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 Global climate change is predicted to affect timing and severity of disturbance events 

(e.g., fire, drought, hurricanes, wind storms, and inundation), but the extent of these disturbance 

events and their impacts on natural ecosystems may vary regionally. Rising sea level, increased 

frequency and intensity of tropical storms, and altered inundation regimes are likely to create 

changing environmental conditions in low-lying coastal ecosystems. These large scale 

disturbances may increase resource availability and regeneration spaces, reduce competition, and 

possibly increase community vulnerability to invasion. Shifting disturbance regimes and 

invasion together are predicted to drive long-term shifts in coastal plant community structure and 

ecosystem processes. However, impacts of altered environmental conditions on native and 

invasive plant species and the species responses to changed environmental conditions are poorly 

understood. The aims of this study were: (i) to assess the probability of occurrence of juveniles 

of the invasive exotic Triadica sebifera and co-occurring native species, Baccharis halimifolia, 

Ilex vomitoria, and Morella cerifera in the field in relation to surrounding environmental factors, 

(ii) to assess the effects of elevated salinity across a typical coastal transition on germination of 
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T. sebifera, B. halimifolia and M. cerifera, using controlled growth chamber and greenhouse 

experiments, (iii) to assess the effects of climate change and shifting inundation and tropical 

storms regimes on T. sebifera, B. halimifolia and M. cerifera, and (iv) to evaluate the role of 

vesicular arbuscular mycorrhizae (VAM) on spread of invasive T. sebifera in coastal transition 

ecosystems at the Grand Bay National Estuarine Research Reserve (GBNERR), Coastal 

Mississippi, southeastern USA. Results from assessing the probability of occurrence of juveniles 

of invasive and co-occurring native species showed that soil water conductivity (i.e., salinity) 

was the major factor related to the occurrence of invasive T. sebifera and native B. halimifolia, I. 

vomitoria and M. cerifera along the coastal transitions. Probability of occurrence of the invasive 

T. sebifera was significantly related to landscape factors and occurrence was highest in close 

proximity to roads, trails, power lines, and recreational sites, and water bodies. These results 

imply that future increases in salinity will negatively impact I. vomitoria, M. cerifera, and T. 

sebifera, leading to range contraction of these species away from the coast. However, natural and 

anthropogenic disturbances that often increase resource pulses and reduce competition, likely 

increase the dominance of T. sebifera in already invaded areas. Positive effects of landscape 

structures on T. sebifera occupancy highlight the role of landscape variables in promoting new 

invasions in coastal forests of the southeastern USA. Controlled growth chamber and greenhouse 

germination experiments demonstrated that germination of all species (i.e., T. sebifera, B. 

halimifolia, and M. cerifera) decreased with elevated salinity and that the reduction was most 

pronounced in soils from the most seaward zones along the coastal transition. Although native B. 

halimifolia was least sensitive to elevated salinity, invasive T. sebifera displayed plasticity of 

germination trait across different salinity levels in most inland soils. These results suggest that 

the phenotypic plasticity may facilitate spread of Triadica sebifera under some degree of salinity 
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stress in more inland section of the coastal transition. A manipulative greenhouse experiment 

demonstrated that simulated canopy damage from intense hurricane winds and associated storm 

surge produced differential effects on survival and growth of native (B. halimifolia and M. 

cerifera) and invasive (T. sebifera) species at simulated different forest conditions common in 

the GBNERR. Invasive T. sebifera was by far the most shade tolerant of the three species and 

seedling survival under highly shaded conditions may provide it with a competitive edge over 

native species during community reassembly following tropical storms. T. sebifera may better 

utilize post-hurricane conditions (e.g., resource-rich empty spaces) and potentially increase its 

dominance in coastal forested ecosystems. The last experimental study revealed that invasive T. 

sebifera had higher VAM colonization compared to co-occurring native species both in 

controlled greenhouse and field experiments, and that the higher colonization leads to significant 

increases in  aboveground biomass, supporting the hypothesis that VAM fungi strongly benefit 

the invasive species. These results suggest that the VAM colonization may be necessary for the 

initial establishment of T. sebifera along the coastal transitions. Furthermore, my research also 

suggested that T. sebifera was not allelopathic and did not interfere with growth of native 

species. Overall, the findings of this research provide insight into the impacts of climate change 

related shifts on performance of invasive and co-occurring native species across coastal 

transitions of the southeastern USA. Variation in invasive and co-occurring native species’ 

performances under changed environmental conditions (e.g., elevated salinity and increased light 

availability) and improved mutualistic association between invasive T. sebifera and VAM fungi 

may drive increased invasion with frequent community reassembly of low-lying coastal 

ecosystems undergoing rapid climate change.   
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CHAPTER 1 

INTRODUCTION 

  Effects of Climate Change on Natural Ecosystems- 

  The Earth’s climate is changing because of increased greenhouse gases, rising 

temperatures, and changes in precipitation patterns (IPCC 2007a, Solomon et al. 2009). Global 

climate change is affecting individuals, populations, and ecosystems in many ways. Several plant 

and animal species with diverse geographical distributions have already been affected by climate 

change (Parmesan 2006, Walther 2010). Recent studies have suggested that climate change 

produces species range shifts that are poleward in latitude and upward in elevation (Parmesan 

1996, 2006). A meta-analysis of 1,700 species revealed globally coherent fingerprints of climate 

change in range shifts (average 6.1 km per decade) towards higher latitudes or higher elevation 

(Parmesan and Yohe 2003). Another meta-analysis of 143 studies demonstrated changes in the 

distribution and range shifts of species, from mollusks to mammals and from grasses to trees 

(Root et al. 2003). Field and experimental studies showed increased abundance of shrub 

vegetation across northern Alaska, Canada, and parts of Russia (Sturm et al. 2001). Recent 

simulation models (using both general circulation models (GCMs)-HadAM3H and 

ECHAM4/OPYC3) suggested the shifts in regional climatic zones are likely to lead to changes in 

distribution and composition patterns of dominant tree species of Swedish forests (Koca et al. 

2006). Phenological changes of plants and animal species in response to climate change have 

already been reported across many regions (Parmesan 2006, Walther 2010).  

 Climate change can affect occurrence, timing, duration, and intensity of extreme 

disturbance events including storm severity (Turner et al. 1998b, Dale et al. 2001). Disturbances 
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are key processes that can affect species diversity (Huston 1979, Miller et al. 2011), community 

structure (Hobbs and Huenneke 1992, Lloret et al. 2012), and  ecosystem functions (Foster et al. 

1998). Natural disturbances, such as wildfires, drought, hurricanes, windstorms, landslides, 

coastal flooding, and insect and pathogen outbreaks can change the structure and functions of 

ecosystems over short time periods (Turner et al. 1998a, Dale et al. 2001, Scheffer et al. 2001). 

Extreme and altered environmental conditions may increase large-scale tree mortality and forest 

dieback (Michener et al. 1997, Dale et al. 2000, Anderegg et al. 2012). Large scale tree 

mortality, defoliation, and loss of canopy trees may increase the open spaces readily colonized 

by species that are better adapted to changing environmental conditions (Overpeck et al. 1989). 

Additionally, disturbances can act adversely in native plant communities by promoting invasions 

by exotic and weedy plant species (Rejmanek 1989, Hobbs and Huenneke 1992). In particular, 

the shifts in historical disturbance regimes and increase in frequency and intensity of disturbance, 

due to climate change, may promote establishment of invasive species by replacing native 

species (Hobbs and Huenneke 1992). Disturbance events may also increase nutrient and resource 

availability, which favor exotic invasive over native species (Davis et al. 2000, Blumenthal 

2006). For instance, high-intensity fires that decrease canopy cover and increase light availability 

led to increases in alien plant species richness and dominance in the southern Sierra Nevadas 

(Keeley et al. 2003). 

 Effects of Climate Change on Coastal Ecosystems of the Southeastern United States- 

 Many low-lying coastal ecosystems around the world have evolved under the regimes of 

catastrophic disturbance by hurricanes, sea-level rise and fall, and their interactions (Michener et 

al. 1997, Greening et al. 2006). The coastal ecosystems of the southeastern United States (US) 
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along the northern Gulf of Mexico are linked to a significant portion of the nation’s economy and 

harbors one of the largest ecological systems in the country (Ning et al. 2003). These are low-

elevation coastal systems experiencing subsidence and higher rate of relative sea level rise (2 to 

10 mm per year; probably exacerbated by subsidence, reduced sedimentation, and soil and gas 

extraction) compared to global mean sea level rise (1.7 mm per year) (Titus et al. 2009). 

Although the magnitude of climate induced sea level rise remains highly uncertain (Nicholls and 

Cazenave 2010), recent climate change models predict a persistent rise in sea level with 

continued anthropogenic global warming and glacial ice sheets melting (IPCC 2007a). On the 

basis of the correlation between historical sea level rise and future global temperature scenarios 

of the IPCC, recent model projections for future sea level rise suggested a 0.75-1.90 m rise by 

the end of 21
st
 century (Vermeer and Rahmstorf 2009). Additionally, as climate change 

continues, the intensification of tropical storms is likely to increase (Emanuel 2005; Webster et 

al. 2005) and  the anthropogenic global warming may further fuel the increase in intense Atlantic 

hurricanes throughout this century (Bender et al. 2010). Additionally, rising sea levels may 

increase the hurricane flood risk at low elevation coastal areas through greater inland penetration 

by hurricane generated storm surges (Mousavi et al. 2011). Thus, coastal ecosystems of 

southeastern US along the northern Gulf of Mexico are at the forefront of climate change and are 

directly impacted by tropical storms and sea level rise (Michener et al. 1997, Scavia et al. 2002, 

Battaglia et al. 2012). 

Hurricanes are one of the most powerful natural disturbances that influence plant 

community structure and composition (Michener et al. 1997, Turner et al. 2003) through sudden 

and massive tree mortality, successional change, and high species turnover (Lugo 2000). In low-

lying coastal areas hurricane generated wind storms cause substantial damage to inland forested 
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wetlands by uprooting trees, snapping boles, and defoliation (Foster 1988, Michener et al. 1997, 

Chambers et al. 2007), thereby altering physical environments through creation of canopy gaps 

and increase forest floor microsite heterogeneity (Battaglia et al. 1999). Scavia et al. (2002) 

predicted that a warmer sea surface increase hurricane wind strength and wind damage by up to 

25%. Damage to the forest canopy results in greater light availability to understory vegetation, 

which promotes seed germination, regeneration, and accelerated seedling growth  (Denslow 

1987, Peterson and Pickett 1995). Increased rates of forest disturbance also promotes fast 

growing and disturbance tolerant plant species on the landscape (Overpeck et al. 1990). 

However, hurricane generated wind action can differentially affect coastal forested systems 

depending on location relative to wind direction, community structure, and degree of 

anthropogenic influence (Grove et al. 2000, Kupfer et al. 2008). Tree canopy damage often 

exposes inland plants to salt through salt spray and storm surges (Michener et al. 1997). Storm 

surges periodically submerge and expose the coastal communities to acute salinity stress which 

may persist in the soil for long time following intense hurricanes (Howard 2012). Long term 

inundation and salt stress alters community structure by causing defoliation and mortality of salt 

and flood-intolerant species (cf. Williams et al. 1999) and permitting the colonization of vacant 

sites by more stress-tolerant species which may bring shifts in successional directions in the 

community (Lugo 2000).  

 In addition to immediate impacts of recurrent tropical storms, sea level rise may have 

slow but enduring effects on coastal plant communities. Rising seas push highly saline water 

inland, causing a variety of impacts to low-lying coastal areas, including inundation, soil erosion, 

increased soil water salinity, and wrack deposition (Michener et al. 1997, IPCC 2007a, Titus et 

al. 2009, Tate and Battaglia 2012). These events eventually affect species distributions and 
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community dynamics along the coastal transitions (Scavia et al. 2002, Mitsch and Gosselink 

2007) by influencing germination and growth (Kozlowski 1997). As the rate of sea level rise 

accelerates, salinity sensitive and salt intolerant species may be lost or replaced by less sensitive 

and more tolerant novel species (Saha et al. 2011). For instance, low marsh cordgrass (Spartina 

alterniflora) is moving landward at the expense of high marsh species on the coast of New 

England, USA (Donnelly and Bertness 2001), and the salt tolerant invasive Phragmites australis 

is successfully colonizing and replacing native species in many coastal areas of the eastern USA 

(Vasquez et al. 2005). 

Coastal wetlands in the coastal plain of Mississippi are already experiencing sea level rise 

and intense tropical storms (Battaglia et al. 2012). These systems harbor one of the most diverse 

ecosystems in the southeastern US (Harper 1913). In particular, a coastal estuarine reserve, The 

Grand Bay National Estuarine Research Reserve (GBNERR) lies in southeastern Mississippi 

near the border of Alabama and supports a biologically diverse estuarine ecosystems in the 

Northern Gulf of Mexico region (Hilbert 2006). The reserve encompasses coastal bay, salt 

marshes, brackish marshes, maritime pine forests, and pine savanna. Coastal vegetation of this 

region is vulnerable to climate change vis a vis intermittent hurricanes, storms, continuous sea-

level rises, and flooding (Michener et al. 1997, Ning et al. 2003). The effects of hurricane 

disturbances on coastal ecosystems (e.g., changes in stand structure, species composition, 

decomposition etc.) have widely been recognized and studied extensively (Zimmerman et al. 

1994, Battaglia et al. 1999, Chambers et al. 2007, Stanturf et al. 2007, Kupfer et al. 2008, Lugo 

2008). Studies are beginning to emerge which address the social and ecosystem impacts of 

intense hurricanes and responses of coastal ecosystems to hurricane disturbances (Horvitz et al. 

1998, Stokstad 2005, Day et al. 2007, Chapman et al. 2008, Kupfer et al. 2008, Middleton 2009, 
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Wang and Xu 2009). Kupfer et al. (2008) reported disproportionately high forest damage in the 

southeastern Mississippi landscape following the Hurricane Katrina. Middleton (2009) evaluated 

tree seedling regeneration patterns in Taxodium distichum swamps in coastal Louisiana and 

Mississippi following Hurricane Katrina and Rita and reported high mortality of many tree 

seedlings, but also reported increased seedling regeneration, including the invasive Triadica 

sebifera due to the higher light availability from canopy damage. Chapman et al. (2008) reported 

a significant increase in regeneration of the invasive Triadica sebifera along Louisiana’s Pearl 

River basin following Hurricane Katrina. A widespread mortality of some of the flood intolerant 

native species and increased regeneration of invasive Triadica sebifera has recently been 

reported  in leveed bottomland hardwood forests in Louisiana after the Katrina storm surge 

(Howard 2012) . However very little information exists from which to determine the responses 

and recovery potential of invasive and co-occurring native species from low-lying coastal areas 

under changing environmental conditions (e.g., increased salinity from sea level rise and storm 

surges, and light availability after canopy wind throw). Therefore, predictions of coastal 

community responses and their reassembly under changed environmental conditions will require 

an improved understanding of the responses of native and invasive species to elevated salinity, 

canopy damage, and possible belowground effects to plant species to changing conditions and 

environmental stresses (e.g., salinity). 

Salinity and Plants Growth- 

Salinity is an important physical parameter that adversely affects plant performances 

(Bernstein 1975; Kozlowski 1997). Salinity limits germination (Ungar 1978; Woodell 1985), 

vegetative, and reproductive growth of plants by altering ionic and osmotic balance within the 

plants and their rhizosphere (Kozlowski 1997 and references therein). It has been widely 
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reported that salinity substantially inhibits seed germination of nonhalophytes by disrupting 

osmotic and physiological processes (e.g., imbibitions) (Ungar 1978) and increasing toxicity to 

the embryo due to excessive Na
+
 and Cl

−
 content (Zekri 1993). Increased Na

+
 and Cl

− 
reduce 

vegetative growth in plants by suppressing leaf initiation and by blocking the uptake and 

transport of water and essential nutrients such as K
+
 (Kozlowski 1997) and Nitrogen (Drake and 

Ungar 1989). High concentrations of Na 
+
 and Cl

− 
content in plant tissue cause mottle, burn, and 

chlorosis in leaves followed by early leaves abscission. Woody plants are more susceptible to 

injuries brought on by high concentrations of Na 
+
 and Cl

− 
(Bernstein 1975). Reduced leaf 

development and early abscission influences several physiological (e.g., photosynthesis and 

transpiration), reproductive (e.g., flowering, fruit development, seed production etc.) processes, 

and fitness in plants (Bernstein 1975; Goldstein et al. 1996; Kozlowski 1997).  

To maintain growth and reproduction within saline environments such as low-lying 

coastal areas, plants must tolerate varying levels of salinity. Some plant species, such as 

halophytes (e.g., Chenopodiaceae) have the ability to withstand some degree of salinity through 

osmotic adjustment (compartmentation of Na
+
 and Cl

−
 into vacuoles) and selective uptake of K

+
, 

in order to maintain their productivity (Debez et al. 2008; Flowers and Colmer 2008). Some 

other plant species, including nonhalophytes, have the ability to tolerate salt through excretion 

(Kozlowski 1997). Plants species that have the ability to cope with salty environments occupy 

the most seaward habitats (salt marshes), while salt intolerant plants occupy less saline 

freshwater marshes and forested habitats, thus creating species zonation along the coastal 

transitions (Crain et al. 2004). 
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Effects of Hurricane and Sea Level Rise on Soil Communities-  

Besides the visible aboveground effects, hurricane disturbances and sea level rise may 

have influence on belowground communities and differentially affect plant species and 

belowground associations (e.g., mycorrhizal-plant mutualisms). Hurricane disturbances can have 

both positive and negative effects on arbuscular mycorrhizae (AM) fungal communities (Vargas 

et al. 2010). Vargas et al. (2010) observed nearly a 50% reduction in AM sporulation and a 

significant increase in AM root colonization after intense hurricane Wilma in the northeast 

Yucatan Peninsula, Mexico. However, increased salinity due to storm surge and sea level rise 

may decrease AM root colonization (Juniper and Abbott 1993, Tavares et al. 2012). Decrease 

AM root colonization may produce negative effects on plant-VAM mutualisms, which is 

necessary for some plant species to cope with salinity stress. Studies have shown that 

mycorrhizal fungi can ameliorate stress, such as salt stress, to the host plants by helping in 

nutrient acquisition (Giri et al. 2007, Daei et al. 2009, Evelin et al. 2009). It was found that the 

ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape seedlings by 

increasing phosphorus (P) and potassium (K) absorption (Bandou et al. 2006). Disturbances 

influence colonization and species composition of fungal communities and alter the mutualistic 

association between host plants and mycorrhizae by altering the species of ectomycorrhizal fungi 

present on plants’ roots (Jones et al. 2003). Mycorrhizae formation depends on the soil 

environment (e.g., soil moisture, temperature, and nutrient availability), host physiology, and soil 

microorganisms (Entry et al. 2002), which can be disrupted by damaging the hyphal network 

(Jasper et al. 1989, Hagerman et al. 1999). With the numerous possible effects of climate change, 

such as increased greenhouse gases, higher temperatures, altered precipitation patterns, increased 

fires, global sea level rise, shifts in species ranges, and compositional changes, the complex 
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interactions between plants and mycorrhizal fungi may be severely disrupted, leading to 

disruption of ecosystem functioning (Devall and Parresol 1998).  

Climate Change, Shifts in Disturbance Regimes, and Plant Invasions- 

Biological invasion is an important component of anthropogenic global change (Vitousek 

et al. 1997), with effects on the loss of global biodiversity and declines in ecosystem services 

(Pimentel et al. 2000, Pimentel et al. 2005). The other drivers of global change - such as 

increased atmospheric CO2, increased temperature, changing precipitation patterns, land use, 

fragmentation, and shifts in disturbance regimes – influence resource availability and community 

dynamics, potentially interact with biological invasions and increase the susceptibility of 

invasions (Dukes and Mooney 1999, Thuiller et al. 2007, Hellmann et al. 2008, Bradley et al. 

2010). Disturbance can create novel empty spaces by generating new resource opportunities, and 

reducing competition and enemies (Mack et al. 2000). These events may provide opportunities 

for the spread of exotic alien plants with high rates of fecundity and dispersal (Thuiller et al. 

2007). Recently, it was proposed that predicted increases in extreme climatic events (e.g., 

hurricanes, floods, wind-storms, and drought) will increase the rate of species introductions in 

various regions (Diez et al. 2012). Studies have demonstrated that hurricane wind disturbances 

enhance alien plant invasion by increasing light and nutrient resources in affected areas 

(Bellingham et al. 2005, Chapman et al. 2008, Lynch et al. 2009). Bellingham et al. (2005) 

recorded a significant increase in total tree density of the invasive Pittosporum undulatum in 

montane rain forests in Jamaica within 6 years following Hurricane Gilbert. A similar trend was 

also recorded for several alien tree and liana species that invaded subtropical hardwood forests in 

Florida after hurricane disturbances (Horvitz et al. 1998, Lynch et al. 2009). Furthermore, 
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climate change driven changes in stream flow is predicted to favor stress tolerant invasive 

species in riverine ecosystems of the western United States (Perry et al. 2012). Increasing global 

trade (e.g., horticulture) and human movements likely promote species movement into new 

localities, and their subsequent reproduction is expected under altered site conditions from 

climate change (Thuiller et al. 2007, Bradley et al. 2012).  

However, climate change driven changes in environmental conditions may not always 

increases the performances of exotic invasive species. Recently, it was suggested that climate 

change may reduce the habitat suitability and performance of invasive species in some places 

(Bradley et al. 2009, Bradley and Wilcove 2009). Using bioclimatic envelope models, Bradley et 

al. (2009) showed a range contraction of three of the five highly invasive plant species under 

changing climate in the Western US. Paudel et al. (in prep.) reported decreased performance of 

the highly invasive floating aquatic plants, Salvinia molesta and S. minima, under experimentally 

elevated salinities that mimic sea level rise and storm surge events for coastal swamp forests of 

the southeastern US. Given this uncertainty, additional research is needed to examine how native 

and invasive species will respond to predicted changes in environmental conditions due to 

climate change. 

Role of Mycorrhizal Fungi on Stress Tolerance in Plants and Invasions- 

Vesicular arbuscular mycorrhizal (VAM) fungi are ubiquitous in terrestrial (Smith and 

Read 1997) and wetland (Rickerl et al. 1994) ecosystems. VAM fungi form symbiotic 

associations with plants and could potentially influence ecosystem processes (Wardle 2002, 

Klironomos et al. 2011). VAM fungi are important in mineral nutrient uptake, particularly the 

phosphorus which is not readily available for plants (George et al. 1995, Smith and Read 1997). 
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Increased nutrition uptake may increase fitness in plants (Barea et al. 2002). Another potential 

benefit of VAM association is improved stress tolerance of host plants (Giri et al. 2007, 

Abbaspour et al. 2012). In a glasshouse experiment, Abbaspour et al. (2012) reported improved 

drought tolerance in mycorrhizal Pistacia vera vs. non-mycorrhizal seedlings due to enhanced 

phosphorus uptake and other physiological responses. Furthermore, Giri et al. (2007) found 

improved salinity tolerance in mycorrhizal seedling of Acacia nilotica seedlings related to 

increased phosphorus uptake.  

Global change and extreme climate events are likely to drive changes in local 

microclimates, increased abiotic stresses, such as water and temperature stress (Allen et al. 

2010), salinity and flooding stress (Williams et al. 1999a), and produce significant effects in 

plant communities. In a recent review paper Allen et al. (2010) reported a significant increase in 

tree mortality around the world from drought and heat stress. It was also found that the increased 

salinity can have significant negative effects on native and invasive plant species in coastal areas 

(Kuhn and Zedler 1997). Given the expected widespread effects of extreme events, positive 

benefits from VAM to host plants, which potentially increase stress tolerance, will be significant 

in responding to environmental stresses. Invasive species occupying newly disturbed habitats are 

capable of tolerating environmental stress better than some of the native species (Richards et al. 

2008, Walls 2010). Additionally, invasive plant species may receive stronger positive feedback 

through VAM mutualism (Marler et al. 1999a, Callaway and Ridenour 2004, Nijjer et al. 2008) 

and acquired higher VAM colonization compared to native species (Marler et al. 1999b, Nijjer et 

al. 2008). Higher VAM colonization and stronger positive feedbacks may provide invasive plant 

species a competitive advantage over native counterparts, with enhanced tolerance to 

environmental stresses. 
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Plant Species Responses to Environmental Changes- 

 With the predicted increase in extreme climate events (e.g., hurricanes, wind storms, 

drought, flooding, etc.) (Meehl et al. 2007, Vermeer and Rahmstorf 2009, Mousavi et al. 2011), 

the populations of species and structure of communities will be affected in many geographical 

regions (Thuiller 2007). There is no doubt that several plants and animal species are already 

responding to recent climate change (Parmesan et al. 1999, Parmesan 2006); the responses 

however, differ between species and functional groups (Klanderud 2008, Sheppard et al. 2012). 

Greater understanding of species responses to climate extremes and altered environmental 

conditions is therefore needed to predict structure and community assemblages and futuristic 

conservation priorities in order to minimize potential biodiversity loss due to invasions. 

Parmesan et al. (1999) reported poleward shifts of non-migratory butterfly species attributed to 

regional climate warming. Increased distribution ranges of dominant plant species along 

elevation gradients due to regional warming have been reported from Southern California’s 

Mountains (Kelly and Goulden 2008). Furthermore, 3-fold increases in woody shrub density in 

the Sonora Desert of the southeastern US have been attributed to regional climate change (Brown 

et al. 1997). Further, plant species that responded positively to climate change by advancing their 

phenology (e.g., early bud break, and flowering) were more likely to increase their performance 

(increase percent cover, biomass, individual growth, and flower numbers) (Cleland et al. 2012).  

 Recent studies provide evidence for the positive responses of exotic invasive plant 

species to climate change (Cleverly et al. 1997, Ziska 2003, Dukes et al. 2011), but see Bradley 

et al. (2009) and Sheppard et al. (2012). Cleverly et al. (1997) studied drought tolerance and 

invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain and they found that T. 
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ramosissima outperformed other three co-occurring native species under extended drought 

conditions. They concluded that the greater dominance of T. ramosissima will be possible under 

extreme drought events that are predicted for the region. Smith et al. (2000) found a higher 

aboveground biomass and seed production of annual invasive grass Bromus madritensis than 

native annual species under elevated CO2 conditions in an arid ecosystem of western US. Ziska 

(2003) grew six invasive plant species, which are widely considered to be among the most 

invasive species in the continental United States, at three different levels of CO2 concentrations, 

corresponding to past, current, and future (IPCC 2001 projections) concentrations. She reported a 

significant increase in performance of those species (e.g., plant biomass) with elevated CO2 

concentration. More recently, He et al. (2012) conducted an experiment and compared 

performance of the invasive Eupatorium adenophorum and a native congener E. chinense under 

artificial warming. They found that the invasive Eupatorium outperformed native Eupatorium in 

all ecological measurements they conducted, suggesting that a warmer world would likely be 

friendlier to some exotic invasives than native species. Dukes et al. (2011) reported increased 

growth of an invasive Centaurea solstitialis compared to resident species in response to elevated 

CO2 in California, USA.  

 In general, invasive species might be expected to respond positively to climate change 

because of their greater physiological and morphological plasticity to tolerate a wide range of 

climatic and environmental conditions compared to native and non-invasive species (Daehler 

2003, Richards et al. 2006, Davidson et al. 2011). It has also been suggested that the species with 

greater phenotypic plasticity may have greater capacity to tolerate changing environmental 

conditions (Ghalambor et al. 2007). When invasive species demonstrate greater phenotypic 

plasticity than non-invasive species (Richards et al. 2006, Davidson et al. 2011), such plasticity 
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also increases their fitness (Davidson et al. 2011). There are several other reasons why invasive 

species respond positively to environmental changes. Exotic invasive species in new locations 

are already released from their natural enemies and pathogens (above- and/or below-ground) 

(Keane and Crawley 2002). In addition, they may exploit additional resource opportunities and 

devote more resources to growth and reproduction (Daehler 2003) as native species are 

struggling to cope with natural enemies, increased competition, and environmental changes. 

Finally, invasive species that receive stronger positive feedbacks than natives, i.e., enhanced 

mutualism (Reinhart and Callaway 2006), from mycorrhizal fungi may gain a competitive 

advantage if stress tolerance is improved with of increased uptake of limited nutrients (Reinhart 

and Callaway 2006).   

 The small number of available studies that have examined the response of native and 

invasive species to altered environmental conditions was predominantly focused on these 

species’ growth responses to elevated CO2, changes in precipitation gradient, and temperature 

(Dukes 2002, Ziska 2003, He et al. 2012). Limited data are available, however, on potential 

responses of invasive and co-occurring native species to other environmental changes triggered 

by accelerated sea level rise and intensification of tropical storms along low-lying coastal 

ecosystems. Conner et al (1997) investigated the effects of saltwater flooding on growth and 

survival of an invasive Triadica sebifera and three co-occurring native species of forested 

wetlands of coastal Louisiana and demonstrated that species were differentially affected by flood 

and salt stress. From these results, they concluded that the differential stress tolerance of native 

and invasive species may cause shifts in species composition. More recently, Howard (2012) 

found improved regeneration and dominance of the invasive Triadica sebifera after flooding 

from Hurricane Katrina in 2005 in coastal bottomland hardwood forests of Louisiana. He also 
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reported a decreased survival and regeneration of some of the native species (e.g., Ilex vomitoria) 

in this system.  

 Given the ambiguities regarding the responses of invasive and co-occurring native 

species to intense hurricane disturbances and sea level rise, further research is needed to examine 

these species responses under altered environmental conditions in order to fully understand the 

directions and community dynamics of these low-lying coastal ecosystems in response to 

environmental changes. To my knowledge, there do not appear to be any previous studies 

documenting responses of invasive and co-occurring native species, growing in different 

locations along coastal transitions, to predicted environmental changes (e.g., elevated salinity, 

increase storm water flooding, canopy damage etc.). Since, a large portion of the present day 

human population relies on coastal ecosystems for numerous goods and services (Martinez et al. 

2007), a better understanding of plant species’ responses to environmental changes can lead to 

appropriate management goals and planning for the future for these critical marine – terrestrial 

ecotonal ecosystems already experiencing effects of climate change. 

Coastal Ecosystems of the Southeastern United States and Triadica sebifera Invasion- 

 In the southeastern United States (US), one of the highly invasive plants is Triadica 

sebifera, commonly called Chinese tallow. This species occurs in great abundance in many 

coastal ecosystems of the southeastern US, especially in low and flat lands, abandoned fields, 

pastures, degraded areas, roadways, and forests. Triadica sebifera is a small- to medium-sized 

subtropical, deciduous, monoecious tree in the family Euphorbiaceae and was introduced into the 

US for ornamental purposes in the late 18
th

 century from east Asia (Randall and Marinelli 1996), 

and has been naturalized across the southeastern USA (Jubinsky and Anderson 1996, Bruce et al. 
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1997). Triadica sebifera is highly shade tolerant and capable of invading different habitats 

ranging from swampy areas, flooded areas, floating marsh, and moderate level salt water to 

upland forested areas (Jones and McLeod 1989, Jubinsky and Anderson 1996, Conner et al. 

1997, Battaglia et al. 2009). This species has tremendous reproductive potential and can reach in 

reproductive stage within its first year (pers. comm. with JB Grace), and a mature tree annually 

produces up to 100,000 seeds (Jubinsky and Anderson 1996). Seeds are readily dispersed by 

native migratory birds (Renne et al. 2002). This is an aggressive invader and once established, it 

has the capacity to reduce native diversity by displacing native species (Bruce et al. 1995).  

There is ample research that describes the Triadica sebifera invasion throughout the 

southeastern US (Bruce 1993, Bruce et al. 1995, Rogers and Siemann 2003, Rogers et al. 2003, 

Battaglia et al. 2009, Gan et al. 2009). Furthermore, increased recruitment of this species after 

hurricane wind disturbances was recently been reported from coastal Louisiana (Chapman et al. 

2008). Recently, it was also projected that, under increased temperature and precipitation, 

Triadica sebifera will expand its population further inland beyond its current distribution range 

(Pattison and Mack 2008). Noticeably missing, however, are the field observational studies that 

describe the effects of two important components of climate change, sea level rise and increased 

intensity of hurricanes on distribution of Triadica sebifera in conjunction with co-occurring 

native species along the coastal transitions. Also, limited information is available on the 

environmental (e.g., salinity, shade, and light) tolerance of this species along the transitions. 

Additionally, we are lacking experimental studies that test the responses of Triadica sebifera and 

co-occurring native species to predicted environmental changes (e.g., elevated salinity, storm 

sure, and tree canopy damage) from 21
st
 century sea level rise and hurricane events. 

Understanding responses of Triadica sebifera and co-occurring native species to future 
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environmental changes can provide important insights into this aggressive invaders’ invasive 

capacity in the forests of the Southeastern US already experiencing the effects of climate change. 

For the purpose of this study, I used Triadica sebifera as a model invasive species and selected 

three native species; Baccharis halimifolia, Ilex vomitoria, and Morella cerifera, that are 

common in the Atlantic and Gulf Coastal Plains and commonly share similar habitats with 

Triadica sebifera. A general description of these species is given in Chapter 2.  

This dissertation thus aims to advance understanding of the Triadica sebifera invasion 

under disturbed and changing environmental conditions across forests of the southeastern US, 

and may inform land managers for developing future management plans in order to curb further 

expansion of this aggressive invader. In my first data chapter, I assessed the distribution of 

Triadica sebifera and selected native species along a typical coastal transition at Grand Bay 

National Estuarine Research Reserve (GBNERR), coastal Mississippi (for detailed description of 

the study area, see chapter 2). I tested species distribution range along the coastal transition by 

relating species’ probability of occurrence to various environmental variables. In the Chapter 3, 

by using growth chamber and greenhouse experiments, I tested the effects of elevated salinity  

predicted with sea level rise on initial recruitment (germination) of the invasive Triadica sebifera 

and two native species, Baccharis halimifolia and Morella cerifera in soils representing different 

habitats along the coastal transition. In Chapter 4, I manipulated two important variables of 

intense hurricane disturbance (i.e., canopy damage and storm surge) and monitored growth 

response of target species (the invasive Triadica sebifera and two native Baccharis halimifolia 

and Morella cerifera) for two growing seasons in order to test potential effects of predicted 

intense hurricane disturbances. Finally (chapter 5), I studied mycorrhizae dependency of the 

invasive Triadica sebifera and two native species, Baccharis halimifolia and Morella cerifera on 
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their establishment and growth and the role of mycorrhizae in stress tolerance and survival under 

increased salinity from hurricane generated storm surge.   
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CHAPTER 2 

ABIOTIC CONSTRAINTS ON JUVENILE OCCURRENCE OF INVASIVE AND NATIVE 

PLANT SPECIES: IMPLICATIONS FOR FUTURE DISTRIBUTIONS WITH CLIMATE 

CHANGE 

ABSTRACT 

Understanding relationships between natural distribution patterns of species and their 

surrounding environment provides a basis for forecasting how species will respond to future 

environmental changes. However, the relative importance of surrounding physical environments 

in determining the invasibility of habitats to exotic species is not well understood, particularly 

across the range of habitats in coastal wetlands. The goal of this study was to assess the 

probability of occurrence of juveniles of invasive species Triadica sebifera and three native 

species, Baccharis halimifolia, Ilex vomitoria, and Morella cerifera with respect to 

environmental factors, and then use the occurrence models to predict habitat invasibility under 

future environmental changes. The occurrence of I. vomitoria and M. cerifera and the invasive T. 

sebifera sharply decreased with increased salinity. In contrast, B. halimifolia occurrence did not 

decrease until salinity happened to be really high. The occurrence of T. sebifera was significantly 

associated with landscape structures. Given the observed pattern of native and invasive species 

occurrences, I predict that future increases in salinity will negatively impact I. vomitoria, M. 

cerifera, and T. sebifera, leading to range contraction of these species away from the coast. 

However, I suggest the natural (e.g., canopy damage) and anthropogenic disturbances (e.g., 

construction, fragmentation, recreational activities etc.) may offset the effects of salinity stress 

by increasing resources, propagule dispersal, and possibly increase community vulnerability to T. 
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sebifera invasion. If the current occurrence pattern of T. sebifera juveniles is inferred as its 

invasive potential, predicted shifts in disturbance regimes are likely to increase the dominance of 

this invader in already invaded areas and promote new invasions in forestlands of the 

southeastern USA.  

INTRODUCTION 

Disturbances are key processes that can drive changes in the community structure by 

creating regeneration opportunities for disturbance tolerant species (Hobbs 1989, Hobbs and 

Huenneke 1992). Climate change may alter the frequency and intensity of disturbances (Dale et 

al. 2001, IPCC 2007a) and increase ecosystem vulnerability to the proliferation of invasive 

species (Dukes and Mooney 1999, Burgiel and Muir 2010), particularly those with high rates of 

fecundity and dispersal (Thuiller et al. 2007). Furthermore, disturbances can create novel 

environments by generating new resource opportunities, enemy reduction, and expansion of 

empty spaces (Mack et al. 2000). Once established, alien invaders can outcompete native species 

(Bruce et al. 1995, Daehler 2003) and cause a significant decrease in ecosystem services 

(Williamson 1996, Zavaleta 2000). 

Low-lying coastal wetland ecosystems along the northern Gulf of Mexico and Atlantic 

coasts are highly vulnerable to sea level rise and tropical storms (IPCC 2007a, Titus et al. 2009). 

Intense tropical storms produce strong winds that cause substantial damage to forest canopy by 

toppling trees, snapping branches, and defoliation (Bellingham et al. 1995, Michener et al. 1997, 

Chambers et al. 2007). Windstorm damage in forest stands increase canopy gaps, which enhance 

light availability to lower strata, and greatly change the micro-environmental conditions 

(Bellingham et al. 1996, Battaglia et al. 1999). Increased light availability, altered micro-
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environmental conditions (e.g., temperature and moisture), and new resource opportunities likely 

enhance the proliferation of exotic invasive species (Davis et al. 2000, Parendes and Jones 2000, 

Laurance and Curran 2008). In addition, intense tropical storms deliver saltwater farther inland 

than usual through storm surges and salt spray (Moorhead and Brinson 1995), which may have 

stronger negative impacts on more inland plant communities that are not adapted to saline 

conditions (Tate and Battaglia 2012). Storm surges also alter soil substrates through erosion and 

sedimentation, which may drive changes in the distributions of coastal species (Williams et al. 

1999b). Predicted acceleration of sea level rise (Meier et al. 2007, Rahmstorf 2007) and 

increased intensity of hurricanes (Bender et al. 2010) will likely exacerbate the environmental 

changes, leading to long-term shifts in coastal plant assemblages (Scavia et al. 2002, Hopkinson 

et al. 2008). 

Coastal and estuarine ecosystems are one of the highly invaded ecosystems, assisted in part 

by anthropogenic activities that transport invasive species, and large scale natural and 

anthropogenic disturbances (Cohen and Carlton 1998). For instance, urbanization and 

anthropogenic nutrient have been shown to increase Phragmites australis invasion on New 

England salt marshes (Silliman and Bertness 2004). Following natural hurricane disturbance 

(hurricane Andrew in 1992), non-native vines expanded rapidely after wind-driven canopy loss 

and inhibited regeneration of native species in Florida (Horvitz et al. 1999).  In Pearl River basin 

in Louisiana, an improved regeneration of invasive Triadica sebifera (Chapman et al. 2008) and 

invasive Rubus sp. (Brown et al. 2011) was observed following canopy loss from Hurricane 

Katrina in 2005. Since its introduction, one of the highly aggressive invasive species, Triadica 

sebifera (L.), has been spreading rapidly in various coastal plant communities, such as coastal 

prairie (Bruce et al. 1995), floating marsh (Battaglia et al. 2009), and forested wetlands (Gan et 
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al. 2009, Wang et al. 2011). Widespread invasion of Triadica sebifera is producing damaging 

impacts  on native plant (Bruce et al. 1997) and fauna communities (Pattison and Mack 2008). 

Although, it has already been more than a decade since Triadica sebifera was listed among the 

“least wanted intruders” in United States (Flack and Furlow 1996), studies that link juvenile 

distribution and habitat preferences are rare.  

The physical environmental features play an important role in community invasibility 

(Holway et al. 2002, Shea and Chesson 2002). It has been suggested that extreme physical 

environments may act as a barrier on invasions (Richardson et al. 2000b). Studies have suggested 

that low nutrient availability and drought often reduce habitat invasibility (Alpert et al. 2000). 

Conversely, extreme disturbance events such as windstorms and floods may increase prevalence 

of invasive species by increasing dispersal and creating resource-rich novel environmental 

conditions (Diez et al. 2012). These conditions may favor the established and dominance of 

exotic invasives, which in some cases may outcompete resident species (Bruce et al. 1995; Mack 

et al. 2000; Bradley et al. 2010). In addition, certain landscape structures (roads, water bodies, 

power lines, abandoned fields, and recreation sites) may play a critical role in the spread and 

establishment of invasive species (Bradley and Mustard 2006; von der Lippe and Kowarik 2007; 

Flory and Clay 2009; Gan et al. 2009). These landscape structures constitute the major dispersal 

corridors for invasive plants into the natural areas. Roads and water bodies serve the obstruction-

free paths for seed dispersal by birds and water (Parendes and Jones 2000) while power lines and 

forest edges may serve as important perch and nesting sites for birds.  

Some invasive species that exhibit phenotypic and plasticity and may overcome various 

physical barriers and ultimately prevail (Richards et al. 2006). The invasibility of habitats and 



23 

governing factors (i.e., either promoters or barriers) that influence the invasive Triadica sebifera, 

or other invasive species, in early life stages needs to be examined particularly in regions where 

the abiotic environment is changing on a regular basis due to the effects of climate change, such 

as low-lying coastal areas of the southeastern USA. However, effects of environmental factors, 

natural and anthropogenic disturbances and landscape structures on the juvenile occurrence of T. 

sebifera and co-occurring native species in the coastal transition ecosystems of the southeastern 

USA have not been evaluated.  

The seedling regeneration stage is important for plant establishment (Grubb 1977) due to 

their greater sensitivity to environmental stress (Harper 1977). Once the seedlings or juveniles 

survive under particular environments, they grow and gradually gain adult traits typical of higher 

stress tolerance (Rey and Alcantara 2000). The successful juvenile establishment often shape the 

spatial dynamics of recruitment of plant species and may determine the succession and future 

trajectories of communities (Rey and Alcantara 2000). Thus, relating species’ distributions to 

environmental predictors is important for determining the ranges and suitable habitats for the 

persistence of species in the landscape (Araujo and Williams 2000). This information can also be 

used to identify potential sites at risk of new invasions in order to adopt appropriate monitoring 

and control measures (Thuiller et al. 2005). Here, I examined the role of physical factors (light, 

salinity, and soil characters) and landscape structures (roads, trials, power lines, abandoned 

fields, human settlements, water bodies etc.) to assess probability of juveniles occurrence of the 

aggressive invader, Triadica sebifera, and common co-occurring native species in a typical 

coastal transition of southeastern USA. By examining invasive and native species distributions to 

surrounding environmental conditions, we can learn more about community susceptibility to 
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invasions and predict future community assembly in the face of changing environmental 

conditions.  

The objectives in this study were (i) to use the field distributions of juveniles of the target 

species to estimate their probability of occurrence with respect to various environmental factors 

and landscape features and (ii) to use occurrence models to predict the potential effects of 

predicted shifts of disturbance regimes (e.g., increase intensity of tropical storms, and sea level 

rise) on future distribution patterns of these species in the coastal ecosystems of southeastern 

USA. 

MATERIALS AND METHODS 

Study Area- 

The study was carried out in the Grand Bay National Estuarine Research Reserve 

(GBNERR) in coastal Mississippi on the northern coast of the Gulf of Mexico. The reserve, 

which was established in 1999, is located in southeast Mississippi between Pascagoula and the 

Alabama state line (30
○
21′23″ N and 88

○
27′46″ West, Figure 2.1), and occupies 7,446 hectares 

of land. The warm and humid-temperate climate of the region is characterized by long growing 

seasons (Otvos 2007). 

Coastal Mississippi has been frequently impacted by hurricane disturbances (Peterson et al. 

2007). Intense hurricanes disturb the existing vegetation and soils and deliver enormous storm 

surges that inundate vast coastal areas. For example, Hurricane Katrina inundated the entire 

portion of GBNERR with a storm surge that was up to 8 meter high, and the storm surge 

remained for several days (Peterson et al. 2007). High winds from Katrina produced canopy gaps 
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in interior forests. The GBNERR lies within the gently sloping lower Gulf Coastal Plain and 

forms one of the most biologically diverse and productive estuarine ecosystems on the Gulf of 

Mexico (Hilbert 2006, NOAA 2007). The reserve supports various coastal wetland plant 

communities shaped by the environments of the northern Gulf of Mexico (Peterson et al. 2007). 

Tidal activities, hydrology, elevation, and salinity are the major environmental factors that 

determine the different plant communities in these northern Gulf Coast ecosystems (Peterson et 

al. 2007). Tidal communities of salt and brackish marshes dominate at the seaward end of the 

gradient and slowly grade into freshwater marshes, maritime forests, cypress swamps, mixed 

hardwood forests, wet pine flatwoods, pitcher plant bogs, and pine savannahs toward the 

landward end of the transition. 

Within the reserve a permanent transect (11.3 km long) was established in the reserve in 

2007 to study the effect of natural disturbances (e.g., tropical storms and sea level rise) and 

altered environmental conditions (e.g., hydrology and salinity) on estuarine-upland transitions 

(Figure 2.1). The transect, oriented north-south, starts at the marine-terrestrial interface along the 

Gulf Coast and ends in pine savannah; it was used as a reference for this study. The transect 

encompasses a typical coastal transition supporting various aforementioned plant communities 

with gradients of elevation (Figure 2.2), salinity measured as soil water conductivity (Figure 

2.3), flooding, and soil properties.  

Target Species- 

I chose three native species, Baccharis halimifolia L. (Asteraceae), Ilex vomitoria Aiton 

(Aquifoliaceae), Morella cerifera L. (Small) (Myricaceae), and the invasive species Triadica 

sebifera L. (Small) (Euphorbiaceae) for this study. All of these species co-occur in various 
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wetland habitats along the northern Gulf of Mexico coast (Bruce et al. 1995, Wall and Darwin 

1999, Battaglia et al. 2009). 

Baccharis halimifolia-  

Baccharis halimifolia is a native, multi-branching deciduous, perennial understory shrub 

which occurs along the Atlantic and Gulf coasts of North America. This species is most 

commonly found on the southeastern coastal plains (Duncan et al. 1957). It grows in moist soil 

having high organic matter, such as open forests, beaches, swamps, wet prairie, and fresh water 

marshes (Penfound and Hathaway 1938, Duncan et al. 1957). Because of high salinity tolerance 

(Moon and Stiling 2004), it also occurs along the fringe of brackish marshes (Penfound and 

Hathaway 1938, Duncan et al. 1957). It is shade intolerant species and produces wind dispersed 

seeds. 

Ilex vomitoria-  

Ilex vomitoria is an evergreen shrub native to coastal forests along the Gulf and Atlantic 

Coastal Plains of the United States. This species is found in maritime forests, upland woodland, 

wet-woodlands, floodplains, and non-tidal forested wetlands with well-drained sandy soils 

(Godfrey 1988). Ilex vomitoria fruits are a good source of food for many native and migratory 

birds and fruits remain on the tree until late fall to early spring. The species grows well in sunny 

sites as well as under shaded conditions (Chambless and Nixon 1975). 

Morella cerifera-  
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Morella cerifera is an evergreen nitrogen-fixing shrub native to coastal plains of the 

southeastern US, which is said to be shade intolerant and moderately salt tolerant (Duncan and 

Duncan 1987, Tolliver et al. 1997). Morella cerifera is an early successional species in 

southeastern coastal regions (Young et al. 1995). In floating freshwater marshes of coastal 

Louisiana, this species has been shown to have facilitative effects on initial recruitment of 

invasive T. sebifera (Battaglia et al. 2009). 

Triadica sebifera-  

Triadica sebifera is a fast growing deciduous tree that has invaded many southeastern 

coastal plant communities. Triadica sebifera exhibits many traits associated with successful 

invaders, such as fast growth rate (Bruce et al. 1997), effective seed dispersal by birds (Renne et 

al. 2000, Renne et al. 2002), and a wide range of tolerance to environmental conditions (e.g. soil 

salinity, flooding, and shade) (Conner and Askew 1993, Jubinsky and Anderson 1996, 

Barrilleaux and Grace 2000). It has a high reproductive potential and may reach reproductive age 

within its first year (pers. comm. with JB Grace). The species appears to be an aggressive invader 

and causes large-scale ecosystem modification by displacing native plant species and forming 

monospecific T. sebifera woodland (Bruce et al. 1995, Jubinsky and Anderson 1996). 

Sampling Method- 

An observational study was carried out along the entire transect (except a section 

from7300 m to 8200 m due to private landowner inholdings) in May-August, 2008. Preliminary 

field observation showed that no woody plant species were present in the first 4.5 km section of 

the transect. Thus, only soil samples and canopy photo were taken in that section at 100 m 



28 

intervals. For the remaining portion of the transect, which was predominantly forested, presence 

or absence of focal species and quantification of environmental variables were assessed at 25 m 

intervals. This differential sampling was implemented due to a marked difference in vegetation 

composition.  

We established a random point, 12 m away from each reference point, on the transect in 

either an east or west direction randomly. A juvenile (≤ 1.5 m height) of each target species, 

when present, was located in the opposite direction, between 1- 12 m of the reference point. 

