in case of animal related 

damage. It is also not necessary to have a highly precise microphone for monitoring because 

the purpose is to verify the continuity of the signal rather than any particular characteristic of 

the signal. 

 

 

 
 

 

Figure 5: System Schematic 
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The compression driver and horn are both mounted on acrylic plates measuring 

12"x12"x1". These shock tube connects these two plates. Framing made of T-slotted aluminum 

supports the acrylic plates as well as the subject cage. The corner posts are cut from 2"x2" 

aluminum while the cross supports, upon which rest the acrylic plates and subject cage are 

made of 1"x2" or 1"x1" aluminum. The entire frame is situated within a portable sound booth. 

The monitoring microphone cord and the stereo wire connecting the compression driver to the 

amplifier run through an access hole in the side of the booth. All other components are set up 

Figure 4: Noise generation system assembled at the SIU School of 

Medicine 
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on a wheeled cart, allowing the entire system to be moved without disassembling the 

components. 

Modification of a Gaussian Noise System 

 Schlag (2012) designed a Gaussian noise generation system compatible with physical 

apparatus designed by Johnston (2012). Unfortunately, there were several issues that needed 

to be corrected before the system could be installed at the SIU School of Medicine in Dr. 

Kathleen Campbell’s lab. Schlag’s program was ideal for calibration but was cumbersome for 

research use. The LabVIEW front panel interface was busy and confusing with eleven graphic 

displays and numerous input options. While the system was intended for extended exposures 

of six hours, the program ran into memory use issues and froze after two hours of continuous 

operation. The input time was also faulty. The “run time” input did not refer to time but rather 

to loop iterations in the programming. Because it takes the computer longer than one second 

to run the loop once, entering a time of six hours did not result in a noise generation duration 

of six hours. The final problem that needed to be resolved was the lack of a simple monitoring 

system. The microphone used for calibration of the system is expensive and needs a signal 

conditioner to properly relay the signal.  

 Resolving the busy user interface was as simple as removing unnecessary aspects of the 

program. While these features were needed to determine proper programming regarding 

frequency spectrum and octave band of the noise generated, once this information was known 

the programming became superfluous. Researchers at the SIU School of Medicine needed only 

a graph of the original signal, a graph of the fast Fourier transform of that signal, a graph 
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displaying the monitoring microphone’s signal, and a chart displaying the running root-mean-

square calculation of the signal averaged over one second intervals.  

 The original signal and the FFT were displayed for signal verification purposes. This way 

researchers can see that the signal generated is indeed the desired signal. The running RMS 

value is the square root of the arithmetic mean of the squares of the individual values. This 

produced a non-zero average for a set of data that includes both positive and negative values. It 

is valuable for rapidly fluctuating signals and allows researchers to verify the constancy of the 

signal and determine how long, if at all, the signal was lost. The monitoring signal displays the 

monitoring microphone’s waveform and demonstrates that the signal research subjects are 

exposed to matches the profile of the original signal.  As it turns out, the data acquisition unit 

was unnecessary for the monitoring signal. Instead the microphone was plugged into the 

computer and LabVIEW accessed the signal from the computer’s sound card. This removed the 

need for a signal conditioner. 

 Memory problems were solved both by simplifying the program and by adjusting 

sampling rates. While the program can continuously sample the signal it generates, this uses up 

memory and causes errors in the program. Instead, a sampling rate of 52,600 samples per 

second was chosen for the output signal. The computer’s sound card is restricted to 48,000 

samples per second so that is the rate used for the monitoring signal. These sampling rates do 

not overload the memory and still give researchers a complete picture of the noise generated 

by the system.  

 The timing problems were actually simple to solve. A series of test runs were timed and 

the information used to determine a divisor for the “run time” input. By timing the system 



15 

 

 

duration when values of 30, 60, 90, 120, 1800, 3600, and 21600 were entered into the “run 

time” input a calibration curve could be generated. The slope of the linear regression was used 

as the divisor. This way the value entered in seconds actually determines the number of 

seconds the system will run. Unfortunately, the three computers tested all had slightly different 

processing times, so the timing calibration must be carried out for each computer the program 

is run on. 

 By solving these problems the Gaussian noise generation system was completed and 

transported to Springfield, IL for use in live animal studies. Problems that initially seemed to be 

complicated required only ingenuity and patience to solve. The result is an optimized 

streamlined noise generation system. 

 

Figure 5: user interface designed by Schlag (2012) 



16 

 

 

 

Figure 6: Simplified User Interface 

Future Work 

 Since complex noise is thought to be more damaging than other types of noise, a way to study 

its effects in the laboratory is needed. The noise generation system described here can easily be 

adapted to generate complex noises combining Gaussian noise, various impulse noises and pure tones. 

The difficulty is not in generating complex noise, but it determining the individual components of the 

specific complex noise to be studied. Analytic wavelet transforms (AWT) offer more temporal and 

spectral detail than traditional Fourier transforms (Zhu & Kim, 2006). AWT can be used to analyze 

occupational noises so that accurate replication in a laboratory setting is possible. Accurate 

representation of noise in animal studies provides far more meaningful results and can better predict 

the damage potential of such noises. 
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Conclusion 

 Current hearing protective guidelines are based on the Equal Energy Hypothesis. Unfortunately 

different types of noise produce different amounts of hearing loss even when the total sound energy is 

the same. The Kurtosis statistic used in conjunction with sound energy level could provide a much better 

system with which to evaluate the damaging potential of a noise. Using analytic wavelet transforms to 

break complex noises into their various components could help researchers replicate complex noises to 

determine the extent of hearing damaged caused by those noises.  

 Once the damage capability of a noise has been determined, various physical and chemical 

methods to reduce permanent threshold shift can be developed. The optimized Gaussian noise 

generation system described can be easily modified to produce complex noises of varying composition.  
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