When more than one juvenile of focal species was encountered, we identified the nearest one 

from the reference point. At each random point, we recorded the presence/absence of juveniles of 

the focal species and quantified the canopy openness by taking hemispherical photographs at a 

height of 1.5 m immediately above the point. Similarly, at each juvenile location, we recorded 

the presence of the juvenile and quantified canopy openness over each juvenile at a height of 1.5 

m. Soil samples of the top 30 cm were also taken at each random point and juvenile locations 

using a 2 cm diameter soil corer. Additionally, we recorded landscape structures (roads, trails, 

railroads, power lines, water bodies, and recreational sites) during the survey. We assigned the 

presence of the aforementioned landscape structures in each random point and juvenile locations 

within 50 m of the identified structures. During data analysis, we combined all the identified 

structures as a single landscape variable. 

Soil Analysis and Canopy Openness Determination- 

Soil samples were used to measure soil salinity, soil texture, and carbon/nitrogen. All the 

soil samples were air dried, pulverized and sieved with a mesh size of 2.0 mm and oven-dried at 

55
○
C. Soil salinity was determined by measuring the electrical conductivity (EC) (electrical 
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conductivity is directly proportional to salinity) using a conductivity meter (EcoSense EC300; 

YSI Inc., Yellow Springs, Ohio, USA) following slight modification to the procedure describe in 

Methods of Soil Analysis (Rhoades 1996). Soil texture (contents of sand, silt, and clay) was 

determined by using the hydrometer method (Sheldrick and Wang 1993). A small subsample 

(7g) of soil was dried at 55
○
C, ball-milled to a fine powder to determine % C and % N using a 

Thermo Flash 1112 CN Analyzer (Thermo Corp, New Jersey). Canopy photographs were used to 

estimate canopy openness, a function of canopy disturbance. I used a digital camera and fisheye 

lens (Nikon Coolpix 4500) to take a photograph of the canopy from 1.5 m above the ground. 

Each image was imported into Gap Light Analyzer (GLA), a software program for quantifying 

canopy openness (Frazer et al. 1999). These data were used to determine the probability of 

occurrence of the target species along the coastal transition at Grand Bay. 

Statistical Analysis- 

Probability of occurrence of invasive T. sebifera and the native plant species at particular 

sampling points, based on that point’s characteristics, was evaluated by using logistic regression 

(PROC GENMOD in SAS) (Allison 1999). Since the data are binary (presence/absence), I used 

generalized linear models (GLM) for all logistic regression analyses. Predictor variables for 

inclusion in the logistic model were: distance to coast, soil water conductivity, percent canopy 

openness, percent sand, percent silt, percent clay of soil, soil C/N, and landscape features. Before 

the logistic models were developed with the measured environmental variables, I evaluated the 

probability of occurrence of target species in relation to distance from the coast. Logistic 

regression models were constructed for each variable separately and the two variables (soil water 

conductivity and canopy openness) combined. In the process of logistic model development, I 
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first fit target species presence to each predictor variable itself and then combined two factors 

(soil water conductivity and canopy openness) into more complex models. I compared these 

combined models to each of the simpler one-factor models. Finally, I added an interaction term 

(soil water conductivity × canopy openness) to determine the fit of the more complex model. If 

the fit of the model was significantly improved (a significant reduction in the change in 

deviance) compared to single-factor and combined models, I retained the interaction terms into 

the final model. A simple single factor (i.e., soil water conductivity) model was required to 

explain the probability of occurrences for I. vomitoria but interactions (soil water conductivity × 

canopy openness) models were required to improve the predictive ability of the models for B. 

halimifolia, M. cerifera, and T. sebifera (Table 2.1). Since some of the logistic models are based 

on a logit transformation, the output was back-transformed to generate separate response curves 

for each species. A chi-square test was performed to evaluate the association between the 

probability of occurrence of species and landscape structures by using Contingency Table 

Analysis. Logistic regression models and Contingency Table Analyses were run with SAS 

version 9.2 (SAS 2008), and model significance of the variable was compared to the appropriate 

critical χ² value at the α = 0.05 level. 

RESULTS 

Based on the measurements taken at random and tree points along the transect, a wide 

range of soil water conductivity, canopy openness, soil texture and carbon nitrogen ratios were 

found. Soil water conductivity ranged from 0.0154 to 18.460 mS/cm. While salinity levels 

frequently change across the coastal transitions, these measurements were a snapshot of soil 

water conductivity prior to Hurricanes Gustav and Ike in 2008. Soil water conductivity was 
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higher towards the coast and progressively decreased with distance from the coast (Figure 2.3). 

The soil texture differed along the transect with soil sand content decreased and clay content 

increased along the transect from the coast to inland (Figure 2.4). Among the target species, none 

of the species occurred in the first 4500 m of the transect, which was essentially brackish marsh 

habitat.  

Distance to coast strongly affected the probability of occurrence of species (logistic 

regression: B. halimifolia, DF = 1, Wald χ
2
 = 10.18, P = 0.0014; I. vomitoria, DF = 1, χ

2
 = 27.92, 

P = < 0.001; M. cerifera, DF = 1, χ
2
 = 22.45, P = < 0.001; T. sebifera, DF = 1, χ

2
 = 4.09, P = 

0.043). None of the species occurred in the first 4500 m of the transect, which was essentially 

salt and brackish marsh habitat. Baccharis halimifolia and T. sebifera were absent in most inland 

portion of the transect (Figure 2.5a and 2.5b, respectively). In contrast, I. vomitoria and M. 

cerifera were encountered more frequently throughout the forested portion (i.e., 4.5 to 11.3 km) 

of the transect (Figure 2.5c and 2.5d, respectively). 

Probability of occurrence of B. halimifolia was significantly influenced by an interaction 

effect of soil water conductivity and canopy openness (Table 2.1). Its occurrence increased under 

some degree of salinity and wide range of canopy openness but decreased with low salinity and 

high canopy openness (Figure 2.6a). Probability of occurrence of B. halimifolia significantly 

increased with percentage increase of sand and decrease of silt (Figure 2.7a and 2.7b, 

respectively and Table 2.2). Probability of occurrence of I. vomitoria was significantly reduced 

in areas with high soil salinity but invariant with canopy openness. Measured soil characteristics 

were not predictive of probability of occurrence of I. vomitoria (P > 0.05). The probability of 

occurrence of M. cerifera peaked at the lower level of soil water conductivity with low to high 
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levels of canopy openness (Figure 2.6b). The response surface of the species was based on a 

monotonic response of soil water conductivity and the interaction between soil water 

conductivity and canopy openness (Figure 2.6b). I did not find significant effects of other 

environmental factors on the occurrence of M. cerifera.  

The probability of occurrence of T. sebifera showed a monotonic response to soil water 

conductivity and percent canopy openness, as well as an interaction between these two factors 

(Table 2.1). The probability of occurrence peaked towards the lower salinity level with low 

canopy openness (Figure 2.6c). Measured soil characteristics were not predictive of probability 

of occurrence of T. sebifera. 

I did not find a significant association between probability of occurrence of B. halimifolia 

and landscape structure, χ
2
 (1, N= 320) = 0.05, P = 0.47. Similarly, landscape structure was not 

predictive of probability of occurrence of M. cerifera, χ
2
 (1, N= 450) = 0.26, P = 0.60. In 

contrast, I found an association between probability of occurrence and landscape structure for 

both I. vomitoria (χ
2
 (1, N= 339) = 6.63, P = 0.01) and T. sebifera (χ

2
 (1, N= 332) = 49.17, P < 

0.0001). Probability of occurrence of both the species was grater with the presence of landscape 

structure. 

DISCUSSION 

In this study, I examined the probability of occurrence of the juveniles of invasive T. 

sebifera and native B. halimifolia, I. vomitoria, and M. cerifera in relation to surrounding 

physical environments along a typical coastal transition in the southeastern USA. I found that 

juvenile distribution of the invasive T. sebifera was patchy, but significantly associated with 
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landscape features. Likewise, B. halimifolia distribution was patchy and with higher probabilities 

of occurrence under wide range of canopy openness and moderate level of salinity. However, 

juveniles of I. vomitoria and M. cerifera were found throughout the forested habitats in this study 

area. Ilex vomitoria occurrence was associated with landscape features. The distributional 

patterns of native and invasive species could be related mainly to spatial variation in soil water 

conductivity and landscape features including disturbances. These results underline the 

importance of abiotic factors in controlling plant species distributions along coastal gradients 

(Crain et al. 2004). Except for B. halimifolia, which was present in salt pannes, the other target 

species had restricted distributions towards the seaward end of the transition. Plant communities 

at that end are dominated by open marshes which are exposed frequently to tidal flooding and 

higher salinity. Recurrent flooding with saline water and high salinity likely prevent the 

establishment of woody species as they have a more narrow tolerance range compared to 

halophytic grasses and sedges (Kozlowski 1997). Field transplant experiments have also 

demonstrated that these species were unable to establish in locations seaward of their present 

distributions (Chapter 5). 

Results indicated that B. halimifolia occurrence did not decrease until salinity levels 

reached 4 mS/cm, reflecting its salt tolerance capacity. These findings were not unexpected 

because B. halimifolia is reported to grow and withstand saline conditions in barrier island in 

Virginia (Young et al. 1994), coastal Florida (Moon and Stiling 2004), and marshes of coastal 

Mississippi (Eleuterius 1972). Results further demonstrated that B. halimifolia occurrence was 

highest between 4500 m and 6000 m (Figure 2.5a). This section of the transect is closer to the 

coast and likely to be wetter from tidal activities, suggesting that the probability of occurrence of 

B. halimifolia is associated with wetter habitat as reported previously in the southeastern 
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(Krischik and Denno 1990) and south-central (Ervin 2009) USA. However, B. halimifolia was 

absent from some of the pristine and nutrient poor habitats, likely due to its preference for more 

nutrient rich habitats (Sims-Chilton et al. 2010). The occurrence of I. vomitoria and M. cerifera 

appears to be significantly constrained by soil water conductivity. These results are consistent 

with previous findings in which these species were listed as the least salt tolerant in various 

coastal ecosystems. In an experimental study (chapter 3), I reported a greater negative effect of 

brackish marsh soils and elevated salinities on germination of M. cerifera compared to B. 

halimifolia and T. sebifera in coastal Mississippi. On Virginia barrier islands, M. cerifera 

showed a greater sensitivity to salinity compared to co-occurring B. halimifolia (Young et al. 

1994). Furthermore, I. vomitoria and M. cerifera species were reportedly growing in upland 

habitats with low salinity and minimal to no tidal influences (Martin and Mott 1997, Moon and 

Stiling 2004). 

The patchy nature of invasive T. sebifera occurrence along the coastal transition in this 

study provides support for abiotic constraints and propagule limitations (Grubb 1977) impeding 

juvenile establishment during the early stages of invasion. For any tree species to be able to 

dominate the forest canopy, it has to pass through important physical filters during its early life 

stage (e.g., seedlings or juveniles) (Beckage et al. 2000). Decreased probability of juvenile 

occurrence with increased soil water conductivity suggests that there is an important abiotic 

constraint operating across the sea-inland environmental gradient dictated by soil salinity that is 

likely to limit the seaward spread of T. sebifera in this study area. Although T. sebifera is 

moderately salt tolerant (Conner 1994), and can handle a modest duration of saltwater flooding 

than co-occurring native species (Howard 2012), my results suggest that the higher soil salinity, 

particularly at seaward habitats, likely limits the establishment of this species. These results are 
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consistent with the findings of Barrilleaux and Grace (2000) from a coastal prairie in Texas. 

They found significantly lower survival of transplanted T. sebifera seedlings at the saltier (higher 

electrical conductivity) end of the gradient.  

Some inland habitats (e.g., pine flatwoods and pine savanna) are also not currently invaded 

by T. sebifera, which may reflect insufficient numbers of viable seeds carried to the site (i.e. both 

dispersal and recruitment limitation) for that species to germinate and establish, or that the 

conditions are not suitable for seed germination and seedlings survival (for instance, disturbed 

and moist soil) (Grubb 1977). Most of the sites currently unoccupied by invasive T. sebifera are 

relatively pristine and remain dry for a longer duration. Since T. sebifera regeneration and 

successful seedling establishment are correlated with wet habitats (Neyland and Meyer 1997, 

Conner et al. 2002, Denslow and Battaglia 2002, Burns et al. 2004), it is possible that dry and 

less disturbed conditions limit its establishment. Given T. sebifera’s ability to germinate in 

various inland habitats including pine savanna (Pattison and Mack 2008, Chapter 3), I anticipate 

that propagule limitation is the primary constraint on its invasion in pine savanna. My prediction 

is consistent with an earlier study that reported Alliaria petiolata’s absence, but was able to 

germinate and establish itself within the experimental plots when seeds were sown into a field, in 

a hardwood forest in southeastern Ohio, USA (Meekins and McCarthy 2001).  

I found evidence that while physical features in the invaded habitats restrict the spread of 

invasive species in some habitats, natural and anthropogenic disturbances promote the invasions 

in others (Richardson et al. 2000b). Often these landscape structures, center of anthropogenic 

activities, are considered as disturbance features and linked to exotic invasion (Bradley and 

Mustard 2006). Increasing anthropogenic presence in and around roads, power lines, water 
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bodies, and recreation sites for road building, power line emplacement, and recreational activities 

increase the disturbance in the sites and promote new invasions through increase resource pulse 

and dispersal (Bradley and Mustard 2006). I found a significant positive relationship between 

landscape structures and T. sebifera occupancy. This is consistent with a previous study that 

reported a close association between landscape features (water bodies, roads, fire, timber harvest, 

etc.) and probability of T. sebifera occupancy in forestlands of southeastern USA (Gan et al. 

2009). In general, at their initial stage of establishment (T. sebifera is in the early stage of 

invasion  in this study area (Matlack 2002), invasive species occupy disturbance corridors such 

as roadsides, power-lines, and human settlements (Theoharides and Dukes 2007). Disturbance 

not only enhances resource availability (Davis et al. 2000) but also creates many open spaces for 

species to colonize through easy short distance dispersal in the early stages of invasion (Parendes 

and Jones 2000, Theoharides and Dukes 2007). For instance, Parendes and Jones (2000) 

encountered invasive plant species more frequently close to streams and active roads than farther 

away in the HJ Andrews experimental forest, Oregon, USA, which suggests that the higher 

resource (light) availability and dispersal via streamflow enhances invasion around roads and 

water bodies. In recent study (Gan et al. 2009) showed a positive relationship between T. 

sebifera occupancy and water bodies (rivers, streams, bayous etc.) in forestlands of coastal 

southeastern USA. Increased abundance of invasive plant species with anthropogenic 

disturbance, and decreased abundance with increasing distance to their source populations have 

also been reported in the forest on the Cape Peninsula, South Africa (Alston and Richardson 

2006). Using logistic models Giorgis and co-authors found the highest probability of occurrence 

of woody invasive species near established propagule sources, human settlements, and roads in a 

newly invaded region of central Argentina (Giorgis et al. 2011). Once established, invasive 
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species slowly make their way to more interior and pristine parts of the forest, aided by 

disturbance (Theoharides and Dukes 2007). In this study area, I observed some well- established 

T. sebifera populations in forest stands whose canopy had been damaged by Hurricane Katrina 

winds in 2005. Additionally, heavy concentrations of T. sebifera in and around ditches and water 

bodies may be related to easy dispersal of seeds through hydrochory (Bower et al. 2009) and 

subsequent germination and growth (Barrilleaux and Grace 2000) . Predicted increases in natural 

disturbances (shifts in tropical storm and inundation regimes) due to global warming (IPCC 

2007a) may favors invasive species by increase resource availability, widen regeneration 

opportunities, and enhance propogule dispersal (Diez et al. 2012). I anticipate that all of these 

factors, compounded with increasing anthropogenic movements that may act as a vehicle for 

short and long distance dispersal (von der Lippe and Kowarik 2007, von der Lippe et al. 2013), 

will promote encroachment of interior forests by invasive species, with concomitant threats to 

native plant diversity.  

Shifts in Disturbance Regimes and Species Distribution Patterns- 

Climate change-induced changes in environmental conditions are likely to affect the 

distributional ranges of species (Walther et al. 2002), including invasive species (Thuiller et al. 

2007), across many regions. With shifts in disturbance regimes (e.g., sea level rise and 

intensification of tropical storms), coastal ecosystems of southeastern USA will experience 

altered environmental conditions. Increased salt stress due to salt water intrusion will have 

greater negative impact on salt intolerant species (e.g., I. vomitoria and M. cerifera) including 

invasive T. sebifera. After the Hurricane Katrina storm surge flooding, significant mortality of I. 

vomitoria has been reported in leveed bottomland hardwood forests in Louisiana (Howard 2012). 
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However, a relatively salt tolerant species (e.g., B. halimifolia) may persist in situ until the sites 

become inhospitable. I anticipate that the current distributional ranges of salt intolerant native 

and invasive species will contract farther away from the coast in response to elevated salinity and 

possibly expand in less saline inland habitats. With respect to inland spread of species, landscape 

changes and physical disturbances (e.g., canopy damage, inundation, and soil erosion) are likely 

to determine future community trajectories (Dale et al. 2001). These events increase both 

environmental (resources, hydrology, and soil types) and biotic (habitat patches, species 

abundance, and competition) heterogeneity and may promote invasibility. For instance expansion 

of invasive species in salt stressed mangrove swamps was attributed to disturbance, in particular 

canopy damage and altered hydrology (Ewel 1986). Similarly, Silliman and Bertness reported 

that that anthropogenic disturbances and habitat alteration reduce abiotic stresses, increase 

nutrient loads, and facilitate Phragmites invasions in New England salt marshes (Silliman and 

Bertness 2004). Parallel with these arguments, I expect that tropical storms, compounded with 

anthropogenic disturbances, will expand regeneration sites, enhance light availability, add 

nutrients, and increase propagule dispersal of T. sebifera, ultimately leading to increases in many 

previously unoccupied forest lands throughout the southeastern USA. I expect that the expansion 

and dominance of T. sebifera beyond its current range will become an increasingly significant 

threat to the integrity of coastal ecosystems throughout the southeastern USA as the effects of 

climate change unfold. 

Shifting Storm Regimes and Future of T. sebifera Invasion- 

The general view is that hurricane disturbances enhance regeneration of plant species 

mainly through canopy gap formation (Horvitz et al. 1998, Bellingham et al. 2005, Chapman et 
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al. 2008, Murphy et al. 2008a). However, invasive plant species showed higher regeneration 

compared to native species in hurricane affected regions (Horvitz et al. 1998, Bellingham et al. 

2005, Chapman et al. 2008, Murphy et al. 2008a). Intense hurricanes winds could further 

increase habitat heterogeneity in forested ecosystems by creating larger canopy gaps which could 

support the spread of invasive species including T. sebifera (Horvitz et al. 1998, Bellingham et 

al. 2005, Chapman et al. 2008, Murphy et al. 2008a). Extreme events (e.g., hurricanes, flooding, 

windstorms, and storm surges) may also aid long and short distance dispersal of seeds and thus 

migration (Diez et al. 2012). It has recently been shown that cyclone Demonia was responsible 

for dispersing Parthnium hysterophorus over long distances, which later threatened agriculture 

production and wildlife habitat in Swaziland (Burgiel and Muir 2010). Like trails and roads 

(Sutton et al. 2007), canopy gaps formed along windstorm paths also act as obstruction-free 

paths for seed dispersal. T. sebifera produces large seed crops, which are readily dispersed by 

birds (Renne et al. 2000, Renne et al. 2001), and I expect a high proportion of T. sebifera seeds 

to be dispersed into canopy gaps and arrive in new sites. Previously, it was reported that a higher 

percentage of bird-dispersed seeds were dispersed in treefall gaps and from gap to gap but a low 

percentage in undisturbed forests (Hoppes 1988). Since T. sebifera had already begun invading 

several coastal plant communities, I anticipate further proliferation of this species along the 

coastal ecosystems as conditions become more conducive with disturbances. When exponential 

spread of exotic invasive species, after hurricane disturbance, continues to suppress native 

species growth (Horvitz et al. 1998), we may see novel coastal community assemblages in the 

near future.  
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CONCLUSIONS 

In conclusion, my results suggest that future increases in soil salinity will likely cause 

contractions of species’ distributions, including T. sebifera, at the seaward edges of their current 

distributions. However, I expect that natural and anthropogenic disturbances in conjunction with 

landscape structures in more inland areas will create new types of habitats in which native 

species may not perform as well as invasives (Chapter 3). In a germination study (chapter 3), T. 

sebifera exhibited greater phenotypic plasticity in germination with changing salinity in inland 

habitats. Plasticity in germination traits may increase the likelihood of seedling survival and 

establishment (Goode and Allen 2009), and some invasive species are likely to take advantage of 

disturbed conditions and quickly spread in the landscape. This study further allows us to identify 

potential sites that are under high risk of T. sebifera invasion not only in GBNERR, Mississippi 

but in coastal forested ecosystems throughout the southeast USA. The increased occurrence of T. 

sebifera juveniles in and around abandoned settlements, active roads, power lines, and water 

bodies suggests that new invasions in currently un-invaded areas and population explosions of 

juveniles in recently invaded areas are more likely to occur, leading to future dominance in the 

forest canopy. Knowing the areas for invasive species probabilities of persistence may help in 

identifying potential sites where restoration and mitigation processes should be targeted. It can 

be emphasize that natural disturbances continue to be important events in structuring coastal 

plant communities experiencing unprecedented exposure to invasive species. Differential 

occurrence patterns of native and invasive species to environmental factors may generate 

undesirable shifts in species assemblages, partly by increasing dominance of exotic invasive 

species and shifting ranges of native species. 
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Table 2.1. Logistic regression models of the probability occurrence of species in relation to soil 

water conductivity (COND) and canopy openness (CANOPY). 

Species Parameters of final model N Change in 

deviance
¶
 

Terms in simpler 

supported model (s) 

Baccharis 

halimifolia 

Logit P= -3.6501+ (0.5583*COND)+ 

(0.0272*CANOPY)  + (-

0.0063*(COND*CANOPY)) 

322 25.0976 COND, CANOPY  

Ilex vomitoria Logit P= -0.4187+(-0.0967*COND)+(-

0.0006*CANOPY)  

398 31.499 COND, CANOPY 

Morella cerifera Logit P= -0.8020 +(0.5583*COND) 

+(0.0105*CANOPY) + (-

0.0119*(COND*CANOPY)) 

448 38.634 COND, CANOPY 

Triadica sebifera Logit P= -0.7766+(0.5834*COND)+(-

0.0266*CANOPY) + (-

0.0105*(COND*CANOPY)) 

330 5.135 COND, CANOPY 

¶
Change in deviance is reported for comparison between the final supported model versus the 

simpler model supported by previous steps in the modeling. Reported changes in deviance were 

greater than the critical χ
2
 and significant at the P = 0.05.  
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Table 2.2. Results of logistic regression analysis of some of the environmental factors those are 

significant in influencing the probability of occurrence of B. halimifolia. 

Parameters DF Wald Chi-Square P > ChiSq 

Sand (%) 1 6.95 0.0084 

Silt (%) 1 7.44 0.0064 
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Figure 2.1. A location map of GBNERR (courtesy of the Mississippi Department of Marine 

Resources) showing 11.3 km long transect (dotted line), which was used as a reference line from 

which to sample. 
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Figure 2.2. Elevation gradient across ~12 Km transect established at GBNERR in 2007 (Battaglia and Platt unpublished).
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Figure 2.3. Soil water conductivity (salinity) from 2008 survey of 11.3-km research transect that 

stretches from edge of the sea to inland in GBNERR. Soil water conductivity measurements 

were a snapshot of one time measurement prior to Hurricanes Gustav and Ike in 2008. Black 

circles indicate location along the transect from which sampling occurred. 
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Figure 2.4. Soil texture across the 11.3-km long research transect, which stretches from edge of 

the sea to inland, from 2008 survey at GBNERR.  
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Figure 2.5. Probability of occurrence of species (a) B. halimifolia, and (b) I. vomitoria, (c) M. 

cerifera, and (d) T. sebifera along a 11.3 km long transect at GBNERR.  
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Figure 2.6. Probability of occurrence of species in response to soil water conductivity, percent 

canopy openness and their interactions: (a) Baccharis halimifolia, (b) Morella cerifera, and (c) 

Triadica sebifera. (Because species’ responses beyond the limits of measured environmental 

conditions cannot be evaluated, response contours were truncated at the upper and lower limits 

of the data). 
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Figure 2.7. Probability of occurrence of Baccharis halimifolia in response to (a) percent soil sand 

and (b) silt.  
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CHAPTER 3 

GERMINATION RESPONSES OF THE INVASIVE TRIADICA SEBIFERA AND TWO CO-

OCCURRING NATIVE WOODY SPECIES TO ELEVATED SALINITY ACROSS A GULF 

COAST TRANSITION ECOSYSTEM 

ABSTRACT 

With sea level rise, coastal ecosystems farther inland are expected to experience extended 

duration of inundation. The effects of elevated salinity on initial recruitment of native and 

invasive species in coastal ecosystems are poorly understood. I assessed effects of elevated 

salinity across a range of soil types on germination of the invasive Triadica sebifera and two 

natives, Baccharis halimifolia and Morella cerifera, using growth chamber and greenhouse 

experiments. In both studies, germination was compared across four salinity levels (0, 10, 20, 

and 30 g/l). In the greenhouse, percent germination of these species was also compared across 

soils spanning the five dominant vegetation zones that define a typical coastal transition 

ecosystem in coastal Mississippi, USA. Germination of all species decreased significantly with 

elevated salinity in both experiments. In the greenhouse, germination of all species was 

significantly reduced in soils from the most seaward vegetation zones. Overall, there were 

species specific responses to salinity treatments; of the three species, Baccharis halimifolia was 

the least sensitive to increasing salinity. With the highest salinity treatment, Triadica sebifera 

germinated well in soils from the most inland vegetation zone compared to other zones, 

suggesting that saltwater intrusion due to sea level rise may not limit its landward recruitment. 

Variation in species responses to salinity is likely to drive changes in coastal plant community 

composition, including distribution shifts and potential landward expansion of Triadica sebifera. 
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INTRODUCTION 

Coastal ecosystems, occupying the marine-terrestrial transition, are among the first 

responders to sea level rise. Rising seas result in a greater duration of inundation and saltwater 

intrusion in areas farther away from the coast, which in turn alter multiple environmental 

characteristics including soil moisture, soil and surface water salinity, flooding, and pH of 

coastal ecosystems (Nicholls and Cazenave 2010). These changes may result in shifts in coastal 

plant community composition (Michener et al. 1997, Williams et al. 1999a) by increasing the 

prevalence of stress and/or disturbance tolerant (e.g., invasive and weedy) species (Wang et al. 

2006). 

Low lying coastal transition ecosystems in the southeastern United States along the 

northern Gulf of Mexico are highly vulnerable to rising sea levels attributed to the direct impacts 

of climate change (IPCC 2007b, Titus et al. 2009). Predicted increases in sea level up to1 m or 

more by the end of this century (Vermeer and Rahmstorf 2009) will result in inundation of many 

coastal wetlands and increased soil and surface water salinity and magnify the risk of coastal 

forest retreat (Williams et al. 1999a). Forested wetlands, highly vulnerable to salt stress 

(Kozlowski 1997), are expected to retreat with chronic sea level rise. Therefore, long term 

persistence of these coastal plant species depends on their ability to establish at more landward 

locations.  

Tolerance to environmental stresses under natural conditions may provide ecological 

advantages to species (Wang et al. 2003). Plant species that are more plastic in their tolerance to 

environmental extremes and disturbances may persist in the landscape, regenerate (Mok et al. 

2012), and rise to dominance in the new assemblages. Invasive species often exhibit greater 
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physiological and morphological plasticity compared to native species (Richards et al. 2006), 

which may enable them to  respond more favorably to disturbances and altered environmental 

conditions (Richards et al. 2006). Further, exotic species, already released from their natural 

enemies and pathogens (above- and/or below-ground) (Keane and Crawley 2002), may exploit 

additional regeneration opportunities and devote more resources to growth and reproduction 

(Daehler 2003) as natives cope with the compounded pressures of environmental stresses due to 

climate change. For instance, increased plasticity in flood tolerance and positive responses to 

climatically driven changes in flooding regimes resulted in increased recruitment of Tamarix 

ramosissima in comparison to native Populus deltoides in riparian communities in the western 

US (Birken and Cooper 2006). However, little is known about how the predicted changes in 

abiotic conditions, associated with chronic saltwater intrusion from sea level rise will affect the 

recruitment and possible distribution shifts of invasive and co-occurring native species in coastal 

plant communities. Successful germination is a prerequisite for subsequent growth and 

development (Donohue et al. 2010), and thus, germination traits are important in determining 

species’ persistence with climate change (Weber and D'Antonio 1999). Understanding how 

germination of invasive and co-occurring native species will be affected by increased salinity 

and inundation across coastal transitions will be necessary to predict trajectories of coastal plant 

communities in response to sea level rise. 

I used germination experiments to investigate how climate change-driven sea level rise 

and resultant elevated salinity may affect germination of selected invasive (Triadica sebifera (L.) 

Small) and co-occurring native plants (Baccharis halimifolia (L.) and Morella cerifera (L.) 

Small) across different coastal vegetation zones. The three species selected for this study are 

present in coastal ecosystems along the northern Gulf of Mexico, where they are exposed to 
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varying levels of soil salinity and saltwater intrusion. Fine-scale distribution maps of the species 

indicate that they shared similar habitats along the coenocline at Grand Bay, Mississippi 

(Chapter 2). Performance comparisons of co-occurring native and invasive species under 

predicted future climate scenarios should help us to predict the conditions in which the invasive 

species may proliferate (Daehler 2003). 

In this study, the following three hypotheses were addressed. (1) Because elevated 

salinity negatively affects seed germination of many woody species (Kozlowski 1997), I 

hypothesized that germination would decline with increased salinity and germination of all 

species to increase progressively with distance from the coast with declining salt stress. (2) 

Because salt water intrusion increases soil and surface water salinity, I hypothesized that, 

irrespective of the locations along the coastal transition, elevated salinity should have negative 

effects on germination of all the species. Germination of all species is expected to decline 

progressively with increasing salinity and landward advancement of salinity stress. (3) Because 

invasive species often exhibit greater phenotypic plasticity than natives (Richards et al. 2006), I 

hypothesized that T. sebifera would have higher germination than native species under all 

salinity levels. 

MATERIALS AND METHODS 

Study Site Description-   

I selected the coastal transition ecosystem at the Grand Bay National Estuarine Research 

Reserve (GBNERR) in coastal Mississippi for this study (Figure 3.1). The reserve lies within the 

gently sloping lower Gulf Coastal Plain, occupies an area of 7284 hectares, and forms one of the 
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most biologically diverse, relatively undisturbed, and productive estuarine ecosystems on the 

Gulf of Mexico (NOAA 2007). The reserve encompasses many distinct plant communities 

arrayed along the marine-terrestrial transition. Zonation of plant communities progressively from 

the coast to inland include: salt marsh, brackish marsh, freshwater marsh, maritime pine forests, 

coastal pine savanna, mixed pine hardwood forests, pitcher plant bogs, and pine flatwoods.  

Plant Species- 

Triadica sebifera is a small to medium sized subtropical, deciduous, monoecious tree in 

the family Euphorbiaceae. It was introduced into the United States in the late 18
th

 century 

(Randall and Marinelli 1996) and since has become a serious threat to coastal ecosystems in the 

southeast USA (Bruce et al. 1995, Jubinsky and Anderson 1996). It is spreading rapidly in many 

coastal communities of the southeast USA (Neyland and Meyer 1997, Wall and Darwin 1999, 

Denslow and Battaglia 2002, Burns et al. 2004) and causes large-scale ecosystem modification 

by replacing native coastal prairies and forming monospecific stands of T. sebifera in east Texas 

(Bruce et al. 1995, Jubinsky and Anderson 1996). This species mainly invades abandoned fields, 

pastures, degraded areas, roadways, recently disturbed sites, and forested wetlands. It reached 

Mississippi in the mid 1980s and became established in parks, canals, roads, river banks, and 

similar untended areas (Matlack 2002) and has been spreading rapidly at GBNERR since 

Hurricane Katrina in 2005. In the reserve, its occurrence is patchy and concentrated in recently 

disturbed inland habitats (Chapter 2). T. sebifera exhibits many traits associated with successful 

invaders such as fast growth rate, high reproductive rate, reproductive viability in as little as 

three years (Bruce et al. 1997), large seed mass, effective seed dispersal by birds (Renne et al. 

2000, Renne et al. 2001) and water, and a wide range of tolerance to environmental conditions 
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(e.g. flooding and shade) (Conner and Askew 1993, Jubinsky and Anderson 1996, Barrilleaux 

and Grace 2000), including moderate levels of soil salinity (Conner and Askew 1993). 

Baccharis halimifolia is a multi-stemmed deciduous understory small tree or shrub that 

commonly grows along the Atlantic and Gulf Coast Plains of North America. It grows in moist 

soils with high organic content such as backswamps, wet prairies, freshwater marshes, and 

brackish marshes (Penfound and Hathaway 1938, Duncan et al. 1957); and has a moderate level 

of salinity tolerance (Young et al. 1994). Morella cerifera is an evergreen, nitrogen-fixing shrub 

or tree native to wetlands of the Atlantic and Gulf Coastal plains. This species is shade intolerant 

and moderately salt tolerant (Duncan and Duncan 1987, Tolliver et al. 1997). At GBNERR, B. 

halimifolia has a patchy distribution and occurs in more saline habitats (such as salt flats); M. 

cerifera has a wider distribution but is restricted to less saline inland habitats (Chapter 2). 

Seed Collection and Viability Tests- 

Seeds from multiple T. sebifera, B. halimifolia, and M. cerifera individuals were 

collected in December 2008 from the GBNERR. Collected seeds were mixed and stratified in a 

cold room (temperature = 4 °C) to mimic natural dormancy periods for two months at Southern 

Illinois University Carbondale. Before the seeds were placed in a Petri dish and pots for 

germination, the viability of all species was assessed following guidelines of International Seed 

Testing Association (ISTA). To remove any fungal infection, which can be present on the 

surface of the seeds, seeds were surface sterilized by immersing them in a 10% solution of 

bleach for 30 minutes (M. cerifera and T. sebifera) and 5 minutes (B. halimifolia) and then 

washed with distilled water. Due to different seed coat characteristics (thick and waxy for M. 

cerifera and T. sebifera and thin and soft for B. halimifolia), different sterilization time periods 
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was employed. Two samples of 50 seeds of each species were selected randomly and viability 

tests were performed using 1% 2,3,5-triphenyl tetrazolium chloride (TTC) staining (Porter et al. 

1947) as described in (Grabe 1970). Based on TTC staining test results, percent viability of each 

species was calculated. Results showed that B. halimifolia had the highest (65%) seed viability, 

followed by the invasive T. sebifera (42%) and M. cerifera (40%). Percent viability of each 

species was used to adjust the total number of seeds to be used for the germination experiments. 

Germination Experiments- 

Growth chamber experiment- 

To determine the effects of different salinity levels on germination of the selected 

species, I conducted a controlled growth chamber experiment. In March 2009, based on the 

viability test results, a fixed number of seeds for each species was placed (50, 77, and 81 for B. 

halimifolia, M. cerifera, and T. sebifera, respectively) on filter paper (Whatman
®
 qualitative 

filter paper, Grade 1) at equal distances apart in 6 cm diameter x 1.5 cm deep Petri dishes. The 

number of seeds was adjusted to ensure the same number (35) of viable seeds of each species in 

each dish. Seeds in each Petri dish were submerged into 30 ml of saltwater solutions of 0 (de-

ionized water - control), 10, 20, 30 g/l (equivalent to 10, 20, 30 ppt, respectively) made using 

Instant Ocean  synthetic sea salt (United Pet Group, Blacksburg, Virginia, USA) mixed with 

deionized water. These salinity concentrations were chosen to mimic low to full strength 

seawater field conditions that are expected with sea level rise and resultant saltwater intrusions in 

low lying coastal transitions of the northern Gulf of Mexico. Petri dishes were wrapped and 

sealed with parafilm to avoid the loss of water, placed in a growth chamber, and subjected to a 

regime of 16 hours of light and a day/night temperature of 25/18 °C. These temperature regimes 
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were chosen to mimic local average growing season (late March to late November) temperatures, 

estimated from monthly long-term data from a weather station at the center of the Reserve (30° 

21.551′N, 88° 25.202′W) (National Oceanic and Atmospheric Administration, NOAA, and 

GBNERR, Mississippi data center). Light (PAR) levels within the growth chamber were 160 

µmol m
-2

s
-1

 and 110 µmol m
-2

s
-1

for each of the two shelves. Petri dishes were randomly placed 

in the growth chamber and re-randomized every other day. Petri dishes were inspected every day 

for the first three months and after that every other week until the end of the experiment (i.e. late 

October 2009), but no seeds germinated after four months. At each inspection, germinated seeds 

were counted and removed from the Petri dish. Seed germination was noted when the radicle 

appeared. During each inspection, water levels were checked for evaporative loss and de-ionized 

water added to maintain the initial level. The experiment was a complete randomized design with 

12 Petri dishes per species (4 salinity treatments × 3 replicates = 12). 

Greenhouse experiment- 

The greenhouse experiment was conducted using soil collected from the field. Field soil 

was chosen over commercial soil to represent field conditions with respect to nutrients and other 

soil properties along coastal transitions. Five dominant coastal vegetation zones at the GBNERR: 

1) brackish marsh (BM), 2) maritime pine island (MPI), 3) coastal pine savanna (CPS), 4) mixed 

pine hardwood (MPH) forest, and 5) pine flatwoods (PFW) (Figure 3.1) were selected. These 

zones are located sequentially from the edge of the Gulf Coast to the inland in order of BM, MPI, 

CPS, MPH, and PFW; where BM represents the most seaward zone and is located at 4000 m 

from the edge of the coast, followed by MPI (5200 m), CPS (6700 m), MPH (9500 m), and the 

most inland PFW (11200 m). These zones not only differ in distance from the sea and 
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community composition, but also encompass gradients of salinity, flooding, soil properties (such 

as soil moisture, texture, and nutrients), and elevation relative to the coast. In February 2009, I 

collected soil samples randomly from the top 10 cm in each of the afore mentioned zones. The 

samples were brought to the laboratory at Southern Illinois University Carbondale, composited 

by zone, homogenized by passing the material through a 1 cm sieve, and stored in a cold room (4 

°C) until the experiment began in late March 2009. 

In the greenhouse, seeds of each species were sown in Deepots (Stuewe and Sons, Inc., 

Corvallis, Oregon, USA), that were filled with homogenized soil 5 cm from the top, and placed 

in the supporting rack. Each pot (6.5 cm in diameter × 25 cm tall) had three drainage holes at the 

bottom. Each supporting rack with nine Deepots (each pot was replicated three times for each 

species) was placed in a rubber tray (40 cm in diameter × 20 cm tall) filled with the designated 

concentration of salt water solution. Four trays were assigned to each vegetation zone, each of 

which was designated to one of four salinities: 0 (no salt addition-control/ambient condition), 10, 

20, 30 g/l (equivalent to 0, 10, 20, 30 ppt, respectively) and randomly positioned in the 

greenhouse. I also drilled a series of 0.48 cm diameter holes into the lower 10 cm and 15 cm of 

each Deepot to facilitate water flow. Salt solutions were made by dissolving Instant Ocean 

synthetic sea salt into water (salinity: 3.5 ppt) obtained from Bayou Heron at the GBNERR. A 

small composite soil-sample was separated from each zone to determine the initial soil salinity. 

At the end of the experiment, I also collected soil samples from each pot, determined soil 

salinity, and calculated the final average value for each zone (Table 1). Soil salinity was 

determined by measuring the electrical conductivity (EC) of a soil solution (electrical 

conductivity is directly proportional to salinity) with a 1:5 soil-to-water ratio (22 gm: 110 ml) 
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(Rhoades 1996). The experiment was a complete randomized design with three replicate pots per 

treatment, with 60 pots for each species (5 zones × 4 salinity treatments × 3 replicates = 60 pots). 

As in the growth chamber experiment, a fixed number of seeds, adjusted to achieve the 

same number of viable seeds (40) for all species, were sown just below the soil surface at equal 

spacing in individual pots. Water levels were maintained approximately 1 cm below the soil 

surface in the trays and monitored continuously and controlled by adding deionized water to 

offset evaporation. Sown seeds were not in direct contact with standing water but received 

moisture continuously through the soil column. Water salinity was checked every week using a 

YSI
®
 EcoSense

®
 EC300 conductivity/salinity meter (YSI

®
 Incorporated, Ohio, USA) and 

maintained for the duration of the study. Pots were inspected for germination every other day for 

the first two months and every other week until the growing season ended in the field (late 

November 2009). No seeds germinated after five months. Germination was defined as radicle 

emerges out from soil. Germinated seeds were counted and removed. Trays and all replicates 

within each tray were randomized every other week to minimize potential tray and greenhouse 

position effects. 

Statistical Analyses- 

Seed germination was expressed as percentage of seeds sown that germinated. For both 

experiments, germination data were log-transformed to meet assumptions of normality and 

homogeneity of variance in residuals (Zar 1999). I used a one-way ANOVA for each species 

separately to test the effect of salinity on germination in the growth chamber (factor = salinity 

with four levels, completely randomized design). To test the effect of salinity and coastal 

vegetation zones on germination of invasive and native species in the greenhouse, two- way 
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ANOVA with interactions (factors = salinity with four levels × five zones) was used. Post-hoc 

comparisons were performed with Tukey HSD tests when the ANOVA indicated significant 

differences. All data were analyzed using SAS version 9.2 for Windows (SAS 2008) and results 

were interpreted at α = 0.05. 

RESULTS 

Growth Chamber Experiment- 

B. halimifolia and M. cerifera seeds germinated in all salinity levels included in this 

experiment, but germination decreased significantly as salinity increased (B. halimifolia: F 3, 11 = 

44.42, P < 0.0001 and M. cerifera: F 3, 11 = 104.93, P < 0.0001). Percentage germination of B. 

halimifolia did not differ between the control (0 g/l), 10 g/l and 20 g/l treatments (P > 0.05); and 

significantly declined at 30 g/l (P < 0.001, Figure 3.2). M. cerifera germination was significantly 

reduced in the two highest salinity treatments (Figure 3.2). With the exception of germination at 

control vs 10 g/l (P = 0.27), all pairwise comparisons between treatments were significantly 

different (P < 0.05). T. sebifera’s germination differed significantly (F3, 11 = 4.63, P = 0.037) 

among treatments and declined as salinity increased, with no germination at 20 g/l and 30 g/l 

(Figure 3.2). T. sebifera germination was consistently low compared with the other species. 

Greenhouse Experiment- 

For each species, there was a significant salinity × zone interaction for seed germination 

(Table 2). Mean percent germination of all species progressively decreased with increasing 

salinity and the lowest percentage of germination occurred in BM soils (Figure 3.3a,b,c). Mean 

percent germination of B. halimifolia in inland zones (PFW, MPH, and CPS) was significantly 
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higher in ambient conditions compared to all other salinity treatments; the greatest inhibition 

occurred in 20 g/l and 30 g/l salinity treatments (Figure 3.3a). M. cerifera germination varied 

greatly in ambient conditions across vegetation zones and the greatest inhibition occurred in BM 

(Figure 3.3b). Germination declined progressively with elevated salinity (10 g/l and above) 

treatments across the zones (Figure 3.3b). T. sebifera germination was significantly lower in BM 

and did not differ in soils from that zone, regardless of salinity treatment (Figure 3.3c). Under the 

highest salinity level (30 g/l), this species exhibited significantly higher germination in the most 

inland zone soils, i.e. PFW compared to other zones, except CPS (Figure 3.3c). 

DISCUSSION 

Results from both experiments indicate that germination of all species was highest in 

ambient conditions and decreased progressively with increasing salinity (hypothesis 1). These 

results agree with previous reports in which seeds of several other wetland plant species were 

subjected to different salinity levels and exhibited reduced germination (Khan and Ungar 1984, 

Krauss et al. 1998, Weber and D'Antonio 1999, Gorai and Neffati 2007). Khan and Ungar (1984) 

found a significant decrease in percent germination of Atriplex triangularis with increased 

salinity stress. Krauss et al. (1998) reported a significant decrease in the germination capacity of 

Taxodium distichum (baldcypress) with elevated salinity in coastal Louisiana. 

In this study, the actual pattern of decline differed by species, highlighting the 

heterogeneity in species responses to elevated salinity. The growth chamber experiment showed 

that the two native species (B. halimifolia and M. cerifera) are relatively salt tolerant (up to 20 

g/l and 10 g/l, respectively) in terms of germination. In contrast, T. sebifera seeds showed higher 

sensitivity to salinity with a significant decrease in germination at 10 g/l. Results from the 
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growth chamber experiment suggest that chronic saltwater intrusion may be a limiting factor to 

recruitment of this species in coastal ecosystems experiencing sea level rise (Conner 1994, 

Barrilleaux and Grace 2000). B. halimifolia grows in more saline conditions (e.g., salt flats) 

compared to other species (Chapter 2), and its salinity tolerance was reflected in the germination 

study as well (chapter 3). The low germination reported here for T. sebifera is somewhat 

surprising given its seedlings’ capability to survive extended saltwater inundation better than 

some co-occurring native species (Conner and Askew 1993, Howard 2012). A possible 

explanation is that the long term immersion of seeds in saltwater might reduce the chance of 

germination by directly disrupting physiological processes (e.g., imbibitions). I therefore 

anticipate that the elevated salinity due to sea level rise will reduce the potential for regeneration 

and persistence of the salt intolerant plant species by reducing their germination. 

Results from the greenhouse experiment demonstrate that germination of all species was 

reduced with increasing salinity, as expected (hypothesis 2), indicating that germination will be 

sensitive to future sea level rise, but the effects will not necessarily be straightforward. Complex 

interactions between elevated salinity from the advancing sea, local site conditions and species-

specific characteristics will drive the responses of native and invasive species. Under ambient 

conditions, percent germination of species decreased significantly with proximity to the coast, as 

expected. My results suggest that increased salinity due to sea level rise will further limit 

germination in zones closer to the coast (e.g., BM and MPI) due to the inherent salinity in their 

soils (Table 1). These results can be explained with respect to species’ current distributions, 

coupled with the exacerbating effects of elevated salinity, particularly in zones already 

characterized by saline soils. In the GBNERR, no woody species, including those in this 

experiments, occur in brackish marsh (chapter 2), probably due to unfavorable, flooded saline 
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conditions. Woody plants are much more sensitive to salinity and flooding during the young 

seedling stage (Kozlowski 1997), and frequent inundation from tides further reduce suitability of 

these marshes for establishment of these species. Increased salinity leads to a decrease in the 

osmotic potential of the soil solution, decreased water absorption by seeds, increased toxicity to 

the embryo (cf, Kozlowski 1997), and ultimately diminished probability of germination. 

Plant species that occur either infrequently and/or are absent from a habitat often exhibit 

greater sensitivity to climate extremes (Mok et al. 2012). Results indicate that increased soil and 

surface water salinity due to seawater intrusion will gradually decrease the chance of 

germination of these species in habitats at the seaward edge of their current distributions. 

However, germination of species that naturally occur at the most seaward position, such as B. 

halimifolia (Chapter 2), remained relatively high (~ 20%) in10 g/l (Figure 3.3a). This result 

suggests that B. halimifolia is less sensitive at moderate levels of salinity and may therefore 

persist in its current range along the coastal transition until conditions become too stressful for its 

recruitment. In a previous study, B. halimifolia showed higher salinity tolerance than co-

occurring species in coastal estuaries of Delaware (Graves and Gallagher 2003). In contrast, M. 

cerifera is more sensitive and intolerant to salinity (greenhouse experiment), which was also 

reported previously from a Virginia barrier island  (Young et al. 1994), in coastal estuaries of 

Delaware (Graves and Gallagher 2003), and Santa Rosa Island Florida (Miller et al. 2008). Thus, 

findings from this study indicate that species highly sensitive to salt stress are likely to be filtered 

out during the early stage of the life cycle (e.g., germination) and may gradually migrate away 

from these extremes (i.e., more inland) if dispersal is not limiting. Germination of M. cerifera in 

inland soils under elevated salinity conditions partially supported this prediction, as the species 

germinated reasonably well (5% or above) with 10 g/l salinity treatments (Figure 3.3b). 
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T. sebifera maintained approximately 10% germination with salinity of 10 g/l and more 

than 5% germination with salinity of 20 g/l in inland habitats (Figure 3.3b,c). Interestingly, at the 

highest salinity level (30 g/l) this species germinated well (mean percentage germination 8%) in 

the most inland vegetation zone (pine flatwoods) compared to other zones. This study 

demonstrates that chronic salt water intrusion from sea level rise will not be the lone factor 

influencing germination of this species. Rather, it is overlain onto inherent differences in soil 

characteristics that interact with changing salinity to filter germination. Although overall results 

pointed to T. sebifera’s high degree of sensitivity to salinity at the vegetation zones close to the 

sea, its ability to germinate well at inland locations, even when exposed to increasingly saline 

conditions, will likely help it to persist and successfully invade (Baker 1974, Honig et al. 1992, 

Mihulka et al. 2003) coastal forested ecosystems that occupy the more inland portion of coastal 

transitions in the southeastern US. Invasive species, in general, demonstrate greater phenotypic 

plasticity that could enhance their tolerance to stress and enable persistence in novel habitats 

(Walls 2010). It is therefore possible that T. sebifera may display plasticity in germination traits 

in response to altered abiotic environments (e.g., soil and surface water salinity, pH) along the 

coast, enhancing its regeneration potential. Invading populations of T. sebifera have been shown 

to have greater plasticity to variable moisture conditions and shade compared to native T. 

sebifera populations and its native counterparts (Zou et al. 2009). Greater tolerance of 

environmental stress that  translates into more successful invasion, has been reported for other 

plant species elsewhere (Daehler 2003). For instance, extended drought tolerance in invasive 

Tamarix ramosissima, compared to co-occurring native species, helps to explain its ability to 

produce dense stands in Mojave Desert floodplains, western USA  (Cleverly et al. 1997). 

Furthermore, climate-change driven changes in disturbance regimes (e.g., streamflow) are 



65 

predicted to favor stress tolerant invasive species in riverine ecosystems of western United States 

(Perry et al. 2012). 

Based on germination responses of these species to elevated salinity, I do not expect that 

T. sebifera will replace the other two species, but rather they will coexist. However, extreme 

disturbance events (e.g., hurricanes), which are predicted to hit coastal ecosystems along the 

northern Gulf of Mexico (Bender et al. 2010), and anthropogenic disturbances may exacerbate 

the effects of saltwater intrusion on natural field conditions, particularly if saline storm surges 

envelop extensive portions of the coastal transition and lead to widespread gaps. Shifts in 

disturbance regimes will strongly influence the dynamics of coastal plant communities by 

increasing resource availability and altering abiotic conditions of regeneration sites that may 

favor invasive plant species (Bellingham et al. 2005, Chapman et al. 2008). For instance, T. 

sebifera seeds are known to germinate well in recently disturbed and moist areas where 

temperature fluctuations are more frequent (Nijjer et al. 2002, Donahue et al. 2004). Such 

conditions are likely to be created through canopy disturbances from intense hurricane winds and 

storm surge (Battaglia et al. 1999, Batista and Platt 2003, Conner et al. 2005), increasing the 

probability of T. sebifera germination and subsequent establishment. Once germinated, T. 

sebifera seedlings are capable of withstanding extended periods of saltwater flooding (Conner 

and Askew 1993, Jubinsky and Anderson 1996, Barrilleaux and Grace 2000), a trait that may 

provide it an advantage over less tolerant native species. 

Rising sea levels and subsequent increase in soil and surface water salinities are likely to 

force these species to move upslope/inland along coastal transition ecosystems. However, inland 

movement and recruitment of these species in response to changing environmental conditions 
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will likely be affected by land-use changes. I expect that successful germination of T. sebifera at 

inland sites is likely to be translated into accelerated establishment, particularly with 

anthropogenic land use changes that often create invasion foci for exotic species (Dukes and 

Mooney 1999). Successful germination of T. sebifera in various inland habitats and decreased 

germination of some of the stress-intolerant native species (e.g., M. cerifera) are likely to drive 

rapid compositional shifts in coastal plant communities as the effects of climate change continue 

to unfold at the marine-terrestrial ecotone. 
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Table 3.1. Initial (pre-treatment) and final salinity (g/l) of the soils from five coastal vegetation 

zones at GBNERR, Mississippi. Initial salinity was determined from a composite soil sample 

representing each zone; while final salinity values are the averages ± SE (n=9 pots) determined 

at the end of the greenhouse experiment for each zone. 

Salinity (g/l) 

Vegetation zones  

Pre-treatment  final at 0 g/l 

treatment 

final at 10 g/l 

treatment  

final at 20 g/l 

treatment  

final at 30 g/l 

treatment  

Brackish marsh (BM)  9.6  9.10 ±0.027  18.80 ±0.380  27.90 ±0.016  38.10 ±0.015 

Maritime pine island (MPI)  2.0  1.20 ±0.019  10.10 ±0.021  19.70 ±0.028  29.60 ±0.043 

Coastal pine savanna (CPS)  0.20  0.10 ±0.000  10.00 ±0.037  19.00 ±0.039  28.10 ±0.021 

Mixed pine hardwood (MPH)  0.0  0.00 ±0.000  9.00 ±0.041  18.80 ±0.053  27.70 ±0.056 

Pine flatwoods (PFW)   0.0  0.00 ±0.000  8.60 ±0.029  18.50 ±0.083  26.70 ±0.079 
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Table 3.2. Results of two-way ANOVA testing the effects of salinity and zones (represent different soil sources from five vegetation 

zones along coastal transition at GBNERR) on seed germination in the greenhouse. 

Source df F  P Source Df F  P Source df F  P 

Baccharis halimifolia 

Salinity 

Zone 

Salinity × Zone 

   

3, 40 

4, 40 

12, 40 

   

101.39 

17.02 

5.66 

 

<0.0001  

<0.0001  

<0.0001 

Morella cerifera 

Salinity 

Zone 

Salinity × Zone 

   

3, 40 

4, 40 

12, 40 

   

61.35  

23.92 

10.95 

 

<0.0001 

 <0.0001 

<0.0001 

Triadica sebifera 

Salinity 

Zone 

Salinity × Zone 

    

3, 40 

4, 40 

12, 40 

   

49.94  

20.48 

5.23 

 

<0.0001 

<0.0001 

<0.0001 
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Figure 3.1. A location map of the study area (courtesy of the Mississippi Department of Marine 

Resources).  Symbols (☼) represent five vegetation zones (Brackish marsh (BM), maritime pine 

island (MPI), coastal pine savanna (CPS), mixed pine hardwood (MPH) forest, and pine 

flatwoods (PFW), respectively from south to north) along the coastal transition from where soil 

samples were collected for the greenhouse experiment. 
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Figure 3.2. Mean percent (± standard error) seed germination at four different salinity treatments 

in the growth chamber experiment. Bars with different letters represent significant differences 

among treatments (comparisons of treatment means) in germination within each species, based 

on Tukey’s multiple means comparisons (α = 0.05). 
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Figure 3.3. Mean percentage germination (± SE) of: a) Baccharis halimifolia, b) Morella 

cerifera, and c) Triadica sebifera in four different salinity treatments (mimicking control 

and scenarios of different rates of sea level rise) and five soil types representing five 

different vegetation zones at the GBNERR in the greenhouse. Bars with different letters 

are significantly different (α = 0.05) (after post-hoc comparisons using Tukey’s test). 
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CHAPTER 4 

RESPONSES OF TWO NATIVE SPECIES AND THE INVASIVE TRIADICA SEBIFERA TO 

SIMULATED HURRICANE DISTURBANCES IN FORESTED ECOSYSTEMS OF 

COASTAL MISSISSIPPI, SOUTHEASTERN UNITED STATES 

ABSTRACT 

Hurricane disturbances produce significant changes in forest microclimates (e.g., light), 

creating opportunities for regeneration of plant species and maintenance of diversity. Hurricane 

winds that damage forest canopies increase light availability, an environmental shift that may 

provide ideal conditions for rapid growth and spread of invasive species. However, effects of 

hurricane disturbances are highly variable and species responses to these disturbances are likely 

influenced by synergistic and idiosyncratic effects of prior site conditions and intensity and 

direction of hurricane winds. In this manipulative experimental study in the greenhouse, I 

examined the impact of two key components of hurricane disturbance (canopy damage and storm 

surge) on two species native to coastal region of the southeastern USA: Baccharis halimifolia 

and Morella cerifera and the invasive Triadica sebifera. I grew seedlings of these species in soils 

from the field and under shades, constructed in the greenhouse, which mimicked two forest 

conditions, Wet Pine Forest (WPF) and Mixed Hardwood Forest (MHF) that are in fire-

dominated and fire-suppressed coastal forests of the Gulf Coastal Plain. I manipulated pre-and 

post-hurricane canopy conditions, applied storm surge, and monitored seedling responses 

(mortality and growth) to the treatments for sixteen months. Results suggested that species were 

differentially affected by simulated hurricane disturbances in the two forest conditions and 

simulated canopy openness increased survival in all the species. Simulated storm surge effects 
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were short-lived and species recovered their growth under open and low canopy cover. 

Baccharis halimifolia was highly sensitive to shade, whereas M. cerifera was sensitive to both 

shade and storm surge. In contrast, the invasive species T. sebifera was resilient to shade 

treatments in both simulated forest conditions. For all species, simulated storm surge had strong 

negative effects under high canopy cover particularly in simulated MHF conditions, suggesting 

storm surge will produce negative impacts on species growth where hurricane winds cause 

minimal or no canopy damage. Of the three species, T. sebifera was by far the most shade 

tolerant and survival of seedlings under highly shaded conditions may provide it a competitive 

edge over native species during community reassembly following tropical storms. The patchy 

nature of these wind disturbances and differential responses of species to disturbances in 

different forest assemblages across the coastal landscape will eventually drive trajectories of 

post-hurricane forest recovery and may alter long term structure of coastal forest, potentially 

favoring the dominance of the shade tolerant invasive T. sebifera.  

INTRODUCTION 

Hurricanes are large-scale natural disturbances affecting structure, composition, and 

function of coastal forested ecosystems in many parts of the world (Boose et al. 1994, Lugo 

2000). Hurricane disturbances produce extensive forest damage through strong winds and 

inundate coastal and inland ecosystems with salt water through storm surge, producing profound 

effects on community structure and ecosystem processes (Lodge and McDowell 1991, Michener 

et al. 1997). Determining the array of plant species responses to the compounded effects of 

hurricanes (wind storms and storm surges) is an important first step toward understanding how 
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climate change and coincident increasing hurricane intensities may affect coastal forest 

communities. 

Intense hurricane disturbances cause alterations in community structure (e.g., defoliation, 

branch break, snapped and uprooted trees, accumulation of debris, and soil erosion) and longer-

term ecosystem processes (e.g., decomposition, mineralization, etc.) (Lugo 2008). Large scale 

disturbance events generate heterogeneous environments, widen canopy gaps, reduce 

competition, and generate growing spaces for early successional fast growing and disturbance 

tolerant plant species (Pickett and White 1985, Foster et al. 1998, Battaglia et al. 1999). 

Environmental heterogeneity and increased availability of limiting resources are likely to 

increase the recruitment of both native and invasive species (Shea and Chesson 2002); increasing 

prevalence of disturbances and heterogeneous environments often promote recruitment of 

invasive species (Hobbs 1989, Hobbs and Huenneke 1992). 

Effects of hurricanes on coastal plant communities are complex (Michener et al. 1997, 

Busby et al. 2008, Busby et al. 2009). Plant community responses to these disturbances can also 

be highly variable and idiosyncratic, often depending on storm and location specific influences 

such as wind direction, site exposure, local topography, hydrology, soil types, disturbance, 

community structure (Gardner et al. 1992, Boose et al. 1994, Grove et al. 2000, Kupfer et al. 

2008), and site management history (Grove et al. 2000). Studies have demonstrated that stand 

maturity and hydrology influence susceptibility to hurricane damage (Kupfer et al. 2008, Wang 

and Xu 2009). For instance, Kupfer et al. (2008) reported that Hurricane Katrina resulted in 

disproportionately high damage to older forest stands across the southeastern Mississippi 

landscape. It has also been suggested that disturbed forests with already open canopies have 
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fewer natural windbreaks, as a result, may be disproportionately disturbed by windstorms, 

increasing environmental and resource heterogeneity in the landscape (Grove et al. 2000). 

Hurricane generated storm surge can also result in severe damage to coastal forest 

vegetation due to salt stress. Increased salt stress from storm surges may have differential 

ecological impacts, which likely depend on both biotic (i.e., initial species composition and their 

location with respect to shoreline) and abiotic factors (e.g., topography, the soil conditions), and 

hurricane intensity (Gardner et al. 1992, Merry et al. 2009). Plants growing on elevated positions 

far from the coast with highly permeable soils may be less impacted from storm surge than those 

growing on depressions and less permeable soils (Merry et al. 2009). The storm surge associated 

with Hurricane Hugo affected forests approximately 1.5 km inland from the forest-marsh 

boundary in South Carolina (Gardner et al. 1992) and many forests far inland from the Gulf of 

Mexico coast were inundated and severely stressed following Hurricanes Katrina and Rita, 

which together produced a storm surge of more than 10 m in some parts of coastal Mississippi 

(Day et al. 2007, Fritz et al. 2007). However, the effects of salt stress vary greatly by plant 

species (Conner and Askew 1993, Conner et al. 1997) and recovery of affected species may 

depend on individual species’ salinity tolerance, ability to utilize post-disturbance conditions, 

and time free from enemies (e.g., pathogens, herbivores). Plant species that exhibit more plastic 

responses to environmental changes and abiotic stresses, better utilize post-hurricane conditions, 

and have been released from natural enemies (e.g., exotic invasive) may prevail and grow faster 

under changed post-hurricane conditions. Studies have shown that, following major hurricanes, 

exotic plant species regeneration tends to increase dramatically due to increased resource 

availability, hurricane generated seed dispersal, and decreased resistance of native plant species 

to disease outbreak and other enemies (Horvitz et al. 1998, Lugo 2008).  
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The biotic and abiotic effects of hurricane disturbances on regeneration and coastal forest 

dynamics have been widely recognized and extensively studied (Gresham et al. 1991, Stanturf et 

al. 2007, Busby et al. 2009, Wang and Xu 2009). Less frequently, investigators have focused on 

the regeneration patterns of native and non-indigenous species; the few studies suggest that 

severe hurricanes result in increased dominance of exotic species and suppressed regeneration of 

native species (Horvitz et al. 1998). However, to my knowledge, no previous studies have 

examined how co-occurring native and invasive species respond to hurricane associated 

disturbances (i.e., canopy openings and storm surges) across coastal transition gradients. With 

increasing tropical storm intensities predicted in the near future (Webster et al. 2005, Bender et 

al. 2010), there is an immediate need to better understand how species, both native and invasive 

to low-lying coastal transitions, will respond to increased tropical storm activity. Understanding 

population- and community-level responses is key to predicting pre- and post-disturbance 

community structure and vulnerability to invasion. 

Low lying coastal wetland ecosystems in the southeastern United States along the 

northern Gulf of Mexico are highly vulnerable to rising sea levels, tropical storms, and storm 

surge flooding attributed to the direct impacts of climate change (Battaglia et al. 2012). As a 

result, these systems are excellent model systems to study how shifts in disturbance regimes will 

impact native and invasive species performance and response to changing environmental 

conditions. My approach was to assess the responses of invasive and native species to hurricane 

disturbances with a focus on Grand Bay National Estuarine Research Reserve (GBNERR) in 

coastal Mississippi, United States (US), a coastal transition ecosystem typical of the Gulf Coastal 

Plain. The study system at GBNERR is well suited to address my research objectives because the 

reserve comprised, among others, contrasting forest stands that differ in several biotic (e.g., 
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community structure/composition) and abiotic characteristics (e.g., distance from the coast, soil 

texture, and soil salinity) as well as in anthropogenic disturbance histories. I selected two 

different forest stands: 1) Wet Pine Forest (WPF; hereafter WPF), located approximately 6 km 

from the shoreline and 1.5 km from the forest-marsh boundary; and 2) Mixed Pine Hardwood 

Forest (MHF; hereafter MHF), located farther inland (9.5 km from the coast) and 4 km from the 

forest-marsh boundary. The WPF has comparatively sparse canopy cover (maximum average 

canopy cover 70%) with an overstory canopy dominated by Pinus elliottii and an understory 

dominated by a mix of Baccharis halimifolia, Ilex vomitoria, Ilex. glabra, and Morella cerifera, 

whereas the more inland MHF has a denser canopy cover (maximum average canopy cover 90%) 

with an overstory dominated by Pinus elliottii and other hardwood species and an understory 

dominated by B. halimifolia, I. vomitoria, and M. cerifera. In recent years, both forest stands 

have become increasingly infested by the invasive T. sebifera, an aggressive invader that has 

become common throughout the southeastern US. The two most common native species (B. 

halimifolia and M. cerifera) and the invasive T. sebifera were the foci of this study.  

Historically, many ecosystems throughout the southeastern United States Atlantic and 

Gulf Coastal Plains were impacted by natural fire and hurricane activity (Myers and van Lear 

1998). However, in recent years, historical disturbance regimes necessary to naturally maintain 

these coastal ecosystems have been altered due to anthropogenic fire suppression (Myers and van 

Lear 1998, Gilliam and Platt 1999). For instance, the MHF stand at GBNERR has long been fire 

suppressed, resulting in a denser canopy (maximum canopy cover 92%) compared with WPF 

(Chapter 2). In contrast, the WPF is relatively disturbed with a sparse canopy (maximum canopy 

cover was 70%) and I personally observed the widespread canopy damage, branch and stem 

breakage, and tree blowdowns caused by Hurricane Katrina in 2005. Furthermore, WPF has 
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recently been burned while MHF stand has long been fire-suppressed (GBNERR unpublished 

data). Due to these differential pre-existing environmental conditions and history of disturbances, 

I expected that responses of native and invasive species following hurricanes would differ across 

forest stands.  

To measure the responses of native B. halimifolia and M. cerifera and invasive T. 

sebifera to future hurricane disturbances, I established a greenhouse experiment that simulates 

pre- and post-hurricane abiotic conditions (i.e., light availability, soil salinity) in WPF and MHF 

stands. The goals of this research were: (1) to elucidate the responses (growth and mortality) of 

invasive and co-occurring native species to experimental hurricane disturbances in simulated 

forest stand conditions and (2) to compare the responses of native and invasive species to 

experimental hurricane disturbances. 

MATERIALS AND METHODS 

Study System- 

The study system is a typical coastal transition ecosystem at the Grand Bay National 

Estuarine Research Reserve in coastal Mississippi, southeastern United States (Figure 4.1). The 

reserve lies within the gently sloping lower Gulf Coastal Plain and comprises one of the most 

biologically diverse and productive estuarine ecosystems in the Gulf of Mexico (NOAA 2007). 

The reserve encompasses many zoned plant communities arrayed along the marine-terrestrial 

transition. Coastal plant communities, from the coast inland, include salt marsh, brackish marsh, 

freshwater marsh, maritime pine forests, wet pine forest (WPF), mixed pine hardwood forests 

(MHF), and pine flatwoods. This typical coastal transition with distinct forest stands provides an 
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excellent avenue to examine how these ecosystems respond to hurricane disturbances at species 

levels.  

Experimental Setup in the Greenhouse and Data Acquisition- 

Seeds of the focal plant species were obtained from GBNERR, representing multiple 

populations per species, in December 2009. Seeds were mixed and cold stratified at 4
○
C, a 

temperature considered suitable for germination in many species with physiological dormancy 

(Baskin and Baskin 1998); seeds were kept in the cold room at 4°C for three months at Southern 

Illinois University, Carbondale, IL. After stratification, seeds were surface sterilized by 

immersion in a 10% bleach solution and then washed with distilled water. Surface sterilized 

seeds were placed in germinating trays to make a stock of seedlings of all species. In late March 

2010, seeds of all species were sown and germinated separately in 52 cm x 26 cm flats, which 

were half filled with sterile peat moss soil sterilized by autoclaving at 121°C for 45 minutes.  

In June 2010, I established greenhouse experiments and applied a canopy openness 

treatment where I simulated present and expected future environmental conditions (e.g., canopy 

openness) for two contrasting forest stands, WPF and MHF at GBNERR (Figure 4.1). Twenty 

pots (26.5 cm diameter by 50 cm height) were allocated for each constructed forest type and 

were placed on greenhouse benches. Soil samples were collected, separately, from WPF and 

MHF by digging forty (20 from each stand) holes (30 cm diameter by 50 cm deep). From each 

hole, I collected soil from the top 10 cm and bottom 40 cm separately. Soil samples were sieved 

by passing material through a 1 cm sieve and used to fill the pots to within 5 cm of the top. In 

doing so, I was able to maintain separate field soil columns for the organic (0 - 10 cm in depth) 

and mineral (10 - 50 cm in depth) horizons in each pot. Half of the pots (10) for the WPF 
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conditions were placed randomly on a greenhouse bench and under a shade house with 30% 

canopy openness, which mimicked the current lowest average canopy openness recorded at the 

stand. The remaining pots (10) for simulated WPF conditions were placed on the greenhouse 

bench with no artificial shade that mimicked 100% canopy openness following hurricane wind 

disturbance. Full canopy openness (100%) is predicted in the coastal forest stands with sparse 

canopy following intense hurricanes (Shaffer et al. 2009). To simulate environmental conditions 

(canopy openness) consistent with MHF conditions, out of 20 pots, half (10) were placed under a 

shade house with 10% canopy openness, which mimicked the current lowest average canopy 

openness recorded at the stand. To mimic the future canopy openness following hurricane winds, 

other pots (10) were placed under a shade house with canopy openness of 70%. Each artificial 

shade house was constructed with PVC tubes (1.25 m square and 2 m high) and one layer of 

knitted black shade cloth (FDLAGS) 4.65 m
2
 in size and varying in density relative to simulate 

canopy conditions. A 30 cm gap was left between the bottom of the shade fabric and the bench 

surface to permit free air movement and reduce temperature differences between the outside and 

inside of the shade house. One seedling of each species, available from the stock of seedlings, 

was transplanted into each pot (i.e., three seedlings per pot). Transplanted seedlings were 

watered as necessary, and pots were arranged randomly in each shade house and reshuffled 

biweekly to reduce pot effect. Furthermore, during the experimental period (16 months), each 

shade treatment was moved twice to different greenhouse benches to reduce potential position 

effects. Approximately halfway through the experiment, the entire experimental setup was 

moved to a different greenhouse at the same location. 

After three months of growth and acclimation periods, seedlings in half of the pots (5) 

from each canopy openness treatment were surged (storm surge treatment) with full strength sea 
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water (30 ppt) to mimic a storm surge event. This surge was designed to simulate a typical 

hurricane surge occurs in coastal areas close to shoreline (Macauley et al. 2007). Storm surge 

was accomplished by applying an appropriate concentration of salt water solution (prepared by 

dissolving synthetic Instant Ocean® (Spectrum Brands, Madison, Wisconsin, USA) sea salt into 

the water) into the pots. The surge was maintained for three days at 10 cm above the soil 

substrate in the pots. The remaining five pots in each canopy treatment were not surged (i.e., 

control). After three days, water from the surged pots was siphoned out and pots were flushed 

with fresh water. Height of growing seedlings in each pot was measured at the beginning of the 

experiment and bimonthly before simulated storm surge events. After the surge, seedling heights 

were measured bimonthly. Mortality of all species within each pot was also recorded. After a 16 

month period that covered almost two full growing seasons, all surviving plants were harvested. 

Each plant was separated into belowground (roots) and aboveground (shoot) parts; roots were 

rinsed with distilled water to remove soil particles. Shoots and roots were dried to a constant 

temperature at 55°C, and then weighed. Dry weight was used to determine shoot and root 

biomass.  

Statistical Analyses- 

A contingency table analysis was performed to test whether there is an association 

between simulated canopy openness and storm surge treatments on mortality for each of the 

studied species in each forest conditions. Since all the expected frequencies were less than or 

equal to 5, I used Fisher’s exact test, which does not display test statistics but gives a direct P-

value (Upton 1992). Changes in growth were expressed as relative growth rates (RGRs) and was 

calculated as RGR = (lnw2 - lnw1)/(t2-t1), where w1 and w2 is the plant height at time t1 and t2, 
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respectively. I used a repeated measures mixed model for each species separately to test the 

effect of simulated storm surge, time, and their interactions on RGR (factors = storm surge two 

levels × month) within each simulated canopy openness. Post-hoc comparisons were performed 

with Fisher’s LSD multiple comparisons among individual treatments when the results indicated 

that there were significant overall differences. Total dry biomass (shoot + root) of all species 

were compared between simulated surged and un-surged treatments within the simulated canopy 

openness using one way ANOVA. Total dry biomass data for all the species from simulated 

canopy openness were transformed using the log function to meet assumptions of normality and 

homogeneity of variance in residuals (Zar 1999). All data were analyzed using SAS version 9.2 

(SAS 2008) and results were interpreted at α = 0.05.  

RESULTS 

Seedling Survival and Growth Responses- 

Wet Pine Forest (WPF) Conditions- 

Seedling mortality data suggests that, under simulated 30% canopy openness, B. 

halimifolia experienced a higher proportion of seedling mortality in unsurged pots relative to 

surged pots (Table 4.1). Under simulated 100% canopy openness, however, seedling mortality 

occurred only in some of the simulated storm surge pots (Table 4.1). In 30% canopy openness, 

M. cerifera seedlings experienced mortality in both simulated storm surged and unsurged pots 

(Table 4.1). However in simulated 100% canopy openness, seedling mortality occurred only in 

simulated storm surged pots. For T. sebifera the proportion of seedling mortality was 0.8 in 

storm surged pots and 0.4 in unsurged pots under simulated 30% canopy openness. Similar to 
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other species, seedling mortality was recorded only in some simulated storm surged pots in 

100% canopy openness (Table 4.1). 

For Baccharis halimifolia, there was a significant storm surge × time interaction effect on 

the relative growth rate (RGR) (Table 4.2; P < 0.0001) under simulated 30% canopy openness. 

Overall, seedlings growth declined gradually during the first growing season; thereafter it did not 

change significantly (Figure 4.2A). Initially, RGR of the seedlings that received storm surge 

treatment differed significantly from unsurged ones (until Oct-10) but the differences were not 

significant thereafter (Figure 4.2A). In 100% simulated canopy openness, simulated storm surge 

did not have a significant effect on RGR (Table 4.2; P > 0.05). The RGR declined gradually 

during the first growing season; thereafter it did not change significantly (Figure 4.2B). For 

Morella cerifera and Triadica sebifera in 30% canopy openness, RGR declined gradually during 

the first growing season and did not change significantly thereafter, (Figure 4.3A and 4.4A, 

respectively) and simulated storm surge had no effect on RGR (Table 4.2). There was a 

significant storm surge × time interaction effect on the RGR in simulated 100% canopy openness 

for both species (Table 4.2; P < 0.01). Initially, seedlings that received storm surge had 

significantly lower RGR compared to unsurged ones, but the differences were not significant 

thereafter (Figure 4.3B and 4.4B, respectively for M. cerifera and T. sebifera). 

Mixed Hardwood Forest (MHF) Conditions- 

Under simulated 10% canopy openness, regardless of simulated storm surge, B. 

halimifolia and M. cerifera experienced 100% seedling mortality (Table 4.1). Under simulated 

70% canopy openness, some seedlings of both species experienced mortality in simulated storm 

surged pots (Table 4.1). In contrast, some of the T. sebifera seedlings under simulated 10% 
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canopy openness in unsurged pots survived and remained until the conclusion of the experiment. 

Similar to other species, some seedlings of T. sebifera experienced mortality in simulated storm 

surged pots under simulated 70% canopy openness (Table 4.1).  

Since simulated canopy openness (10%) resulted in mortality of all seedlings (regardless 

of storm surge) for both B. halimifolia and M. cerifera within a few months of the experiment, 

the measurement of growth responses over the course of the experiment was not possible for that 

canopy treatment. In simulated 70% canopy openness, for both species, storm surge had no 

significant effect on RGR (Table 4.2; P > 0.05). RGR of both species decreased progressively 

during first growing season, but the growth rates were increased significantly during the early 

part of the second growing season (Figure 4.5A and Figure 4.5B, respectively for B. halimifolia 

and M. cerifera). All T. sebifera seedlings grown in simulated 10% canopy openness and 

subjected to simulated storm surge also died after a few months. Results showed that the RGR of 

T. sebifera seedlings in the unsurged pots decreased progressively during the first growing 

season, but the growth rate did not differ thereafter (Figure 4.6A)). However, there was a 

significant storm surge × time interaction effect on RGR in simulated 70% canopy openness 

(Table 4.2; P = 0.015). Initially, seedlings that received storm surge had significantly lower RGR 

compared to unsurged ones, but the seedling recovered well during second growing season 

(Figure 4.6B). 

Seedling Biomass Responses to the Treatments- 

Wet Pine Forest (WPF) Conditions 
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Mean total biomass of B. halimifolia under simulated 30% canopy openness was less 

(4.73 gm; SE = 3.59) than under 100% openness (52. 53 gm; SE = 14. 10) (Figure 4.7A). 

Similarly, for M. cerifera mean total biomass in simulated 30% canopy openness was 0.58 gm 

(SE = 0.25) and in simulated 100% canopy openness was 13.32 gm (SE = 3.38) (Figure 4.7B). 

Mean total biomass of T. sebifera under 30% canopy openness was 10.48 gm (SE = 4.10) versus 

13.52 gm (SE = 3.98) under 100% canopy openness (Figure 4.7B). In both simulated 30% and 

100% canopy openness, I did not find significant effects of simulated storm surge on total 

biomass of all the species (P > 0.05; Table 4.3).  

Mixed Hardwood Forest (MHF) Conditions- 

Regardless of simulated storm surge treatment, simulated 10% canopy openness resulted 

in mortality of all B. halimifolia and M. cerifera seedlings within the first half of the study 

period, so a biomass harvest was not possible for those species and potential effects of storm 

surge under simulated 10% canopy openness could not be tested (Table 4.3). In simulated 70% 

canopy openness, simulated storm surge did not have significant effects on total biomass of B. 

halimifolia and M. cerifera (Table 4.3; P > 0.05). In contrast, some of the T. sebifera seedlings 

survived in unsurged pots within the 10% canopy openness. However, potential effects of storm 

surge could not be tested due to the 100 percent mortality of seedling from storm surged pots. In 

70% canopy openness treatment, I did not find a significant effect of simulated storm surge on 

total biomass (P > 0.05; Table 4.3).  

Mean total biomass of B. halimifolia under simulated 70% canopy openness was 10.86 

gm (SE = 2.46). Mean total biomass of M. cerifera under 70% openness was 3.87 gm (SE = 
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1.17). For T. sebifera mean total biomass was less (1.56 gm; SE = 0.13) in simulated 10% 

canopy openness than in simulated 70% canopy openness (11.25 gm; SE = 2.36) (Figure 4.8).  

DISCUSSION 

The responses of two native species and the invasive T. sebifera to key components of 

simulated hurricane disturbances (canopy damage and storm surge) demonstrates that both 

factors are potentially important determinants of plant performance. Simulated hurricane 

disturbances produced differential effects in simulated forest conditions and the species growing 

under those conditions demonstrated heterogeneity in their responses. In both simulated forest 

conditions and under simulated increased canopy openness (greater light availability), I recorded 

a higher proportion of seedlings survival and more total biomass. In particular, I found marked 

differences among species in seedling survival and growth following simulated storm surges in 

simulated MHF conditions. Simulated storm surge generally had detrimental effects on seedling 

survival and growth, but effects were much more pronounced in MHF conditions. In MHF 

conditions, the combination of storm surge and heavy shade resulted in mortality of all species, 

suggesting that storm surges with little canopy damage produce substantial negative impacts on 

seedling regeneration of woody species in hurricane impacted coastal areas. Thus, it is likely that 

it was the improved light availability following canopy opening due to hurricane winds that 

increased performance of young seedlings (e.g., survival and growth) of both native and invasive 

species (Bellingham et al. 2005, Chapman et al. 2008, Murphy et al. 2008b, Shiels et al. 2010). 

However, performance of these species under natural field conditions would likely be 

determined by interactive effects with other key components of hurricanes, such as storm surge 

(Middleton 2009, Howard 2012) and litter and detritus deposition (Murphy et al. 2008b, Shiels et 
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al. 2010). Furthermore, winds and storm surge are not necessarily linked; exceptionally strong 

storms result in sustained storm surges throughout the Gulf of Mexico coast (up to 100 km from 

where they make landfall; Fritz et al. 2007) but canopy effects are more local to the storms’ 

direct paths. 

Seedling Responses to Simulated Canopy Openness Treatment- 

Canopy disturbance increases light availability into the forest understory, which often 

results in enhanced regeneration and growth of plant species (Canham and Marks 1985). 

Although the patterns of responses differed between simulated forest conditions and among 

species, increased canopy openness increased seedling survival and increased total biomass for 

all species at both forest conditions. These results are comparable with several previous studies 

that demonstrated the positive relationships between increased canopy openness (both from 

natural and simulated hurricane disturbance) and seedling survival, growth, and abundance in 

many hurricane impacted regions (Battaglia et al. 1999, Busby et al. 2009, Merry et al. 2009, 

Shiels et al. 2010). Shiels et al. (2010), following experimentally simulated hurricane disturbance 

(e.g., canopy openings) in the field, recorded a significant increase in growth and recruitment of 

woody seedlings in subtropical wet forests in Puerto Rico. Increased sapling growth following 

simulated hurricane disturbances was also reported in New England forests (Cooper-Ellis et al. 

1999). It has been well documented that canopy openings from hurricane winds have 

substantially favored the dominance of fast growing non-native species in various hurricane 

impacted regions (Bellingham et al. 2005, Snitzer et al. 2005, Murphy et al. 2008b). Murphy et 

al. (2008) documented a significant increase in seedling abundance of invasive plant species 

following Cyclone Larry in Australian rainforests. Following Hurricane Andrew, reduced 
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regeneration of native vine species but rapid expansion of invasive vines was reported from 

Florida (Horvitz et al. 1998). In contrast, this experiment produced mixed results on the 

performance of invasive T. sebifera, as its performance (e.g. biomass) did not change much 

under simulated WPF conditions after simulated canopy opening. In contrast, its survival and 

biomass was higher substantially after simulated canopy openings consistent with conditions at 

MHF. It is anticipated that post-hurricane regeneration of T. sebifera likely to be vary with 

respect to pre-disturbance forest conditions in along the coastal transitions.   

In this study, both native species B. halimifolia and M. cerifera benefitted from simulated 

increased canopy openings, exhibiting higher proportion of seedling survival in both simulated 

forest conditions and have higher mean total biomass. This finding is consistent with recent 

studies that report increased growth of native Acer saccharum, along with invasive Acer 

platanoides seedlings following elevated light intensity in forests of the Lawrence River Valley 

of Montreal, Canada (Lapointe and Brisson 2012). Natural and anthropogenic disturbances may 

increase resource availability which increase the performance of plant species (Hobbs and 

Huenneke 1992). My results suggest that increased light, as a direct result of hurricane induced 

canopy damage, can substantially increase the performance (e.g., survival and biomass) of native 

species in forestlands of coastal Mississippi and that responses would vary with respect to pre-

disturbance forest conditions. However, under field conditions, success of a species in post-

disturbed conditions will also depend on differential species’ efficiencies in uptake of unused 

and/or newly available resources (Davis et al. 2000), differential species’ competitive advantage 

due to release from their natural enemies (Mitchell and Power 2003, DeWalt et al. 2004), and the 

availability of propagules for regeneration. 
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Triadica sebifera has many characteristics typical of noxious invasive species, including 

rapid growth rates (Bruce et al. 1997), early reproduction (in some cases, flowering within a year 

of germination; JB Grace, pers. comm.), copious propagules production and efficient propagule 

dispersal  (Renne et al. 2002), and rapid adaptation to insect herbivores in its introduced range 

(Siemann et al. 2006). Triadica sebifera is also tolerant of a wide range of environmental 

conditions, including closed canopy understories (Jones and McLeod 1989), storm surge 

flooding (Howard 2012), and moderate levels of soil salinity (Conner et al. 1997). The 

combination of favorable vital attributes with a broad fundamental niche likely provides a 

competitive edge to this species under altered environmental conditions. In this study, some T. 

sebifera seedlings survived in simulated current MHF canopy conditions (10% canopy 

openness), while native seedlings had 100% mortality. These results suggest that invasive T. 

sebifera will have more opportunities to exploit post-hurricane environments while native 

species may not have seedlings in place when gaps become available. Substantial increases in 

invasive species’ density and coverage following hurricane disturbances have been documented 

elsewhere (Horvitz et al. 1998, Murphy et al. 2008b), including cases involving T. sebifera in 

coastal Louisiana (Chapman et al. 2008, Howard 2012). Once T. sebifera survives high shade 

conditions, it has the ability to grow rapidly under moderate to full sunlight following canopy 

openings from hurricane winds (Jones and McLeod 1989). Phenotypic plasticity and stress 

tolerance is one of the major traits that make invasive species successful in invaded habitat 

(Rejmanek and Richardson 1996, Richards et al. 2006). Here, I expect that high shade tolerance 

of T. sebifera can provide this species a competitive advantage over native species under post-

hurricane environments and I anticipate that this aggressive invader will increase its current 
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range along the forested wetlands of coastal southeastern US with increased intensity and 

severity of hurricane disturbances predicted for this region (Bender et al. 2010).  

Seedling responses to simulated storm surge-  

The responses of the species to storm surge were not uniform between the simulated 

forest conditions. Baccharis halimifolia seedlings experienced low mortality, M. cerifera and T. 

sebifera seedlings experienced more mortality from simulated storm surge in simulated WPF 

conditions. However, for all species the total dry biomass was not different between simulated 

storm surge and unsurged treatments. In contrast, storm surge produced 100% mortality of all 

species in 10% canopy openness in MHF conditions. Under natural conditions, the effects of 

storm surges are expected to be more severe in young seedlings due to salinity stress, scouring, 

and erosion that exposes root systems, leading to desiccation stress (Stanturf et al. 2007). In this 

study, I simulated only the elevated salinity (30 ppt) for three days and some ecological effects 

were ephemeral, particularly in less shaded conditions, where seedlings of all three species 

recovered their normal growth rates. Thus, I predict that seedling mortality in 30% and10% 

canopy openness under WPF and MHF conditions, respectively may be associated more with 

shade than the surge effects. Still, in areas with dense canopy cover, storm surge effects are 

likely to be exacerbated due to the dual and interactive stresses of shade and salinity. 

Results from this study suggest that forest stands that remain relatively undisturbed by 

hurricane winds may be more susceptible to hurricane generated storm surges. Thus, the patchy 

nature of hurricane wind disturbances to forest canopy (Stanturf et al. 2007, Kupfer et al. 2008) 

likely produces heterogeneous effects of storm surge by differentially affecting the survival and 

growth of seedlings in different habitats along the coastal forests. In coastal Mississippi, 
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substantial land cover changes (expansion of open water and reduction in vegetated areas) have 

already been recorded as a result of the unprecedented effects of storm surges following 

Hurricane Katrina and other recent storms (Evans et al. 2012). Furthermore, widespread 

mortality of understory and overstory trees in coastal bottomland hardwoods in Louisiana after 

extended duration of storm surge flooding (up to 3 weeks) from Hurricane Katrina, which 

produced minimal canopy damage, have recently been reported (Howard 2012). Thus, storm 

surge from hurricanes is likely to have differential effects on survival and regeneration of native 

and invasive species in low-lying coastal forestlands, leading to compositional shifts in coastal 

plant communities. 

Complex Interactions and Outcomes of Differential Species Responses- 

In this study, I found that native and invasive species’ responded differently to simulated 

hurricane disturbances at different forest conditions and across time. Overall, all three species 

demonstrated positive responses to simulated canopy openings through a higher proportion of 

seedling survival and an increased biomass. Results showed that the negative effects of storm 

surge are more intense under high canopy cover in both WPF and MHF conditions, suggesting 

that the canopy structure and storm surges may act synergistically, and the interactions between 

these factors may ultimately direct species’ responses. In low-lying coastal areas with sparser 

canopies and relatively saltier soil (i.e., WPF), B. halimifolia may benefit more than other 

species because of its greater tolerance to salinity (Chapter 2). It is likely that highly shade 

tolerant T. sebifera will increase in dominance in MHF and other areas where historical natural 

disturbance regimes have been altered through anthropogenic intervention. For centuries, many 

of the ecosystems throughout the Coastal Plain of the southeastern United States have been 
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maintained by natural fire and hurricane activity (Myers and van Lear 1998). During the post 

settlement era, however, anthropogenic alteration of the historical disturbance regimes necessary 

to maintain these coastal ecosystems has resulted in structural and compositional shifts in plant 

communities (Myers and van Lear 1998, Gilliam and Platt 1999). For instance, field observation 

and canopy photo analysis (Chapter 2) indicated that the forest stand at MHF has long been fire-

suppressed, resulting in a denser canopy (canopy cover reached up to 92%). As observed in the 

10% canopy openness, shade intolerant native species are negatively impacted by high shade, 

while the generalist invasive T. sebifera maintained its presence and may flourish after hurricane 

wind disturbances that widen canopy gaps and increase resource availability. Furthermore, T. 

sebifera can withstand storm surge flooding up to three weeks and have the ability to recover 

after the recession of salinity stress (Howard 2012). Anticipated intensification of tropical storms 

and storm surge flooding would further facilitate recruitment and regeneration of invasive T. 

sebifera, potentially by increasing light and nutrient availability and reducing competition from 

some flood intolerant native species (Howard 2012 and references therein).  

In conclusion, I found that native and invasive species’ performances were increased 

under simulated canopy openings (a key component of hurricane disturbances). In contrast, 

effects of simulated storm surge were varied with simulated forest conditions and canopy 

openness. These results provide an important example of how the population growth, abundance, 

and persistence of native and invasive species can become altered following hurricane 

disturbances. Plant species responses to hurricane disturbances will change continuously at 

different areas over time, ultimately affecting and/or altering future structure and composition of 

hurricane affected forests across the landscape (Shiels et al. 2010).
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Table 4.1. Effects of simulated storm surge on proportion of seedlings mortality of species selected in this study under different 

simulated canopy openness (30% and 100%) in simulated WPF conditions, and 10% and 70% canopy openness in 

simulated MHF conditions. 

WPF conditions MHF conditions 

Species Simulated canopy 

openness 

Storm-Surge Proportion 

of mortality 

Simulated canopy 

openness 

Storm-Surge Proportion 

of mortality 

B. halimifolia 30% Unsurged 0.8 10% Unsurged 1 

Surged 0.2 Surged 1 

100% Unsurged 0 70% Unsurged 0 

Surged 0.2 Surged 0.2 

M. cerifera 30% Unsurged 0.6 10% Unsurged 1 

Surged 0.8 Surged 1 

100% Unsurged 0 70% Unsurged 0 

Surged 0.4 Surged 0.6 

T. sebifera 30% Unsurged 0.4 10% Unsurged 0.4 

Surged 0.8 Surged 1 

100% Unsurged 0 70% Unsurged 0 

Surged 0.4 Surged 0.4 
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Table 4.2. Summary of repeated-measure analysis of variance test of effects of simulated storm surge, time and their interactions on 

the relative growth rate of seedlings of species selected in this study under different simulated canopy openness (30% and 100%) in 

simulated WPF conditions, and 10% and 70% canopy openness in simulated MHF conditions. Significant results are indicated in bold.  

 WPF Conditions MHF Conditions 

Source of variation 

                         

30% canopy openness 100% canopy openness 10% canopy openness 70% canopy openness 

Num 

DF 

Den 

DF 

F  P Num 

DF 

Den 

DF 

F  P Num 

DF 

Den 

DF 

F  P Num 

DF 

Den 

DF 

F  P 

B. halimifolia  

Storm surge 1    8 0.0 0.98 1    8 0.77 0.40 - - - - 1 8 0.01 0.91 

Month 8 39 25.82 <.001 8 57 21.86 <.0001 - - - - 8 59 7.78 <0.001 

Storm surge* Month 8 39 2.57 0.023 8 57 1.33 0.24 - - - - 8 59 1.58 0.15 

Morella cerifera  

Storm surge 1    8 0.75 0.41 1    8 2.68 0.14 - - - - 1 8 0.03 0.87 

Month 8 24 6.14 0.002 8 52 12.08 <.0001 - - - - 8 45 69.83 <.0001 

Storm surge* Month 8 24 0.38 0.92 8 52 4.29 0.005 - - - - 8 45 0.87 0.55 

Triadica sebifera  

Storm surge 1 8 0.32 0.58 1 8 4.22 0.074 1 8 0.10 0.76 1 8 4.17 0.07 

Month 8 38 3.11 0.008 8 54 13.40 <.0001 8 27 11.90 <.001 8 50 10.68 <.0001 

Storm surge* Month 8 38 1.38 0.23 8 54 3.75 0.001 2 27 1.28 0.29 8 50 2.68 0.015 
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Table 4.3. One-way ANOVA table of the effect of simulated storm surge on total biomass of species selected in this study under different 

simulated canopy openness (30% and 100%) in simulated WPF conditions, and 10% and 70% canopy openness in simulated MHF 

conditions. Significant results are indicated in bold. 

Source of 

variation 

WPF conditions MHF conditions 

30% canopy openness 100% canopy openness 10% canopy openness 70% canopy openness 

 F F  P DF F P  DF F  P DF F P  

B. halimifolia  

Storm surge 1 0.45 0.55 1 0.96 0.35 - - - 1 0.59 0.46 

Total 4  8  -  8  

M. cerifera                       

Storm surge 1 0.10 0.80 1 0.31 0.59 - - - 1 4.76 0.08 

Total 2  7  -  6  

T. sebifera                          

Storm surge             1 0.14 0.74 1 0.83 0.39 - - - 1 0.52 0.50 

Total 3  7  -  6  
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Figure 4.1. A location map of forest stands and GBNERR (courtesy of the Mississippi 

Department of Marine Resources). Symbol (■) represent forest stands, south to north: wet pine 

forest (WPF), and mixed hardwood forest (MHF), respectively, used to collect soils for the 

greenhouse experiment. 
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Figure 4.2. Seedlings growth responses (RGR, mean ± SE) to (A) simulated storm surge under simulated 30% canopy openness and (B) 

over time under simulated 100% canopy openness in simulated WPF conditions for B. halimifolia (an arrow denotes the time in which 

simulated storm surge was applied). 
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Figure 4.3. Seedlings growth responses (RGR, mean ± SE): (A) over time under simulated 30% canopy openness and to (B) simulated 

storm surge under simulated 100% canopy openness in simulated WPF conditions for M. cerifera (arrow denotes the time in which 

simulated storm surge was applied). 
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Figure 4.4. Seedlings growth responses (RGR, mean ± SE): (A) over time under simulated 30% canopy openness and to (B) simulated 

storm surge under simulated 100% canopy openness in simulated WPF conditions for T. sebifera (arrow denotes the time in which 

simulated storm surge was applied). 
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Figure 4.5. Seedlings growth responses (RGR, mean ± SE) over time under simulated 70% canopy openness for (A) B. halimifolia and 

(B) M. cerifera in simulated MHF conditions (arrow denotes the time in which simulated storm surge was applied). 
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Figure 4.6. Seedlings growth responses (RGR, mean ± SE): (A) over time under simulated 10% canopy openness and to (B) simulated 

storm surge under simulated 70% canopy openness for T. sebifera in simulated MHF conditions (arrow denotes the time in which 

simulated storm surge was applied). 
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Figure 4.7. Mean (± SE) total dry biomass (shoot + root) for (A) B. halimifolia (B) M. cerifera 

and (C) T. sebifera after 18 months of growth in the greenhouse under simulated 30% and 100% 

canopy openness in simulated WPF conditions. 
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Figure 4.8. Mean (± SE) total dry biomass (shoot + root) for T. sebifera after 18 months of 

growth in the greenhouse under simulated 10% and 70% canopy openness in simulated MHF 

conditions. 
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CHAPTER 5 

THE ROLE OF VESICULAR ARBUSCULAR MYCORRHIZAE (VAM) ON SUCCESS OF 

TRIADICA SEBIFERA INVASION IN COASTAL TRANSITION ECOSYSTEMS 

ABSTRACT 

Vesicular arbuscular mycorrhizal (VAM) fungi can have important effects on the 

structure and diversity of plant communities, in part through promoting exotic plant invasions. 

Once established, invasive plants can modify the soil-microbial community in directions that 

benefit themselves. The study of interactions between native plant species, invasive plant 

species, and soil microorganisms (e.g., VAM) is important to improve our basic understanding of 

the invasion processes. In a greenhouse experiment, I compared the degree of VAM colonization 

of the invasive Triadica sebifera and two native, co-occurring woody species Baccharis 

halimifolia and Morella cerifera and compared their growth in active versus fungicide treated 

field soils. The invasive T. sebifera showed significantly higher VAM colonization in active soils 

compared to native species and also exhibited significantly higher growth in active soil 

compared to fungicide treated soil. In a companion field experiment, I tested the effect of VAM 

on establishment of these species along a typical coastal transition ecosystem in coastal 

Mississippi, USA. Triadica sebifera had higher VAM colonization compared to native species 

and also maintained higher total biomass during its first eight months of growth. In a second 

greenhouse experiment, I assessed potential allelopathic effects of T. sebifera on B. halimifolia 

and M. cerifera by growing them in soils from T. sebifera invaded and uninvaded regions with 

and without activated carbon. VAM colonization of B. halimifolia and M. cerifera did not differ 

between the treatments, and also their growth was not affected by soil sources. Overall, my 

results suggested that T. sebifera grows well in active soil and higher degrees of VAM 
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colonization may be necessary for the initial establishment of this invader. Results from this 

study also suggested that T. sebifera was not allelopathic and did not interfere with growth of 

native species. Strong positive benefit from VAM may enhance the establishment and capacity 

of T. sebifera to invade coastal plant communities of the southeastern USA. 

INTRODUCTION 

Soil biota can have significant effects on plant community structure and functions as 

they, directly or indirectly, influence plant growth, reproduction, and ecosystem processes (van 

der Heijden et al. 1998, Wall and Moore 1999, Ehrenfeld et al. 2001, Wardle 2002, Callaway et 

al. 2004). The effects of soil biota on ecosystem processes are often idiosyncratic and can be 

positive, negative, or neutral depending on which ecosystem, process, and organisms are being 

described. Positive feedbacks from soil biota on plant species may occur when rhizospheres are 

infected by mutualistic mycorrhizal fungi (vesicular arbuscular mycorrhizae, hereafter VAM) 

(Smith and Read 1997) and nitrogen fixing bacteria (Wall and Moore 1999) as both groups of 

organisms play supportive roles in transporting limited nutrients to the plants. Negative effects 

arise as a result of accumulation of pathogens, parasites, and root-feeding invertebrates around 

the rhizosphere (Packer and Clay 2000, Van der Putten et al. 2001, Wardle et al. 2004) and 

reduce the fitness of plants by decreasing the uptake capacity of roots and removing nutrients 

and carbon from plant tissues (Bever 1994, Bever et al. 1997).  

Soil biota can play important roles in exotic plant invasions as they sometimes promote 

invasions (Callaway et al. 2004, Wolfe and Klironomos 2005). In general, invasive species can 

escape soil-borne pathogens in their introduced regions (Agrawal et al. 2005, Reinhart et al. 

2010) and are capable of modifying the soil microbial community in directions that benefit 
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themselves (Wolfe and Klironomos 2005, Zhang et al. 2010). When invasive species do 

encounter pathogens, pathogenic effects may be minimal compared to the mutualistic benefits 

they receive from VAM (Klironomos 2002). Consequently, mutualistic benefits from soil 

microorganisms become an important mechanism for establishment of invasive species. A 

growing body of recent research continues to demonstrate positive feedbacks from VAM to 

invasive species, which may result in increased dominance within introduced regions (Marler et 

al. 1999a, Richardson et al. 2000a, Reinhart and Callaway 2004). Some invasive species are 

capable of developing beneficial mutualisms with VAM at a higher rate than co-occurring native 

species (Marler et al. 1999b, Nijjer et al. 2008, Smith et al. 2008). Higher degrees of VAM 

colonization may help to increase plant access to limiting nutrients (e.g., phosphorus) through 

enhanced mutualism (Reinhart and Callaway 2006, Sun and He 2010).  

Some exotic plants are highly successful in their invaded range because they can  

suppress their native neighbors through the release of chemical compounds (i.e. allelopathy) into 

their surrounding (Hierro and Callaway 2003, Callaway and Ridenour 2004). Recently, it has 

been pointed out that exotic invasive plant species can disrupt mutualistic associations between 

native plant species and their fungal mutualists (Stinson et al. 2006). Stinson and coauthors 

experimentally demonstrated that the anti-fungal phytochemicals released from the highly 

invasive garlic mustard can suppress VAM colonization of native tree seedlings in North 

America and produce negative effects of native tree recruitment. Furthermore, some invasive 

species have been shown to suppress native species by stimulating soil-borne pathogens that are 

lethal to native plant species (Mangla et al. 2008). However, limited information is available on 

(i) whether the degree of VAM colonization is higher in invasive than co-occurring native 

species, (ii) if the degree of VAM colonization, if any, enhances establishment and growth of 
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invasive species relative to native species, and (iii) whether invasive species disrupt relationships 

between native plant species and their mutualists through allelopathy. Understanding interactions 

between invasive plant species, native plant species, and soil biota can be critical to predicting 

the trajectories of plant invasions and invaded communities. 

I used Triadica sebifera (L.) Roxb. as a focal invasive species and Baccharis halimifolia 

L. and Morella cerifera (L.) Small as focal native species. I assessed the degree of VAM 

colonization, VAM dependency, and effect of VAM colonization on the performance of these 

species. I also examined the potential allelopathic effects of T. sebifera on focal native species. 

T. sebifera is a small- to medium-sized subtropical, deciduous, monoecious tree in the family 

Euphorbiaceae. After its introduction into the United States in the late 18
th

 century (Randall and 

Marinelli 1996), the species has become a serious threat to many low lying coastal ecosystems of 

the southeast USA (Bruce et al. 1995, Jubinsky and Anderson 1996). In coastal prairies, T. 

sebifera is causing large-scale ecosystem modifications by displacing native plant species (Bruce 

et al. 1995, Jubinsky and Anderson 1996). In coastal Mississippi, T. sebifera is spreading slowly 

in low-lying coastal communities, particularly in disturbed areas (Matlack 2002). As a result of 

strong negative impacts on native communities, The Nature Conservancy has categorized T. 

sebifera as one of the worst exotic plants in the USA (Flack and Furlow 1996). Recent studies 

indicated that some T. sebifera populations of the southeastern USA are mycorrhizal (Nijjer et al. 

2008, Kandalepas et al. 2010) with higher degrees of VAM colonization compared to co-

occurring resident species. It has also been suggested that the species is allelopathic (Gresham 

1994); however, no previous studies have directly tested for T. sebifera’s VAM dependency and 

allelopathic effects within invaded communities. 
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Baccharis halimifolia is a deciduous understory shrub commonly found growing along 

the Atlantic and Gulf Coast Plains of North America (Duncan et al. 1957). It grows in moist and 

highly organic soil (Duncan et al. 1957), and has a moderate level of salinity tolerance (Young et 

al. 1994). One recent study indicated that some B. halimifolia populations of the southeastern 

USA are mycorrhizal (Kandalepas et al. 2010). M. cerifera is an evergreen nitrogen-fixing early 

successional shrub native to wetlands of the Atlantic and Gulf Coastal Plains. It is moderately 

salt tolerant (Young et al. 1995, Tolliver et al. 1997), and some M. cerifera populations along the 

Atlantic coast are known to be mycorrhizal (Semones and Young 1995).  

In a first greenhouse experiment, I assessed the degree of VAM colonization in native B. 

halimifolia and M. cerifera, and invasive T. sebifera. In the same experiment, I examined the 

effect of VAM colonization on overall growth of these species. I hypothesized that native and 

invasive species would have different levels of VAM colonization and that seedlings growing in 

VAM unsuppressed soil would exhibit higher total biomass. In a companion field experiment, I 

also assessed the degree of VAM colonization among these species at different seasons. In the 

same experiment, I examined the role of VAM colonization on establishment and growth of 

these species along a typical coastal transition ecosystem. I hypothesized that the native and 

invasive species would have different levels of VAM colonization and higher degree of VAM 

colonization would positively correlate with total biomass. In a second greenhouse experiment, I 

explored the potential allelopathic effects of T. sebifera on the growth of two native species B. 

halimifolia and M. cerifera. I hypothesized that growth of native species would be inhibited in 

soils with T. sebifera invasion relative to growth in uninvaded soils. 
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MATERIALS AND METHODS 

Study System- 

The study system was a coastal transition ecosystem at Grand Bay National Estuarine 

Research Reserve (GBNERR) in coastal Mississippi, USA (30° 21.551’N, 88° 25.202’W) 

(Figure 5.1). The reserve, located in the low-lying Gulf Coastal Plain, is relatively undisturbed 

(Hilbert 2006) and contains one of the most biologically diverse and productive estuarine 

ecosystems on the Gulf of Mexico (NOAA 2007). The reserve includes several  plant 

assemblages that are arrayed along the marine-terrestrial transition and common in Coastal Plain 

ecosystems: salt marsh, brackish marsh, freshwater marsh, maritime pine forests, wet pine 

forests, mixed pine hardwood forests, pine flatwoods (Battaglia et al. 2012). The plant 

communities at GBNERR were historically maintained by natural disturbances (such as fire and 

tropical storms). The focal plant species occur within some of the forested wetlands of the 

reserve. For this study, I selected three common vegetation zones, namely brackish marsh, wet 

pine forest (WPF), and pine flatwoods (PFW) (Figure 5.1).  

Before initiating experiments, I checked the status of VAM colonization in those focal 

species. Although recent field assessments from coastal Louisiana suggested that B. halimifolia 

and T. sebifera are mycorrhizal (Kandalepas et al. 2010), there was no information available 

whether actinorhizal M. cerifera is mycorrhizal in low-lying coastal forested wetlands along 

northern Gulf of Mexico. I collected root samples of all the species from different habitats along 

the coastal transitions in GBNERR, processed, and examined for VAM colonization. I found all 

the species were mycorrhizal under natural field conditions. 

 



110 

 
 

Experiment 1: Mycorrhizae Colonization and Dependency Experiment- 

A greenhouse experiment was conducted to determine the degree of VAM colonization 

among focal plant species and their VAM dependency on growth by growing the focal species in 

VAM suppressed and active soil. To initiate the experiment, first a stock of seedlings of all the 

species were prepared by germinating them in sterilized peat soil. In December 2009, I collected 

seeds of B. halimifolia, T. sebifera, and M. cerifera plants from multiple locations within 

GBNERR and cold-stratified these seeds at 4 
○
C (Baskin and Baskin 1998) for two months. In 

late February 2010, seeds were sown and germinated in 52 cm x 26 cm size flats, half-filled with 

peat-moss soil sterilized by autoclaving at 121 °C for 45 minutes. Before being sown, seeds were 

washed thoroughly in 10% bleach to remove any surface infection that may have existed on the 

seeds.  

I used field soil collected from three distinct habitats (with respect to distance to the 

shoreline, vegetation, hydrology, and salinity) at the GBNERR (Figure 5.1). By collecting soils 

from different habitats I represented the natural range of variability in habitat conditions. Since a 

typical coastal transition represents a wide range of soil conditions, salinity, and hydrologic 

gradients, I expect that mycorrhizal abundance and their associations with plant species may also 

vary along these gradients. The most seaward habitat was brackish marsh ~ 4 km inland from the 

edge of the coast. The intermediate habitat was considered wet pine forest (WPF) located ~ 6 km 

inland from the edge of the coast and common in the GBNERR. The most inland habitat, 

considered wet pine flatwoods (PFW), was ~ 11 km inland from the coast. From each habitat, 

soils were collected from the top 15 cm at five randomly chosen locations and combined to form 

one composite sample for each habitat. Before potting, I cleared litter, roots, and any other plant 

parts present in the soil by passing each composite soil through a 1 cm
2
 sieve. The soil was 
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placed into a total of 24 experimental pots (top diameter 12.7 cm x 24.1 cm tall, Stuewe & Sons, 

Inc. Oregon, USA) assigned for each soil source.  

In mid-June 2010 I planted one seedling of a species in each pot. Each pot was replicated 

four times for each species and soil source. Since the soil utilized in the experiment was taken 

from the field, I did not inoculate soil with VAM. To apply a non VAM treatment, half of the 

pots dedicated to each species were treated with fungicide (Brand name: Allban
®
 Flo, OH, 

USA). All the pots were randomly arranged in the greenhouse and rotated every other week until 

the experiment was completed in late October 2010. This experiment was complete factorial 

design yielded a total of 24 pots for each species (3 soil sources × 2 fungicide levels × 4 

replicates = 24). I applied Allban to non-VAM treatment immediately after seedlings were 

transplanted and reapplied it every three weeks. Allban application was intended to reduce VAM 

colonization and activity. Allban
®
 Flo contains the active ingredient, Thiophanate-Methyl and 

was advertised as a direct Benomyl substitute (The Scotts Company LLC), as Benomyl was no 

longer available in the market. The use of Allban
®

 Flo to suppress fungal infections in some crop 

plants have recently been reported (Daughtrey 2011). For each application, 750 ml of Allban
®
 

Flo solution (prepared by adding 1.55 ml of active ingredient into 1 liter of de-ionized water) 

was applied to each non-VAM treatment. Transplanted seedlings were watered with normal tap 

water to saturation twice per week in order to maintain field capacity soil moisture. 

After 122 days of growth, seedlings were harvested and separated into shoots and roots. 

Roots were washed with de-ionized water and small subsamples of fine roots from each seedling 

were separated and processed for VAM colonization. Shoots and roots were dried to a constant 

weight at 55 °C for 7 days and weighed to determine dry biomass. Small root samples, separated 

to estimate VAM colonization, were stored in 50% ethanol until roots were processed. Roots 
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stored in 50% ethanol were cut into 1-cm long fragments and cleared in 10% potassium 

hydroxide (KOH) by placing root fragments in KOH solution overnight. Cleared roots were then 

rinsed with deionized water and acidified in 1% HCl for 15 min. Acidified roots were stained in 

Trypan blue (1:2:2 lactic acid, glycerol, deionized water with 0.6 g Trypan blue added per liter) 

for about 4-5 hours. Nine randomly selected stained fragments were mounted on three 

microscope slides (each slide had three root fragments) and examined for VAM colonization. 

Each mounted root was observed under a compound microscope (Olympus-BH-2) using a 40 × 

objective lens and checked for arbuscules, vesicles, and hyphae of VAM. All the lab procedures 

for processing root samples to estimate VAM colonization were slightly modified from 

Reinhardt and Miller (1990) and McGonigle et al. (1990), and percent VAM colonization was 

determined using the magnified intersection method (McGonigle et al. 1990). Since seedlings of 

all the species transplanted to the soil from brackish marsh did not survive, I discarded that 

habitat from the experiment.  

Experiment 2: Field Experiment- 

To investigate the degree of VAM colonization over time and the effects of colonization 

on establishment, growth, and performance of focal species in natural field conditions, I 

conducted a 15 month field experiment. I selected the same three habitats at GBNERER used as 

soil sources for the first experiment (Figure 5.1). On June 14, 2010, I randomly placed a group of 

nine pots (3 replicate pots of 25 cm top diameter × 25 cm height for each species) in each of the 

three habitats. A pot-size hole was made on the ground by excavating soil using a shovel. The 

excavated soil was then put into the pot and the pot was positioned back into the same hole. The 

level of the soil in the pot coincided with the outside ground level. Pots had three equal-sized 

drain holes at the bottom and made additional five drain holes each at 10 cm and 20 cm from the 
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bottom in order to encourage water flow through the soil in the pots. I utilized the stock of 

seedlings prepared for experiment 1, and transplanted five seedlings of each species in each 

designated pot and seedlings were numbered 1-5. Seedlings were watered to saturation three 

times (first, third and fifth day) at the beginning of the experiment and then allowed to grow 

under natural field conditions for 15 months. Survival of transplanted seedlings was monitored 

for the first five days and after one month. I noticed all transplanted seedlings at the WPF and 

PFW habitats were intact but, as in the first experiment, all the seedlings in the brackish marsh 

had died. Thus, I omitted that habitat from the experiment.  

A total of three seasonal harvests were made for all the species from both habitats by 

randomly selecting a seedling from each pot. Before harvest, I made notes on the status (e.g., 

browsing and herbivory) of growing seedlings. During the first two harvests, widespread 

browsing (mainly apical portion of the seedling) was observed for all the species, and therefore, I 

did not incorporate relative growth rate into the analysis. The first, second, and third harvests 

were made in September 2010 (after approximately 75 days of growth), March 2011 (after 

approximately 240 days of growth), and September 2011 (after approximately 450 days of 

growth), respectively. Coming to the end of the experiment period, none of the B. halimifolia and 

T. sebifera and only one of M. cerifera seedlings had survived at PFW, so the September 2011 

harvest represented only WPF habitat. Under normal conditions, PFW is drier than WPF because 

the former occupies the more inland location along the coastal transition of the two. I suspect 

that a long drought during late spring and early summer of 2011 (Figure 5.2) likely produced 

those results. Previously it was reported that severe droughts can substantially decrease survival 

of young T. sebifera seedlings (Bower et al. 2009). 
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 For each harvest, seedlings were separated into shoots and roots. Roots were washed 

thoroughly in tap water and small subsamples of fine roots were separated to assess status of 

VAM colonization among species. Fine roots were washed in de-ionized water and stored in 

50% ethanol until the roots were processed. The protocol of processing roots to estimate VAM 

colonization was the same as described for experiment 1. Shoots and roots were dried to a 

constant weight at 55 °C for 7 days and weighed to determine dry biomass. 

Experiment 3. Allelopathy Experiment- 

To investigate the potential allelopathic effects of T. sebifera on native species, B. 

halimifolia and M. cerifera, I grew B. halimifolia and M. cerifera seedlings in soil with and 

without the history of T. sebifera invasion. I collected soil from T. sebifera invaded and T. 

sebifera free (greater than 50 m away from the nearest T. sebifera tree) areas at GBNERR. At 

each area, soil was collected from 10 randomly chosen locations and the soil collection protocol 

was the same as described for experiment 1. Triadica sebifera invaded and uninvaded soils were 

pooled separately in the lab and sieved (1 cm
2
) to remove coarse roots, debris, and litter. Two 

separate experiments (each for B. halimifolia and M. cerifera) were conducted in a greenhouse 

setting. For each species, a total of 20 pots (the same pots used in experiment 1) were filled with 

sieved soil. For each species, one fourth of the pots (5) received soil collected from T. sebifera 

invaded soil mixed with finely ground activated carbon (Carbochem Inc., PA, USA) (20 ml per 

liter of soil) while one other fourth of the pots (5) received soil collected from the T. sebifera free 

area mixed with the same amount (i.e. 20 ml per liter of soil) of activated carbon. Mixing 

activated carbon into the soil reduces the allelopathic effects of organic root exudates because 

activated carbon has a high affinity to allopathic organic compounds but at the same time has 

low affinity to inorganic compounds in nutrient solutions (Callaway and Aschehoug 2000). 
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Among the remaining 10 pots for each species, 5 received soil from T. sebifera invaded areas 

and 5 received soil from T. sebifera uninvaded areas with no activated carbon added. 

In the 2
nd

 week of June 2011 I planted two seedlings (prepared following the same 

method as described for experiment 1) of one of the two native species (B. halimifolia or M. 

cerifera) to each pot in a complete factorial design (2 soil sources × 2 carbon × 5 replicates of 

each treatment combination = 20 pots for each species). Pots were arranged randomly on the 

greenhouse bench and re-randomized often. Plants were watered to saturation twice a week 

(however, during extremely hot weeks, watered every other day). After 4 months of growth, 

shoots and roots were harvested. Roots were washed thoroughly in tap water. Shoots and washed 

roots were dried at a constant weight at 55 °C for a week and weighed to determine biomass. 

Small subsamples of fine roots from seedlings of each pot were separated and processed for 

VAM colonization as described for experiment 1. I examined the degree of VAM colonization in 

roots of B. halimifolia and M. cerifera seedlings, grown in soils with and without a history of T. 

sebifera invasion. Seedlings from each pot were combined and measured as one biomass for both 

shoots and roots. Before analysis, I combined both shoot and root biomass and expressed as total 

biomass.  

Statistical Analyses- 

In a first greenhouse experiment and using unmanipulated soils only, the degree of VAM 

colonization among species (3 species) and across soil source (2 levels) was compared using 

two-way ANOVA. Percent colonization data were natural log-transformed to meet assumption of 

normality prior to analysis. I combined dry shoot and root biomass into total dry biomass for all 

species. Total biomass data were analyzed for each species separately using two-way ANOVA 
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for the fixed effects of soil source (2 levels) and fungicide (2 levels) and their interaction. Total 

biomass data for B. halimifolia were natural-log-transformed for normality, while total biomass 

data for M. cerifera and T. sebifera were normally distributed and did not require transformation. 

I also performed a linear regression to determine the relationship between percent VAM 

colonization and total biomass for each species.  

Data from the field experiment for percentage VAM colonization and total dry biomass 

(root + shoot) during first two harvests were compared among the species (3 species) and across 

the habitats (2 levels) using two-way ANOVA for the fixed effects of habitat and species and 

their interaction. However, all species were dead before the third harvest at PFW and 

comparisons for VAM colonization and total dry biomass among species were made for WPF 

only by using one-way ANOVA. Percent VAM colonization and total biomass data from the first 

harvest were normally distributed and did not require transformation, while same data from the 

second harvest were natural-log-transformed for normality. For the third harvest, the percent of 

VAM colonization and total dry biomass data were normally distributed and did not require 

transformation.  

Total dry biomass and percent VAM colonization data for each species from experiment 

3 were analyzed using two-way ANOVA for the fixed effects of soil source (2 levels) and 

presence of activated carbon (2 levels) and their interactions. Data were normally distributed and 

did not require transformation. All data were analyzed using SAS version 9.2 (SAS 2008) and 

the alpha level used for  detecting significant difference was α = 0.05. 
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RESULTS 

Experiment 1. Mycorrhizae Dependency Experiment-  

I observed VAM colonization (arbuscules, hyphae, and vesicles) in roots of all three plant 

species grown in fungicide treated and control field soils. Fungicide application substantially 

reduced VAM colonization of roots, regardless of habitats, from an average of 21.71 ± 3.32% to 

6.60 ± 1.36% for B. halimifolia, from 8.92 ±1.97% to 2.99 ±0.76% for M. cerifera, and from 

40.38 ± 5.30% to 5.63 ± 1.25% for T. sebifera (see Table 5.1 for ANOVA results). In control 

soils, the degree of VAM colonization varied among species regardless of habitats (two-way 

ANOVA: main effect; Fspecies = 18.06, df = 2,70; P < 0.0001). The invasive T. sebifera showed a 

significantly higher degree of VAM colonization compared to native species (Figure 5.3).  

Total seedling dry biomass of B. halimifolia and M. cerifera was not significantly 

affected by VAM suppression (Figure 5.4A and 5.4B, respectively), habitats, and their 

interaction (P > 0.05; Table 5.2). However, there was a significant positive relationship between 

total seedling dry biomass and VAM colonization for B. halimifolia (Figure 5.5A); but not for M. 

cerifera (Figure 5.5B). In contrast, T. sebifera total seedling dry biomass was significantly 

affected by VAM suppression regardless of habitats (Table 5.2, Figure 5.4C); I also found a 

significant positive relationship between total dry biomass and VAM colonization (Figure 5.5C).  

Experiment 2. Field Experiment- 

VAM colonization was observed in all three species at both habitats in all harvests. 

During the first two harvests, regardless of habitats, there were clear trends in VAM colonization 

among species and the invasive T. sebifera had higher VAM colonization (fall of 2010: main 
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effect, Fspecies = 43.43, df = 2,50, P < 0.001, Figure 5.6 and spring of 2011: main effect, Fspecies = 

30.45, df = 2,38, P < 0.001, Figure 5.6). Also in the final harvest, T. sebifera had higher VAM 

colonization compared to native species at WPF (fall of 2011: one-way ANOVA; species effect, 

Fspecies = 30.45, df = 2, 18, P < 0.001, Figure 5.6).  

Total dry biomass was higher for T. sebifera compared to other species after 2 ½ months 

of growth (fall of 2010) regardless of habitats (Table 5.3, Figure 5.7A). After eight months of 

growth (spring of 2011), a similar trend was observed with a significant habitat × species 

interaction (Table 5.3, Figure 5.7B). At the conclusion of the experiment (fall of 2011), there was 

no significant differences in total dry biomass between species at WPF (fall of 2011: one-way 

ANOVA; species effects, Fspecies = 3.123, df = 2,6, P = 0.12). 

Experiment 3: Allelopathy Experiment- 

Baccharis halimifolia had no significant differences in percent VAM colonization of 

roots between the treatments (Table 5.4), while the species had significantly higher total dry 

biomass in activated carbon treatment than without activated carbon treatment (P = 0.002; Table 

5.5, Figure 5.8A). However, soil source did not have significant effects on total dry biomass (P > 

0.05; Table 5.5, Figure 5.8B). Similarly, M. cerifera had no significant difference in percent 

VAM colonization of roots (P > 0.05; Table 5.4) or total dry biomass between the treatments (P 

> 0.05; Table 5.5). 

DISCUSSION 

Mutualisms between vesicular arbuscular mycorrhizae (VAM) and plants have important 

influences on growth, development and dominance of plant species (Hartnett and Wilson 1999) 
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as VAM help plants to access limiting nutrients (e.g., phosphorus and nitrogen) (Allen and Allen 

1990). In particular, invasive exotic species may receive greater benefits from VAM colonization 

then their native counterparts when the invasive species has a higher degree of VAM 

colonization than its native counterparts (Smith et al. 2008) and can receive positive benefit from 

VAM due to a higher mutualists:pathogen ratio (Klironomos 2002). The greenhouse (experiment 

1) and companion field experiments show that the invasive T. sebifera consistently had a greater 

degree of VAM colonization compared to native species, and this association may help T. 

sebifera tap into limited nutrients more efficiently than native species and increase its invasive 

capacity. 

Results from this study support the prediction that soil biota (e.g., mycorrhizal fungi) may 

play a facilitative role in establishment and spread of invasive species in some of the invaded 

communities (Marler et al. 1999a, Richardson et al. 2000a, Callaway et al. 2001, Callaway et al. 

2004). Significantly higher dry shoot biomass in active soil and a significant positive correlation 

between degree of VAM colonization and total shoot dry biomass suggests that T. sebifera 

experiences stronger positive benefit from VAM in coastal Mississippi and an absence or low 

colonization of VAM may have negative effects on T. sebifera invasion. This also suggests that 

the mutualism with VAM fungi may be essential for the success of T. sebifera in introduced 

ranges. It is predicted that mycorrhizal dependent plant species that are invasive are likely to be 

flexible, forming mutualistic associations with a diverse array of VAM fungi (Rejmanek 2000, 

Pringle et al. 2009). Successful invasion of the Galapagos Islands by the obligate arbuscular 

mycorrhizal Psidium guajava was possible because of this species’ ability to tap into 

mycorrhizal networks already present on the Islands (Schmidt and Scow 1986). My results 

suggest that T. sebifera may be flexible as well, with higher degree of VAM colonization 
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compared to its native counterparts, which contributes to its successful invasion of coastal 

ecosystems of the southeastern USA.  

Some invasive species may receive stronger positive benefit from soil biota in their 

introduced range compared in their native range, enhanced mutualism (Reinhart and Callaway 

2006), and that the stronger positive benefit may account for the successful invasion of T. 

sebifera in forests of the southeastern USA, as suggested previously for east Texas. Consistent 

with Nijjer et al. (2008), I found an increased total biomass of T. sebifera seedlings in VAM 

unsuppressed soils regardless of the soil source and habitat where the T. sebifera was grown. 

Higher degrees of VAM colonization compared to native counterparts likely provide improved 

benefits to T. sebifera in invaded communities. Native species may not necessarily experience 

the similar mutualistic relations with VAM fungi. VAM often enhance growth and development 

in plants through increased phosphorus (Smith and Read 1997) and nitrogen uptake (Leigh et al. 

2009, Hodge and Fitter 2010). In particular, some invasive species (e.g., Centaurea maculosa) 

efficiently utilize their mycorrhizal fungal hyphae to acquire phosphorus, potentially from their 

neighboring native plants, and enhance their performance (Zabinski et al. 2002). Although, It is 

difficult to pinpoint this as the reason for increased performance by T. sebifera in this case 

because I did not assess the phosphorus and nitrogen content in the plants and also grew species 

individually in pots so each species had its own rhizosphere. However, greater degree of VAM 

colonization in T. sebifera compared to native species likely increases the chances of tapping 

limiting nutrients from the soil and could increase its overall performance relative to native 

species.  

Higher degree of VAM colonization may provide additional benefits (e.g., protection 

from diseases and soil borne pathogens (Newsham et al. 1995)) to  some invasive species, while 
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native species may not have the same benefits (Klironomos 2002). Some invasive plant species 

may have escaped their natural enemies (enemy release hypothesis) and soil-borne diseases in 

their  invaded range and obtain net positive benefits from mutualists (Klironomos 2002, 

Callaway et al. 2004, Reinhart and Callaway 2004, Callaway et al. 2011). Previous studies have 

shown that release from below-ground enemies, soil-borne pathogens, and colonization of 

mutualists triggered the invasion and superior performance of the highly invasive Prunus 

serotina in north-western Europe (Reinhart et al. 2003) and Robinia pseudoacacia (Callaway et 

al. 2011) in Europe. Klironomos (2002) found that the majority of invasive species (four out of 

five) experienced significant positive benifit from soil biota but were not affeced by soil-borne 

pathogens, whereas all of the rare native species experienced negative effects driven by soil-

borne pathogens. In this study, however, it is not known whether the release from soil borne 

pathogen increased the overall performace of T. sebifera and whether a higher degree of VAM 

colonization protect T. sebifera roots from diseases and pathogens. Further studies examining 

these important mechanisms, using comparative biogeographical experiments (i.e., plant 

performance on native and foreign soil), will help to understand the cause of the effect 

(Brinkman et al. 2010). 

Consistent with recent research (Conway et al. 2002), my results did not provide 

evidence for allelopathic effects of T. sebifera root exudates on common native species in this 

coastal transition ecosystem (experiment 3). When native species seedlings were grown in soils 

from T. sebifera invaded and uninvaded areas, the degree of VAM colonization in the roots and 

total dry biomass were not different between soil sources. Here, T. sebifera neither suppressed 

the mutualism between native plant species and VAM nor had negative effects on native species 

growth. These results suggest that T. sebifera does not disrupt the mutualism between native 
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species and their VAM mutualists in these coastal wetland ecosystems. My results are in contrast 

with several of the previous studies that reported allelopathic effects of invasive plant species on  

native counterparts through reducing nutrient uptake (Callaway and Aschehoug 2000), 

interfering with mutualisms between native plant species and their mutualists (i.e., mycorrhizal 

fungi) (Roberts and Anderson 2001, Stinson et al. 2006, Wolfe et al. 2008), and reducing growth 

of mycorrhizal fungi (Vogelsang and Bever 2009). Furthermore, my results did not support 

Gresham’s (1994) findings that T. sebifera produced negative effects on native Pinus taeda 

(loblolly pine) in the lower Coastal Plain of South Carolina through direct inhibition of seed 

germination and seedling growth via allochemicals. However, my results agreed with other 

studies on T. sebifera from coastal Texas. These studies did not report allelopathic effects of T. 

sebifera on co-occurring native species’ germination and seedling growth (Keay et al. 2000, 

Conway et al. 2002). Conway et al. (2002) also reported a substantial increase in seed 

germination and seedling growth of the invader when an aqueous extract of T. sebifera’s leaves 

and litter was applied into its growing medium; and they proposed that self-facilitation might 

explain successful invasion of T. sebifera rather than its allelopathic interference with native 

plant species survival. 

Results from the allelopathy experiment showed that the seedlings of B. halimifolia 

growing in soil mixed with activated carbon produced significantly higher total biomass 

compared with seedlings growing without activated carbon. Previous studies showed that 

activated carbon can increase aboveground biomass through increased nutrient availability (e.g., 

nitrogen) (Lau et al. 2008), and at the same time reduced VAM infection to the plant (Weisshuhn 

and Prati 2009). Although, I did not find the negative effects of activated carbon on VAM 

colonization, there was a clear evidence of a direct effect of activated carbon on total dry 
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biomass of B. halimifolia. So, activated carbon should be used cautiously when performing 

allelopathy experiments because activated carbon may influence soil chemistry, interact with 

VAM, and produced undesired effects (Weisshuhn and Prati 2009). 

In conclusion, findings of this research demonstrated that mycorrhizae may play a key 

role during the invasion processes in some exotic plant species. A higher degree of VAM 

colonization that may produce stronger positive benefit for the invader (enhanced mutualism) 

may have facilitative effects on successful invasion of T. sebifera in various coastal plant 

communities of the southeastern USA. Comparative biogeographical approaches, which compare 

the feedbacks from soil biota to exotics in their introduced and native ranges, are vital to acquire 

invaluable information on invasion processes and success of exotics in introduced ranges (Hierro 

et al. 2005). These approaches would further our understanding of the influence of soil biota on 

T. sebifera success as an invader. 
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Table 5.1. Experiment 1: Summary of two-way ANOVA of effects of fungicide (fungicide and control) and soil source (WPF and PFW) 

on VAM colonization on B. halimifolia, M. cerifera and T. sebifera seedlings grown in the greenhouse. 

Source of variation Df Mean square F P Df Mean square F P df Mean square F P 

B. halimifolia M. cerifera T. sebifera 

Soil source 1 42.25 0.29 0.59 1 4.08 2.79 0.06 1 0.19 0.00 0.98 

Fungicide 1 2653.48 18.42 0.0001 1 8.16 9.39 0.003 1 14181 40.68 0.0001 

Soil source * Fungicide 1 573.61 3.98 0.060 1 0.12 0.14 0.706 1 120.49 0.35 0.55 

Total 44  14  15  
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Table 5.2 Experiment1: Summary of two-way ANOVA of effects of fungicide (fungicide and control) and soil source (WPF and PFW) on 

total biomass of B. halimifolia, M. cerifera, and T. sebifera seedlings grown in the greenhouse.  

Source of variation Df Mean square F P Df Mean square F P df Mean square F P 

B. halimifolia M. cerifera T. sebifera 

Soil source 1 0.058 0.28 0.60 1 0.052 0.32 0.58 1 0.01 0.31 0.58 

Fungicide 1 0.446 2.21 0.16 1 0.059 0.37 0.55 1 0.38 9.19 0.01 

Soil source * Fungicide 1 0.043 0.23 0.64 1 0.35 2.21 0.16 1 0.02 0.62 0.48 

Total 15  14  15  
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Table 5.3. Experiment 2: Summary of two-way ANOVA of effects of habitat (WPF and PFW) 

and species (B. halimifolia, M. cerifera, and T. sebifera) on total biomass of seedlings grown in 

the field.  

Source of variation 2 ½ months (Sept 2010) 8 months (March 2011) 

df F P Df F P 

Habitat 1 3.18 0.102 1 8.20 0.011 

Species 2 24.03 <0.0001 2 18.29 0.002 

Habitat *Species 2 0.70 0.518 2 4.80 0.042 

Total 16  13  
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Table 5.4. Experiment 3: Summary of two-way ANOVA of effect of soil source (TR, T. sebifera 

invaded or un-invaded) and carbon (activated carbon or nocarbon) on VAM colonization of 

root’s of B. halimifolia and M. cerifera grown in the greenhouse.  

Source of 

variation 

B. halimifolia M. cerifera 

df F P Df F P 

TR 1 0.81 0.37 1 3.30 0.078 

Carbon 1 2.86 0.09 1 3.52 0.069 

TR*Carbon 1 0.2 0.65 1 1.70 0.20 

Error 36 34 

 

 

 

 

 

 

 

 



128 

 
 

Table 5.5. Experiment 3: Summary of two-way ANOVA of effect of soil source (TR, T. sebifera 

invaded or un-invaded) and carbon (activated carbon or nocarbon) on total biomass of seedlings 

of B. halimifolia and M. cerifera grown in the greenhouse. 

Source Total biomass Total biomass 

Source df F P df F P 

B. halimifolia    M. cerifera 

TR 1 0.01    0.93 1 0.96    0.34 

Carbon 1 13.14    0.002 1 1.98    0.17 

TR× Carbon 1 0.42    0.52 1 0.24    0.63 

Error 19 19 
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Figure 5.1. Location map of study area (courtesy from Grand Bay National Estuarine Research 

Reserve. Symbol (■) represent three different habitats (Brackish marsh (BM), wet pine forest 

(WPF), and pine faltwoods (PFW), respectively from south to north) along the the coastal 

transition from where soil samples were collected for experiment 1 and same habitats were used 

for field experiment.   
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Figure 5.2. Precipitation data for Mobile Alabama near experimental site, representing total 

monthly rainfall for 2011 and average monthly rainfall for 1927 to 2011 (source: 

http://www.srh.noaa.gov/mob/?n=climate).  
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Figure 5.3. Experiment 1: The percentage of VAM colonization (means ± SE) on three species 

grown in controlled (no-fungicide) field soils collected from two different habitats (WPF and 

PFW) of coastal Mississippi. Different letters indicate significantly different means (α = 0.05). 
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Figure 5.4. Experiment 1: The effect of (A) fungicide treatment on total biomass (±SE) of (A) B. 

halimifolia, (B) M. cerifera, and (C) T. sebifera. Different letters indicate significantly different 

means between sources (α = 0.05).  
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Figure 5.5. Experiment 1: The relationship between percent VAM colonization and total biomass of (A) B. halimifolia, (B) M. cerifera, 

and (C) T. sebifera seedlings grown in the greenhouse in fungicide treated and untreated field soils. 
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Figure 5.6. Experiment 2: The percentage VAM colonization (±SE) among species grown in the 

field after 2 ½ months (Sept 2010), 8 months (March 2011), and 15 months (Sept 2011) of 

growth. Comparisons were made among species only within each harvest and different letters 

indicate significantly different means (α = 0.05). 

 

 

 

 

 



135 

 
 

Species

B. halimifolia M. cerifera T. sebifera

T
o

ta
l 
b

io
m

a
s
s
 (

g
)

0.0

0.2

0.4

0.6

0.8

1.0

c

a

b

A

Habitats along the coastal transition

WPF PFW

0.0

0.2

0.4

0.6

0.8

1.0
B. halimifolia

M. cerifera

T. sebifera

a

b b

bb

ab

B

 

Figure 5.7. Experiment 2: (A) Variation in total dry biomass (Means ±SE) among species after 

2½ months (Sept 2010) of growth, and (B) effect of habitats on total biomass among species 

after 8 months (March 2011) of growth. Different letters indicate significantly different means 

after pairwise comparisons (α = 0.05).  
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Figure 5.8. Experiment 3: Effects of (A) soil source (T. sebifera invaded or uninvaded) and (B) 

carbon source (activated carbon or control) on total dry biomass (±SE) of B. halimifolia 

seedlings. Different letters indicate significantly different means (α = 0.05). 
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CHAPTER 6 

CONCLUSIONS 

Low-lying coastal transition ecosystems at the interface of the land and sea are facing 

imminent threats from two components of global climate change, namely accelerated sea level 

rise and increased intensity of tropical storms. Disturbances produced by intense hurricanes are 

likely to have major effects on structure and stability of coastal ecosystems. A variety of recent 

publications revealed potential responses of plant species (both native and invasive) to various 

components of global change. The majority of those publications described the responses of 

native and invasive species to elevated temperature, CO2, and precipitation (Smith et al. 2000, 

Ziska 2003, Walther 2010, Dukes et al. 2011). Despite the large body of recent research, both at 

the experimental and theoretical levels, it remains largely untested how invasive and co-

occurring native species will respond to the future environmental conditions predicted with 

climate change,  such as elevated salinity from sea level rise, and canopy damage and storm 

surge from hurricane winds. Species responses to environmental changes are important for 

formulating predictions about the future structure and dynamics of coastal plant communities.  

In this dissertation, I first used a field observational study to assess the probability of 

occurrence of invasive T. sebifera and three co-occurring native species, B. halimifolia, I. 

vomitoria, and M. cerifera along a typical coastal transition of coastal Mississippi, USA. I related 

these species’ occurrences to surrounding environmental variables (soil salinity, canopy 

openness, and other soil characteristics). To understand the responses of invasive and native 

species to environmental changes triggered by accelerated sea level rise and increased intensity 

of hurricanes, I used manipulative experiments and measured the species performances under 
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controlled and simulated future environmental conditions. Additionally, I looked at the potential 

positive effects from soil biota (mycorrhizae) on T. sebifera and selected native species B. 

halimifolia and M. cerifera in producing positive responses to environmental changes. Below, I 

summarize the findings from my four primary data chapters.  

Chapter II. Abiotic constraints on juvenile occurrence of invasive and native plant 

species: Implications for future distributions with climate. Understanding species’ distribution 

in the field, by relating their presence and absence to surrounding environmental predictors, is 

fundamental for conservation planning (Funk and Vitousek 2007), and forecasting future 

distribution patterns under changing environmental conditions (Araujo and Williams 2000). 

Additionally, the invasive potential of exotic species can be predicted by knowing the invasive 

species’ environmental breadth (Vazquez 2006). In this section, I selected a typical coastal 

transition at Grand Bay National Estuarine Research Reserve (GBNERR), coastal Mississippi, as 

a study system to look at the field distribution of invasive T. sebifera and co-occurring native 

species, B. halimifolia, I. vomitoria, and M. cerifera in relation to surrounding environmental 

predictors.  

In an observational study all species showed individualistic relationships to 

environmental variables. The probability of occurrence of invasive T. sebifera and native I. 

vomitoria, and M. cerifera was constrained by soil water conductivity (i.e., salinity) and their 

presence was limited towards the seaward section of the coastal transition. In contrast, native B. 

halimifolia distribution was not affected much by soil water conductivity. These results suggest 

that increased salinity may have negative impacts on the distribution of the less salt tolerant 

invasive T. sebifera and native I. vomitoria and M. cerifera. These species may suffer a range 



139 

 
 

contraction away from the coast in response to increased inundation triggered by sea level rise 

and storm surges. The invasive T. sebifera probability of occurrence was highest in areas that are 

in close proximity to anthropogenic activities (roads, power lines, rail road, water bodies, and 

recreational sites). It is predicted that the interactions between natural and anthropogenic 

disturbances may perhaps increase the dominance of invasive species including T. sebifera, by 

increasing resources and widening empty spaces, in more inland forested areas of the 

southeastern USA.  

Chapter III. Germination response of the invasive Triadica sebifera and two co-

occurring native woody species to elevated salinity across a Gulf Coast transition ecosystem. In 

the face of predicted increases in sea level rise and tidal inundation, low-lying coastal wetlands, 

such as those along the northern Gulf of Mexico, will experience severe risk of retreat (Williams 

et al. 1999a, Scavia et al. 2002, Battaglia et al. 2012). In particular, recruitment and 

establishment of many woody species of the forested wetlands will be impacted more severely 

compared to non-woody species (Kozlowski 1997). Thus, survival and persistence of coastal 

wetland species depend on their ability to tolerate salinity stress and increase their recruitment or 

migrate inland to keep pace with sea level rise. In this chapter, using growth chamber and 

greenhouse experiments, I tested germination responses of invasive T. sebifera and native B. 

halimifolia and M. cerifera to elevated salinity that is expected with sea level rise. Additionally, 

in the greenhouse, I also tested the germination of these species across a range of soil types 

collected from five dominant vegetation zones that define a typical coastal transition at 

GBNERR, coastal Mississippi, US. Successful germination may provide a basis for subsequent 

establishment and growth in a species (Donohue et al. 2010). I predict that germinable capability 

may elucidate the species’ persistence under changed environmental conditions.  
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The percent germination of all species was negatively impacted by elevated salinity in 

both the experiments. In the greenhouse, germination of all species was reduced in soils from the 

most seaward locations. Here, I also found species specific responses to salinity treatments. 

Among the three species, B. halimifolia was affected the least from elevated salinity. Invasive T. 

sebifera maintained nearly 10 % germination in inland soils even with highest level of salinity 

treatment (30 g/l), equivalent to full strength sea water. M. cerifera germination was affected the 

most with elevated salinity. These results suggest that the saltwater intrusion and resultant 

elevated salinity may not limit T. sebifera’s recruitment in inland forested areas. I predict that 

variation in germination responses to elevated salinity across coastal transition communities is 

likely to generate compositional shifts that include landward expansion of invasive T. sebifera 

throughout the forests of southeastern US. 

Chapter IV. Responses of two native species and the invasive Triadica sebifera to 

simulated hurricane disturbances in forested ecosystems of coastal Mississippi, southeastern 

US. Hurricanes are major disturbances along the low-lying coastal areas of the Gulf Coast region 

that can affect plant communities directly through tree canopy damage, storm surges, soil 

erosion, debris and wrack deposition (Michener et al. 1997). However, hurricane wind 

disturbances and storm surge effects are highly variable and complex, depending on wind 

velocity, direction, site exposure, local topography, hydrology, soil types, stand structure, and 

site management history (Boose et al. 1994, Kupfer et al. 2008). Furthermore anthropogenic 

activities (e.g., management or disturbances) may also influence the effects of hurricanes (Grove 

et al. 2000). Despite the large body of work that describe hurricanes impacts on coastal forests 

(e.g., defoliation, canopy damage, uprooting trees, and mortality), biogeochemical cycles 

(Gresham et al. 1991, Hook et al. 1991, Gardner et al. 1992, Hopkinson et al. 2008, Busby et al. 
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2009), little work has been done to investigate the response of invasive and co-occurring native 

species, growing in different forest stands along coastal transitions, to increased hurricane wind 

damage and storm surges.  

In this chapter, using a controlled greenhouse experiment, I tested seedling growth and 

mortality responses of invasive T. sebifera and two natives, B. halimifolia and M. cerifera to 

simulated hurricane disturbances (canopy openness and storm surge). In the experiment, I 

subjected seedlings to simulated pre-and post-hurricane canopy conditions, applied storm surges, 

and monitored seedlings growth and mortality for sixteenth months, covering two growing 

seasons before seedlings were harvested for biomass estimation. Although all the species 

benefitted from simulated post hurricane canopy openings, each species was affected differently 

in the two types of forest stands by simulated hurricane disturbances. Simulated storm surge 

effects were ephemeral and species recovered, mainly in open and/or high light treatments. 

However, storm surge produced greater seedling mortality under pre-hurricane canopy treatment 

in the simulated forest stands where natural disturbances have been suppressed. Among all the 

species, the invasive T. sebifera was the most shade tolerant compared to native species. These 

results implied that the high shade tolerance of T. sebifera likely provides this species a 

competitive edge over native species with open canopy conditions. Results from this study 

support the hypothesis that responses of native and invasive species to hurricane disturbances 

would differ at different forest stands along the coastal transitions. More importantly, due to high 

shade tolerance, long term dominance of T. sebifera can be expected in many coastal forested 

areas that are prone to hurricane disturbances.  
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Chapter V. The role of vesicular arbuscular mycorrhizae (VAM) on success of 

Triadica sebifera invasion in coastal transition ecosystems. Recent studies suggest that 

mutualistic associations between mycorrhizae fungi and plants play important roles in plant 

community structure and ecosystem functioning (Bever 1994, Klironomos 2002, Reynolds et al. 

2003, Wardle et al. 2004). Beneficial root-colonizing mycorrhizal fungi may stimulate plant 

growth and development by enhancing plant nutrient uptake (e.g., phosphorus). It is well 

recognized that mutualistic mycorrhizal fungi such as vesicular arbuscular mycorrhizae (VAM) 

may stimulate plant resistance and/or tolerance to abiotic stresses (Auge 2001, Compant et al. 

2010). Studies have also shown that VAM fungi can help plants to overcome salinity stress by 

increasing nutrient uptake and cation balance (Giri et al. 2007, Daei et al. 2009, Evelin et al. 

2009). These positive effects may be significant for plant species inhabiting low-lying coastal 

wetlands that are predicted to experience more stressful saline conditions from unabated sea 

level rise and hurricane generated storm surges.  

Recent studies have shown that some invasive plant species receive unusually strong 

positive effects from VAM compared to native species (Reinhart and Callaway 2006, Nijjer et al. 

2008). Some invasive species are able to develop beneficial mutualisms with VAM at a higher 

rate than co-occurring native species (Marler et al. 1999b, Nijjer et al. 2008, Smith et al. 2008). I 

predicted that the the invasive T. sebifera would have a higher degree of VAM colonization, 

greater positive feedback from VAM, and greater salinity tolerance compared to native species. 

In this chapter, using a series of greenhouse and field experiments, I determined the degree of 

VAM colonization among the target species: B. halimifolia, M. cerifera, and T. sebifera then 

assessed the mycorrhizal dependency of these species for survival and growth. In addition, I 

tested the capacity of each species to tolerate salinity with the help of mutualistic VAM. Finally, 
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I tested the possible allelopathic effects of the invasive T. sebifera on native species B. 

halimifolia and M. cerifera.   

My results support the hypothesis that the invasive species would enjoy a higher degree 

of VAM colonization than native species. I found a significantly higher VAM colonization in T. 

sebifera than native species under both greenhouse and field conditions. Furthermore, T. sebifera 

showed higher VAM dependency on growth in the greenhouse experiment (significantly higher 

biomass in active soil), suggesting that T. sebifera may require a higher degree of mutualism 

with VAM for its initial establishment in the coastal ecosystems of the southeastern US. 

However, my study does not show positive effects of a higher degree of VAM colonization on 

salinity tolerance and survival of native and invasive. In fact, this potential effect could not be 

tested because simulated storm surge yielded complete mortality of T. sebifera as well as native 

M. sebifera seedlings, irrespective of antifungal treatment or not. However, B. halimifolia was 

able to recover from the surge, probably because of its inherently high salinity tolerance. These 

results however, do not undermine the utility of mycorrhizae in salinity tolerance of several other 

plants species, including many crop plants (Mukerji and Kapoor 1986, Feng et al. 2002, Giri et 

al. 2007). Results from the allelopathic experiment suggests that T. sebifera is not allelopathic in 

this coastal system and does not interfere with mutualistic relationships between VAM and 

native plant species, as suggested for other invasive species elsewhere (Stinson et al. 2006). 

Although, I did not find evidence of improved salinity tolerance for mycorrhizal seedlings, 

strong positive effects from VAM to T. sebifera may enhance the competitive capability of this 

species to invade coastal forests of the southeastern US. 
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 While we debate about whether and how climate change benefits invasive species and 

which species are better suited to changing environmental conditions, some native species that 

are already at risk are being stressed by rapid sea level rise and storm surge in low-lying coastal 

areas. Findings of this research suggest that it is not just the characteristics of the native and 

invasive species that determine the trajectories of coastal plant communities, but also those of the 

communities impacted by tropical storms and inundation regimes. While low-lying coastal 

natural plant communities of the future may not have current day analogs, our job is explore the 

multifaceted effects of shifting disturbance regimes on invasive and co-occurring native species 

that would increase our ability predict habitat vulnerability to invasion. This is important in 

establishing science based conservation priorities in the critical marine-terrestrial ecotone areas 

that are threatened by sea level rise, shifting tropical storms regimes, and spread of invasive 

species. 

Implications for Management and Species Responses to Environmental Changes - 

Low-lying coastal transition ecosystems, such as the coastal ecosystems of the 

southeastern USA, will face direct impacts of climate change, particularly from a rising sea 

levels coupled with predicted increase in severity of intense tropical storms. These extreme 

natural events coupled with anthropogenic disturbances can create novel environmental 

conditions which are readily colonized by new exotic invasive species (Diez et al. 2012). Recent 

studies reported that the change in environmental condition due to sea level rise increased the 

prevalence of salt  tolerant invasive Phragmites australis along the Atlantic coast, USA 

(Vasquez et al. 2005). Some other studies found that the intense tropical storms that increase 

resource opportunities through forest canopy disturbance may increase the prevalence of 
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invasions of exotic species in the landscape (Bellingham et al. 2005, Chapman et al. 2008, 

Murphy et al. 2008b).  

This study represents one approach of translating scientific findings into management 

recommendation for controlling exotic invasive species, which can possibly be replicated in 

other areas with similar geographical and environmental settings. The results presented here 

suggest that exotic T. sebifera invasion is associated with the presence of natural (e.g., canopy 

damage and soil erosion) and anthropogenic disturbances (e.g., active roads, trails, abandoned 

settlements, power line, and natural fire suppression, etc.). These results provide important 

information about the target areas (e.g., close to active roads, water bodies, abandonment 

settlements, and increasing presence of anthropogenic activities) where management and 

mitigation of T. sebifera invasion should be targeted. A simple inventory approach, used here 

(Chapter 2), is useful for identifying areas at risk of T. sebifera invasion, prioritizing control 

efforts, and investigating the role of surrounding environmental conditions on future invasion 

probabilities. Additionally, increased probability of occurrence of young juveniles of T. sebifera 

in fire suppressed forest stands of dense tree canopy of its own imply that the low light 

availability reduce the chances of regeneration of less shade tolerant native tree seedlings. While 

T. sebifera is increasingly more prevalent in coastal Mississippi, early detection of sites 

colonized by this invasive species would aid in rapid management decisions that may abate the 

invasion process and enhance the resiliency and adaptability of natural communities to predicted 

environmental changes.  

The experimental studies that manipulated the future environmental conditions and 

examined the specific impacts of these conditions on performances of invasive T. sebifera and 
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co-occurring native species have provided important implications for forecasting responses of 

native and invasive species to effects of climate change (e.g., sea level rise and tropical storms). 

These studies also help in identifying the potential for future spread of T. sebifera in low lying 

coastal ecosystems. Results from these experimental studies suggest that the responses of native 

and invasive species to effects of climate change and altered environmental conditions are not 

straightforward. Native and invasive species my take separate response trajectories and invasive 

T. sebifera have the potential to perform better under some environmental conditions due to its 

ability to cope with broad range of environmental stress (Chapter 2,3, and 4). A complex 

interaction between natural and anthropogenic disturbances, habitat types and their position in 

the landscape, stand structure, soil biota, and the legacy of land use patterns may determine the 

responses of native and invasive species to future environmental changes. These interactions 

may constitute the structure and functions of the coastal ecosystems. Thus, a coordinated 

multidisciplinary research activities are needed to enhance our predictive capabilities for future 

environmental changes and identify the links of natural and anthropogenic disturbances that may 

exacerbate the invasion process at local and regional scale. The ability to understand severity of 

environmental change and species responses to these changes would ultimately guide the 

management options for limiting invasions. 
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Appendix A. Raw data from observational study that assessed the probability of occurrence of invasive species Triadica sebifera and native species; Baccharis 

halimifolia, Ilex vomitoria, and Morella cerifera in Grand Bay National Estuarine Research Reserve (GBNERR). R = random, T = juvenile 

Distance 

to coast 

(m) 

Sampling 

point  Species 

Pres/ 

abs 

Soil water 

conductivity 

(mS/cm) 

% canopy 

openness % Sand % Silt % Clay 

% 

Nitrogen 

% 

Carbon Carbon/Nitrogen 

0 R B. halimifolia 0 6.66 98.15 73.6 10.6 15.8 0.201 3.136 15.616 

100 R B. halimifolia 0 7.53 98.15 30.4 43 26.6 0.386 4.648 12.035 

200 R B. halimifolia 0 9.4 98.15 61.8 18.3 19.9 0.373 5.527 14.819 

300 R B. halimifolia 0 9.03 98.15 59.1 30.9 10 0.459 5.935 12.939 

400 R B. halimifolia 0 7.4 98.15 13.8 43.6 42.6 0.291 4.170 14.353 

500 R B. halimifolia 0 9.28 98.15 56.8 16.9 26.3 0.173 2.682 15.472 

600 R B. halimifolia 0 8.49 98.15 57.1 18.3 24.6 0.324 4.831 14.893 

700 R B. halimifolia 0 3.567 98.15 67 14 19 0.047 0.424 8.967 

800 R B. halimifolia 0 8.59 98.15 34.4 35 30.6 0.253 4.045 15.992 

900 R B. halimifolia 0 10.88 98.15 35 38.4 26.6 0.318 4.948 15.583 

1000 R B. halimifolia 0 7.38 98.15 69.5 18.6 11.9 0.280 4.108 14.654 

1100 R B. halimifolia 0 10.1 98.15 27 39 34 0.289 3.897 13.495 

1200 R B. halimifolia 0 11.53 98.15 . . . 0.451 6.415 14.211 

1300 R B. halimifolia 0 8.94 98.15 74.4 6.4 19.2 0.467 6.793 14.551 

1400 R B. halimifolia 0 6.43 98.15 59.5 24.3 16.2 0.215 2.749 12.772 

1500 R B. halimifolia 0 10 98.15 37 52 11 0.436 5.976 13.693 

1600 R B. halimifolia 0 8.34 98.15 73.2 12.3 14.5 0.411 6.091 14.814 

1700 R B. halimifolia 0 7.3 98.15 30.4 51 18.6 0.272 3.751 13.791 

1800 R B. halimifolia 0 9 98.15 29 49.7 21.3 0.317 4.648 14.678 

1900 R B. halimifolia 0 8 98.15 43 37 20 0.282 4.293 15.245 

2000 R B. halimifolia 0 11.7 98.15 32.4 27.2 40.4 0.381 5.262 13.821 

2100 R B. halimifolia 0 8.75 98.15 67.6 16.3 16.1 0.154 2.002 12.975 

2200 R B. halimifolia 0 11.63 98.15 13.8 26.4 59.8 0.284 3.950 13.903 

2300 R B. halimifolia 0 5.7 98.15 39.4 36.3 24.3 0.095 1.060 11.213 

2400 R B. halimifolia 0 8.725 98.15 67.1 10.3 22.6 0.375 6.057 16.170 

2500 R B. halimifolia 0 10.28 98.15 65.1 15.4 19.5 0.312 5.125 16.407 

2600 R B. halimifolia 0 9.76 98.15 59.5 21.2 19.3 0.324 4.831 14.893 

2700 R B. halimifolia 0 9.66 98.15 70.9 13.2 15.9 0.386 5.829 15.113 

2800 R B. halimifolia 0 10.5 98.15 67.2 11.5 21.3 0.345 5.384 15.610 

2900 R B. halimifolia 0 5.76 98.15 59.5 18.9 21.6 0.217 2.588 11.923 

3000 R B. halimifolia 0 9.19 98.15 39.6 39 21.4 0.389 5.392 13.861 
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Appendix A. Raw data from observational study, continued 

3100 R B. halimifolia 0 7.91 98.15 64.1 22 13.9 0.364 5.916 16.244 

3200 R B. halimifolia 0 8.5 98.15 57.5 20.6 21.9 0.263 3.985 15.147 

3300 R B. halimifolia 0 9.3 98.15 45.8 19.6 34.6 0.281 4.065 14.476 

3400 R B. halimifolia 0 7.11 98.15 60.5 31.2 8.3 0.433 6.931 15.991 

3500 R B. halimifolia 0 7.1 98.15 64.1 18.6 17.3 0.446 6.784 15.200 

3600 R B. halimifolia 0 9.668 98.15 49.1 40.6 10.3 0.472 6.799 14.396 

3700 R B. halimifolia 0 8.72 98.15 39 33.2 27.8 0.208 2.956 14.241 

3800 R B. halimifolia 0 13 98.15 67.5 11.2 21.3 0.418 7.770 18.566 

3900 R B. halimifolia 0 15.43 98.15 48.9 39.8 11.3 0.464 9.034 19.483 

4000 R B. halimifolia 0 14.6 98.15 59.5 25.5 15 1.079 11.161 10.342 

4100 R B. halimifolia 0 18.46 98.15 56.8 29.9 13.3 0.482 8.177 16.957 

4200 R B. halimifolia 0 16.25 97.87 68.8 19.3 11.9 0.420 9.002 21.415 

4300 R B. halimifolia 0 6.07 97.69 59.9 18.9 21.2 0.151 3.122 20.669 

4400 R B. halimifolia 0 3.93 90.64 51.6 28 20.4 0.079 1.297 16.380 

4500 R B. halimifolia 1 3.9 89.67 39.2 42.7 18.1 0.060 0.240 4.003 

4600 R B. halimifolia 0 4.72 88.53 37 35.2 27.8 0.148 1.914 12.927 

4625 R B. halimifolia 0 3.891 85.58 52.2 22.3 25.5 0.071 1.055 14.817 

4650 R B. halimifolia 0 0.892 73.73 57.3 26.3 16.4 0.068 0.899 13.266 

4650 T B. halimifolia 1 1.765 78.58 55.6 20.3 24.1 0.085 1.203 14.240 

4675 R B. halimifolia 0 0.4494 60.46 81.5 7.2 11.3 0.068 1.037 15.159 

4675 T B. halimifolia 1 0.7 64.12 77.3 12.6 10.1 0.054 0.955 17.589 

4700 T B. halimifolia 1 0.476 48.79 75.8 8.2 16 0.109 1.046 9.573 

4700 R B. halimifolia 0 0.463 59.45 63.3 14.3 22.4 0.091 1.229 13.512 

4725 R B. halimifolia 0 0.2 58.7 57.9 24.6 17.5 0.106 0.957 9.032 

4725 T B. halimifolia 1 0.3418 56.07 69.5 2.6 27.9 0.050 0.793 15.959 

4750 R B. halimifolia 0 0.3425 43.58 35.8 36 28.2 0.083 0.702 8.454 

4750 T B. halimifolia 1 0.3592 58 65.3 16 18.7 0.115 1.725 15.036 

4775 T B. halimifolia 1 0.456 47.58 75.9 12 12.1 0.118 1.716 14.504 

4775 R B. halimifolia 0 0.2601 40.31 59 20.3 20.7 0.149 2.775 18.569 

4800 R B. halimifolia 0 0.3266 40.16 76.4 11.8 11.8 0.053 0.694 13.180 

4800 T B. halimifolia 1 0.2882 42.4 74.1 0 25.9 0.099 1.614 16.312 

4825 T B. halimifolia 1 0.499 45.07 75.9 9.7 14.4 0.060 0.605 10.169 

4825 R B. halimifolia 0 2.652 48.08 49 22 29 0.060 0.967 16.123 

4850 R B. halimifolia 1 1.354 71.21 51 21.7 27.3 0.127 1.887 14.864 

4850 T B. halimifolia 1 0.4532 51.09 58.2 24.3 17.5 0.069 1.147 16.672 

4875 R B. halimifolia 0 1.5774 79.52 54.4 28.5 17.1 0.114 1.741 15.319 
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Appendix A. Raw data from observational study, continued 

4875 T B. halimifolia 1 1.828 72.62 57.5 26.4 16.1 0.163 3.193 19.550 

4900 T B. halimifolia 1 2.48 81.39 52.5 27.5 20 0.096 1.727 18.037 

4900 R B. halimifolia 0 3.735 85.12 10.2 68 21.8 0.181 3.492 19.271 

4925 R B. halimifolia 0 4.35 84.05 64.7 17.8 17.5 0.379 6.877 18.142 

4950 R B. halimifolia 0 4.75 81.5 77.3 13.5 9.2 0.556 8.788 15.808 

4975 R B. halimifolia 0 2.28 83.92 52.7 19.7 27.6 0.159 3.044 19.125 

4975 T B. halimifolia 1 3.52 86.26 71.3 17.2 11.5 0.650 12.449 19.164 

5000 R B. halimifolia 0 1.012 84.23 79.5 3.2 17.3 0.153 2.412 15.736 

5000 T B. halimifolia 1 2.621 87.21 57.3 20.3 22.4 0.184 3.038 16.501 

5025 R B. halimifolia 0 2.025 85.44 59 20.9 20.1 0.103 1.951 18.928 

5025 T B. halimifolia 1 1.752 84.93 70.9 14.4 14.7 0.129 3.010 23.368 

5050 R B. halimifolia 0 1.4 79.42 56.1 20.6 23.3 0.174 2.207 12.677 

5050 T B. halimifolia 1 1.84 81.43 44.7 30.6 24.7 0.093 1.811 19.412 

5075 R B. halimifolia 0 1.444 71.6 53 20.9 26.1 0.104 1.477 14.220 

5075 T B. halimifolia 1 1.851 75.33 57 20.9 22.1 0.189 2.831 14.956 

5100 T B. halimifolia 1 0.691 53.44 69.6 8.3 22.1 0.087 1.050 12.110 

5100 R B. halimifolia 0 0.4307 48.14 61.6 14.3 24.1 0.105 1.699 16.182 

5125 R B. halimifolia 0 0.332 48.52 59 14 27 0.123 1.952 15.829 

5150 T B. halimifolia 1 0.45 39.98 63.9 18 18.1 0.096 1.190 12.408 

5150 R B. halimifolia 0 0.547 46.11 59.6 18.3 22.1 0.124 1.595 12.843 

5175 R B. halimifolia 0 0.4485 42.44 68.4 16.6 15 0.076 1.050 13.791 

5175 T B. halimifolia 1 0.58 42.39 65.9 8.3 25.8 0.054 0.770 14.309 

5200 T B. halimifolia 1 0.325 38.49 76.1 8.6 15.3 0.062 0.921 14.928 

5200 R B. halimifolia 0 0.426 40.58 65 16.3 18.7 0.062 1.059 17.190 

5225 R B. halimifolia 0 1.601 70.58 45 18 37 0.244 3.834 15.703 

5225 T B. halimifolia 1 0.4459 60.08 53.5 16.9 29.6 0.172 2.843 16.513 

5250 R B. halimifolia 0 1.788 70.47 59.6 18.3 22.1 0.243 2.772 11.408 

5275 R B. halimifolia 0 0.2601 39.15 65 12.3 22.7 0.130 2.107 16.204 

5300 T B. halimifolia 1 0.185 44.13 62.2 18.3 19.5 0.102 1.448 14.229 

5300 R B. halimifolia 0 0.3201 43.3 57.6 18.3 24.1 0.103 1.755 17.083 

5325 T B. halimifolia 1 0.123 27.52 14 40.6 45.4 0.148 1.577 10.645 

5325 R B. halimifolia 0 0.18 35.6 66.1 12 21.9 0.078 1.433 18.342 

5350 T B. halimifolia 1 0.095 55.94 57.9 16.6 25.5 0.093 1.380 14.871 

5350 R B. halimifolia 0 0.1334 33.62 62.7 16.6 20.7 0.092 1.584 17.249 

5375 R B. halimifolia 0 0.458 43.7 63.9 14.6 21.5 0.078 1.493 19.139 

5400 R B. halimifolia 0 0.176 28.58 67.5 17 15.5 0.106 1.381 12.969 
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Appendix A. Raw data from observational study, continued 

5400 T B. halimifolia 1 0.2411 55.94 72.1 6.6 21.3 0.118 1.616 13.745 

5425 R B. halimifolia 0 0.1485 58.85 56.7 16.9 26.4 0.095 1.270 13.383 

5450 R B. halimifolia 0 0.1672 63.7 65.4 20.3 14.3 0.129 1.665 12.887 

5450 T B. halimifolia 1 0.2306 70.56 52.1 18.6 29.3 0.156 2.496 15.949 

5475 R B. halimifolia 0 0.166 70.8 6 35.4 58.6 0.092 1.197 13.039 

5500 R B. halimifolia 0 0.3688 60.92 52.4 16 31.6 0.133 1.420 10.686 

5525 R B. halimifolia 0 0.3747 38.75 61.3 10.6 28.1 0.106 1.742 16.488 

5550 T B. halimifolia 1 0.165 57.9 61.9 15.7 22.4 0.107 1.297 12.135 

5550 R B. halimifolia 0 0.1422 46.2 57.9 16.6 25.5 0.101 1.483 14.649 

5575 T B. halimifolia 1 0.0555 38.49 67.9 12.6 19.5 0.148 1.781 12.018 

5575 R B. halimifolia 0 0.15 54.43 65.5 14.6 19.9 0.115 1.678 14.581 

5600 R B. halimifolia 0 0.1679 58.72 75.5 8 16.5 0.130 2.139 16.404 

5600 T B. halimifolia 1 0.1505 52.9 77.5 4.6 17.9 0.121 2.008 16.597 

5625 R B. halimifolia 0 0.2068 56.13 63.9 10.6 25.5 0.143 1.713 11.971 

5650 R B. halimifolia 0 0.2255 66.55 65.9 14.3 19.8 0.102 1.703 16.733 

5650 T B. halimifolia 1 0.181 70.93 58.1 18 23.9 0.101 2.004 19.835 

5675 R B. halimifolia 0 0.129 66.96 65.3 12.3 22.4 0.101 1.391 13.779 

5700 R B. halimifolia 0 0.2276 65.18 60.7 16.3 23 0.106 1.293 12.170 

5725 R B. halimifolia 0 0.21 56.41 60.1 14 25.9 0.100 1.646 16.533 

5725 T B. halimifolia 1 0.3031 66 45 26.6 28.4 0.101 1.798 17.854 

5750 T B. halimifolia 1 0.2605 53.32 49 18.3 32.7 0.101 1.152 11.389 

5750 R B. halimifolia 0 0.285 63.33 61.5 15.2 23.3 0.093 1.456 15.726 

5775 R B. halimifolia 0 0.2423 44.92 64.7 12.3 23 0.106 1.565 14.828 

5775 T B. halimifolia 1 0.3122 39.65 61.4 18 20.6 0.073 1.110 15.200 

5800 R B. halimifolia 0 0.4027 24.3 63.3 16.6 20.1 0.091 1.594 17.593 

5825 R B. halimifolia 0 0.51 33.81 64.4 14.3 21.3 0.100 1.709 17.137 

5825 T B. halimifolia 1 0.4344 25.69 57.9 20 22.1 0.110 2.197 19.943 

5850 T B. halimifolia 1 0.616 51.09 67.5 14.6 17.9 0.294 5.257 17.901 

5850 R B. halimifolia 0 1.022 52.6 6.4 55 38.6 0.247 4.514 18.267 

5875 T B. halimifolia 1 0.286 42.68 60.1 16.6 23.3 0.090 1.577 17.555 

5875 R B. halimifolia 0 0.4 43.63 65.9 17 17.1 0.155 3.460 22.365 

5900 T B. halimifolia 1 0.526 45.08 63.5 12.6 23.9 0.117 2.208 18.911 

5900 R B. halimifolia 0 0.4885 37.75 52.7 22.6 24.7 0.085 1.918 22.645 

5925 R B. halimifolia 0 0.488 43.77 54.7 22.3 23 0.302 5.779 19.113 

5950 R B. halimifolia 0 0.383 36.58 65.9 19.7 14.4 0.211 3.764 17.875 

5975 R B. halimifolia 0 0.95 58.57 42.7 22.6 34.7 0.237 4.621 19.496 
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Appendix A. Raw data from observational study, continued 

6000 T B. halimifolia 1 0.2958 44.06 66.1 10.3 23.6 0.089 0.913 10.237 

6000 R B. halimifolia 0 0.2055 43.54 63.3 23.5 13.2 0.164 3.119 18.976 

6025 R B. halimifolia 0 0.166 44.25 51 22.3 26.7 0.196 3.024 15.453 

6050 R B. halimifolia 0 0.2883 54.92 50.7 20.9 28.4 0.186 2.846 15.286 

6075 R B. halimifolia 0 0.2682 58.48 63.3 16.9 19.8 0.171 2.937 17.131 

6100 R B. halimifolia 0 0.25 57.08 28.6 35.3 36.1 0.141 2.109 14.969 

6100 T B. halimifolia 1 0.2385 57.49 56.1 16.9 27 0.146 2.543 17.424 

6125 R B. halimifolia 0 0.3457 52.6 40.2 28.3 31.5 0.148 2.560 17.273 

6150 R B. halimifolia 0 0.48 38.27 51.9 24.6 23.5 0.064 0.871 13.596 

6150 T B. halimifolia 1 0.358 35.41 50.1 27.2 22.7 0.093 1.549 16.713 

6175 R B. halimifolia 0 0.287 23.89 56.1 16.9 27 0.132 2.041 15.442 

6200 R B. halimifolia 0 0.1182 47.55 37.9 32.6 29.5 0.091 1.160 12.728 

6225 R B. halimifolia 0 0.238 37.33 42.4 35.5 22.1 0.072 0.962 13.401 

6250 R B. halimifolia 0 0.2337 35.92 50.7 26.6 22.7 0.088 1.361 15.546 

6250 T B. halimifolia 1 0.3477 35.6 56.1 24.6 19.3 0.084 1.479 17.526 

6275 R B. halimifolia 0 0.2557 34.76 63.8 22.3 13.9 0.121 1.803 14.960 

6300 R B. halimifolia 0 0.158 32.99 61.3 20 18.7 0.095 1.068 11.232 

6325 R B. halimifolia 0 0.091 42.5 64.7 12.6 22.7 0.147 2.045 13.955 

6350 R B. halimifolia 0 0.1576 49.81 55.8 14.9 29.3 0.178 2.376 13.379 

6350 T B. halimifolia 1 0.201 44.52 65.7 12.3 22 0.102 1.530 14.963 

6375 R B. halimifolia 0 0.2454 49.58 31.3 36.3 32.4 0.159 2.341 14.765 

6400 R B. halimifolia 0 0.1919 51.6 15.3 48 36.7 0.185 2.569 13.887 

6425 R B. halimifolia 0 0.1511 50.67 39.5 26.6 33.9 0.147 2.009 13.661 

6450 R B. halimifolia 0 0.3422 44.39 41 28.3 30.7 0.162 2.440 15.055 

6475 R B. halimifolia 0 0.2442 34.34 50.1 26 23.9 0.152 2.267 14.933 

6500 R B. halimifolia 0 0.0902 33.79 50.7 18 31.3 0.128 2.176 16.996 

6525 R B. halimifolia 0 0.277 22.51 53.5 19.2 27.3 0.122 2.243 18.387 

6550 R B. halimifolia 0 0.1639 24.73 53 20.3 26.7 0.117 2.069 17.749 

6575 R B. halimifolia 0 0.2563 32.71 63.6 18.3 18.1 0.080 1.066 13.393 

6600 R B. halimifolia 0 0.165 27.81 75.3 13.2 11.5 0.084 0.989 11.721 

6625 R B. halimifolia 0 0.3356 19.7 67.9 22 10.1 0.103 1.512 14.713 

6650 R B. halimifolia 0 0.181 22.84 19 51 30 0.205 3.380 16.522 

6675 R B. halimifolia 0 0.1014 32.82 43.6 20 36.4 0.093 1.486 15.936 

6700 R B. halimifolia 0 0.1347 35.39 62.4 14.9 22.7 0.104 0.940 9.067 

6725 R B. halimifolia 0 0.1184 35.37 77 4.3 18.7 0.127 2.274 17.859 

6750 R B. halimifolia 0 0.1147 39.63 65.6 12.3 22.1 0.157 1.890 12.027 
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Appendix A. Raw data from observational study, continued 

6775 R B. halimifolia 0 0.22 43.78 74.7 14.9 10.4 0.064 0.734 11.390 

6775 T B. halimifolia 1 0.1991 42.9 70.7 10.6 18.7 0.062 0.936 15.120 

6800 R B. halimifolia 0 0.2425 40.82 56.7 16.3 27 0.071 1.034 14.602 

6825 R B. halimifolia 0 0.1897 44.68 54.1 16.9 29 0.081 1.267 15.628 

6850 R B. halimifolia 0 0.1405 40.71 49.4 16.9 33.7 0.091 1.280 13.989 

6875 R B. halimifolia 0 0.129 46.23 56.2 20 23.8 0.176 2.872 16.319 

6900 R B. halimifolia 0 . 49.35 . . . . . . 

6925 R B. halimifolia 0 0.2054 30.22 14.4 58.4 27.2 0.180 3.714 20.666 

6950 R B. halimifolia 0 0.1992 40.49 70.1 7.2 22.7 0.181 2.198 12.143 

6975 R B. halimifolia 0 0.133 55.2 57.5 9.2 33.3 0.195 2.527 12.939 

7000 R B. halimifolia 0 0.3326 49.85 74.1 8.3 17.6 0.200 4.356 21.825 

7025 R B. halimifolia 0 0.1636 56.56 56.4 18.9 24.7 0.162 3.303 20.339 

7050 R B. halimifolia 0 0.1195 38.45 71.9 11.7 16.4 0.113 2.075 18.369 

7075 R B. halimifolia 0 0.1926 44.32 64.4 8.9 26.7 0.172 3.139 18.224 

7100 R B. halimifolia 0 0.1135 33.72 47 18.3 34.7 0.165 3.255 19.690 

7125 R B. halimifolia 0 0.1994 47.04 53.3 16.6 30.1 0.184 2.879 15.639 

7150 R B. halimifolia 0 0.1675 36.65 55 18.9 26.1 0.096 1.699 17.763 

7175 R B. halimifolia 0 0.1323 36.82 42.2 24.6 33.2 0.153 2.044 13.343 

7200 R B. halimifolia 0 0.11 47.93 41 28.6 30.4 0.156 2.471 15.850 

7225 R B. halimifolia 0 0.088 55.98 39 29.6 31.4 0.158 2.289 14.524 

7250 R B. halimifolia 0 0.1118 50.11 37 32.3 30.7 0.139 2.051 14.719 

7275 R B. halimifolia 0 0.1181 37.5 36.1 30.6 33.3 0.169 2.232 13.223 

7300 R B. halimifolia 0 0.115 21.99 59.7 19.9 20.4 0.133 2.063 15.558 

8200 R B. halimifolia 0 0.1064 21.69 61 22.3 16.7 0.060 1.083 18.098 

8225 R B. halimifolia 0 0.1306 14.91 57 20.6 22.4 0.053 1.129 21.213 

8250 R B. halimifolia 0 0.0823 14.04 70.1 8.3 21.6 0.093 1.500 16.089 

8275 R B. halimifolia 0 0.0496 36.55 74.1 12 13.9 0.060 0.826 13.771 

8300 R B. halimifolia 0 0.0504 52.86 74.4 11.5 14.1 0.098 1.482 15.092 

8325 R B. halimifolia 0 0.0482 58.2 63.6 24.3 12.1 0.070 1.000 14.370 

8350 R B. halimifolia 0 0.0511 67.19 69.9 11.7 18.4 0.097 1.468 15.198 

8375 R B. halimifolia 0 0.0681 52.13 47.6 26 26.4 0.133 1.906 14.334 

8400 R B. halimifolia 0 0.0541 45.15 60.4 13.7 25.9 0.118 1.787 15.197 

8425 R B. halimifolia 0 0.0884 53.89 64.7 12.3 23 0.190 2.786 14.687 

8450 R B. halimifolia 0 0.0877 43.38 65.3 20.3 14.4 0.133 1.906 14.334 

8475 R B. halimifolia 0 0.0404 42.9 73.3 18 8.7 0.048 0.683 14.099 

8500 R B. halimifolia 0 0.1688 20.34 69.6 14.3 16.1 0.146 0.516 17.207 
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Appendix A. Raw data from observational study, continued 

8525 R B. halimifolia 0 0.072 30.61 82.7 5.7 11.6 0.114 1.862 16.287 

8550 R B. halimifolia 0 0.1347 28.52 70.1 8.6 21.3 0.222 4.004 18.053 

8575 R B. halimifolia 0 0.1697 27.74 63.3 18 18.7 0.149 3.519 23.540 

8600 R B. halimifolia 0 0.1765 32.6 64.1 14.6 21.3 0.313 5.385 17.226 

8625 R B. halimifolia 0 0.1483 26.19 63.3 12 24.7 0.200 3.562 17.821 

8650 R B. halimifolia 0 0.1605 20.07 76.1 8.3 15.6 0.222 4.231 19.099 

8675 R B. halimifolia 0 0.223 19.62 47 35.8 17.2 0.299 5.128 17.151 

8700 R B. halimifolia 0 0.0721 18.48 79.5 6.8 13.7 0.206 3.890 18.925 

8725 R B. halimifolia 0 0.303 72.66 69.7 2.4 27.9 0.370 6.395 17.280 

8750 R B. halimifolia 0 0.2182 72.44 56.1 12.6 31.3 0.222 3.859 17.397 

8775 R B. halimifolia 0 0.19 14.74 7 46.4 46.6 0.438 8.230 18.800 

8800 R B. halimifolia 0 0.1638 34.75 26.3 20.9 52.8 0.265 4.008 15.152 

8825 R B. halimifolia 0 0.115 36.6 51.3 18 30.7 0.139 2.599 18.730 

8850 R B. halimifolia 0 0.15 37.63 41 22.6 36.4 0.292 4.033 13.816 

8875 R B. halimifolia 0 0.1173 23.32 55 22 23 0.183 2.993 16.392 

8900 R B. halimifolia 0 0.1055 24.93 67 18 15 0.139 2.562 18.431 

8925 R B. halimifolia 0 0.088 35.48 79.2 8.3 12.5 0.108 3.293 30.380 

8950 R B. halimifolia 0 0.0844 21.03 55.9 20.3 23.8 0.172 4.089 23.827 

8975 R B. halimifolia 0 0.1359 22.16 50.9 26.4 22.7 0.285 5.363 18.828 

9000 R B. halimifolia 0 0.0903 23.51 48.6 24.6 26.8 0.102 2.218 21.688 

9025 R B. halimifolia 0 0.111 21.47 58.5 18.3 23.2 0.298 6.009 20.186 

9050 R B. halimifolia 0 0.0855 13.13 61.3 8.6 30.1 0.145 2.958 20.410 

9075 R B. halimifolia 0 0.0732 25.52 81.3 6.3 12.4 0.181 3.206 17.689 

9100 R B. halimifolia 0 0.2022 9.16 69.2 11.2 19.6 0.251 4.753 18.925 

9125 R B. halimifolia 0 0.0959 9.69 52.7 18.6 28.7 0.170 2.880 16.910 

9150 R B. halimifolia 0 0.0493 52.46 75.5 13.2 11.3 0.107 1.870 17.411 

9175 R B. halimifolia 0 0.0435 43.66 65.9 18.3 15.8 0.084 1.313 15.631 

9200 R B. halimifolia 0 0.0299 49.2 71.8 14.9 13.3 0.087 1.453 16.735 

9225 R B. halimifolia 0 0.0718 39.67 61 16.3 22.7 0.141 1.750 12.434 

9250 R B. halimifolia 0 0.0756 28.23 67.2 9.2 23.6 0.150 2.980 19.823 

9275 R B. halimifolia 0 0.1012 31.31 61 16.3 22.7 0.150 4.022 26.825 

9300 R B. halimifolia 0 0.108 13.04 62.7 14.6 22.7 0.141 2.344 16.650 

9325 R B. halimifolia 0 0.1581 14.16 55.6 20.3 24.1 0.071 1.044 14.667 

9350 R B. halimifolia 0 0.0655 24.41 62.6 19.3 18.1 0.171 2.599 15.168 

9375 R B. halimifolia 0 0.0825 16.24 58.4 28.3 13.3 0.075 1.145 15.196 

9400 R B. halimifolia 0 0.0952 10.56 62.1 6.6 31.3 0.123 2.198 17.842 
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Appendix A. Raw data from observational study, continued 

9425 R B. halimifolia 0 0.1595 9.14 71.3 16 12.7 0.073 1.042 14.313 

9450 R B. halimifolia 0 0.0913 28.23 78.1 8.9 13 0.135 2.179 16.087 

9475 R B. halimifolia 0 0.074 31.31 65.3 14.3 20.4 0.200 2.090 10.438 

9500 R B. halimifolia 0 0.135 12.25 79.6 12 8.4 0.066 1.559 23.722 

9525 R B. halimifolia 0 0.1056 16.13 68.5 10.3 21.2 0.257 4.048 15.755 

9550 R B. halimifolia 0 0.086 16.58 60.9 19.3 19.8 0.260 4.991 19.161 

9575 R B. halimifolia 0 0.1358 24.26 47 31.6 21.4 0.326 5.628 17.243 

9600 R B. halimifolia 0 0.084 27.25 69.2 13.2 17.6 0.208 3.947 18.985 

9625 R B. halimifolia 0 0.0983 15.26 63.6 16.6 19.8 0.178 3.883 21.844 

9650 R B. halimifolia 0 0.0962 12.04 57.3 16.3 26.4 0.201 4.176 20.803 

9675 R B. halimifolia 0 0.125 8.94 65.5 13.7 20.8 0.378 6.589 17.428 

9700 R B. halimifolia 0 0.12 18.15 11 58.4 30.6 0.366 6.633 18.112 

9725 R B. halimifolia 0 0.0845 10.87 61.3 16.6 22.1 0.222 3.743 16.830 

9750 R B. halimifolia 0 0.0829 11.87 43.6 22.3 34.1 0.259 4.329 16.702 

9775 R B. halimifolia 0 0.082 22.14 48.2 20.3 31.5 0.192 3.044 15.848 

9800 R B. halimifolia 0 0.1081 29.32 60.7 12 27.3 0.228 3.361 14.770 

9825 R B. halimifolia 0 0.1041 30.47 48.1 20 31.9 0.189 3.015 15.958 

9850 R B. halimifolia 0 0.0845 29.94 66.1 12.8 21.1 0.206 3.814 18.526 

9875 R B. halimifolia 0 0.1145 21.32 29 26.3 44.7 0.319 5.466 17.130 

9900 R B. halimifolia 0 0.0981 26.04 12.5 32.3 55.2 0.232 4.045 17.429 

9925 R B. halimifolia 0 0.19 18.57 49.6 16.3 34.1 0.392 6.610 16.879 

9950 R B. halimifolia 0 0.0988 15.88 38.5 25.3 36.2 0.214 4.588 21.438 

9975 R B. halimifolia 0 0.0953 17.93 44.5 32.5 23 0.225 3.610 16.021 

10000 R B. halimifolia 0 0.06 52.3 36.5 28.3 35.2 0.100 1.828 18.267 

10025 R B. halimifolia 0 0.0305 28.24 46.7 20.3 33 0.211 3.027 14.382 

10075 R B. halimifolia 0 0.04 33.01 53.1 20.6 26.3 0.247 5.176 20.971 

10100 R B. halimifolia 0 0.0528 27.8 17.2 50.4 32.4 0.289 3.897 13.495 

10125 R B. halimifolia 0 0.0207 21.43 52.38 18.42 29.2 0.089 1.343 15.163 

10150 R B. halimifolia 0 0.0553 21.61 29.8 46.4 23.8 0.417 7.319 17.544 

10175 R B. halimifolia 0 0.0645 21.96 65.6 18 16.4 0.243 3.827 15.767 

10200 R B. halimifolia 0 0.0403 28.84 43 26.3 30.7 0.227 3.117 13.733 

10225 R B. halimifolia 0 0.0522 32.16 48.9 25.3 25.8 0.170 2.776 16.304 

10250 R B. halimifolia 0 0.036 30.71 47.6 26.3 26.1 0.213 3.222 15.105 

10275 R B. halimifolia 0 0.0313 30.26 32.5 30.3 37.2 0.151 2.570 16.968 

10300 R B. halimifolia 0 0.0433 39.19 52.4 20.6 27 0.211 3.061 14.472 

10325 R B. halimifolia 0 0.045 34.91 34.7 30.6 34.7 0.223 2.589 11.625 
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Appendix A. Raw data from observational study, continued 

10350 R B. halimifolia 0 0.0287 52.01 42.5 26.3 31.2 0.117 1.486 12.669 

10375 R B. halimifolia 0 0.066 50.84 53.3 25.7 21 0.189 2.834 14.966 

10400 R B. halimifolia 0 0.0785 48.61 36.2 34.3 29.5 0.341 5.620 16.470 

10425 R B. halimifolia 0 0.073 67.26 43.4 32 24.6 0.139 1.909 13.765 

10450 R B. halimifolia 0 0.0466 73.87 50.8 22.72 26.48 0.086 0.962 11.244 

10475 R B. halimifolia 0 0.0455 57.57 42.8 30.6 26.6 0.099 1.228 12.465 

10500 R B. halimifolia 0 0.0411 54.45 45.3 30.3 24.4 0.093 1.269 13.571 

10525 R B. halimifolia 0 0.0485 72.95 62.2 21.4 16.4 0.099 1.362 13.733 

10550 R B. halimifolia 0 0.044 61.7 57.6 23.7 18.7 0.097 1.259 12.939 

10575 R B. halimifolia 0 0.0346 78.04 56.1 24 19.9 0.110 1.476 13.356 

10600 R B. halimifolia 0 0.0446 82.43 36.5 34.3 29.2 0.126 1.540 12.237 

10625 R B. halimifolia 0 0.0493 71.82 71.5 16 12.5 0.130 1.871 14.358 

10650 R B. halimifolia 0 0.024 82.84 70.7 6 23.3 0.146 1.476 10.121 

10675 R B. halimifolia 0 0.0258 66.14 74.7 4 21.3 0.102 1.385 13.600 

10700 R B. halimifolia 0 0.031 76.02 58.2 16.6 25.2 0.092 1.142 12.463 

10725 R B. halimifolia 0 0.0228 66.72 38.8 37.3 23.9 0.150 0.161 14.384 

10750 R B. halimifolia 0 0.0344 62.6 75.5 7.7 16.8 0.129 1.839 14.299 

10775 R B. halimifolia 0 0.023 59.38 30.8 30.6 38.6 0.160 2.164 13.525 

10800 R B. halimifolia 0 0.0436 75.6 34.7 30.3 35 0.219 3.114 14.206 

10825 R B. halimifolia 0 0.0291 82.53 43.2 26.3 30.5 0.185 2.380 12.843 

10850 R B. halimifolia 0 0.039 78.25 26.1 37.3 36.6 0.141 1.808 12.855 

10875 R B. halimifolia 0 0.0392 77.51 36.8 30.6 32.6 0.218 2.423 11.116 

10900 R B. halimifolia 0 0.04 83.19 35 34.6 30.4 0.285 3.128 10.972 

10925 R B. halimifolia 0 0.0394 87.64 62.5 18 19.5 0.113 1.812 16.084 

10950 R B. halimifolia 0 0.037 88.3 76.1 10 13.9 0.104 1.329 12.814 

10975 R B. halimifolia 0 0.0307 87.67 61.3 18.3 20.4 0.124 1.369 11.056 

11000 R B. halimifolia 0 0.029 87.68 50.1 24.3 25.6 0.155 2.323 15.020 

11025 R B. halimifolia 0 0.0232 86.4 83.3 10.3 6.4 0.040 0.511 12.761 

11050 R B. halimifolia 0 0.0262 85.57 82.2 10 7.8 0.115 1.760 15.250 

11075 R B. halimifolia 0 0.019 85.62 73.3 4.6 22.1 0.061 0.503 8.178 

11100 R B. halimifolia 0 0.0227 87.24 83.2 11.2 5.6 0.069 0.581 8.399 

11125 R B. halimifolia 0 0.0306 85.4 44.5 28.9 26.6 0.147 2.111 14.316 

11150 R B. halimifolia 0 0.03 84.44 51.3 29.3 19.4 0.189 3.501 18.529 

11175 R B. halimifolia 0 0.0256 85.92 61.5 18.9 19.6 0.144 1.762 12.241 

11200 R B. halimifolia 0 0.0295 85.75 48.4 28.9 22.7 0.182 2.480 13.643 

11225 R B. halimifolia 0 0.06 81.15 55.3 26.3 18.4 0.158 1.960 12.395 
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Appendix A. Raw data from observational study, continued 

11250 R B. halimifolia 0 0.0716 75.79 23.1 40.6 36.3 0.197 2.841 14.446 

11275 R B. halimifolia 0 0.1037 74.05 65.8 14.9 19.3 0.147 2.854 19.361 

11300 R B. halimifolia 0 0.0814 57.24 33.5 34.3 32.2 0.320 4.026 12.584 

0 R I. vomitoria 0 6.66 98.15 73.6 10.6 15.8 0.201 3.136 15.616 

100 R I. vomitoria 0 7.53 98.15 30.4 43 26.6 0.386 4.648 12.035 

200 R I. vomitoria 0 9.4 98.15 61.8 18.3 19.9 0.373 5.527 14.819 

300 R I. vomitoria 0 9.03 98.15 59.1 30.9 10 0.459 5.935 12.939 

400 R I. vomitoria 0 7.4 98.15 13.8 43.6 42.6 0.291 4.170 14.353 

500 R I. vomitoria 0 9.28 98.15 56.8 16.9 26.3 0.173 2.682 15.472 

600 R I. vomitoria 0 8.49 98.15 57.1 18.3 24.6 0.324 4.831 14.893 

700 R I. vomitoria 0 3.567 98.15 67 14 19 0.047 0.424 8.967 

800 R I. vomitoria 0 8.59 98.15 34.4 35 30.6 0.253 4.045 15.992 

900 R I. vomitoria 0 10.88 98.15 35 38.4 26.6 0.318 4.948 15.583 

1000 R I. vomitoria 0 7.38 98.15 69.5 18.6 11.9 0.280 4.108 14.654 

1100 R I. vomitoria 0 10.1 98.15 27 39 34 0.289 3.897 13.495 

1200 R I. vomitoria 0 11.53 98.15 . . . 0.451 6.415 14.211 

1300 R I. vomitoria 0 8.94 98.15 74.4 6.4 19.2 0.467 6.793 14.551 

1400 R I. vomitoria 0 6.43 98.15 59.5 24.3 16.2 0.215 2.749 12.772 

1500 R I. vomitoria 0 10 98.15 37 52 11 0.436 5.976 13.693 

1600 R I. vomitoria 0 8.34 98.15 73.2 12.3 14.5 0.411 6.091 14.814 

1700 R I. vomitoria 0 7.3 98.15 30.4 51 18.6 0.272 3.751 13.791 

1800 R I. vomitoria 0 9 98.15 29 49.7 21.3 0.317 4.648 14.678 

1900 R I. vomitoria 0 8 98.15 43 37 20 0.282 4.293 15.245 

2000 R I. vomitoria 0 11.7 98.15 32.4 27.2 40.4 0.381 5.262 13.821 

2100 R I. vomitoria 0 8.75 98.15 67.6 16.3 16.1 0.154 2.002 12.975 

2200 R I. vomitoria 0 11.63 98.15 13.8 26.4 59.8 0.284 3.950 13.903 

2300 R I. vomitoria 0 5.7 98.15 39.4 36.3 24.3 0.095 1.060 11.213 

2400 R I. vomitoria 0 8.725 98.15 67.1 10.3 22.6 0.375 6.057 16.170 

2500 R I. vomitoria 0 10.28 98.15 65.1 15.4 19.5 0.312 5.125 16.407 

2600 R I. vomitoria 0 9.76 98.15 59.5 21.2 19.3 0.324 4.831 14.893 

2700 R I. vomitoria 0 9.66 98.15 70.9 13.2 15.9 0.386 5.829 15.113 

2800 R I. vomitoria 0 10.5 98.15 67.2 11.5 21.3 0.345 5.384 15.610 

2900 R I. vomitoria 0 5.76 98.15 59.5 18.9 21.6 0.217 2.588 11.923 

3000 R I. vomitoria 0 9.19 98.15 39.6 39 21.4 0.389 5.392 13.861 

3100 R I. vomitoria 0 7.91 98.15 64.1 22 13.9 0.364 5.916 16.244 

3200 R I. vomitoria 0 8.5 98.15 57.5 20.6 21.9 0.263 3.985 15.147 
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Appendix A. Raw data from observational study, continued 

3300 R I. vomitoria 0 9.3 98.15 45.8 19.6 34.6 0.281 4.065 14.476 

3400 R I. vomitoria 0 7.11 98.15 60.5 31.2 8.3 0.433 6.931 15.991 

3500 R I. vomitoria 0 7.1 98.15 64.1 18.6 17.3 0.446 6.784 15.200 

3600 R I. vomitoria 0 9.66 98.15 49.1 40.6 10.3 0.472 6.799 14.396 

3700 R I. vomitoria 0 8.72 98.15 39 33.2 27.8 0.208 2.956 14.241 

3800 R I. vomitoria 0 13 98.15 67.5 11.2 21.3 0.418 7.770 18.566 

3900 R I. vomitoria 0 15.43 98.15 48.9 39.8 11.3 0.464 9.034 19.483 

4000 R I. vomitoria 0 14.6 98.15 59.5 25.5 15 1.079 11.161 10.342 

4100 R I. vomitoria 0 18.46 98.15 56.8 29.9 13.3 0.482 8.177 16.957 

4200 R I. vomitoria 0 16.25 97.87 68.8 19.3 11.9 0.420 9.002 21.415 

4300 R I. vomitoria 0 6.07 97.69 59.9 18.9 21.2 0.151 3.122 20.669 

4400 R I. vomitoria 0 3.93 90.81 51.6 28 20.4 0.079 1.297 16.380 

4500 R I. vomitoria 0 3.9 89.67 39.2 42.7 18.1 0.060 0.240 4.003 

4600 R I. vomitoria 0 4.72 88.53 37 35.2 27.8 0.148 1.914 12.927 

4625 R I. vomitoria 0 3.891 85.58 52.2 22.3 25.5 0.071 1.055 14.817 

4650 R I. vomitoria 0 0.892 73.73 57.3 26.3 16.4 0.068 0.899 13.266 

4650 T I. vomitoria 1 1.615 74.61 62.2 13.4 24.4 0.063 0.904 14.407 

4675 R I. vomitoria 0 0.4494 60.46 81.5 7.2 11.3 0.068 1.037 15.159 

4700 R I. vomitoria 0 0.463 59.45 63.3 14.3 22.4 0.091 1.229 13.512 

4725 R I. vomitoria 0 0.2 58.7 57.9 24.6 17.5 0.106 0.957 9.032 

4725 T I. vomitoria 1 0.2649 54.47 74.7 14.2 11.1 0.068 1.099 16.203 

4750 R I. vomitoria 0 0.3425 43.58 35.8 36 28.2 0.083 0.702 8.454 

4775 R I. vomitoria 1 0.2601 40.31 59 20.3 20.7 0.149 2.775 18.569 

4800 R I. vomitoria 0 0.3266 40.16 76.4 11.8 11.8 0.053 0.694 13.180 

4825 T I. vomitoria 1 0.645 46.6 77 8 15 0.043 0.550 12.858 

4825 R I. vomitoria 0 2.652 48.08 49 22 29 0.060 0.967 16.123 

4850 R I. vomitoria 0 1.354 71.21 51 21.7 27.3 0.127 1.887 14.864 

4875 R I. vomitoria 0 1.5774 79.52 54.4 28.5 17.1 0.114 1.741 15.319 

4900 R I. vomitoria 0 3.735 85.12 10.2 68 21.8 0.181 3.492 19.271 

4925 R I. vomitoria 0 4.35 84.05 64.7 17.8 17.5 0.379 6.877 18.142 

4950 R I. vomitoria 0 4.75 81.5 77.3 13.5 9.2 0.556 8.788 15.808 

4975 R I. vomitoria 0 2.28 83.92 52.7 19.7 27.6 0.159 3.044 19.125 

5000 R I. vomitoria 0 1.012 84.23 79.5 3.2 17.3 0.153 2.412 15.736 

5025 R I. vomitoria 0 2.025 85.44 59 20.9 20.1 0.103 1.951 18.928 

5050 R I. vomitoria 0 1.4 79.42 56.1 20.6 23.3 0.174 2.207 12.677 

5075 R I. vomitoria 0 1.444 71.6 53 20.9 26.1 0.104 1.477 14.220 



197 
 

 
 

Appendix A. Raw data from observational study, continued 

5100 R I. vomitoria 0 0.4307 48.14 61.6 14.3 24.1 0.105 1.699 16.182 

5125 R I. vomitoria 0 0.332 48.52 59 14 27 0.123 1.952 15.829 

5150 R I. vomitoria 0 0.547 46.11 59.6 18.3 22.1 0.124 1.595 12.843 

5175 T I. vomitoria 1 0.523 24.82 69.5 17.2 13.3 0.093 1.220 13.162 

5175 R I. vomitoria 0 0.4485 42.44 68.4 16.6 15 0.076 1.050 13.791 

5200 R I. vomitoria 0 0.426 40.58 65 16.3 18.7 0.062 1.059 17.190 

5225 R I. vomitoria 0 1.601 70.58 45 18 37 0.244 3.834 15.703 

5250 R I. vomitoria 0 1.788 70.47 59.6 18.3 22.1 0.243 2.772 11.408 

5275 R I. vomitoria 0 0.2601 39.15 65 12.3 22.7 0.130 2.107 16.204 

5275 T I. vomitoria 1 0.4578 43.38 51 18.3 30.7 0.135 2.448 18.186 

5300 R I. vomitoria 0 0.3201 43.3 57.6 18.3 24.1 0.103 1.755 17.083 

5325 R I. vomitoria 0 0.18 35.6 66.1 12 21.9 0.078 1.433 18.342 

5350 R I. vomitoria 0 0.1334 33.62 62.7 16.6 20.7 0.092 1.584 17.249 

5375 R I. vomitoria 0 0.458 43.7 63.9 14.6 21.5 0.078 1.493 19.139 

5400 R I. vomitoria 0 0.176 28.58 67.5 17 15.5 0.106 1.381 12.969 

5425 R I. vomitoria 0 0.1485 58.85 56.7 16.9 26.4 0.095 1.270 13.383 

5450 R I. vomitoria 0 0.1672 63.7 65.4 20.3 14.3 0.129 1.665 12.887 

5475 R I. vomitoria 0 0.166 70.8 6 35.4 58.6 0.092 1.197 13.039 

5500 R I. vomitoria 0 0.3688 60.92 52.4 16 31.6 0.133 1.420 10.686 

5525 R I. vomitoria 0 0.3747 38.75 61.3 10.6 28.1 0.106 1.742 16.488 

5550 R I. vomitoria 0 0.1422 46.2 57.9 16.6 25.5 0.101 1.483 14.649 

5575 R I. vomitoria 0 0.15 54.43 65.5 14.6 19.9 0.115 1.678 14.581 

5575 T I. vomitoria 1 0.157 41.4 62.2 12.6 25.2 0.108 1.781 16.462 

5600 T I. vomitoria 1 0.349 51.47 57.1 20.3 22.6 0.142 1.908 13.438 

5600 R I. vomitoria 0 0.1679 58.72 75.5 8 16.5 0.130 2.139 16.404 

5625 R I. vomitoria 0 0.2068 56.13 63.9 10.6 25.5 0.143 1.713 11.971 

5650 R I. vomitoria 0 0.2255 66.55 65.9 14.3 19.8 0.102 1.703 16.733 

5675 R I. vomitoria 0 0.129 66.96 65.3 12.3 22.4 0.101 1.391 13.779 

5700 R I. vomitoria 0 0.2276 65.18 60.7 16.3 23 0.106 1.293 12.170 

5725 R I. vomitoria 0 0.21 56.41 60.1 14 25.9 0.100 1.646 16.533 

5750 R I. vomitoria 0 0.285 63.33 61.5 15.2 23.3 0.093 1.456 15.726 

5775 T I. vomitoria 1 0.59 34.89 67.6 16.3 16.1 0.115 1.595 13.921 

5775 R I. vomitoria 0 0.2423 44.92 64.7 12.3 23 0.106 1.565 14.828 

5800 T I. vomitoria 1 0.1873 23.64 51.6 26.3 22.1 0.087 1.475 17.007 

5800 R I. vomitoria 0 0.4027 24.3 63.3 16.6 20.1 0.091 1.594 17.593 

5825 R I. vomitoria 0 0.51 33.81 64.4 14.3 21.3 0.100 1.709 17.137 
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Appendix A. Raw data from observational study, continued 

5825 T I. vomitoria 1 0.3682 37.83 62.1 12.3 25.6 0.170 3.789 22.240 

5850 T I. vomitoria 1 0.2751 50.32 61.5 13.2 25.3 0.199 3.512 17.680 

5850 R I. vomitoria 0 1.022 52.6 6.4 55 38.6 0.247 4.514 18.267 

5875 T I. vomitoria 1 0.2243 43.73 63.5 13.2 23.3 0.141 2.107 14.957 

5875 R I. vomitoria 0 0.4 43.63 65.9 17 17.1 0.155 3.460 22.365 

5900 R I. vomitoria 0 0.4885 37.75 52.7 22.6 24.7 0.085 1.918 22.645 

5900 T I. vomitoria 1 0.4583 44.88 54.4 20 25.6 0.173 5.047 29.205 

5925 T I. vomitoria 1 0.35 42.39 49.3 26.6 24.1 0.203 3.387 16.644 

5925 R I. vomitoria 0 0.488 43.77 54.7 22.3 23 0.302 5.779 19.113 

5950 R I. vomitoria 0 0.383 36.58 65.9 19.7 14.4 0.211 3.764 17.875 

5975 T I. vomitoria 1 0.3235 39.87 52.5 18.3 29.2 0.190 3.543 18.669 

5975 R I. vomitoria 0 0.95 58.57 42.7 22.6 34.7 0.237 4.621 19.496 

6000 T I. vomitoria 1 0.535 40.77 62.9 19 18.1 0.101 1.128 11.210 

6000 R I. vomitoria 0 0.2055 43.54 63.3 23.5 13.2 0.164 3.119 18.976 

6025 T I. vomitoria 1 0.1942 49.03 53.6 24 22.4 0.131 1.914 14.575 

6025 R I. vomitoria 0 0.166 44.25 51 22.3 26.7 0.196 3.024 15.453 

6050 R I. vomitoria 0 0.2883 54.92 50.7 20.9 28.4 0.186 2.846 15.286 

6050 T I. vomitoria 1 0.2865 45.22 53 24.9 22.1 0.186 2.846 15.286 

6075 R I. vomitoria 0 0.2682 58.48 63.3 16.9 19.8 0.171 2.937 17.131 

6075 T I. vomitoria 1 0.2815 58.97 43.3 26 30.7 0.169 2.997 17.691 

6100 R I. vomitoria 0 0.25 57.08 28.6 35.3 36.1 0.141 2.109 14.969 

6100 T I. vomitoria 1 0.1545 58.28 49.3 22 28.7 0.163 2.775 16.988 

6125 T I. vomitoria 1 0.1809 46.73 50.1 22 27.9 0.188 2.805 14.882 

6125 R I. vomitoria 0 0.3457 52.6 40.2 28.3 31.5 0.148 2.560 17.273 

6150 R I. vomitoria 0 0.48 38.27 51.9 24.6 23.5 0.064 0.871 13.596 

6150 T I. vomitoria 1 0.538 39.72 62.4 16.9 20.7 0.122 2.098 17.156 

6175 R I. vomitoria 0 0.287 23.89 56.1 16.9 27 0.132 2.041 15.442 

6175 T I. vomitoria 1 0.1934 40.04 47.9 28.6 23.5 0.120 2.414 20.108 

6200 R I. vomitoria 0 0.1182 47.55 37.9 32.6 29.5 0.091 1.160 12.728 

6200 T I. vomitoria 1 0.454 45.07 43.9 30 26.1 0.104 1.338 12.829 

6225 R I. vomitoria 0 0.238 37.33 42.4 35.5 22.1 0.072 0.962 13.401 

6225 T I. vomitoria 1 0.4316 39.66 47.8 28.9 23.3 0.094 1.529 16.195 

6250 R I. vomitoria 0 0.2337 35.92 50.7 26.6 22.7 0.088 1.361 15.546 

6275 T I. vomitoria 1 0.3735 34.74 65.9 17.7 16.4 0.070 0.912 12.973 

6275 R I. vomitoria 0 0.2557 34.76 63.8 22.3 13.9 0.121 1.803 14.960 

6300 R I. vomitoria 0 0.158 32.99 61.3 20 18.7 0.095 1.068 11.232 
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Appendix A. Raw data from observational study, continued 

6325 R I. vomitoria 0 0.091 42.5 64.7 12.6 22.7 0.147 2.045 13.955 

6325 T I. vomitoria 1 0.245 26.85 75.1 2.9 22 0.093 1.332 14.375 

6350 R I. vomitoria 0 0.1576 49.81 55.8 14.9 29.3 0.178 2.376 13.379 

6375 R I. vomitoria 0 0.2454 49.58 31.3 36.3 32.4 0.159 2.341 14.765 

6375 T I. vomitoria 1 0.2771 43.84 35.2 45.8 19 0.067 1.305 19.372 

6400 R I. vomitoria 0 0.1919 51.6 15.3 48 36.7 0.185 2.569 13.887 

6425 R I. vomitoria 0 0.1511 50.67 39.5 26.6 33.9 0.147 2.009 13.661 

6450 R I. vomitoria 0 0.3422 44.39 41 28.3 30.7 0.162 2.440 15.055 

6475 R I. vomitoria 0 0.2442 34.34 50.1 26 23.9 0.152 2.267 14.933 

6500 R I. vomitoria 0 0.0902 33.79 50.7 18 31.3 0.128 2.176 16.996 

6525 R I. vomitoria 0 0.277 22.51 53.5 19.2 27.3 0.122 2.243 18.387 

6525 T I. vomitoria 1 0.23 35.54 55.9 20.3 23.8 0.127 2.349 18.460 

6550 T I. vomitoria 1 0.2865 34.1 67.9 18 14.1 0.067 1.052 15.611 

6550 R I. vomitoria 0 0.1639 24.73 53 20.3 26.7 0.117 2.069 17.749 

6575 T I. vomitoria 1 0.3034 36.45 64.1 20.6 15.3 0.062 0.801 13.025 

6575 R I. vomitoria 0 0.2563 32.71 63.6 18.3 18.1 0.080 1.066 13.393 

6600 R I. vomitoria 0 0.165 27.81 75.3 13.2 11.5 0.084 0.989 11.721 

6625 T I. vomitoria 1 0.148 34.24 76.1 10 13.9 0.051 0.671 13.068 

6625 R I. vomitoria 0 0.3356 19.7 67.9 22 10.1 0.103 1.512 14.713 

6650 R I. vomitoria 0 0.181 22.84 19 51 30 0.205 3.380 16.522 

6650 T I. vomitoria 1 0.3465 17.03 52.7 20.6 26.7 0.184 3.694 20.068 

6675 R I. vomitoria 0 0.1014 32.82 43.6 20 36.4 0.093 1.486 15.936 

6700 R I. vomitoria 0 0.1347 35.39 62.4 14.9 22.7 0.104 0.940 9.067 

6700 T I. vomitoria 1 0.1787 20.8 61.6 24 14.4 0.053 0.796 15.110 

6725 R I. vomitoria 0 0.1184 35.37 77 4.3 18.7 0.127 2.274 17.859 

6750 T I. vomitoria 1 0.237 16.61 47.6 26.3 26.1 0.200 1.989 9.924 

6750 R I. vomitoria 0 0.1147 39.63 65.6 12.3 22.1 0.157 1.890 12.027 

6775 R I. vomitoria 0 0.22 43.78 74.7 14.9 10.4 0.064 0.734 11.390 

6800 R I. vomitoria 0 0.2425 40.82 56.7 16.3 27 0.071 1.034 14.602 

6825 R I. vomitoria 0 0.1897 44.68 54.1 16.9 29 0.081 1.267 15.628 

6850 R I. vomitoria 0 0.1405 40.71 49.4 16.9 33.7 0.091 1.280 13.989 

6875 R I. vomitoria 0 0.129 46.23 56.2 20 23.8 0.176 2.872 16.319 

6900 R I. vomitoria 0 . 49.35 . . . . . . 

6925 R I. vomitoria 0 0.2054 30.22 14.4 58.4 27.2 0.180 3.714 20.666 

6950 R I. vomitoria 0 0.1992 40.49 70.1 7.2 22.7 0.181 2.198 12.143 

6975 R I. vomitoria 0 0.133 55.2 57.5 9.2 33.3 0.195 2.527 12.939 
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Appendix A. Raw data from observational study, continued 

7000 R I. vomitoria 0 0.3326 49.85 74.1 8.3 17.6 0.200 4.356 21.825 

7025 R I. vomitoria 0 0.1636 56.56 56.4 18.9 24.7 0.162 0.303 20.339 

7050 R I. vomitoria 0 0.1195 38.45 71.9 11.7 16.4 0.113 2.075 18.369 

7050 T I. vomitoria 1 0.1787 55.82 75.6 10.3 14.1 0.113 2.075 18.369 

7075 R I. vomitoria 0 0.1926 44.32 64.4 8.9 26.7 0.172 3.139 18.224 

7100 T I. vomitoria 1 0.2004 35.21 42.7 24.6 32.7 0.248 4.342 17.523 

7100 R I. vomitoria 0 0.1135 33.72 47 18.3 34.7 0.165 3.255 19.690 

7125 R I. vomitoria 0 0.1994 47.04 53.3 16.6 30.1 0.184 2.879 15.639 

7150 R I. vomitoria 0 0.1675 36.65 55 18.9 26.1 0.096 1.699 17.763 

7175 R I. vomitoria 0 0.1323 36.82 42.2 24.6 33.2 0.153 2.044 13.343 

7175 T I. vomitoria 1 0.1677 31.6 41 24.6 34.4 0.169 2.626 15.541 

7200 R I. vomitoria 0 0.11 47.93 41 28.6 30.4 0.156 2.471 15.850 

7225 R I. vomitoria 0 0.088 55.98 39 29.6 31.4 0.158 2.289 14.524 

7250 R I. vomitoria 0 0.1118 50.11 37 32.3 30.7 0.139 2.051 14.719 

7250 T I. vomitoria 1 0.1204 47.01 35 30 35 0.135 2.071 15.361 

7275 R I. vomitoria 0 0.1181 37.5 36.1 30.6 33.3 0.169 2.232 13.223 

7275 T I. vomitoria 1 0.2245 29.15 35 30 35 0.142 2.452 17.257 

7300 R I. vomitoria 0 0.115 21.99 59.7 19.9 20.4 0.133 2.063 15.558 

8200 T I. vomitoria 1 0.181 38.16 55.3 23.7 21 0.080 1.164 14.533 

8200 R I. vomitoria 0 0.1064 21.69 61 22.3 16.7 0.060 1.083 18.098 

8225 T I. vomitoria 1 0.1115 15.47 64.7 12.3 23 0.060 0.946 15.876 

8225 R I. vomitoria 0 0.1306 14.91 57 20.6 22.4 0.053 0.129 21.213 

8250 T I. vomitoria 1 0.0621 21.34 61.3 16.3 22.4 0.036 0.322 8.943 

8250 R I. vomitoria 0 0.0823 14.04 70.1 8.3 21.6 0.093 1.500 16.089 

8275 R I. vomitoria 0 0.0496 36.55 74.1 12 13.9 0.060 0.826 13.771 

8300 T I. vomitoria 1 0.0514 53.12 75 10 15 0.040 0.459 11.424 

8300 R I. vomitoria 0 0.0504 52.86 74.4 11.5 14.1 0.098 1.482 15.092 

8325 R I. vomitoria 0 0.0482 58.2 63.6 24.3 12.1 0.070 1.000 14.370 

8350 R I. vomitoria 0 0.0511 67.19 69.9 11.7 18.4 0.097 1.468 15.198 

8375 R I. vomitoria 0 0.0681 52.13 47.6 26 26.4 0.133 1.906 14.334 

8400 R I. vomitoria 0 0.0541 45.15 60.4 13.7 25.9 0.118 1.787 15.197 

8400 T I. vomitoria 1 0.1178 33.06 58.1 24.6 17.3 0.175 2.762 15.739 

8425 R I. vomitoria 0 0.0884 53.89 64.7 12.3 23 0.190 2.786 14.687 

8450 R I. vomitoria 0 0.0877 43.38 65.3 20.3 14.4 0.133 1.906 14.334 

8475 T I. vomitoria 1 0.058 52.84 74.4 8.9 16.7 0.065 0.601 9.205 

8475 R I. vomitoria 0 0.0404 42.9 73.3 18 8.7 0.048 0.683 14.099 
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Appendix A. Raw data from observational study, continued 

8500 R I. vomitoria 0 0.1688 20.34 69.6 14.3 16.1 0.146 2.516 17.207 

8525 R I. vomitoria 0 0.072 30.61 82.7 5.7 11.6 0.114 1.862 16.287 

8550 T I. vomitoria 1 0.1415 28.5 27 55 18 0.322 5.514 17.110 

8550 R I. vomitoria 0 0.1347 28.52 70.1 8.6 21.3 0.222 4.004 18.053 

8575 T I. vomitoria 1 0.1078 30.45 62.1 16.3 21.6 0.232 4.583 19.788 

8575 R I. vomitoria 0 0.1697 27.74 63.3 18 18.7 0.149 3.519 23.540 

8600 R I. vomitoria 0 0.1765 32.6 64.1 14.6 21.3 0.313 5.385 17.226 

8600 T I. vomitoria 1 0.1508 32.95 63.9 22 14.1 0.198 4.429 22.406 

8625 R I. vomitoria 0 0.1483 26.19 63.3 12 24.7 0.200 3.562 17.821 

8650 T I. vomitoria 1 0.12 14.97 68.4 12.9 18.7 0.192 3.472 18.127 

8650 R I. vomitoria 0 0.1605 20.07 76.1 8.3 15.6 0.222 4.231 19.099 

8675 R I. vomitoria 0 0.223 19.62 47 35.8 17.2 0.299 5.128 17.151 

8700 R I. vomitoria 0 0.0721 18.48 79.5 6.8 13.7 0.206 3.890 18.925 

8725 R I. vomitoria 0 0.303 72.66 69.7 2.4 27.9 0.370 6.395 17.280 

8750 R I. vomitoria 0 0.2182 72.44 56.1 12.6 31.3 0.222 3.859 17.397 

8775 R I. vomitoria 0 0.19 14.74 7 46.4 46.6 0.438 8.230 18.800 

8800 R I. vomitoria 0 0.1638 34.75 26.3 20.9 52.8 0.265 4.008 15.152 

8825 R I. vomitoria 0 0.115 36.6 51.3 18 30.7 0.139 2.599 18.730 

8850 R I. vomitoria 0 0.15 37.63 41 22.6 36.4 0.292 4.033 13.816 

8875 T I. vomitoria 1 0.105 28.7 46.7 24.3 29 0.151 2.203 14.635 

8875 R I. vomitoria 0 0.1173 23.32 55 22 23 0.183 2.993 16.392 

8900 R I. vomitoria 0 0.1055 24.93 67 18 15 0.139 2.562 18.431 

8925 R I. vomitoria 0 0.088 35.48 79.2 8.3 12.5 0.168 3.093 18.368 

8925 T I. vomitoria 1 0.0809 26.66 73.8 10.6 15.6 0.123 2.486 20.254 

8950 T I. vomitoria 1 0.0656 26.23 75 12.9 12.1 0.147 3.131 21.232 

8950 R I. vomitoria 0 0.0844 21.03 55.9 20.3 23.8 0.172 4.089 23.827 

8975 R I. vomitoria 0 0.1359 22.16 50.9 26.4 22.7 0.285 5.363 18.828 

9000 R I. vomitoria 0 0.0903 23.51 48.6 24.6 26.8 0.102 2.218 21.688 

9025 T I. vomitoria 1 0.1031 17.02 58.7 16.3 25 0.123 2.360 19.183 

9025 R I. vomitoria 0 0.111 21.47 58.5 18.3 23.2 0.298 6.009 20.186 

9050 R I. vomitoria 0 0.0855 13.13 61.3 8.6 30.1 0.145 2.958 20.410 

9075 R I. vomitoria 0 0.0732 25.52 81.3 6.3 12.4 0.181 3.206 17.689 

9100 R I. vomitoria 0 0.2022 9.16 69.2 11.2 19.6 0.251 4.753 18.925 

9125 R I. vomitoria 0 0.0959 9.69 52.7 18.6 28.7 0.170 2.880 16.910 

9125 T I. vomitoria 1 0.1254 26.23 55 18 27 0.075 1.366 18.175 

9150 R I. vomitoria 0 0.0493 52.46 75.5 13.2 11.3 0.107 1.870 17.411 
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Appendix A. Raw data from observational study, continued 

9150 T I. vomitoria 1 0.086 50.04 57.6 20.6 21.8 0.079 1.407 17.736 

9175 R I. vomitoria 0 0.0435 43.66 65.9 18.3 15.8 0.084 1.313 15.631 

9200 T I. vomitoria 1 0.0354 58.02 62.2 16.6 21.2 0.143 1.498 10.471 

9200 R I. vomitoria 0 0.0299 49.2 71.8 14.9 13.3 0.087 1.453 16.735 

9225 R I. vomitoria 0 0.0718 39.67 61 16.3 22.7 0.141 1.750 12.434 

9250 R I. vomitoria 0 0.0756 28.23 67.2 9.2 23.6 0.150 2.980 19.823 

9275 R I. vomitoria 0 0.1012 31.31 61 16.3 22.7 0.150 4.022 26.825 

9300 R I. vomitoria 0 0.108 13.04 62.7 14.6 22.7 0.141 2.344 16.650 

9325 R I. vomitoria 0 0.1581 14.16 55.6 20.3 24.1 0.071 1.044 14.667 

9325 T I. vomitoria 1 0.182 19.13 68.3 13.6 18.1 0.120 2.091 17.371 

9350 T I. vomitoria 1 0.0905 18.1 57.6 20 22.4 0.077 0.837 10.801 

9350 R I. vomitoria 0 0.0655 24.41 62.6 19.3 18.1 0.171 2.599 15.168 

9375 R I. vomitoria 0 0.0825 16.24 58.4 28.3 13.3 0.075 1.145 15.196 

9375 T I. vomitoria 1 0.0866 12.52 67.6 15.7 16.7 0.135 2.259 16.687 

9400 R I. vomitoria 0 0.0952 10.56 62.1 6.6 31.3 0.123 2.198 17.842 

9400 T I. vomitoria 1 0.0906 11.03 76.7 12.6 10.7 0.240 4.813 20.069 

9425 R I. vomitoria 0 0.1595 9.14 71.3 16 12.7 0.073 1.042 14.313 

9425 T I. vomitoria 1 0.107 11.93 82.1 2.9 15 0.135 2.408 17.784 

9450 R I. vomitoria 0 0.0913 28.23 78.1 8.9 13 0.135 2.179 16.087 

9475 R I. vomitoria 0 0.074 31.31 65.3 14.3 20.4 0.200 2.090 10.438 

9500 R I. vomitoria 0 0.135 12.25 79.6 12 8.4 0.066 1.559 23.722 

9525 R I. vomitoria 0 0.1056 16.13 68.5 10.3 21.2 0.257 4.048 15.755 

9550 T I. vomitoria 1 0.091 12.66 38.4 39 22.6 0.327 5.498 16.791 

9550 R I. vomitoria 0 0.086 16.58 60.9 19.3 19.8 0.260 4.991 19.161 

9575 R I. vomitoria 0 0.1358 24.26 47 31.6 21.4 0.326 5.628 17.243 

9600 R I. vomitoria 0 0.084 27.25 69.2 13.2 17.6 0.208 3.947 18.985 

9625 R I. vomitoria 0 0.0983 15.26 63.6 16.6 19.8 0.178 3.883 21.844 

9650 T I. vomitoria 1 0.146 15.99 37 43.8 19.2 0.334 6.932 20.727 

9650 R I. vomitoria 0 0.0962 12.04 57.3 16.3 26.4 0.201 4.176 20.803 

9675 R I. vomitoria 0 0.125 8.94 65.5 13.7 20.8 0.378 6.589 17.428 

9700 R I. vomitoria 0 0.12 18.15 11 58.4 30.6 0.366 6.633 18.112 

9725 R I. vomitoria 0 0.0845 10.87 61.3 16.6 22.1 0.222 3.743 16.830 

9750 R I. vomitoria 0 0.0829 11.87 43.6 22.3 34.1 0.259 4.329 16.702 

9775 R I. vomitoria 0 0.082 22.14 48.2 20.3 31.5 0.192 3.044 15.848 

9775 T I. vomitoria 1 0.0703 14.06 53.9 20.3 25.8 0.174 3.151 18.097 

9800 R I. vomitoria 0 0.1081 29.32 60.7 12 27.3 0.228 3.361 14.770 
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Appendix A. Raw data from observational study, continued 

9800 T I. vomitoria 1 0.1072 15.5 43 22 35 0.266 5.543 20.864 

9825 R I. vomitoria 0 0.1041 30.47 48.1 20 31.9 0.189 3.015 15.958 

9825 T I. vomitoria 1 0.2961 35.1 15 59.5 25.5 0.322 6.107 18.940 

9850 R I. vomitoria 0 0.0845 29.94 66.1 12.8 21.1 0.206 3.814 18.526 

9850 T I. vomitoria 1 0.0785 17 57.3 11.3 31.4 0.206 3.814 18.526 

9875 T I. vomitoria 1 0.0898 27.08 14.2 36.6 49.2 0.193 2.852 14.760 

9875 R I. vomitoria 0 0.1145 21.32 29 26.3 44.7 0.319 5.466 17.130 

9900 R I. vomitoria 0 0.0981 26.04 12.5 32.3 55.2 0.232 4.045 17.429 

9900 T I. vomitoria 1 0.1 29.67 18.2 34.6 47.2 0.232 4.045 17.429 

9925 R I. vomitoria 0 0.19 18.57 49.6 16.3 34.1 0.392 6.610 16.879 

9925 T I. vomitoria 1 0.0964 18.33 7.2 40.6 52.2 0.148 3.042 20.556 

9950 T I. vomitoria 1 0.109 17.51 32.7 27.9 39.4 0.371 6.054 16.325 

9950 R I. vomitoria 0 0.0988 15.88 38.5 25.3 36.2 0.214 4.588 21.438 

9975 R I. vomitoria 0 0.0953 17.93 44.5 32.5 23 0.225 3.610 16.021 

9975 T I. vomitoria 1 0.1 17.84 43 22.3 34.7 0.212 3.933 18.592 

10000 R I. vomitoria 0 0.06 52.3 36.5 28.3 35.2 0.100 1.828 18.267 

10000 T I. vomitoria 1 0.0551 23.73 36.8 30.6 32.6 0.166 3.324 20.000 

10025 R I. vomitoria 0 0.0305 28.24 46.7 20.3 33 0.211 3.027 14.382 

10025 T I. vomitoria 1 0.1101 12.97 19.2 36.6 44.2 0.467 11.273 24.135 

10075 R I. vomitoria 0 0.04 33.01 53.1 20.6 26.3 0.247 5.176 20.971 

10075 T I. vomitoria 1 0.0376 35.6 35.6 34.3 30.1 0.196 4.536 23.136 

10100 R I. vomitoria 0 0.0528 27.8 17.2 50.4 32.4 0.289 3.897 13.495 

10100 T I. vomitoria 1 0.0472 32.34 54.5 17.3 28.2 0.295 6.241 21.175 

10125 R I. vomitoria 0 0.0207 21.43 52.38 18.42 29.2 0.089 1.343 15.163 

10125 T I. vomitoria 1 0.04 22.06 64.1 12.3 23.6 0.231 3.751 16.269 

10150 T I. vomitoria 1 0.0442 22.4 61.9 18.3 19.8 0.134 2.115 15.799 

10150 R I. vomitoria 0 0.0553 21.61 29.8 46.4 23.8 0.417 7.319 17.544 

10175 R I. vomitoria 0 0.0645 21.96 65.6 18 16.4 0.243 3.827 15.767 

10175 T I. vomitoria 1 0.059 21.97 53.9 21.7 24.4 0.213 3.486 16.371 

10200 R I. vomitoria 0 0.0403 28.84 43 26.3 30.7 0.227 3.117 13.733 

10200 T I. vomitoria 1 0.0465 25.25 53.9 27 19.1 0.216 3.614 16.707 

10225 R I. vomitoria 0 0.0522 32.16 48.9 25.3 25.8 0.170 2.776 16.304 

10225 T I. vomitoria 1 0.0456 20.41 61 12.3 26.7 0.121 2.256 18.719 

10250 T I. vomitoria 1 0.0256 29.96 43.1 32.3 24.6 0.143 2.123 14.855 

10250 R I. vomitoria 0 0.036 30.71 47.6 26.3 26.1 0.213 3.222 15.105 

10275 T I. vomitoria 1 0.041 31.38 33.9 35.3 30.8 0.167 2.449 14.652 
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Appendix A. Raw data from observational study, continued 

10275 R I. vomitoria 0 0.0313 30.26 32.5 30.3 37.2 0.151 2.570 16.968 

10300 R I. vomitoria 0 0.0433 39.19 52.4 20.6 27 0.211 3.061 14.472 

10300 T I. vomitoria 1 0.0363 37.4 34.8 30.6 34.6 0.154 2.425 15.737 

10325 R I. vomitoria 0 0.045 34.91 34.7 30.6 34.7 0.223 2.589 11.625 

10325 T I. vomitoria 1 0.0335 29.68 44.1 26 29.9 0.210 2.496 11.890 

10350 R I. vomitoria 0 0.0287 52.01 42.5 26.3 31.2 0.117 1.486 12.669 

10350 T I. vomitoria 1 0.0344 45.49 47.1 24.6 28.3 0.165 2.664 16.148 

10375 T I. vomitoria 1 0.0308 48.15 44.8 26.9 28.3 0.115 1.516 13.167 

10375 R I. vomitoria 0 0.066 50.84 53.3 25.7 21 0.189 2.834 14.966 

10400 T I. vomitoria 1 0.0475 56.49 50.8 28.9 20.3 0.110 1.406 12.829 

10400 R I. vomitoria 0 0.0785 48.61 36.2 34.3 29.5 0.341 5.620 16.470 

10425 R I. vomitoria 0 0.073 67.26 43.4 32 24.6 0.139 1.909 13.765 

10425 T I. vomitoria 1 0.0778 61.64 37.1 30.3 32.6 0.185 2.598 14.022 

10450 R I. vomitoria 0 0.0466 73.87 50.8 22.72 26.48 0.086 0.962 11.244 

10450 T I. vomitoria 1 0.0533 65.18 49.9 26.3 23.8 0.163 2.505 15.379 

10475 T I. vomitoria 1 0.0459 70.19 43.3 34 22.7 0.102 1.218 11.894 

10475 R I. vomitoria 0 0.0455 57.57 42.8 30.6 26.6 0.099 1.228 12.465 

10500 T I. vomitoria 1 0.0591 61.95 49.1 29.3 21.6 0.107 1.371 12.825 

10500 R I. vomitoria 0 0.0411 54.45 45.3 30.3 24.4 0.093 1.269 13.571 

10525 T I. vomitoria 1 0.0497 64.95 64.1 18 17.9 0.136 1.855 13.609 

10525 R I. vomitoria 0 0.0485 72.95 62.2 21.4 16.4 0.099 1.362 13.733 

10550 T I. vomitoria 1 0.045 75.19 75.5 12.9 11.6 0.134 1.725 12.866 

10550 R I. vomitoria 0 0.044 61.7 57.6 23.7 18.7 0.097 1.259 12.939 

10575 R I. vomitoria 0 0.0346 78.04 56.1 24 19.9 0.110 1.476 13.356 

10575 T I. vomitoria 1 0.0454 62.31 52.8 22.6 24.6 0.099 1.450 14.682 

10600 R I. vomitoria 0 0.0446 82.43 36.5 34.3 29.2 0.126 1.540 12.237 

10600 T I. vomitoria 1 0.0516 78.77 75.6 9.7 14.7 0.141 1.951 13.854 

10625 T I. vomitoria 1 0.082 80.74 49.1 25.3 25.6 0.189 2.385 12.605 

10625 R I. vomitoria 0 0.0493 71.82 71.5 16 12.5 0.130 1.871 14.358 

10650 R I. vomitoria 0 0.024 82.84 70.7 6 23.3 0.146 1.476 10.121 

10650 T I. vomitoria 1 0.0261 66.11 69.3 16.3 14.4 0.127 1.830 14.378 

10675 T I. vomitoria 1 0.0257 77.59 63.6 14 22.4 0.174 2.314 13.303 

10675 R I. vomitoria 0 0.0258 66.14 74.7 4 21.3 0.102 1.385 13.600 

10700 T I. vomitoria 1 0.016 73.46 59.5 16.6 23.9 0.086 1.032 11.966 

10700 R I. vomitoria 0 0.031 76.02 58.2 16.6 25.2 0.092 1.142 12.463 

10725 T I. vomitoria 1 0.03 75.56 33.8 27.3 38.9 0.158 2.269 14.372 
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Appendix A. Raw data from observational study, continued 

10725 R I. vomitoria 0 0.0228 66.72 38.8 37.3 23.9 0.150 2.161 14.384 

10750 R I. vomitoria 0 0.0344 62.6 75.5 7.7 16.8 0.129 1.839 14.299 

10750 T I. vomitoria 1 0.0418 67.38 37.3 18 44.7 0.159 2.327 14.645 

10775 R I. vomitoria 0 0.023 59.38 30.8 30.6 38.6 0.160 2.164 13.525 

10775 T I. vomitoria 1 0.2441 65.33 24.5 53.9 21.6 0.200 2.899 14.495 

10800 T I. vomitoria 1 0.0275 76.33 26.2 36.6 37.2 0.189 2.095 11.081 

10800 R I. vomitoria 0 0.0436 75.6 34.7 30.3 35 0.219 3.114 14.206 

10825 T I. vomitoria 1 0.0407 78.22 34.5 33.3 32.2 0.164 2.095 12.756 

10825 R I. vomitoria 0 0.0291 82.53 43.2 26.3 30.5 0.185 2.380 12.843 

10850 T I. vomitoria 1 0.0477 79.22 32.5 38.3 29.2 0.171 1.993 11.635 

10850 R I. vomitoria 0 0.039 78.25 26.1 37.3 36.6 0.141 1.808 12.855 

10875 R I. vomitoria 0 0.0392 77.51 36.8 30.6 32.6 0.218 2.423 11.116 

10875 T I. vomitoria 1 0.0525 82.25 36.7 36.9 26.4 0.206 2.519 12.199 

10900 R I. vomitoria 0 0.04 83.19 35 34.6 30.4 0.285 3.128 10.972 

10900 T I. vomitoria 1 0.0382 86.68 40.7 30.3 29 0.145 1.683 11.635 

10925 R I. vomitoria 0 0.0394 87.64 62.5 18 19.5 0.113 1.812 16.084 

10950 R I. vomitoria 0 0.037 88.3 76.1 10 13.9 0.104 1.329 12.814 

10975 R I. vomitoria 0 0.0307 87.67 61.3 18.3 20.4 0.124 1.369 11.056 

11000 T I. vomitoria 1 0.02 88.3 71 10.6 18.4 0.122 1.298 10.636 

11000 R I. vomitoria 0 0.029 87.68 50.1 24.3 25.6 0.155 2.323 15.020 

11025 R I. vomitoria 0 0.0232 86.4 83.3 10.3 6.4 0.040 0.511 12.761 

11025 T I. vomitoria 1 0.037 86.66 58.5 18.3 23.2 0.210 2.919 13.924 

11050 T I. vomitoria 1 0.0328 82.2 80.1 14.1 5.8 0.215 3.137 14.586 

11050 R I. vomitoria 0 0.0262 85.57 82.2 10 7.8 0.115 1.760 15.250 

11075 R I. vomitoria 0 0.019 85.62 73.3 4.6 22.1 0.061 0.503 8.178 

11100 R I. vomitoria 0 0.0227 87.24 83.2 11.2 5.6 0.069 0.581 8.399 

11100 T I. vomitoria 1 0.0234 85.75 81.5 12.6 5.9 0.091 0.944 10.423 

11125 T I. vomitoria 1 0.0221 85.89 36.5 36.3 27.2 0.150 1.910 12.726 

11125 R I. vomitoria 0 0.0306 85.4 44.5 28.9 26.6 0.147 2.111 14.316 

11150 T I. vomitoria 1 0.0242 80.25 68.5 22.3 9.2 0.167 1.773 10.638 

11150 R I. vomitoria 0 0.03 84.44 51.3 29.3 19.4 0.189 3.501 18.529 

11175 R I. vomitoria 0 0.0256 85.92 61.5 18.9 19.6 0.144 1.762 12.241 

11175 T I. vomitoria 1 0.0369 80.18 52.2 20.6 27.2 0.162 2.004 12.359 

11200 T I. vomitoria 1 0.028 85.85 34.8 34.6 30.6 0.214 2.535 11.837 

11200 R I. vomitoria 0 0.0295 85.75 48.4 28.9 22.7 0.182 2.480 13.643 

11225 R I. vomitoria 0 0.06 81.15 55.3 26.3 18.4 0.158 1.960 12.395 
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Appendix A. Raw data from observational study, continued 

11250 T I. vomitoria 1 0.0555 84.58 32.2 37.2 30.6 0.112 1.544 13.776 

11250 R I. vomitoria 0 0.0716 75.79 23.1 40.6 36.3 0.197 2.841 14.446 

11275 T I. vomitoria 1 0.07 63.58 45.5 31.2 23.3 0.261 4.069 15.571 

11275 R I. vomitoria 0 0.1037 74.05 65.8 14.9 19.3 0.147 2.854 19.361 

11300 R I. vomitoria 0 0.0814 57.24 33.5 34.3 32.2 0.320 4.026 12.584 

11300 T I. vomitoria 1 0.0804 64.25 51.6 25.7 22.7 0.288 4.385 15.228 

0 R M. cerifera 0 6.66 98.15 73.6 10.6 15.8 0.201 3.136 15.616 

100 R M. cerifera 0 7.53 98.15 30.4 43 26.6 0.386 4.648 12.035 

200 R M. cerifera 0 9.4 98.15 61.8 18.3 19.9 0.373 5.527 14.819 

300 R M. cerifera 0 9.03 98.15 59.1 30.9 10 0.459 5.935 12.939 

400 R M. cerifera 0 7.4 98.15 13.8 43.6 42.6 0.291 4.170 14.353 

500 R M. cerifera 0 9.28 98.15 56.8 16.9 26.3 0.173 2.682 15.472 

600 R M. cerifera 0 8.49 98.15 57.1 18.3 24.6 0.324 4.831 14.893 

700 R M. cerifera 0 3.567 98.15 67 14 19 0.047 0.424 8.967 

800 R M. cerifera 0 8.59 98.15 34.4 35 30.6 0.253 4.045 15.992 

900 R M. cerifera 0 10.88 98.15 35 38.4 26.6 0.318 4.948 15.583 

1000 R M. cerifera 0 7.38 98.15 69.5 18.6 11.9 0.280 4.108 14.654 

1100 R M. cerifera 0 10.1 98.15 27 39 34 0.289 3.897 13.495 

1200 R M. cerifera 0 11.53 98.15 . . . 0.451 6.415 14.211 

1300 R M. cerifera 0 8.94 98.15 74.4 6.4 19.2 0.467 6.793 14.551 

1400 R M. cerifera 0 6.43 98.15 59.5 24.3 16.2 0.215 2.749 12.772 

1500 R M. cerifera 0 10 98.15 37 52 11 0.436 5.976 13.693 

1600 R M. cerifera 0 8.34 98.15 73.2 12.3 14.5 0.411 6.091 14.814 

1700 R M. cerifera 0 7.3 98.15 30.4 51 18.6 0.272 3.751 13.791 

1800 R M. cerifera 0 9 98.15 29 49.7 21.3 0.317 4.648 14.678 

1900 R M. cerifera 0 8 98.15 43 37 20 0.282 4.293 15.245 

2000 R M. cerifera 0 11.7 98.15 32.4 27.2 40.4 0.381 5.262 13.821 

2100 R M. cerifera 0 8.75 98.15 67.6 16.3 16.1 0.154 2.002 12.975 

2200 R M. cerifera 0 11.63 98.15 13.8 26.4 59.8 0.284 3.950 13.903 

2300 R M. cerifera 0 5.7 98.15 39.4 36.3 24.3 0.095 1.060 11.213 

2400 R M. cerifera 0 8.725 98.15 67.1 10.3 22.6 0.375 6.057 16.170 

2500 R M. cerifera 0 10.28 98.15 65.1 15.4 19.5 0.312 5.125 16.407 

2600 R M. cerifera 0 9.76 98.15 59.5 21.2 19.3 0.324 4.831 14.893 

2700 R M. cerifera 0 9.66 98.15 70.9 13.2 15.9 0.386 5.829 15.113 

2800 R M. cerifera 0 10.5 98.15 67.2 11.5 21.3 0.345 5.384 15.610 

2900 R M. cerifera 0 5.76 98.15 59.5 18.9 21.6 0.217 2.588 11.923 
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Appendix A. Raw data from observational study, continued 

3000 R M. cerifera 0 9.19 98.15 39.6 39 21.4 0.389 5.392 13.861 

3100 R M. cerifera 0 7.91 98.15 64.1 22 13.9 0.364 5.916 16.244 

3200 R M. cerifera 0 8.5 98.15 57.5 20.6 21.9 0.263 3.985 15.147 

3300 R M. cerifera 0 9.3 98.15 45.8 19.6 34.6 0.281 4.065 14.476 

3400 R M. cerifera 0 7.11 98.15 60.5 31.2 8.3 0.433 6.931 15.991 

3500 R M. cerifera 0 7.1 98.15 64.1 18.6 17.3 0.446 6.784 15.200 

3600 R M. cerifera 0 9.668 98.15 49.1 40.6 10.3 0.472 6.799 14.396 

3700 R M. cerifera 0 8.72 98.15 39 33.2 27.8 0.208 2.956 14.241 

3800 R M. cerifera 0 13 98.15 67.5 11.2 21.3 0.418 7.770 18.566 

3900 R M. cerifera 0 15.43 98.15 48.9 39.8 11.3 0.464 9.034 19.483 

4000 R M. cerifera 0 14.6 98.15 59.5 25.5 15 1.079 11.161 10.342 

4100 R M. cerifera 0 18.46 98.15 56.8 29.9 13.3 0.482 8.177 16.957 

4200 R M. cerifera 0 16.25 97.87 68.8 19.3 11.9 0.420 9.002 21.415 

4300 R M. cerifera 0 6.07 97.69 59.9 18.9 21.2 0.151 3.122 20.669 

4400 R M. cerifera 0 3.93 90.81 51.6 28 20.4 0.079 1.297 16.380 

4500 R M. cerifera 0 3.9 89.67 39.2 42.7 18.1 0.060 0.240 4.003 

4600 R M. cerifera 0 4.72 88.53 37 35.2 27.8 0.148 1.914 12.927 

4625 R M. cerifera 0 3.891 85.58 52.2 22.3 25.5 0.071 1.055 14.817 

4650 R M. cerifera 0 0.892 73.73 57.3 26.3 16.4 0.068 0.899 13.266 

4675 T M. cerifera 1 0.84 59.55 79.3 10.3 10.4 0.064 0.743 11.551 

4675 R M. cerifera 0 0.4494 60.46 81.5 7.2 11.3 0.068 1.037 15.159 

4700 T M. cerifera 1 0.5 50.59 67.6 18.3 14.1 0.081 0.826 10.176 

4700 R M. cerifera 0 0.463 59.45 63.3 14.3 22.4 0.091 1.229 13.512 

4725 R M. cerifera 0 0.2 58.7 57.9 24.6 17.5 0.106 0.957 9.032 

4725 T M. cerifera 1 0.556 53.74 73.9 14 12.1 0.127 2.307 18.169 

4750 R M. cerifera 0 0.3425 43.58 35.8 36 28.2 0.083 0.702 8.454 

4775 T M. cerifera 1 0.487 41.33 38.6 43.3 18.1 0.097 1.676 17.210 

4775 R M. cerifera 0 0.2601 40.31 59 20.3 20.7 0.149 2.775 18.569 

4800 R M. cerifera 0 0.3266 40.16 76.4 11.8 11.8 0.053 0.694 13.180 

4800 T M. cerifera 1 0.2054 36.35 78.7 6.6 14.7 0.063 0.851 13.500 

4825 T M. cerifera 1 0.3992 43.7 75.9 5.4 18.7 0.056 0.738 13.169 

4825 R M. cerifera 0 2.652 48.08 49 22 29 0.060 0.967 16.123 

4850 R M. cerifera 0 1.354 71.21 51 21.7 27.3 0.127 1.887 14.864 

4850 T M. cerifera 1 0.435 52.18 58.2 16.6 25.2 0.083 1.337 16.090 

4875 R M. cerifera 0 1.5774 79.52 54.4 28.5 17.1 0.114 1.741 15.319 

4900 R M. cerifera 0 3.735 85.12 10.2 68 21.8 0.181 3.492 19.271 
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Appendix A. Raw data from observational study, continued 

4925 R M. cerifera 0 4.35 84.05 64.7 17.8 17.5 0.379 6.877 18.142 

4950 R M. cerifera 0 4.75 81.5 77.3 13.5 9.2 0.556 8.788 15.808 

4975 R M. cerifera 0 2.28 83.92 52.7 19.7 27.6 0.159 3.044 19.125 

5000 R M. cerifera 0 1.012 84.23 79.5 3.2 17.3 0.153 2.412 15.736 

5025 R M. cerifera 0 2.025 85.44 59 20.9 20.1 0.103 1.951 18.928 

5050 R M. cerifera 0 1.4 79.42 56.1 20.6 23.3 0.174 2.207 12.677 

5075 R M. cerifera 0 1.444 71.6 53 20.9 26.1 0.104 1.477 14.220 

5100 R M. cerifera 0 0.4307 48.14 61.6 14.3 24.1 0.105 1.699 16.182 

5100 T M. cerifera 1 0.655 57.21 18.4 47.6 34 0.131 2.584 19.669 

5125 T M. cerifera 1 0.448 41.51 67.3 16 16.7 0.069 0.988 14.320 

5125 R M. cerifera 0 0.332 48.52 59 14 27 0.123 1.952 15.829 

5150 T M. cerifera 1 0.603 41.32 69.3 18 12.7 0.079 0.998 12.621 

5150 R M. cerifera 0 0.547 46.11 59.6 18.3 22.1 0.124 1.595 12.843 

5175 R M. cerifera 0 0.4485 42.44 68.4 16.6 15 0.076 1.050 13.791 

5175 T M. cerifera 1 0.368 42.98 76.1 12 11.9 0.050 0.954 18.947 

5200 T M. cerifera 1 0.584 38.27 72.1 12 15.9 0.097 0.989 10.163 

5200 R M. cerifera 0 0.4485 40.58 65 16.3 18.7 0.062 1.059 17.190 

5225 R M. cerifera 0 1.601 70.58 45 18 37 0.244 3.834 15.703 

5250 R M. cerifera 0 1.788 70.47 59.6 18.3 22.1 0.243 2.772 11.408 

5275 R M. cerifera 1 0.2601 39.15 65 12.3 22.7 0.130 2.107 16.204 

5275 T M. cerifera 1 0.2943 47.74 61 12.3 26.7 0.271 4.810 17.739 

5300 T M. cerifera 1 0.162 40.02 61.3 12.6 26.1 0.075 1.230 16.344 

5300 R M. cerifera 0 0.3201 43.3 57.6 18.3 24.1 0.103 1.755 17.083 

5325 T M. cerifera 1 0.1754 44.81 63.4 18.2 18.4 0.087 1.288 14.812 

5325 R M. cerifera 0 0.18 35.6 66.1 12 21.9 0.078 1.433 18.342 

5350 T M. cerifera 1 0.1209 47.88 67 16.3 16.7 0.075 1.086 14.517 

5350 R M. cerifera 0 0.1334 33.62 62.7 16.6 20.7 0.092 1.584 17.249 

5375 R M. cerifera 0 0.458 43.7 63.9 14.6 21.5 0.078 1.493 19.139 

5375 T M. cerifera 1 0.1735 38.11 54.7 24.3 21 0.068 1.360 20.134 

5400 R M. cerifera 0 0.176 28.58 67.5 17 15.5 0.106 1.381 12.969 

5425 R M. cerifera 0 0.1485 58.85 56.7 16.9 26.4 0.095 1.270 13.383 

5450 R M. cerifera 0 0.1672 63.7 65.4 20.3 14.3 0.129 1.665 12.887 

5475 R M. cerifera 0 0.166 70.8 6 35.4 58.6 0.092 1.197 13.039 

5500 R M. cerifera 0 0.3688 60.92 52.4 16 31.6 0.133 1.420 10.686 

5500 T M. cerifera 1 0.244 61.82 67.3 9.4 23.3 0.086 1.235 14.420 

5525 T M. cerifera 1 0.2152 55.2 60.2 16.3 23.5 0.066 0.708 10.742 
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Appendix A. Raw data from observational study, continued 

5525 R M. cerifera 0 0.3747 38.75 61.3 10.6 28.1 0.106 1.742 16.488 

5550 R M. cerifera 0 0.1422 46.2 57.9 16.6 25.5 0.101 1.483 14.649 

5575 T M. cerifera 1 0.178 49.26 67 14 19 0.123 1.759 14.269 

5575 R M. cerifera 0 0.15 54.43 65.5 14.6 19.9 0.115 1.678 14.581 

5600 T M. cerifera 1 0.1346 39.87 70.4 10.3 19.3 0.125 1.698 13.621 

5600 R M. cerifera 0 0.1679 58.72 75.5 8 16.5 0.130 2.139 16.404 

5625 R M. cerifera 0 0.2068 56.13 63.9 10.6 25.5 0.143 1.713 11.971 

5650 R M. cerifera 0 0.2255 66.55 65.9 14.3 19.8 0.102 1.703 16.733 

5675 R M. cerifera 0 0.129 66.96 65.3 12.3 22.4 0.101 1.391 13.779 

5675 T M. cerifera 1 0.1156 61.09 72 8 20 0.107 1.685 15.708 

5700 R M. cerifera 0 0.2276 65.18 60.7 16.3 23 0.106 1.293 12.170 

5725 R M. cerifera 0 0.21 56.41 60.1 14 25.9 0.100 1.646 16.533 

5750 T M. cerifera 1 0.23 51.4 51.08 23.42 25.5 0.154 1.608 10.459 

5750 R M. cerifera 0 0.285 63.33 61.5 15.2 23.3 0.093 1.456 15.726 

5775 R M. cerifera 0 0.2423 44.92 64.7 12.3 23 0.106 1.565 14.828 

5775 T M. cerifera 1 0.376 35.85 57.1 20.3 22.6 0.093 1.810 19.458 

5800 R M. cerifera 0 0.4027 24.3 63.3 16.6 20.1 0.091 1.594 17.593 

5800 T M. cerifera 1 0.79 22.76 45.3 32.3 22.4 0.098 1.952 19.934 

5825 R M. cerifera 0 0.51 33.81 64.4 14.3 21.3 0.100 1.709 17.137 

5825 T M. cerifera 1 0.397 38.28 55.5 21.2 23.3 0.188 3.436 18.260 

5850 T M. cerifera 1 0.3274 49.55 64.1 14.6 21.3 0.261 4.255 16.279 

5850 R M. cerifera 0 1.022 52.6 6.4 55 38.6 0.247 4.514 18.267 

5875 T M. cerifera 1 0.353 41.29 66.1 10.3 23.6 0.167 3.350 20.020 

5875 R M. cerifera 0 0.4 43.63 65.9 17 17.1 0.155 3.460 22.365 

5900 T M. cerifera 1 0.2699 39.33 59 17.7 23.3 0.151 3.382 22.373 

5900 R M. cerifera 0 0.4885 37.75 52.7 22.6 24.7 0.085 1.918 22.645 

5925 R M. cerifera 0 0.2638 43.77 54.7 22.3 23 0.302 5.779 19.113 

5925 T M. cerifera 1 0.2638 43.77 56.7 20.6 22.7 0.167 3.588 21.523 

5950 R M. cerifera 0 0.383 36.58 65.9 19.7 14.4 0.211 3.764 17.875 

5975 T M. cerifera 1 0.509 36.77 60.4 16.6 23 0.116 1.692 14.612 

5975 R M. cerifera 0 0.95 58.57 42.7 22.6 34.7 0.237 4.621 19.496 

6000 T M. cerifera 1 0.5 42.84 62.1 16.6 21.3 0.137 2.022 14.744 

6000 R M. cerifera 0 0.2055 43.54 63.3 23.5 13.2 0.164 3.119 18.976 

6025 T M. cerifera 1 0.2427 47.48 51.3 22.3 26.4 0.094 1.217 12.915 

6025 R M. cerifera 0 0.166 44.25 51 22.3 26.7 0.196 3.024 15.453 

6050 T M. cerifera 1 0.196 45.54 45.9 23.6 30.5 0.145 2.110 14.506 
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Appendix A. Raw data from observational study, continued 

6050 R M. cerifera 0 0.2883 54.92 50.7 20.9 28.4 0.186 2.846 15.286 

6075 R M. cerifera 0 0.2682 58.48 63.3 16.9 19.8 0.171 2.937 17.131 

6100 R M. cerifera 0 0.25 57.08 28.6 35.3 36.1 0.141 2.109 14.969 

6100 T M. cerifera 1 0.1211 56.89 45.3 25.7 29 0.083 1.517 18.222 

6125 T M. cerifera 1 0.1581 56.56 47 26.3 26.7 0.157 2.420 15.439 

6125 R M. cerifera 0 0.3457 52.6 40.2 28.3 31.5 0.148 2.560 17.273 

6150 R M. cerifera 0 0.48 38.27 51.9 24.6 23.5 0.064 0.871 13.596 

6150 T M. cerifera 1 0.2967 35.64 57.5 21.2 21.3 0.096 1.670 17.421 

6175 T M. cerifera 1 0.4254 33.62 73 6.9 20.1 0.090 1.357 15.059 

6175 R M. cerifera 0 0.287 23.89 56.1 16.9 27 0.132 2.041 15.442 

6200 R M. cerifera 0 0.1182 47.55 37.9 32.6 29.5 0.091 1.160 12.728 

6200 T M. cerifera 1 0.2036 43.23 57.2 15.2 27.6 0.108 1.654 15.257 

6225 R M. cerifera 0 0.238 37.33 42.4 35.5 22.1 0.072 0.962 13.401 

6225 T M. cerifera 1 0.3472 37.32 54.1 22 23.9 0.182 2.890 15.883 

6250 R M. cerifera 0 0.2337 35.92 50.7 26.6 22.7 0.088 1.361 15.546 

6250 T M. cerifera 1 0.372 35.15 51 28.3 20.7 0.091 1.643 18.113 

6275 R M. cerifera 0 0.2557 34.76 63.8 22.3 13.9 0.121 1.803 14.960 

6275 T M. cerifera 1 0.2112 32.93 60.6 21 18.4 0.060 0.902 14.960 

6300 R M. cerifera 0 0.158 32.99 61.3 20 18.7 0.095 1.068 11.232 

6300 T M. cerifera 1 0.2402 35.84 63 20 17 0.074 1.082 14.620 

6325 T M. cerifera 1 0.2056 27.7 64.9 7.5 27.6 0.130 1.786 13.726 

6325 R M. cerifera 0 0.091 42.5 64.7 12.6 22.7 0.147 2.045 13.955 

6350 R M. cerifera 0 0.1576 49.81 55.8 14.9 29.3 0.178 2.376 13.379 

6375 R M. cerifera 0 0.2454 49.58 31.3 36.3 32.4 0.159 2.341 14.765 

6400 R M. cerifera 0 0.1919 51.6 15.3 48 36.7 0.185 2.569 13.887 

6425 R M. cerifera 0 0.1511 50.67 39.5 26.6 33.9 0.147 2.009 13.661 

6450 R M. cerifera 0 0.3422 44.39 41 28.3 30.7 0.162 2.440 15.055 

6450 T M. cerifera 1 0.199 44.77 55.3 18.3 26.4 0.104 1.869 18.027 

6475 R M. cerifera 0 0.2442 34.34 50.1 26 23.9 0.152 2.267 14.933 

6500 R M. cerifera 0 0.0902 33.79 50.7 18 31.3 0.128 2.176 16.996 

6500 T M. cerifera 1 0.135 33.26 65.3 16.6 18.1 0.120 2.449 20.351 

6525 T M. cerifera 1 0.211 39.42 77.3 16.3 6.4 0.120 1.804 15.070 

6525 R M. cerifera 0 0.1511 22.51 53.5 19.2 27.3 0.122 2.243 18.387 

6550 R M. cerifera 0 0.1639 24.73 53 20.3 26.7 0.117 2.069 17.749 

6550 T M. cerifera 1 0.541 31.72 65.6 20 14.4 0.087 1.770 20.309 

6575 R M. cerifera 0 0.2563 32.71 63.6 18.3 18.1 0.080 1.066 13.393 
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Appendix A. Raw data from observational study, continued 

6575 T M. cerifera 1 0.4351 37.03 61.3 22 16.7 0.058 0.965 16.612 

6600 R M. cerifera 0 0.165 27.81 75.3 13.2 11.5 0.084 0.989 11.721 

6600 T M. cerifera 1 0.1482 32.89 55 26.3 18.7 0.060 1.198 19.825 

6625 T M. cerifera 1 0.1645 29.79 72.1 10.3 17.6 0.172 1.970 11.480 

6625 R M. cerifera 0 0.3356 19.7 67.9 22 10.1 0.103 1.512 14.713 

6650 T M. cerifera 1 0.2161 19.42 78.1 10 11.9 0.154 2.162 14.028 

6650 R M. cerifera 0 0.181 22.84 19 51 30 0.205 3.380 16.522 

6675 R M. cerifera 0 0.1014 32.82 43.6 20 36.4 0.093 1.486 15.936 

6675 T M. cerifera 1 0.2406 30.4 65.3 26 8.7 0.129 2.836 21.923 

6700 R M. cerifera 0 0.1347 35.39 62.4 14.9 22.7 0.104 0.940 9.067 

6700 T M. cerifera 1 0.3213 26.37 69.9 16 14.1 0.068 1.285 18.963 

6725 R M. cerifera 0 0.1184 35.37 77 4.3 18.7 0.127 2.274 17.859 

6750 R M. cerifera 0 0.1147 39.63 65.6 12.3 22.1 0.157 1.890 12.027 

6775 R M. cerifera 0 0.22 43.78 74.7 14.9 10.4 0.064 0.734 11.390 

6775 T M. cerifera 1 0.2376 39.65 63.4 16.9 19.7 0.054 0.812 15.132 

6800 R M. cerifera 0 0.2425 40.82 56.7 16.3 27 0.071 1.034 14.602 

6800 T M. cerifera 1 0.1973 44.76 55.6 22.6 21.8 0.133 2.136 16.072 

6825 T M. cerifera 1 0.179 46.5 47 26.6 26.4 0.102 1.442 14.143 

6825 R M. cerifera 0 0.1897 44.68 54.1 16.9 29 0.081 1.267 15.628 

6850 T M. cerifera 1 0.1231 38.71 45.6 22 32.4 0.119 1.488 12.538 

6850 R M. cerifera 0 0.1405 40.71 49.4 16.9 33.7 0.091 1.280 13.989 

6875 R M. cerifera 0 0.129 46.23 56.2 20 23.8 0.176 2.872 16.319 

6875 T M. cerifera 1 0.1318 43.03 51 18.3 30.7 0.167 2.951 17.625 

6900 T M. cerifera 1 0.2135 43.26 55.1 22.6 22.3 0.118 1.906 16.084 

6900 R M. cerifera 0 . 49.35 . . . . . . 

6925 T M. cerifera 1 0.2568 38.84 73.6 11.7 14.7 0.204 2.543 12.465 

6925 R M. cerifera 0 0.2054 30.22 14.4 58.4 27.2 0.180 3.714 20.666 

6950 R M. cerifera 0 0.1992 40.49 70.1 7.2 22.7 0.181 2.198 12.143 

6950 T M. cerifera 1 0.234 34.78 69.1 13.9 17 0.104 1.829 17.537 

6975 R M. cerifera 0 0.133 55.2 57.5 9.2 33.3 0.195 2.527 12.939 

7000 R M. cerifera 0 0.3326 49.85 74.1 8.3 17.6 0.200 4.356 21.825 

7025 T M. cerifera 1 0.1204 43.1 76.1 6.3 17.6 0.175 3.378 19.263 

7025 R M. cerifera 0 0.1636 56.56 56.4 18.9 24.7 0.162 3.303 20.339 

7050 R M. cerifera 0 0.1195 38.45 71.9 11.7 16.4 0.113 2.075 18.369 

7075 R M. cerifera 0 0.1926 44.32 64.4 8.9 26.7 0.172 3.139 18.224 

7100 T M. cerifera 1 0.128 46.49 36.7 36.6 26.7 0.169 2.462 14.607 
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Appendix A. Raw data from observational study, continued 

7100 R M. cerifera 0 0.1135 33.72 47 18.3 34.7 0.165 3.255 19.690 

7125 R M. cerifera 0 0.1994 47.04 53.3 16.6 30.1 0.184 2.879 15.639 

7150 R M. cerifera 0 0.1675 36.65 55 18.9 26.1 0.096 1.699 17.763 

7175 R M. cerifera 0 0.1323 36.82 42.2 24.6 33.2 0.153 2.044 13.343 

7175 T M. cerifera 1 0.1663 39.18 37 28.3 34.7 0.207 3.213 15.535 

7200 R M. cerifera 0 0.11 47.93 41 28.6 30.4 0.156 2.471 15.850 

7225 R M. cerifera 0 0.088 55.98 39 29.6 31.4 0.158 2.289 14.524 

7225 T M. cerifera 1 0.0833 55.97 15 43 42 0.124 2.131 17.165 

7250 R M. cerifera 0 0.1118 50.11 37 32.3 30.7 0.139 2.051 14.719 

7250 T M. cerifera 1 0.1581 47 34.7 29.2 36.1 0.154 2.756 17.920 

7275 R M. cerifera 0 0.1181 37.5 36.1 30.6 33.3 0.169 2.232 13.223 

7275 T M. cerifera 1 0.4203 23.71 44.7 28.3 27 0.129 1.975 15.314 

7300 T M. cerifera 1 0.129 21.48 51 24.6 24.4 0.158 2.315 14.653 

7300 R M. cerifera 0 0.115 21.99 59.7 19.9 20.4 0.133 2.063 15.558 

8200 T M. cerifera 1 0.141 22.88 51.6 21.7 26.7 0.119 1.857 15.652 

8200 R M. cerifera 0 0.1064 21.69 61 22.3 16.7 0.060 1.083 18.098 

8225 R M. cerifera 0 0.1306 14.91 57 20.6 22.4 0.053 1.129 21.213 

8250 T M. cerifera 1 0.089 35.98 76.7 6.6 16.7 0.050 0.689 13.850 

8250 R M. cerifera 0 0.0823 14.04 70.1 8.3 21.6 0.093 1.500 16.089 

8275 R M. cerifera 0 0.0496 36.55 74.1 12 13.9 0.060 0.826 13.771 

8275 T M. cerifera 1 0.0492 44.77 67 23 10 0.054 1.173 21.558 

8300 R M. cerifera 0 0.0504 52.86 74.4 11.5 14.1 0.098 1.482 15.092 

8325 R M. cerifera 0 0.0482 58.2 63.6 24.3 12.1 0.070 1.000 14.370 

8325 T M. cerifera 1 0.0726 34.33 81 4 15 0.096 2.107 21.918 

8350 R M. cerifera 0 0.0511 67.19 69.9 11.7 18.4 0.097 1.468 15.198 

8350 T M. cerifera 1 0.0505 59.91 59.6 24 16.4 0.151 2.362 15.683 

8375 T M. cerifera 1 0.0413 60.08 69.9 15.7 14.4 0.123 1.430 11.651 

8375 R M. cerifera 0 0.0681 52.13 47.6 26 26.4 0.133 1.906 14.334 

8400 R M. cerifera 0 0.0541 45.15 60.4 13.7 25.9 0.118 1.787 15.197 

8425 R M. cerifera 0 0.0884 53.89 64.7 12.3 23 0.190 2.786 14.687 

8450 T M. cerifera 1 0.1182 48.8 64.7 20 15.3 0.163 1.991 12.246 

8450 R M. cerifera 0 0.0877 43.38 65.3 20.3 14.4 0.133 1.906 14.334 

8475 T M. cerifera 1 0.054 51.93 75.3 11.7 13 0.069 0.871 12.709 

8475 R M. cerifera 0 0.0404 42.9 73.3 18 8.7 0.048 0.683 14.099 

8500 T M. cerifera 1 0.1515 23.67 57.6 20 22.4 0.132 1.860 14.039 

8500 R M. cerifera 0 0.1688 20.34 69.6 14.3 16.1 0.146 2.516 17.207 
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Appendix A. Raw data from observational study, continued 

8525 R M. cerifera 0 0.072 30.61 82.7 5.7 11.6 0.114 1.862 16.287 

8525 T M. cerifera 1 0.135 22.88 65.8 8.3 25.9 0.145 2.481 17.077 

8550 R M. cerifera 0 0.1347 28.52 70.1 8.6 21.3 0.222 4.004 18.053 

8575 R M. cerifera 0 0.1697 27.74 63.3 18 18.7 0.149 3.519 23.540 

8600 R M. cerifera 0 0.1765 32.6 64.1 14.6 21.3 0.313 5.385 17.226 

8625 T M. cerifera 1 0.151 30.94 52.7 20.6 26.7 0.257 4.534 17.662 

8625 R M. cerifera 0 0.1483 26.19 63.3 12 24.7 0.200 3.562 17.821 

8650 R M. cerifera 0 0.1605 20.07 76.1 8.3 15.6 0.222 4.231 19.099 

8675 R M. cerifera 0 0.223 19.62 47 35.8 17.2 0.299 5.128 17.151 

8675 T M. cerifera 1 0.207 27.03 57.3 10.3 32.4 0.301 5.730 19.017 

8700 R M. cerifera 0 0.0721 18.48 79.5 6.8 13.7 0.206 3.890 18.925 

8725 R M. cerifera 0 0.303 72.66 69.7 2.4 27.9 0.370 6.395 17.280 

8750 R M. cerifera 0 0.2182 72.44 56.1 12.6 31.3 0.222 3.859 17.397 

8775 T M. cerifera 1 0.1629 25.31 68.7 14.5 16.8 0.288 4.513 15.656 

8775 R M. cerifera 0 0.19 14.74 7 46.4 46.6 0.438 8.230 18.800 

8800 R M. cerifera 0 0.1638 34.75 26.3 20.9 52.8 0.265 4.008 15.152 

8825 R M. cerifera 0 0.115 36.6 51.3 18 30.7 0.139 2.599 18.730 

8850 R M. cerifera 0 0.115 37.63 41 22.6 36.4 0.292 4.033 13.816 

8850 T M. cerifera 1 0.115 31.77 51.9 21.6 26.5 0.152 2.587 17.004 

8875 T M. cerifera 1 0.0914 18.38 50.7 24.9 24.4 0.142 2.205 15.494 

8875 R M. cerifera 0 0.1173 23.32 55 22 23 0.183 2.993 16.392 

8900 T M. cerifera 1 0.112 31.45 56.2 20.3 23.5 0.103 1.287 12.550 

8900 R M. cerifera 0 0.1055 24.93 67 18 15 0.139 2.562 18.431 

8925 T M. cerifera 1 0.0956 22.31 78.5 13.5 8 0.171 3.697 21.663 

8925 R M. cerifera 0 0.088 35.48 79.2 8.3 12.5 0.108 3.293 30.380 

8950 T M. cerifera 1 0.0724 30.13 60.2 14 25.8 0.167 3.137 18.791 

8950 R M. cerifera 0 0.0844 21.03 55.9 20.3 23.8 0.172 4.089 23.827 

8975 T M. cerifera 1 0.0845 22.72 58.2 16.6 25.2 0.183 3.445 18.777 

8975 R M. cerifera 0 0.1359 22.16 50.9 26.4 22.7 0.285 5.363 18.828 

9000 T M. cerifera 1 0.0847 22.1 53.3 20.3 26.4 0.244 4.533 18.560 

9000 R M. cerifera 0 0.0903 23.51 48.6 24.6 26.8 0.102 2.218 21.688 

9025 T M. cerifera 1 0.097 14.49 50.2 20.3 29.5 0.165 3.052 18.495 

9025 R M. cerifera 0 0.111 21.47 58.5 18.3 23.2 0.298 6.009 20.186 

9050 T M. cerifera 1 0.093 18.84 75.2 12.3 12.5 0.101 1.866 18.442 

9050 R M. cerifera 0 0.0855 13.13 61.3 8.6 30.1 0.145 2.958 20.410 

9075 T M. cerifera 1 0.0614 25.92 69.5 16.6 13.9 0.151 2.536 16.819 
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Appendix A. Raw data from observational study, continued 

9075 R M. cerifera 0 0.0732 25.52 81.3 6.3 12.4 0.181 3.206 17.689 

9100 T M. cerifera 1 0.171 22 60 17.3 22.7 0.113 1.740 15.424 

9100 R M. cerifera 0 0.2022 9.16 69.2 11.2 19.6 0.251 4.753 18.925 

9125 R M. cerifera 0 0.0959 9.69 52.7 18.6 28.7 0.170 2.880 16.910 

9125 T M. cerifera 1 0.0498 30.72 69.3 9.2 21.5 0.085 1.557 18.275 

9150 T M. cerifera 1 0.0733 53.31 55.9 28.9 15.2 0.110 1.836 16.642 

9150 R M. cerifera 0 0.0493 52.46 75.5 13.2 11.3 0.107 1.870 17.411 

9175 T M. cerifera 1 0.0438 41.78 62.5 16.6 20.9 0.140 1.627 11.620 

9175 R M. cerifera 0 0.0435 43.66 65.9 18.3 15.8 0.084 1.313 15.631 

9200 T M. cerifera 1 0.031 51.47 62.2 16.3 21.5 0.112 1.355 12.064 

9200 R M. cerifera 0 0.0299 49.2 71.8 14.9 13.3 0.087 1.453 16.735 

9225 R M. cerifera 0 0.0718 39.67 61 16.3 22.7 0.141 1.750 12.434 

9225 T M. cerifera 1 0.068 41.25 75.5 16.9 7.6 0.072 1.284 17.926 

9250 T M. cerifera 1 0.057 30.56 50.6 17.6 31.8 0.181 2.212 12.252 

9250 R M. cerifera 0 0.0756 28.23 67.2 9.2 23.6 0.150 2.980 19.823 

9275 T M. cerifera 1 0.101 26.02 66.4 14.6 19 0.115 1.848 16.051 

9275 R M. cerifera 0 0.1012 31.31 61 16.3 22.7 0.150 4.022 26.825 

9300 R M. cerifera 0 0.108 13.04 62.7 14.6 22.7 0.141 2.344 16.650 

9300 T M. cerifera 1 0.0867 23.75 61.9 16 22.1 0.107 1.903 17.827 

9325 T M. cerifera 1 0.2053 19.76 59 18 23 0.079 1.150 14.502 

9325 R M. cerifera 0 0.1581 14.16 55.6 20.3 24.1 0.071 1.044 14.667 

9350 T M. cerifera 1 0.087 14.15 61.3 16 22.7 0.065 0.739 11.453 

9350 R M. cerifera 0 0.0655 24.41 62.6 19.3 18.1 0.171 2.599 15.168 

9375 R M. cerifera 0 0.0825 16.24 58.4 28.3 13.3 0.075 1.145 15.196 

9375 T M. cerifera 1 0.0845 10.88 81.3 10.3 8.4 0.152 2.822 18.595 

9400 R M. cerifera 0 0.0952 10.56 62.1 6.6 31.3 0.123 2.198 17.842 

9400 T M. cerifera 1 0.1213 17.53 72.9 19.8 7.3 0.202 3.865 19.111 

9425 R M. cerifera 0 0.1595 9.14 71.3 16 12.7 0.073 1.042 14.313 

9425 T M. cerifera 1 0.099 11.6 75.3 10 14.7 0.150 2.301 15.328 

9450 R M. cerifera 0 0.0913 28.23 78.1 8.9 13 0.135 2.179 16.087 

9450 T M. cerifera 1 0.135 30.56 63.9 22.3 13.8 0.256 4.199 16.402 

9475 R M. cerifera 0 0.074 31.31 65.3 14.3 20.4 0.200 2.090 10.438 

9475 T M. cerifera 1 0.0685 26.02 74.5 8.6 16.9 0.152 2.822 18.595 

9500 T M. cerifera 1 0.0905 13.46 77.5 6.9 15.6 0.218 3.143 14.424 

9500 R M. cerifera 0 0.135 12.25 79.6 12 8.4 0.066 1.559 23.722 

9525 R M. cerifera 0 0.1056 16.13 68.5 10.3 21.2 0.257 4.048 15.755 
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Appendix A. Raw data from observational study, continued 

9525 T M. cerifera 1 0.0959 24.2 63.8 15 21.2 0.200 3.530 17.609 

9550 R M. cerifera 0 0.086 16.58 60.9 19.3 19.8 0.260 4.991 19.161 

9575 R M. cerifera 0 0.1358 24.26 47 31.6 21.4 0.326 5.628 17.243 

9600 T M. cerifera 1 0.1673 17.32 41.2 32.4 26.4 0.486 8.120 16.720 

9600 R M. cerifera 0 0.084 27.25 69.2 13.2 17.6 0.208 3.947 18.985 

9625 R M. cerifera 0 0.0983 15.26 63.6 16.6 19.8 0.178 3.883 21.844 

9625 T M. cerifera 1 0.1111 12.64 54.7 18.3 27 0.461 10.236 22.194 

9650 T M. cerifera 1 0.118 14.35 34.4 43 22.6 0.289 4.775 16.498 

9650 R M. cerifera 0 0.0962 12.04 57.3 16.3 26.4 0.201 4.176 20.803 

9675 R M. cerifera 0 0.125 8.94 65.5 13.7 20.8 0.378 6.589 17.428 

9675 T M. cerifera 1 0.102 13.21 58.2 16.6 25.2 0.203 4.190 20.658 

9700 T M. cerifera 1 0.1 10.04 65.9 4 30.1 0.276 4.685 16.958 

9700 R M. cerifera 0 0.12 18.15 11 58.4 30.6 0.366 6.633 18.112 

9725 R M. cerifera 0 0.0845 10.87 61.3 16.6 22.1 0.222 3.743 16.830 

9725 T M. cerifera 1 0.0935 13.13 67 12.3 20.7 0.227 4.312 18.962 

9750 R M. cerifera 0 0.0829 11.87 43.6 22.3 34.1 0.259 4.329 16.702 

9750 T M. cerifera 1 0.079 13.42 47.9 24 28.1 0.162 3.017 18.648 

9775 R M. cerifera 0 0.082 22.14 48.2 20.3 31.5 0.192 3.044 15.848 

9775 T M. cerifera 1 0.145 20.4 56.5 15.6 27.9 0.158 3.029 19.143 

9800 R M. cerifera 0 0.1081 29.32 60.7 12 27.3 0.228 3.361 14.770 

9800 T M. cerifera 1 0.0631 15.36 43 26.3 30.7 0.130 2.690 20.743 

9825 R M. cerifera 0 0.1041 30.47 48.1 20 31.9 0.189 3.015 15.958 

9825 T M. cerifera 1 0.0823 26.91 33.3 28.3 38.4 0.285 4.634 16.283 

9850 T M. cerifera 1 0.066 16.71 46.5 20.6 32.9 0.169 3.032 17.953 

9850 R M. cerifera 0 0.0845 29.94 66.1 12.8 21.1 0.206 3.814 18.526 

9875 R M. cerifera 0 0.1145 21.32 29 26.3 44.7 0.319 5.466 17.130 

9900 R M. cerifera 0 0.0981 26.04 12.5 32.3 55.2 0.232 4.045 17.429 

9900 T M. cerifera 1 0.1492 23.02 31.3 30.3 38.4 0.324 5.974 18.422 

9925 R M. cerifera 0 0.19 18.57 49.6 16.3 34.1 0.392 6.610 16.879 

9925 T M. cerifera 1 0.1523 21.44 88 8 4 0.223 4.799 21.501 

9950 R M. cerifera 0 0.0988 15.88 38.5 25.3 36.2 0.214 4.588 21.438 

9975 R M. cerifera 0 0.0953 17.93 44.5 32.5 23 0.225 3.610 16.021 

9975 T M. cerifera 1 0.0583 18.95 47.8 20.9 31.3 0.141 2.896 20.509 

10000 T M. cerifera 1 0.0879 19.81 39.8 26.3 33.9 0.120 1.590 13.289 

10000 R M. cerifera 0 0.06 52.3 36.5 28.3 35.2 0.100 1.828 18.267 

10025 R M. cerifera 0 0.0305 28.24 46.7 20.3 33 0.211 3.027 14.382 
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Appendix A. Raw data from observational study, continued 

10025 T M. cerifera 1 0.0629 19.01 51.3 20.3 28.4 0.211 3.027 14.382 

10075 R M. cerifera 0 0.04 33.01 53.1 20.6 26.3 0.247 5.176 20.971 

10100 R M. cerifera 0 0.0528 27.8 17.2 50.4 32.4 0.289 3.897 13.495 

10125 R M. cerifera 0 0.0207 21.43 52.38 18.42 29.2 0.089 1.343 15.163 

10125 T M. cerifera 1 0.036 10.87 57.3 22.6 20.1 0.173 3.260 18.789 

10150 T M. cerifera 1 0.0434 22.27 62.7 14.6 22.7 0.185 2.909 15.753 

10150 R M. cerifera 0 0.0553 21.61 29.8 46.4 23.8 0.417 7.319 17.544 

10175 R M. cerifera 0 0.0645 21.96 65.6 18 16.4 0.243 3.827 15.767 

10175 T M. cerifera 1 0.035 23.43 53.9 20.3 25.8 0.147 2.840 19.316 

10200 R M. cerifera 0 0.0403 28.84 43 26.3 30.7 0.227 3.117 13.733 

10200 T M. cerifera 1 0.0405 17.48 57.9 21.7 20.4 0.137 2.366 17.327 

10225 R M. cerifera 0 0.0522 32.16 48.9 25.3 25.8 0.170 2.776 16.304 

10250 R M. cerifera 0 0.036 30.71 47.6 26.3 26.1 0.213 3.222 15.105 

10250 T M. cerifera 1 0.034 29.93 42.5 30.3 27.2 0.165 2.757 16.747 

10275 R M. cerifera 0 0.0313 30.26 32.5 30.3 37.2 0.151 2.570 16.968 

10275 T M. cerifera 1 0.042 32.59 37.6 30.6 31.8 0.140 2.412 17.186 

10300 R M. cerifera 0 0.0433 39.19 52.4 20.6 27 0.211 3.061 14.472 

10325 R M. cerifera 0 0.045 34.91 34.7 30.6 34.7 0.223 2.589 11.625 

10350 R M. cerifera 0 0.0287 52.01 42.5 26.3 31.2 0.117 1.486 12.669 

10350 T M. cerifera 1 0.0355 47.08 40.5 31.6 27.9 0.144 1.990 13.807 

10375 T M. cerifera 1 0.086 51.32 49.1 28.9 22 0.179 2.530 14.136 

10375 R M. cerifera 0 0.066 50.84 53.3 25.7 21 0.189 2.834 14.966 

10400 T M. cerifera 1 0.0514 54.72 48.5 24.6 26.9 0.188 2.612 13.885 

10400 R M. cerifera 0 0.0785 48.61 36.2 34.3 29.5 0.341 5.620 16.470 

10425 T M. cerifera 1 0.0557 55.33 36.2 34.3 29.5 0.175 2.378 13.612 

10425 R M. cerifera 0 0.073 67.26 43.4 32 24.6 0.139 1.909 13.765 

10450 R M. cerifera 0 0.0466 73.87 50.8 22.72 26.48 0.086 0.962 11.244 

10450 T M. cerifera 1 0.0526 66.61 55.3 26.3 18.4 0.158 2.211 14.032 

10475 T M. cerifera 1 0.0437 75.71 65.5 19.2 15.3 0.099 1.057 10.637 

10475 R M. cerifera 0 0.0455 57.57 42.8 30.6 26.6 0.099 1.228 12.465 

10500 T M. cerifera 1 0.0452 70.77 66.7 15.7 17.6 0.145 1.771 12.230 

10500 R M. cerifera 0 0.0411 54.45 45.3 30.3 24.4 0.093 1.269 13.571 

10525 T M. cerifera 1 0.033 71.65 48.7 22.6 28.7 0.104 1.279 12.319 

10525 R M. cerifera 0 0.0485 72.95 62.2 21.4 16.4 0.099 1.362 13.733 

10550 R M. cerifera 0 0.044 61.7 57.6 23.7 18.7 0.097 1.259 12.939 

10550 T M. cerifera 1 0.0491 74.84 56.8 19.6 23.6 0.121 1.645 13.544 
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Appendix A. Raw data from observational study, continued 

10575 R M. cerifera 0 0.0346 78.04 56.1 24 19.9 0.110 1.476 13.356 

10575 T M. cerifera 1 0.044 73.14 61.6 15.1 23.3 0.109 1.512 13.817 

10600 R M. cerifera 0 0.0446 82.43 36.5 34.3 29.2 0.126 1.540 12.237 

10600 T M. cerifera 1 0.0526 77.06 71 10 19 0.156 1.987 12.714 

10625 T M. cerifera 1 0.0646 81.78 61.6 24.6 13.8 0.158 2.142 13.570 

10625 R M. cerifera 0 0.0493 71.82 71.5 16 12.5 0.130 1.871 14.358 

10650 R M. cerifera 0 0.024 82.84 70.7 6 23.3 0.146 1.476 10.121 

10650 T M. cerifera 1 0.0269 75.2 61.4 14 24.6 0.138 1.941 14.107 

10675 T M. cerifera 1 0.0206 76.93 72.7 10 17.3 0.117 1.309 11.225 

10675 R M. cerifera 0 0.0258 66.14 74.7 4 21.3 0.102 1.385 13.600 

10700 R M. cerifera 0 0.031 76.02 58.2 16.6 25.2 0.092 1.142 12.463 

10700 T M. cerifera 1 0.0204 74.14 67.9 6.8 25.3 0.092 1.244 13.530 

10725 R M. cerifera 0 0.0228 66.72 38.8 37.3 23.9 0.150 2.161 14.384 

10725 T M. cerifera 1 0.0236 56.94 29.6 36.6 33.8 0.186 2.796 15.053 

10750 R M. cerifera 0 0.0344 62.6 75.5 7.7 16.8 0.129 1.839 14.299 

10750 T M. cerifera 1 0.0368 62.76 41.3 32.6 26.1 0.240 4.025 16.742 

10775 R M. cerifera 0 0.023 59.38 30.8 30.6 38.6 0.160 2.164 13.525 

10775 T M. cerifera 1 0.0302 72.88 36.8 24.6 38.6 0.220 3.141 14.258 

10800 T M. cerifera 1 0.0288 76.39 30.2 36.6 33.2 0.171 1.989 11.646 

10800 R M. cerifera 0 0.0436 75.6 34.7 30.3 35 0.219 3.114 14.206 

10825 T M. cerifera 1 0.0253 79.57 34.5 32.6 32.9 0.146 1.828 12.558 

10825 R M. cerifera 0 0.0291 82.53 43.2 26.3 30.5 0.185 2.380 12.843 

10850 R M. cerifera 0 0.039 78.25 26.1 37.3 36.6 0.141 1.808 12.855 

10850 T M. cerifera 1 0.0331 81.63 38.2 32.3 29.5 0.137 1.828 13.306 

10875 R M. cerifera 0 0.0392 77.51 36.8 30.6 32.6 0.218 2.423 11.116 

10875 T M. cerifera 1 0.0383 82.94 37.3 32.6 30.1 0.162 2.204 13.648 

10900 R M. cerifera 0 0.04 83.19 35 34.6 30.4 0.285 3.128 10.972 

10900 T M. cerifera 1 0.0434 85.31 39.3 22.3 38.4 0.224 2.924 13.077 

10925 R M. cerifera 0 0.0394 87.64 62.5 18 19.5 0.113 1.812 16.084 

10950 R M. cerifera 0 0.037 88.3 76.1 10 13.9 0.104 1.329 12.814 

10950 T M. cerifera 1 0.0516 88.54 67.6 20.3 12.1 0.156 2.283 14.676 

10975 R M. cerifera 0 0.0307 87.67 61.3 18.3 20.4 0.124 1.369 11.056 

10975 T M. cerifera 1 0.035 88.48 61.9 18.6 19.5 0.080 1.041 12.982 

11000 T M. cerifera 1 0.0256 87.85 65.8 10.6 23.6 0.181 2.625 14.482 

11000 R M. cerifera 0 0.029 87.68 50.1 24.3 25.6 0.155 2.323 15.020 

11025 R M. cerifera 0 0.0232 86.4 83.3 10.3 6.4 0.040 0.511 12.761 
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Appendix A. Raw data from observational study, continued 

11025 T M. cerifera 1 0.0477 87.43 68.5 16.3 15.2 0.114 1.590 13.938 

11050 T M. cerifera 1 0.0311 83.66 62.5 20 17.5 0.113 0.955 8.416 

11050 R M. cerifera 0 0.0262 85.57 82.2 10 7.8 0.115 1.760 15.250 

11075 R M. cerifera 0 0.019 85.62 73.3 4.6 22.1 0.061 0.503 8.178 

11075 T M. cerifera 1 0.0278 80.8 63.6 14.6 21.8 0.093 0.908 9.774 

11100 R M. cerifera 0 0.0227 87.24 83.2 11.2 5.6 0.069 0.581 8.399 

11100 T M. cerifera 1 0.0252 85.96 56.8 28.6 14.6 0.148 2.182 14.705 

11125 T M. cerifera 1 0.0154 86.06 36.5 36.3 27.2 0.176 2.317 13.160 

11125 R M. cerifera 0 0.0306 85.4 44.5 28.9 26.6 0.147 2.111 14.316 

11150 T M. cerifera 1 0.0206 84.51 42.8 32.6 24.6 0.114 1.167 10.243 

11150 R M. cerifera 0 0.03 84.44 51.3 29.3 19.4 0.189 3.501 18.529 

11175 T M. cerifera 1 0.1913 81.44 54.2 19.3 26.5 0.161 1.883 11.660 

11175 R M. cerifera 0 0.0256 85.92 61.5 18.9 19.6 0.144 1.762 12.241 

11200 T M. cerifera 1 0.0253 81.94 31.9 34.6 33.5 0.171 2.227 13.049 

11200 R M. cerifera 0 0.0295 85.75 48.4 28.9 22.7 0.182 2.480 13.643 

11225 R M. cerifera 0 0.06 81.15 55.3 26.3 18.4 0.158 1.960 12.395 

11225 T M. cerifera 1 0.0717 85.15 47.3 30 22.7 0.187 2.469 13.201 

11250 R M. cerifera 0 0.0716 75.79 23.1 40.6 36.3 0.197 2.841 14.446 

11250 T M. cerifera 1 0.0686 83.68 35.1 32.3 32.6 0.224 3.490 15.569 

11275 T M. cerifera 1 0.0628 77.18 47.5 22.6 29.9 0.203 3.172 15.662 

11275 R M. cerifera 0 0.1037 74.05 65.8 14.9 19.3 0.147 2.854 19.361 

11300 R M. cerifera 0 0.0814 57.24 33.5 34.3 32.2 0.320 4.026 12.584 

11300 T M. cerifera 1 0.085 55.71 28.5 38.9 32.6 0.290 4.329 14.921 

0 R T. sebifera 0 6.66 98.15 73.6 10.6 15.8 0.201 3.136 15.616 

100 R T. sebifera 0 7.53 98.15 30.4 43 26.6 0.386 4.648 12.035 

200 R T. sebifera 0 9.4 98.15 61.8 18.3 19.9 0.373 5.527 14.819 

300 R T. sebifera 0 9.03 98.15 59.1 30.9 10 0.459 5.935 12.939 

400 R T. sebifera 0 7.4 98.15 13.8 43.6 42.6 0.291 4.170 14.353 

500 R T. sebifera 0 9.28 98.15 56.8 16.9 26.3 0.173 2.682 15.472 

600 R T. sebifera 0 8.49 98.15 57.1 18.3 24.6 0.324 4.831 14.893 

700 R T. sebifera 0 3.567 98.15 67 14 19 0.047 0.424 8.967 

800 R T. sebifera 0 8.59 98.15 34.4 35 30.6 0.253 4.045 15.992 

900 R T. sebifera 0 10.88 98.15 35 38.4 26.6 0.318 4.948 15.583 

1000 R T. sebifera 0 7.38 98.15 69.5 18.6 11.9 0.280 4.108 14.654 

1100 R T. sebifera 0 10.1 98.15 27 39 34 0.289 3.897 13.495 

1200 R T. sebifera 0 11.53 98.15 . . . 0.451 6.415 14.211 
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Appendix A. Raw data from observational study, continued 

1300 R T. sebifera 0 8.94 98.15 74.4 6.4 19.2 0.467 6.793 14.551 

1400 R T. sebifera 0 6.43 98.15 59.5 24.3 16.2 0.215 2.749 12.772 

1500 R T. sebifera 0 10 98.15 37 52 11 0.436 5.976 13.693 

1600 R T. sebifera 0 8.34 98.15 73.2 12.3 14.5 0.411 6.091 14.814 

1700 R T. sebifera 0 7.3 98.15 30.4 51 18.6 0.272 3.751 13.791 

1800 R T. sebifera 0 9 98.15 29 49.7 21.3 0.317 4.648 14.678 

1900 R T. sebifera 0 8 98.15 43 37 20 0.282 4.293 15.245 

2000 R T. sebifera 0 11.7 98.15 32.4 27.2 40.4 0.381 5.262 13.821 

2100 R T. sebifera 0 8.75 98.15 67.6 16.3 16.1 0.154 2.002 12.975 

2200 R T. sebifera 0 11.63 98.15 13.8 26.4 59.8 0.284 3.950 13.903 

2300 R T. sebifera 0 5.7 98.15 39.4 36.3 24.3 0.095 1.060 11.213 

2400 R T. sebifera 0 8.725 98.15 67.1 10.3 22.6 0.375 6.057 16.170 

2500 R T. sebifera 0 10.28 98.15 65.1 15.4 19.5 0.312 5.125 16.407 

2600 R T. sebifera 0 9.76 98.15 59.5 21.2 19.3 0.324 4.831 14.893 

2700 R T. sebifera 0 9.66 98.15 70.9 13.2 15.9 0.386 5.829 15.113 

2800 R T. sebifera 0 10.5 98.15 67.2 11.5 21.3 0.345 5.384 15.610 

2900 R T. sebifera 0 5.76 98.15 59.5 18.9 21.6 0.217 2.588 11.923 

3000 R T. sebifera 0 9.19 98.15 39.6 39 21.4 0.389 5.392 13.861 

3100 R T. sebifera 0 7.91 98.15 64.1 22 13.9 0.364 5.916 16.244 

3200 R T. sebifera 0 8.5 98.15 57.5 20.6 21.9 0.263 3.985 15.147 

3300 R T. sebifera 0 9.3 98.15 45.8 19.6 34.6 0.281 4.065 14.476 

3400 R T. sebifera 0 7.11 98.15 60.5 31.2 8.3 0.433 6.931 15.991 

3500 R T. sebifera 0 7.1 98.15 64.1 18.6 17.3 0.446 6.784 15.200 

3600 R T. sebifera 0 9.668 98.15 49.1 40.6 10.3 0.472 6.799 14.396 

3700 R T. sebifera 0 8.72 98.15 39 33.2 27.8 0.208 2.956 14.241 

3800 R T. sebifera 0 13 98.15 67.5 11.2 21.3 0.418 7.770 18.566 

3900 R T. sebifera 0 15.43 98.15 48.9 39.8 11.3 0.464 9.034 19.483 

4000 R T. sebifera 0 14.6 98.15 59.5 25.5 15 1.079 11.161 10.342 

4100 R T. sebifera 0 18.46 98.15 56.8 29.9 13.3 0.482 8.177 16.957 

4200 R T. sebifera 0 16.25 97.87 68.8 19.3 11.9 0.420 9.002 21.415 

4300 R T. sebifera 0 6.07 97.69 59.9 18.9 21.2 0.151 3.122 20.669 

4400 R T. sebifera 0 3.93 90.81 51.6 28 20.4 0.079 1.297 16.380 

4500 R T. sebifera 0 3.9 89.67 39.2 42.7 18.1 0.060 0.240 4.003 

4600 R T. sebifera 0 4.72 88.53 37 35.2 27.8 0.148 1.914 12.927 

4625 R T. sebifera 0 3.891 85.58 52.2 22.3 25.5 0.071 1.055 14.817 

4650 R T. sebifera 0 0.892 73.73 57.3 26.3 16.4 0.068 0.899 13.266 
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Appendix A. Raw data from observational study, continued 

4675 R T. sebifera 0 0.4494 60.46 81.5 7.2 11.3 0.068 1.037 15.159 

4700 R T. sebifera 0 0.463 59.45 63.3 14.3 22.4 0.091 1.229 13.512 

4725 R T. sebifera 0 0.2 58.7 57.9 24.6 17.5 0.106 0.957 9.032 

4750 R T. sebifera 0 0.3425 43.58 35.8 36 28.2 0.083 0.702 8.454 

4775 R T. sebifera 0 0.2601 40.31 59 20.3 20.7 0.149 2.775 18.569 

4800 R T. sebifera 0 0.3266 40.16 76.4 11.8 11.8 0.053 0.694 13.180 

4825 R T. sebifera 0 2.652 48.08 49 22 29 0.060 0.967 16.123 

4850 R T. sebifera 0 1.354 71.21 51 21.7 27.3 0.127 1.887 14.864 

4875 R T. sebifera 0 1.5774 79.52 54.4 28.5 17.1 0.114 1.741 15.319 

4900 R T. sebifera 0 3.735 85.12 10.2 68 21.8 0.181 3.492 19.271 

4925 R T. sebifera 0 4.35 84.05 64.7 17.8 17.5 0.379 6.877 18.142 

4950 R T. sebifera 0 4.75 81.5 77.3 13.5 9.2 0.556 8.788 15.808 

4975 R T. sebifera 0 2.28 83.92 52.7 19.7 27.6 0.159 3.044 19.125 

5000 R T. sebifera 0 1.012 84.23 79.5 3.2 17.3 0.153 2.412 15.736 

5025 R T. sebifera 0 2.025 85.44 59 20.9 20.1 0.103 1.951 18.928 

5050 R T. sebifera 0 1.4 79.42 56.1 20.6 23.3 0.174 2.207 12.677 

5075 R T. sebifera 0 1.444 71.6 53 20.9 26.1 0.104 1.477 14.220 

5100 R T. sebifera 0 0.4307 48.14 61.6 14.3 24.1 0.105 1.699 16.182 

5125 R T. sebifera 0 0.332 48.52 59 14 27 0.123 1.952 15.829 

5150 R T. sebifera 0 0.547 46.11 59.6 18.3 22.1 0.124 1.595 12.843 

5175 R T. sebifera 0 0.4485 42.44 68.4 16.6 15 0.076 1.050 13.791 

5200 T T. sebifera 1 0.5 44.2 63.9 17.7 18.4 0.074 0.881 11.876 

5200 R T. sebifera 0 0.4485 40.58 65 16.3 18.7 0.062 1.059 17.190 

5225 R T. sebifera 0 1.601 70.58 45 18 37 0.244 3.834 15.703 

5250 R T. sebifera 0 1.788 70.47 59.6 18.3 22.1 0.243 2.772 11.408 

5275 T T. sebifera 1 0.2109 40.13 61.6 14.3 24.1 0.150 1.555 10.344 

5275 R T. sebifera 0 0.2601 39.15 65 12.3 22.7 0.130 2.107 16.204 

5300 R T. sebifera 0 0.3201 43.3 57.6 18.3 24.1 0.103 1.755 17.083 

5325 R T. sebifera 0 0.18 35.6 66.1 12 21.9 0.078 1.433 18.342 

5350 T T. sebifera 1 0.1349 33.65 67.5 7.2 25.3 0.149 1.495 10.051 

5350 R T. sebifera 0 0.1334 33.62 62.7 16.6 20.7 0.092 1.584 17.249 

5375 T T. sebifera 1 0.1785 39.82 67.6 12 20.4 0.087 1.084 12.404 

5375 R T. sebifera 0 0.458 43.7 63.9 14.6 21.5 0.078 1.493 19.139 

5400 R T. sebifera 0 0.176 28.58 67.5 17 15.5 0.106 1.381 12.969 

5425 R T. sebifera 0 0.1485 58.85 56.7 16.9 26.4 0.095 1.270 13.383 

5450 R T. sebifera 0 0.1672 63.7 65.4 20.3 14.3 0.129 1.665 12.887 
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Appendix A. Raw data from observational study, continued 

5475 R T. sebifera 0 0.166 70.8 6 35.4 58.6 0.092 1.197 13.039 

5500 R T. sebifera 0 0.3688 60.92 52.4 16 31.6 0.133 1.420 10.686 

5525 R T. sebifera 0 0.3747 38.75 61.3 10.6 28.1 0.106 1.742 16.488 

5550 R T. sebifera 0 0.1422 46.2 57.9 16.6 25.5 0.101 1.483 14.649 

5575 R T. sebifera 0 0.15 54.43 65.5 14.6 19.9 0.115 1.678 14.581 

5600 R T. sebifera 0 0.1679 58.72 75.5 8 16.5 0.130 2.139 16.404 

5625 R T. sebifera 0 0.2068 56.13 63.9 10.6 25.5 0.143 1.713 11.971 

5650 R T. sebifera 0 0.2255 66.55 65.9 14.3 19.8 0.102 1.703 16.733 

5675 R T. sebifera 0 0.129 66.96 65.3 12.3 22.4 0.101 1.391 13.779 

5700 R T. sebifera 0 0.2276 65.18 60.7 16.3 23 0.106 1.293 12.170 

5700 T T. sebifera 1 0.2067 61.87 64.4 12.6 23 0.136 1.940 14.277 

5725 R T. sebifera 0 0.21 56.41 60.1 14 25.9 0.100 1.646 16.533 

5750 R T. sebifera 0 0.285 63.33 61.5 15.2 23.3 0.093 1.456 15.726 

5775 R T. sebifera 0 0.2423 44.92 64.7 12.3 23 0.106 1.565 14.828 

5800 T T. sebifera 1 0.181 28.15 63.3 16.6 20.1 0.072 0.965 13.412 

5800 R T. sebifera 0 0.4027 24.3 63.3 16.6 20.1 0.091 1.594 17.593 

5825 R T. sebifera 0 0.51 33.81 64.4 14.3 21.3 0.100 1.709 17.137 

5825 T T. sebifera 1 0.693 35.97 65.2 19 15.8 0.126 2.331 18.432 

5850 T T. sebifera 1 0.427 50.09 61.5 11.2 27.3 0.327 5.332 16.323 

5850 R T. sebifera 0 1.022 52.6 6.4 55 38.6 0.247 4.514 18.267 

5875 T T. sebifera 1 0.3721 44.3 61.5 17.2 21.3 0.081 1.525 18.913 

5875 R T. sebifera 0 0.4 43.63 65.9 17 17.1 0.155 3.460 22.365 

5900 T T. sebifera 1 0.373 43.59 62.4 6.3 31.3 0.115 2.477 21.515 

5900 R T. sebifera 0 0.4885 37.75 52.7 22.6 24.7 0.085 1.918 22.645 

5925 T T. sebifera 1 0.3721 42.4 54.1 20 25.9 0.156 2.939 18.801 

5925 R T. sebifera 0 0.2638 43.77 54.7 22.3 23 0.302 5.779 19.113 

5950 R T. sebifera 0 0.383 36.58 65.9 19.7 14.4 0.211 3.764 17.875 

5975 T T. sebifera 1 0.638 35.75 56.4 19.2 24.4 0.155 3.005 19.331 

5975 R T. sebifera 0 0.95 58.57 42.7 22.6 34.7 0.237 4.621 19.496 

6000 R T. sebifera 0 0.2055 43.54 63.3 23.5 13.2 0.164 3.119 18.976 

6000 T T. sebifera 1 0.38 42.16 51.3 22.6 26.1 0.112 3.101 27.714 

6025 T T. sebifera 1 0.13 49.66 66.1 10.6 23.3 0.168 1.808 10.729 

6025 R T. sebifera 0 0.166 44.25 51 22.3 26.7 0.196 3.024 15.453 

6050 R T. sebifera 0 0.2883 54.92 50.7 20.9 28.4 0.186 2.846 15.286 

6050 T T. sebifera 1 0.43 45.85 54.7 15.7 29.6 0.096 1.770 18.471 

6075 R T. sebifera 0 0.2682 58.48 63.3 16.9 19.8 0.171 2.937 17.131 
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Appendix A. Raw data from observational study, continued 

6100 T T. sebifera 1 0.167 58.88 41.3 26.3 32.4 0.214 1.939 9.054 

6100 R T. sebifera 0 0.25 57.08 28.6 35.3 36.1 0.141 2.109 14.969 

6125 T T. sebifera 1 0.1227 56.26 43.3 30.36 26.34 0.148 1.658 11.187 

6125 R T. sebifera 0 0.3457 52.6 40.2 28.3 31.5 0.148 2.560 17.273 

6150 T T. sebifera 1 0.445 35.29 57.3 20 22.7 0.096 1.256 13.110 

6150 R T. sebifera 0 0.48 38.27 51.9 24.6 23.5 0.064 0.871 13.596 

6175 R T. sebifera 0 0.287 23.89 56.1 16.9 27 0.132 2.041 15.442 

6200 R T. sebifera 0 0.1182 47.55 37.9 32.6 29.5 0.091 1.160 12.728 

6200 T T. sebifera 1 0.445 45.34 44.1 29.2 26.7 0.106 1.824 17.138 

6225 R T. sebifera 0 0.238 37.33 42.4 35.5 22.1 0.072 0.962 13.401 

6225 T T. sebifera 1 0.387 34.98 52.7 18 29.3 0.166 2.491 14.988 

6250 R T. sebifera 0 0.2337 35.92 50.7 26.6 22.7 0.088 1.361 15.546 

6275 T T. sebifera 1 0.1841 33 43.3 38.6 18.1 0.103 1.282 12.428 

6275 R T. sebifera 0 0.2557 34.76 63.8 22.3 13.9 0.121 1.803 14.960 

6300 R T. sebifera 0 0.158 32.99 61.3 20 18.7 0.095 1.068 11.232 

6325 R T. sebifera 0 0.091 42.5 64.7 12.6 22.7 0.147 2.045 13.955 

6350 R T. sebifera 0 0.1576 49.81 55.8 14.9 29.3 0.178 2.376 13.379 

6375 R T. sebifera 0 0.2454 49.58 31.3 36.3 32.4 0.159 2.341 14.765 

6400 R T. sebifera 0 0.1919 51.6 15.3 48 36.7 0.185 2.569 13.887 

6425 R T. sebifera 0 0.1511 50.67 39.5 26.6 33.9 0.147 2.009 13.661 

6450 R T. sebifera 0 0.3422 44.39 41 28.3 30.7 0.162 2.440 15.055 

6475 R T. sebifera 0 0.2442 34.34 50.1 26 23.9 0.152 2.267 14.933 

6500 R T. sebifera 0 0.0902 33.79 50.7 18 31.3 0.128 2.176 16.996 

6525 R T. sebifera 0 0.1511 22.51 53.5 19.2 27.3 0.122 2.243 18.387 

6550 R T. sebifera 0 0.1639 24.73 53 20.3 26.7 0.117 2.069 17.749 

6575 R T. sebifera 0 0.2563 32.71 63.6 18.3 18.1 0.080 1.066 13.393 

6600 R T. sebifera 0 0.165 27.81 75.3 13.2 11.5 0.084 0.989 11.721 

6625 R T. sebifera 0 0.3356 19.7 67.9 22 10.1 0.103 1.512 14.713 

6650 R T. sebifera 0 0.181 22.84 19 51 30 0.205 3.380 16.522 

6675 R T. sebifera 0 0.1014 32.82 43.6 20 36.4 0.093 1.486 15.936 

6700 R T. sebifera 0 0.1347 35.39 62.4 14.9 22.7 0.104 0.940 9.067 

6725 R T. sebifera 0 0.1184 35.37 77 4.3 18.7 0.127 2.274 17.859 

6750 R T. sebifera 0 0.1147 39.63 65.6 12.3 22.1 0.157 1.890 12.027 

6775 R T. sebifera 0 0.22 43.78 74.7 14.9 10.4 0.064 0.734 11.390 

6800 R T. sebifera 0 0.2425 40.82 56.7 16.3 27 0.071 1.034 14.602 

6825 R T. sebifera 0 0.1897 44.68 54.1 16.9 29 0.081 1.267 15.628 
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Appendix A. Raw data from observational study, continued 

6850 R T. sebifera 0 0.1405 40.71 49.4 16.9 33.7 0.091 1.280 13.989 

6875 R T. sebifera 0 0.129 46.23 56.2 20 23.8 0.176 2.872 16.319 

6900 R T. sebifera 0 . 49.35 . . . . . . 

6925 R T. sebifera 0 0.2054 30.22 14.4 58.4 27.2 0.180 3.714 20.666 

6950 R T. sebifera 0 0.1992 40.49 70.1 7.2 22.7 0.181 2.198 12.143 

6975 R T. sebifera 0 0.133 55.2 57.5 9.2 33.3 0.195 2.527 12.939 

7000 R T. sebifera 0 0.3326 49.85 74.1 8.3 17.6 0.200 4.356 21.825 

7025 R T. sebifera 0 0.1636 56.56 56.4 18.9 24.7 0.162 3.303 20.339 

7050 R T. sebifera 0 0.1195 38.45 71.9 11.7 16.4 0.113 2.075 18.369 

7075 R T. sebifera 0 0.1926 44.32 64.4 8.9 26.7 0.172 3.139 18.224 

7100 R T. sebifera 0 0.1135 33.72 47 18.3 34.7 0.165 3.255 19.690 

7125 R T. sebifera 0 0.1994 47.04 53.3 16.6 30.1 0.184 2.879 15.639 

7150 R T. sebifera 0 0.1675 36.65 55 18.9 26.1 0.096 1.699 17.763 

7175 R T. sebifera 0 0.1323 36.82 42.2 24.6 33.2 0.153 2.044 13.343 

7200 R T. sebifera 0 0.11 47.93 41 28.6 30.4 0.156 2.471 15.850 

7225 R T. sebifera 0 0.088 55.98 39 29.6 31.4 0.158 2.289 14.524 

7250 R T. sebifera 0 0.1118 50.11 37 32.3 30.7 0.139 2.051 14.719 

7275 R T. sebifera 0 0.1181 37.5 36.1 30.6 33.3 0.169 2.232 13.223 

7300 R T. sebifera 0 0.115 21.99 59.7 19.9 20.4 0.133 2.063 15.558 

8200 T T. sebifera 1 0.1766 39.11 64.1 12.6 23.3 0.101 1.495 14.830 

8200 R T. sebifera 0 0.1064 21.69 61 22.3 16.7 0.060 1.083 18.098 

8225 T T. sebifera 1 0.27 13.16 49.3 22 28.7 0.078 1.065 13.579 

8225 R T. sebifera 0 0.1306 14.91 57 20.6 22.4 0.053 1.129 21.213 

8250 R T. sebifera 0 0.0823 14.04 70.1 8.3 21.6 0.093 1.500 16.089 

8275 R T. sebifera 0 0.0496 36.55 74.1 12 13.9 0.060 0.826 13.771 

8275 T T. sebifera 1 0.0646 39.55 3.6 66.4 30 0.070 1.174 16.791 

8300 R T. sebifera 0 0.0504 52.86 74.4 11.5 14.1 0.098 1.482 15.092 

8325 R T. sebifera 0 0.0482 58.2 63.6 24.3 12.1 0.070 1.000 14.370 

8350 R T. sebifera 0 0.0511 67.19 69.9 11.7 18.4 0.097 1.468 15.198 

8375 R T. sebifera 0 0.0681 52.13 47.6 26 26.4 0.133 1.906 14.334 

8375 T T. sebifera 1 0.067 56.85 73.8 12.6 13.6 0.146 2.203 15.134 

8400 R T. sebifera 0 0.0541 45.15 60.4 13.7 25.9 0.118 1.787 15.197 

8425 R T. sebifera 0 0.0884 53.89 64.7 12.3 23 0.190 2.786 14.687 

8450 R T. sebifera 0 0.0877 43.38 65.3 20.3 14.4 0.133 1.906 14.334 

8475 R T. sebifera 0 0.0404 42.9 73.3 18 8.7 0.048 0.683 14.099 

8500 R T. sebifera 0 0.1688 20.34 69.6 14.3 16.1 0.146 2.516 17.207 
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Appendix A. Raw data from observational study, continued 

8525 T T. sebifera 1 0.148 19.63 69.9 18.6 11.5 0.143 2.103 14.700 

8525 R T. sebifera 0 0.072 30.61 82.7 5.7 11.6 0.114 1.862 16.287 

8550 R T. sebifera 0 0.1347 28.52 70.1 8.6 21.3 0.222 4.004 18.053 

8575 T T. sebifera 1 0.0544 26.14 59.5 8.6 31.9 0.145 2.967 20.466 

8575 R T. sebifera 0 0.1697 27.74 63.3 18 18.7 0.149 3.519 23.540 

8600 R T. sebifera 0 0.1765 32.6 64.1 14.6 21.3 0.313 5.385 17.226 

8600 T T. sebifera 1 0.1585 32.27 59.6 22.3 18.1 0.158 3.079 19.498 

8625 T T. sebifera 1 0.1581 31.17 61.3 16.6 22.1 0.247 4.168 16.848 

8625 R T. sebifera 0 0.1483 26.19 63.3 12 24.7 0.200 3.562 17.821 

8650 R T. sebifera 0 0.1605 20.07 76.1 8.3 15.6 0.222 4.231 19.099 

8675 R T. sebifera 0 0.1336 19.62 47 35.8 17.2 0.299 5.128 17.151 

8675 T T. sebifera 1 0.119 16.56 59.6 28.4 12 0.224 4.137 18.453 

8700 R T. sebifera 0 0.0721 18.48 79.5 6.8 13.7 0.206 3.890 18.925 

8700 T T. sebifera 1 0.1403 19.51 66.7 16.3 17 0.229 4.415 19.242 

8725 R T. sebifera 0 0.303 72.66 69.7 2.4 27.9 0.370 6.395 17.280 

8750 R T. sebifera 0 0.2182 72.44 56.1 12.6 31.3 0.222 3.859 17.397 

8775 R T. sebifera 0 0.19 14.74 7 46.4 46.6 0.438 8.230 18.800 

8800 R T. sebifera 0 0.1638 34.75 26.3 20.9 52.8 0.265 4.008 15.152 

8825 R T. sebifera 0 0.115 36.6 51.3 18 30.7 0.139 2.599 18.730 

8850 R T. sebifera 0 0.115 37.63 41 22.6 36.4 0.292 4.033 13.816 

8875 R T. sebifera 0 0.1173 23.32 55 22 23 0.183 2.993 16.392 

8900 T T. sebifera 1 0.154 29.86 81.6 8.6 9.8 0.090 1.136 12.655 

8900 R T. sebifera 0 0.1055 24.93 67 18 15 0.139 2.562 18.431 

8925 R T. sebifera 0 0.088 35.48 79.2 8.3 12.5 0.108 3.293 30.380 

8950 R T. sebifera 0 0.0844 21.03 55.9 20.3 23.8 0.172 4.089 23.827 

8975 R T. sebifera 0 0.1359 22.16 50.9 26.4 22.7 0.285 5.363 18.828 

9000 R T. sebifera 0 0.0903 23.51 48.6 24.6 26.8 0.102 2.218 21.688 

9025 R T. sebifera 0 0.111 21.47 58.5 18.3 23.2 0.298 6.009 20.186 

9050 R T. sebifera 0 0.0855 13.13 61.3 8.6 30.1 0.145 2.958 20.410 

9075 R T. sebifera 0 0.0732 25.52 81.3 6.3 12.4 0.181 3.206 17.689 

9100 R T. sebifera 0 0.2022 9.16 69.2 11.2 19.6 0.251 4.753 18.925 

9125 R T. sebifera 0 0.0959 9.69 52.7 18.6 28.7 0.170 2.880 16.910 

9150 R T. sebifera 0 0.0493 52.46 75.5 13.2 11.3 0.107 1.870 17.411 

9175 R T. sebifera 0 0.0435 43.66 65.9 18.3 15.8 0.084 1.313 15.631 

9200 R T. sebifera 0 0.0299 49.2 71.8 14.9 13.3 0.087 1.453 16.735 

9225 R T. sebifera 0 0.0718 39.67 61 16.3 22.7 0.141 1.750 12.434 
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Appendix A. Raw data from observational study, continued 

9250 R T. sebifera 0 0.0756 28.23 67.2 9.2 23.6 0.150 2.980 19.823 

9275 R T. sebifera 0 0.1012 31.31 61 16.3 22.7 0.150 4.022 26.825 

9300 R T. sebifera 0 0.108 13.04 62.7 14.6 22.7 0.141 2.344 16.650 

9325 R T. sebifera 0 0.1581 14.16 55.6 20.3 24.1 0.071 1.044 14.667 

9350 R T. sebifera 0 0.0655 24.41 62.6 19.3 18.1 0.171 2.599 15.168 

9375 R T. sebifera 0 0.0825 16.24 58.4 28.3 13.3 0.075 1.145 15.196 

9375 T T. sebifera 1 0.0845 12.71 73.3 15.7 11 0.086 1.337 15.562 

9400 R T. sebifera 0 0.0952 10.56 62.1 6.6 31.3 0.123 2.198 17.842 

9425 R T. sebifera 0 0.1595 9.14 71.3 16 12.7 0.073 1.042 14.313 

9425 T T. sebifera 1 0.1123 11.64 77 14.9 8.1 0.109 1.864 17.163 

9450 R T. sebifera 0 0.0913 28.23 78.1 8.9 13 0.135 2.179 16.087 

9450 T T. sebifera 1 0.1865 16.26 73 7.3 19.7 0.121 2.103 17.396 

9475 R T. sebifera 0 0.074 31.31 65.3 14.3 20.4 0.200 2.090 10.438 

9475 T T. sebifera 1 0.0577 30.53 80.7 6.3 13 0.103 1.635 15.870 

9500 T T. sebifera 1 0.0648 15.3 44.2 24.4 31.4 0.140 2.204 15.788 

9500 R T. sebifera 0 0.135 12.25 79.6 12 8.4 0.066 1.559 23.722 

9525 T T. sebifera 1 0.1453 29.46 43 28.4 28.6 0.147 2.130 14.474 

9525 R T. sebifera 0 0.1056 16.13 68.5 10.3 21.2 0.257 4.048 15.755 

9550 T T. sebifera 1 0.1175 12.35 69 12.6 18.4 0.259 4.324 16.669 

9550 R T. sebifera 0 0.086 16.58 60.9 19.3 19.8 0.260 4.991 19.161 

9575 R T. sebifera 0 0.1358 24.26 47 31.6 21.4 0.326 5.628 17.243 

9575 T T. sebifera 1 0.1401 14.46 40.2 36.4 23.4 0.287 5.518 19.239 

9600 T T. sebifera 1 0.2076 20.86 27 42.4 30.6 0.334 6.055 18.119 

9600 R T. sebifera 0 0.084 27.25 69.2 13.2 17.6 0.208 3.947 18.985 

9625 T T. sebifera 1 0.0939 15.25 27 42.4 30.6 0.252 5.083 20.179 

9625 R T. sebifera 0 0.0983 15.26 63.6 16.6 19.8 0.178 3.883 21.844 

9650 R T. sebifera 0 0.0962 12.04 57.3 16.3 26.4 0.201 4.176 20.803 

9675 T T. sebifera 1 0.078 10.99 55.2 16.3 28.5 0.227 3.944 17.366 

9675 R T. sebifera 0 0.125 8.94 65.5 13.7 20.8 0.378 6.589 17.428 

9700 T T. sebifera 1 0.0715 10.37 34.7 28.3 37 0.214 3.348 15.669 

9700 R T. sebifera 0 0.12 18.15 11 58.4 30.6 0.366 6.633 18.112 

9725 R T. sebifera 0 0.0845 10.87 61.3 16.6 22.1 0.222 3.743 16.830 

9750 R T. sebifera 0 0.0829 11.87 43.6 22.3 34.1 0.259 4.329 16.702 

9775 R T. sebifera 0 0.082 22.14 48.2 20.3 31.5 0.192 3.044 15.848 

9800 R T. sebifera 0 0.1081 29.32 60.7 12 27.3 0.228 3.361 14.770 

9825 R T. sebifera 0 0.1041 30.47 48.1 20 31.9 0.189 3.015 15.958 
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Appendix A. Raw data from observational study, continued 

9850 R T. sebifera 0 0.0845 29.94 66.1 12.8 21.1 0.206 3.814 18.526 

9850 T T. sebifera 1 0.074 17.78 49.1 22.3 28.6 0.208 3.981 19.169 

9875 R T. sebifera 0 0.1145 21.32 29 26.3 44.7 0.319 5.466 17.130 

9900 R T. sebifera 0 0.0981 26.04 12.5 32.3 55.2 0.232 4.045 17.429 

9925 R T. sebifera 0 0.19 18.57 49.6 16.3 34.1 0.392 6.610 16.879 

9950 R T. sebifera 0 0.0988 15.88 38.5 25.3 36.2 0.214 4.588 21.438 

9975 R T. sebifera 0 0.0953 17.93 44.5 32.5 23 0.225 3.610 16.021 

9975 T T. sebifera 1 0.106 18.09 36.8 30.6 32.6 0.229 4.682 20.446 

10000 R T. sebifera 0 0.06 52.3 36.5 28.3 35.2 0.100 1.828 18.267 

10000 T T. sebifera 1 0.0831 30.17 42.7 22.6 34.7 0.206 4.465 21.640 

10025 R T. sebifera 0 0.0305 28.24 46.7 20.3 33 0.211 3.027 14.382 

10025 T T. sebifera 1 0.0939 38.34 38.8 27.6 33.6 0.197 3.858 19.626 

10075 R T. sebifera 0 0.04 33.01 53.1 20.6 26.3 0.247 5.176 20.971 

10075 T T. sebifera 1 0.042 33.93 46.5 26.9 26.6 0.240 6.859 28.551 

10100 R T. sebifera 0 0.0528 27.8 17.2 50.4 32.4 0.289 3.897 13.495 

10125 R T. sebifera 0 0.0207 21.43 52.38 18.42 29.2 0.089 1.343 15.163 

10125 T T. sebifera 1 0.054 20.63 57.7 16.3 26 0.342 6.064 17.706 

10150 T T. sebifera 1 0.0444 21.21 50.8 22.3 26.9 0.209 3.402 16.257 

10150 R T. sebifera 0 0.0553 21.61 29.8 46.4 23.8 0.417 7.319 17.544 

10175 R T. sebifera 0 0.0645 21.96 65.6 18 16.4 0.243 3.827 15.767 

10200 R T. sebifera 0 0.0403 28.84 43 26.3 30.7 0.227 3.117 13.733 

10225 R T. sebifera 0 0.0522 32.16 48.9 25.3 25.8 0.170 2.776 16.304 

10250 R T. sebifera 0 0.036 30.71 47.6 26.3 26.1 0.213 3.222 15.105 

10275 R T. sebifera 0 0.0313 30.26 32.5 30.3 37.2 0.151 2.570 16.968 

10300 R T. sebifera 0 0.0433 39.19 52.4 20.6 27 0.211 3.061 14.472 

10325 R T. sebifera 0 0.045 34.91 34.7 30.6 34.7 0.223 2.589 11.625 

10350 R T. sebifera 0 0.0287 52.01 42.5 26.3 31.2 0.117 1.486 12.669 

10375 R T. sebifera 0 0.066 50.84 53.3 25.7 21 0.189 2.834 14.966 

10400 R T. sebifera 0 0.0785 48.61 36.2 34.3 29.5 0.341 5.620 16.470 

10425 R T. sebifera 0 0.073 67.26 43.4 32 24.6 0.139 1.909 13.765 

10450 R T. sebifera 0 0.0466 73.87 50.8 22.72 26.48 0.086 0.962 11.244 

10475 R T. sebifera 0 0.0455 57.57 42.8 30.6 26.6 0.099 1.228 12.465 

10500 R T. sebifera 0 0.0411 54.45 45.3 30.3 24.4 0.093 1.269 13.571 

10525 R T. sebifera 0 0.0485 72.95 62.2 21.4 16.4 0.099 1.362 13.733 

10550 R T. sebifera 0 0.044 61.7 57.6 23.7 18.7 0.097 1.259 12.939 

10575 R T. sebifera 0 0.0346 78.04 56.1 24 19.9 0.110 1.476 13.356 
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Appendix A. Raw data from observational study, continued 

10600 R T. sebifera 0 0.0446 82.43 36.5 34.3 29.2 0.126 1.540 12.237 

10625 R T. sebifera 0 0.0493 71.82 71.5 16 12.5 0.130 1.871 14.358 

10650 R T. sebifera 0 0.024 82.84 70.7 6 23.3 0.146 1.476 10.121 

10675 R T. sebifera 0 0.0258 66.14 74.7 4 21.3 0.102 1.385 13.600 

10700 R T. sebifera 0 0.031 76.02 58.2 16.6 25.2 0.092 1.142 12.463 

10725 R T. sebifera 0 0.0228 66.72 38.8 37.3 23.9 0.150 2.161 14.384 

10750 R T. sebifera 0 0.0344 62.6 75.5 7.7 16.8 0.129 1.839 14.299 

10775 R T. sebifera 0 0.023 59.38 30.8 30.6 38.6 0.160 2.164 13.525 

10800 R T. sebifera 0 0.0436 75.6 34.7 30.3 35 0.219 3.114 14.206 

10825 R T. sebifera 0 0.0291 82.53 43.2 26.3 30.5 0.185 2.380 12.843 

10850 R T. sebifera 0 0.039 78.25 26.1 37.3 36.6 0.141 1.808 12.855 

10875 R T. sebifera 0 0.0392 77.51 36.8 30.6 32.6 0.218 2.423 11.116 

10900 R T. sebifera 0 0.04 83.19 35 34.6 30.4 0.285 3.128 10.972 

10925 R T. sebifera 0 0.0394 87.64 62.5 18 19.5 0.113 1.812 16.084 

10950 R T. sebifera 0 0.037 88.3 76.1 10 13.9 0.104 1.329 12.814 

10975 R T. sebifera 0 0.0307 87.67 61.3 18.3 20.4 0.124 1.369 11.056 

11000 R T. sebifera 0 0.029 87.68 50.1 24.3 25.6 0.155 2.323 15.020 

11025 R T. sebifera 0 0.0232 86.4 83.3 10.3 6.4 0.040 0.511 12.761 

11050 R T. sebifera 0 0.0262 85.57 82.2 10 7.8 0.115 1.760 15.250 

11075 R T. sebifera 0 0.019 85.62 73.3 4.6 22.1 0.061 0.503 8.178 

11100 R T. sebifera 0 0.0227 87.24 83.2 11.2 5.6 0.069 0.581 8.399 

11125 R T. sebifera 0 0.0154 85.4 44.5 28.9 26.6 0.147 2.111 14.316 

11150 R T. sebifera 0 0.03 84.44 51.3 29.3 19.4 0.189 3.501 18.529 

11175 R T. sebifera 0 0.0256 85.92 61.5 18.9 19.6 0.144 1.762 12.241 

11200 R T. sebifera 0 0.0295 85.75 48.4 28.9 22.7 0.182 2.480 13.643 

11225 R T. sebifera 0 0.06 81.15 55.3 26.3 18.4 0.158 1.960 12.395 

11250 R T. sebifera 0 0.0716 75.79 23.1 40.6 36.3 0.197 2.841 14.446 

11275 R T. sebifera 0 0.1037 74.05 65.8 14.9 19.3 0.147 2.854 19.361 

11300 R T. sebifera 0 0.0814 57.24 33.5 34.3 32.2 0.320 4.026 12.584 
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Appendix B (I). Data from germination experiment in the growth chamber. 

 

Species Replicate Salinity level (ppt)  Final % germination 

B. halimifolia 1 0 70 

B. halimifolia 1 10 78 

B. halimifolia 1 20 76 

B. halimifolia 1 30 10 

B. halimifolia 2 0 92 

B. halimifolia 2 10 86 

B. halimifolia 2 20 56 

B. halimifolia 2 30 8 

B. halimifolia 3 0 92 

B. halimifolia 3 10 88 

B. halimifolia 3 20 76 

B. halimifolia 3 30 14 

M. cerifera 1 0 73.3 

M. cerifera 1 10 73.33 

M. cerifera 1 20 36.66 

M. cerifera 1 30 0 

M. cerifera 2 0 70 

M. cerifera 2 10 90 

M. cerifera 2 20 53.33 

M. cerifera 2 30 0 

M. cerifera 3 0 75 

M. cerifera 3 10 85 

M. cerifera 3 20 45 

M. cerifera 3 30 3.33 

T. sebifera 1 0 45.31 

T. sebifera 1 10 4.68 

T. sebifera 1 20 32.81 

T. sebifera 1 30 9.37 

T. sebifera 2 0 3.12 

T. sebifera 2 10 0 

T. sebifera 2 20 0 

T. sebifera 2 30 0 

T. sebifera 3 0 0 

T. sebifera 3 10 0 

T. sebifera 3 20 0 

T. sebifera 3 30 0 
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Appendix B (II). Data from germination experiment in the greenhouse. 

Species Soil location Salinity level (ppt) Replicate Final % germination  

B. halimifolia 1 0 1 5.55 

B. halimifolia 1 0 2 33.33 

B. halimifolia 1 0 3 58.33 

B. halimifolia 1 10 1 0.00 

B. halimifolia 1 10 2 0.00 

B. halimifolia 1 10 3 0.00 

B. halimifolia 1 20 1 0.00 

B. halimifolia 1 20 2 0.00 

B. halimifolia 1 20 3 0.00 

B. halimifolia 1 30 1 8.33 

B. halimifolia 1 30 2 2.77 

B. halimifolia 1 30 3 5.56 

B. halimifolia 2 0 1 22.22 

B. halimifolia 2 0 2 16.67 

B. halimifolia 2 0 3 22.22 

B. halimifolia 2 10 1 0.00 

B. halimifolia 2 10 2 0.00 

B. halimifolia 2 10 3 0.00 

B. halimifolia 2 20 1 0.00 

B. halimifolia 2 20 2 0.00 

B. halimifolia 2 20 3 0.00 

B. halimifolia 2 30 1 0.00 

B. halimifolia 2 30 2 0.00 

B. halimifolia 2 30 3 0.00 

B. halimifolia 3 0 1 72.22 

B. halimifolia 3 0 2 55.56 

B. halimifolia 3 0 3 91.67 

B. halimifolia 3 10 1 13.89 

B. halimifolia 3 10 2 22.22 

B. halimifolia 3 10 3 16.67 

B. halimifolia 3 20 1 0.00 

B. halimifolia 3 20 2 0.00 

B. halimifolia 3 20 3 2.78 

B. halimifolia 3 30 1 0.00 

B. halimifolia 3 30 2 0.00 

B. halimifolia 3 30 3 0.00 

B. halimifolia 4 0 1 38.89 

B. halimifolia 4 0 2 38.89 

B. halimifolia 4 0 3 52.78 

B. halimifolia 4 10 1 13.89 

B. halimifolia 4 10 2 16.67 

B. halimifolia 4 10 3 36.11 

B. halimifolia 4 20 1 19.44 

B. halimifolia 4 20 2 2.78 

B. halimifolia 4 20 3 5.56 

B. halimifolia 4 30 1 0.00 

B. halimifolia 4 30 2 0.00 

B. halimifolia 4 30 3 0.00 

B. halimifolia 5 0 1 75.00 

B. halimifolia 5 0 2 72.22 
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Appendix B (II), continued 

B. halimifolia 5 0 3 44.44 

B. halimifolia 5 10 1 27.78 

B. halimifolia 5 10 2 19.44 

B. halimifolia 5 10 3 11.11 

B. halimifolia 5 20 1 13.89 

B. halimifolia 5 20 2 2.78 

B. halimifolia 5 20 3 8.33 

B. halimifolia 5 30 1 0.00 

B. halimifolia 5 30 2 11.11 

B. halimifolia 5 30 3 0.00 

M. cerifera 0 1 1 0.00 

M. cerifera 0 1 2 0.00 

M. cerifera 0 1 3 2.17 

M. cerifera 10 1 1 0.00 

M. cerifera 10 1 2 0.00 

M. cerifera 10 1 3 0.00 

M. cerifera 20 1 1 0.00 

M. cerifera 20 1 2 0.00 

M. cerifera 20 1 3 0.00 

M. cerifera 30 1 1 0.00 

M. cerifera 30 1 2 0.00 

M. cerifera 30 1 3 0.00 

M. cerifera 0 2 1 36.96 

M. cerifera 0 2 2 26.09 

M. cerifera 0 2 3 47.83 

M. cerifera 10 2 1 8.70 

M. cerifera 10 2 2 19.57 

M. cerifera 10 2 3 17.39 

M. cerifera 20 2 1 8.70 

M. cerifera 20 2 2 0.00 

M. cerifera 20 2 3 0.00 

M. cerifera 30 2 1 0.00 

M. cerifera 30 2 2 0.00 

M. cerifera 30 2 3 0.00 

M. cerifera 0 3 1 8.70 

M. cerifera 0 3 2 10.87 

M. cerifera 0 3 3 13.04 

M. cerifera 10 3 1 0.00 

M. cerifera 10 3 2 0.00 

M. cerifera 10 3 3 6.52 

M. cerifera 20 3 1 6.52 

M. cerifera 20 3 2 6.52 

M. cerifera 20 3 3 2.17 

M. cerifera 30 3 1 2.17 

M. cerifera 30 3 2 2.17 

M. cerifera 30 3 3 6.52 

M. cerifera 0 4 1 36.96 

M. cerifera 0 4 2 32.61 

M. cerifera 0 4 3 6.52 

M. cerifera 10 4 1 21.74 

M. cerifera 10 4 2 15.22 
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Appendix B (II), continued 

M. cerifera 10 4 3 8.70 

M. cerifera 20 4 1 8.70 

M. cerifera 20 4 2 13.04 

M. cerifera 20 4 3 15.22 

M. cerifera 30 4 1 0.00 

M. cerifera 30 4 2 0.00 

M. cerifera 30 4 3 0.00 

M. cerifera 0 5 1 39.13 

M. cerifera 0 5 2 67.39 

M. cerifera 0 5 3 45.65 

M. cerifera 10 5 1 23.91 

M. cerifera 10 5 2 21.74 

M. cerifera 10 5 3 13.04 

M. cerifera 20 5 1 0.00 

M. cerifera 20 5 2 0.00 

M. cerifera 20 5 3 0.00 

M. cerifera 30 5 1 0.00 

M. cerifera 30 5 2 0.00 

M. cerifera 30 5 3 0.00 

T. sebifera 1 0 1 2.5 

T. sebifera 1 0 2 0 

T. sebifera 1 0 3 2.5 

T. sebifera 1 10 1 0 

T. sebifera 1 10 2 0 

T. sebifera 1 10 3 0 

T. sebifera 1 20 1 0 

T. sebifera 1 20 2 0 

T. sebifera 1 20 3 0 

T. sebifera 1 30 1 0 

T. sebifera 1 30 2 0 

T. sebifera 1 30 3 0 

T. sebifera 2 0 1 35 

T. sebifera 2 0 2 25 

T. sebifera 2 0 3 17.5 

T. sebifera 2 10 1 27.5 

T. sebifera 2 10 2 17.5 

T. sebifera 2 10 3 32.5 

T. sebifera 2 20 1 2.5 

T. sebifera 2 20 2 0 

T. sebifera 2 20 3 0 

T. sebifera 2 30 1 0 

T. sebifera 2 30 2 0 

T. sebifera 2 30 3 0 

T. sebifera 3 0 1 65 

T. sebifera 3 0 2 40 

T. sebifera 3 0 3 40 

T. sebifera 3 10 1 7.5 

T. sebifera 3 10 2 0 

T. sebifera 3 10 3 15 

T. sebifera 3 20 1 0 

T. sebifera 3 20 2 0 
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Appendix B (II), continued 

T. sebifera 3 20 3 0 

T. sebifera 3 30 1 0 

T. sebifera 3 30 2 20 

T. sebifera 3 30 3 0 

T. sebifera 4 0 1 55 

T. sebifera 4 0 2 52.5 

T. sebifera 4 0 3 57.5 

T. sebifera 4 10 1 32.5 

T. sebifera 4 10 2 42.5 

T. sebifera 4 10 3 32.5 

T. sebifera 4 20 1 15 

T. sebifera 4 20 2 7.5 

T. sebifera 4 20 3 2.5 

T. sebifera 4 30 1 0 

T. sebifera 4 30 2 0 

T. sebifera 4 30 3 0 

T. sebifera 5 0 1 42.5 

T. sebifera 5 0 2 67.5 

T. sebifera 5 0 3 25 

T. sebifera 5 10 1 15 

T. sebifera 5 10 2 25 

T. sebifera 5 10 3 20 

T. sebifera 5 20 1 0 

T. sebifera 5 20 2 12.5 

T. sebifera 5 20 3 0 

T. sebifera 5 30 1 2.5 

T. sebifera 5 30 2 20 

T. sebifera 5 30 3 32.5 

 



233 
 

 
 

Appendix C (I). Growth data from greenhouse experiment that simulated the effects of tropical storms (canopy openness and storm surge) at simulated forest 

stands of GBNERR.  WPF = Wet pine forest, PFW = Pine flatwoods, Rep = Replications, RGR = Relative growth rates 

 

Forest 

type Species Rep 

% Canopy 

openness Storm surge 

RGR 

(1) 

RGR 

(2) 

RGR 

(3) 

RGR 

(4) 

RGR 

(5) 

RGR 

(6) 

RGR 

(7) 

RGR 

(8) 

RGR 

(9) 

WPF B. halimifolia 1 100% No Surge 0.011 0.007 0.004 0.009 0.004 0.003 0.002 0.001 0.000 

WPF B. halimifolia 2 100% No Surge 0.016 0.028 0.023 0.006 0.003 0.001 0.002 0.001 0.001 

WPF B. halimifolia 3 100% Surge 0.040 0.020 0.009 0.005 0.002 0.000 0.004 0.001 0.001 

WPF B. halimifolia 4 100% No Surge 0.018 0.021 0.005 0.001 0.001 0.001 0.005 0.002 0.001 

WPF B. halimifolia 5 100% No Surge 0.052 0.019 0.005 0.000 0.002 0.001 0.010 0.005 0.002 

WPF B. halimifolia 6 100% Surge 0.035 0.011 0.001 0.004 0.003 0.001 0.011 0.004 0.001 

WPF B. halimifolia 7 100% Surge 0.033 0.013 0.007 0.006 . 0.003 0.001 0.001 0.002 

WPF B. halimifolia 8 100% Surge 0.038 0.007 -0.056 . . . . . . 

WPF B. halimifolia 9 100% Surge 0.050 0.029 0.013 0.006 0.001 0.000 0.002 0.001 0.001 

WPF B. halimifolia 10 100% No Surge 0.041 0.028 0.014 0.007 0.001 0.002 0.004 0.001 0.001 

WPF B. halimifolia 1 30% Surge 0.032 0.015 0.008 0.002 0.007 -0.006 0.001 0.005 0.009 

WPF B. halimifolia 2 30% No Surge 0.021 0.007 0.014 . . . . . . 

WPF B. halimifolia 3 30% Surge 0.018 0.007 0.004 0.006 0.001 0.000 0.000 0.001 0.001 

WPF B. halimifolia 4 30% No Surge 0.028 0.012 0.013 0.004 0.001 0.000 0.003 0.002 0.001 

WPF B. halimifolia 5 30% No Surge 0.032 0.016 0.006 . . . . . . 

WPF B. halimifolia 6 30% Surge 0.014 0.006 0.005 0.002 . . . . . 

WPF B. halimifolia 7 30% Surge 0.025 0.011 0.005 0.003 0.000 0.000 0.006 0.009 0.008 

WPF B. halimifolia 8 30% No Surge 0.021 0.006 0.000 . . . . . . 

WPF B. halimifolia 9 30% Surge 0.030 0.007 0.005 0.002 0.002 0.001 0.001 . . 

WPF B. halimifolia 10 30% Surge 0.019 0.005 0.003 0.000 0.000 0.000 0.002 0.006 0.006 

WPF M. cerifera 1 100% No Surge 0.014 0.005 0.011 0.006 0.000 0.009 0.004 0.002 0.000 

WPF M. cerifera 2 100% No Surge 0.018 0.012 0.011 0.002 0.000 0.004 0.005 0.004 0.004 

WPF M. cerifera 3 100% Surge 0.030 0.013 -0.002 0.007 0.000 0.007 0.004 0.006 0.006 

WPF M. cerifera 4 100% No Surge 0.024 0.018 0.006 0.000 0.002 0.002 0.002 0.000 0.002 

WPF M. cerifera 5 100% No Surge 0.020 0.007 0.009 0.005 0.000 0.005 0.005 0.005 0.002 

WPF M. cerifera 6 100% Surge 0.018 0.005 0.004 0.001 0.000 0.010 0.010 0.002 0.000 

WPF M. cerifera 7 100% Surge 0.025 0.002 -0.055 . . . . . . 

WPF M. cerifera 8 100% Surge 0.019 0.004 -0.062 . . . . . . 

WPF M. cerifera 9 100% Surge 0.032 0.007 -0.001 0.000 0.001 0.003 0.002 0.001 0.000 

WPF M. cerifera 10 100% No Surge 0.023 0.015 0.010 0.002 0.001 0.007 0.006 0.006 0.003 
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Appendix C (I). Growth data from greenhouse experiment, continued 

WPF M. cerifera 1 30% Surge 0.013 0.000 . . . . . . . 

WPF M. cerifera 2 30% No Surge 0.028 0.008 0.004 . . . . . . 

WPF M. cerifera 3 30% Surge . . . . . . . . . 

WPF M. cerifera 4 30% No Surge 0.019 0.006 0.002 0.003 0.001 0.002 0.006 0.008 0.007 

WPF M. cerifera 5 30% No Surge 0.024 0.001 0.001 0.000 0.001 . . . . 

WPF M. cerifera 6 30% Surge 0.008 0.007 . . . . . . . 

WPF M. cerifera 7 30% No Surge 0.008 0.003 0.004 0.000 0.000 0.003 0.003 . . 

WPF M. cerifera 8 30% No Surge 0.002 0.003 0.005 0.001 0.004 0.003 0.003 0.005 0.002 

WPF M. cerifera 9 30% Surge 0.019 0.005 -0.004 . . . . . . 

WPF M. cerifera 10 30% Surge 0.015 0.005 0.001 0.001 0.001 0.002 0.007 0.006 0.002 

WPF T. sebifera 1 100% No Surge 0.019 0.005 0.006 0.001 0.000 -0.005 0.006 0.001 0.002 

WPF T. sebifera 2 100% No Surge 0.017 0.026 0.009 0.000 0.000 -0.002 0.004 0.003 0.001 

WPF T. sebifera 3 100% Surge 0.026 0.018 0.002 0.000 0.000 -0.011 0.000 -0.001 0.000 

WPF T. sebifera 4 100% No Surge 0.026 0.026 0.003 0.000 0.000 0.000 0.004 0.004 0.001 

WPF T. sebifera 5 100% No Surge 0.021 0.024 0.008 0.002 0.000 0.000 0.000 0.002 0.001 

WPF T. sebifera 6 100% Surge 0.031 0.016 -0.004 0.001 -0.001 0.000 -0.003 0.000 -0.008 

WPF T. sebifera 7 100% Surge 0.021 0.012 -0.071 0.008 . . . . . 

WPF T. sebifera 8 100% Surge 0.010 0.007 -0.062 0.003 . . . . . 

WPF T. sebifera 9 100% Surge 0.027 0.022 -0.007 -0.009 -0.003 -0.005 0.004 0.003 0.001 

WPF T. sebifera 10 100% No Surge 0.017 0.020 0.009 0.001 0.000 0.001 0.003 0.003 0.000 

WPF T. sebifera 1 30% Surge 0.032 0.018 -0.051 . . . . . . 

WPF T. sebifera 2 30% No Surge 0.030 0.017 0.004 0.000 0.000 0.004 0.001 0.001 0.003 

WPF T. sebifera 3 30% Surge 0.017 0.016 -0.102 0.000 . . . . . 

WPF T. sebifera 4 30% No Surge 0.021 0.013 0.002 0.000 -0.001 0.000 0.000 0.000 0.001 

WPF T. sebifera 5 30% No Surge 0.025 0.016 0.008 0.001 0.000 0.000 0.005 0.003 0.002 

WPF T. sebifera 6 30% Surge 0.015 -0.009 0.012 . . . . . . 

WPF T. sebifera 7 30% No Surge 0.015 0.014 0.006 0.000 0.003 -0.005 0.005 . . 

WPF T. sebifera 8 30% No Surge 0.024 0.015 0.002 0.001 0.000 0.000 0.002 . . 

WPF T. sebifera 9 30% Surge 0.021 0.009 0.003 -0.001 . . . . . 

WPF T. sebifera 10 30% Surge 0.025 0.014 0.001 0.000 0.000 0.000 0.004 0.001 0.003 

MHF B. halimifolia 1 70% No Surge 0.010 0.004 0.005 0.002 0.001 0.005 0.008 0.010 0.002 

MHF B. halimifolia 2 70% No Surge 0.002 0.000 0.005 0.004 0.003 0.002 0.001 0.003 0.003 

MHF B. halimifolia 3 70% Surge 0.013 0.001 -0.003 0.003 0.001 0.009 0.016 0.004 0.003 

MHF B. halimifolia 4 70% No Surge 0.028 0.009 0.012 0.003 0.001 -0.001 0.014 0.014 0.007 

MHF B. halimifolia 5 70% Surge 0.011 0.005 0.003 0.000 0.000 0.006 0.019 0.010 0.001 

MHF B. halimifolia 6 70% Surge 0.021 0.010 0.002 0.002 0.000 0.001 0.003 0.005 0.009 
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Appendix C (I). Growth data from greenhouse experiment, continued 

MHF B. halimifolia 7 70% No Surge 0.013 0.005 0.004 0.003 0.002 0.002 0.004 0.002 0.001 

MHF B. halimifolia 8 70% Surge 0.018 0.003 0.001 -0.038 . . . . . 

MHF B. halimifolia 9 70% Surge 0.032 0.006 0.005 0.008 0.003 0.008 0.016 0.010 0.004 

MHF B. halimifolia 10 70% No Surge 0.011 0.008 0.007 0.004 0.001 0.001 0.008 0.009 0.001 

MHF B. halimifolia 1 10% Surge . . . . . . . . . 

MHF B. halimifolia 2 10% No Surge 0.006 0.004 . . . . . . . 

MHF B. halimifolia 3 10% Surge 0.022 0.009 . . . . . . . 

MHF B. halimifolia 4 10% Surge -0.009 0.028 0.011 0.002 . . . . . 

MHF B. halimifolia 5 10% No Surge 0.004 0.000 0.001 0.002 0.002 0.000 0.001 . . 

MHF B. halimifolia 6 10% No Surge . . . . . . . . . 

MHF B. halimifolia 7 10% Surge 0.008 0.008 . . . . . . . 

MHF B. halimifolia 8 10% Surge . . . . . . . . . 

MHF B. halimifolia 9 10% No Surge . . . . . . . . . 

MHF B. halimifolia 10 10% No Surge . . . . . . . . . 

MHF M. cerifera 1 70% No Surge 0.018 0.007 0.002 0.000 0.000 0.000 0.001 0.004 0.001 

MHF M. cerifera 2 70% No Surge 0.038 0.007 0.004 0.000 0.001 0.006 0.007 0.010 0.002 

MHF M. cerifera 3 70% Surge 0.025 0.009 . . . . . . . 

MHF M. cerifera 4 70% No Surge 0.043 0.007 0.004 0.001 0.000 0.001 0.002 0.003 0.003 

MHF M. cerifera 5 70% Surge 0.037 0.008 0.002 0.000 0.000 0.002 0.005 0.006 0.001 

MHF M. cerifera 6 70% Surge 0.032 0.008 0.002 -0.004 . . . . . 

MHF M. cerifera 7 70% No Surge 0.037 0.002 0.006 0.000 0.001 0.003 0.002 0.005 0.001 

MHF M. cerifera 8 70% Surge 0.037 0.017 . . . . . . . 

MHF M. cerifera 9 70% Surge 0.051 0.010 0.000 0.001 0.000 0.004 0.006 0.013 0.004 

MHF M. cerifera 10 70% No Surge 0.032 0.007 0.003 0.002 0.000 0.004 0.008 0.009 0.005 

MHF M. cerifera 1 10% Surge 0.004 . . . . . . . . 

MHF M. cerifera 2 10% No Surge 0.002 0.003 -0.026 . . . . . . 

MHF M. cerifera 3 10% Surge 0.015 0.005 . . . . . . . 

MHF M. cerifera 4 10% No Surge 0.037 . . . . . . . . 

MHF M. cerifera 5 10% Surge . . . . . . . . . 

MHF M. cerifera 6 10% No Surge 0.007 . . . . . . . . 

MHF M. cerifera 7 10% Surge 0.007 -0.001 . . . . . . . 

MHF M. cerifera 8 10% Surge 0.003 . . . . . . . . 

MHF M. cerifera 9 10% No Surge 0.007 -0.022 . . . . . . . 

MHF M. cerifera 10 10% No Surge 0.006 -0.008 0.000 0.000 0.005 . . . . 

MHF T. sebifera 1 70% No Surge 0.013 0.006 0.004 0.000 0.000 0.000 0.001 0.011 0.001 

MHF T. sebifera 2 70% No Surge 0.012 0.001 0.000 0.000 0.001 0.000 0.001 0.001 -0.013 
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Appendix C (I). Growth data from greenhouse experiment, continued 

MHF T. sebifera 3 70% Surge 0.014 0.003 0.002 0.000 0.000 0.001 0.003 0.007 0.001 

MHF T. sebifera 4 70% No Surge 0.021 0.011 0.008 0.002 0.000 0.000 0.003 0.012 0.000 

MHF T. sebifera 5 70% Surge 0.015 0.007 0.001 0.000 0.000 0.000 0.003 0.008 0.000 

MHF T. sebifera 6 70% Surge 0.023 0.006 -0.018 -0.034 0.000 . . . . 

MHF T. sebifera 7 70% No Surge 0.013 0.006 0.003 0.000 0.001 0.001 0.006 0.007 0.001 

MHF T. sebifera 8 70% Surge 0.007 0.004 -0.030 -0.029 . . . . . 

MHF T. sebifera 9 70% Surge 0.016 -0.002 0.000 -0.051 . . . . . 

MHF T. sebifera 10 70% No Surge 0.011 0.006 0.003 0.000 0.000 0.000 0.002 0.011 0.001 

MHF T. sebifera 1 10% Surge 0.021 0.010 . . . . . . . 

MHF T. sebifera 2 10% No Surge 0.018 0.002 . . . . . . . 

MHF T. sebifera 3 10% Surge 0.009 0.002 . . . . . . . 

MHF T. sebifera 4 10% No Surge 0.017 -0.003 0.002 0.000 0.000 -0.001 -0.026 . . 

MHF T. sebifera 5 10% Surge 0.016 0.005 . . . . . . . 

MHF T. sebifera 6 10% No Surge 0.019 0.003 0.005 0.000 0.000 0.001 0.002 0.000 0.001 

MHF T. sebifera 7 10% Surge 0.010 0.008 0.000 . . . . . . 

MHF T. sebifera 8 10% Surge 0.024 0.011 . . . . . . . 

MHF T. sebifera 9 10% No Surge 0.023 0.011 0.002 0.001 0.000 0.001 0.002 0.004 0.000 

MHF T. sebifera 10 10% No Surge 0.022 0.009 0.003 0.002 0.001 0.000 0.002 0.002 0.001 
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Appendix C (II). Biomass data from greenhouse experiment that simulated the effects of tropical storms (canopy openness and storm surge) at simulated forest 

stands of GBNERR.  WPF = Wet pine forest, PFW = Pine flatwoods 

Forest type 

canopy 

openness Storm surge Replicate Species 

Dry shoot 

biomass (gm) 

Dry root 

biomass (gm) Total (gm) 

WPF 100% No Surge 1 B. halimifolia 64.061 15.574 79.635 

WPF 100% No Surge 2 B. halimifolia 15.592 4.759 20.351 

WPF 100% No Surge 3 B. halimifolia 52.4 13.065 65.465 

WPF 100% No Surge 4 B. halimifolia 1.811 0.598 2.409 

WPF 100% No Surge 5 B. halimifolia 24.6 8.2 32.8 

WPF 100% Surge 1 B. halimifolia 48.9 39.749 88.649 

WPF 100% Surge 2 B. halimifolia 28 5.4 33.4 

WPF 100% Surge 3 B. halimifolia 14.7 1.994 16.694 

WPF 100% Surge 4 B. halimifolia . . . 

WPF 100% Surge 5 B. halimifolia 94.3 39.1 133.4 

WPF 100% No Surge 1 M. cerifera 6.989 2.162 9.151 

WPF 100% No Surge 2 M. cerifera 7.234 2.321 9.555 

WPF 100% No Surge 3 M. cerifera 10.794 5.1 15.894 

WPF 100% No Surge 4 M. cerifera 20.984 9.647 30.631 

WPF 100% No Surge 5 M. cerifera 6.034 3.1 9.134 

WPF 100% Surge 1 M. cerifera 16.738 6.5 23.238 

WPF 100% Surge 2 M. cerifera 5.168 3.5 8.668 

WPF 100% Surge 3 M. cerifera . . . 

WPF 100% Surge 4 M. cerifera . . . 

WPF 100% Surge 5 M. cerifera 0.313 0.055 0.368 

WPF 100% No Surge 1 T. sebifera 0.777 0.9 1.677 

WPF 100% No Surge 2 T. sebifera 17.2 13.863 31.063 

WPF 100% No Surge 3 T. sebifera 1.946 1.929 3.875 

WPF 100% No Surge 4 T. sebifera 16.048 12.844 28.892 

WPF 100% No Surge 5 T. sebifera 8.6 7.7 16.3 

WPF 100% Surge 1 T. sebifera 4.39 4.081 8.471 

WPF 100% Surge 2 T. sebifera 8.331 4.9 13.231 

WPF 100% Surge 3 T. sebifera . . . 

WPF 100% Surge 4 T. sebifera . . . 

WPF 100% Surge 5 T. sebifera 3.048 1.621 4.669 

WPF 70% No Surge 1 B. halimifolia . . . 

WPF 70% No Surge 2 B. halimifolia 2.383 0.109 2.492 
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Appendix C (II). Biomass data from greenhouse experiment, continued 

WPF 70% No Surge 3 B. halimifolia . . . 

WPF 70% no Surge 4 B. halimifolia 0.492 0.112 0.604 

WPF 70% No Surge 5 B. halimifolia . . . 

WPF 70% Surge 1 B. halimifolia 0.805 0.053 0.858 

WPF 70% Surge 2 B. halimifolia 16.6 2.422 19.022 

WPF 70% Surge 3 B. halimifolia . . . 

WPF 70% Surge 4 B. halimifolia . . . 

WPF 70% Surge 5 B. halimifolia 0.585 0.054 0.639 

WPF 70% No Surge 1 M. cerifera . . . 

WPF 70% No Surge 2 M. cerifera 0.299 0.006 0.305 

WPF 70% No Surge 3 M. cerifera . . . 

WPF 70% No Surge 4 M. cerifera . . . 

WPF 70% No Surge 5 M. cerifera 0.327 0.042 0.369 

WPF 70% Surge 1 M. cerifera . . . 

WPF 70% Surge 2 M. cerifera . . . 

WPF 70% Surge 3 M. cerifera . . . 

WPF 70% Surge 4 M. cerifera . . . 

WPF 70% Surge 5 M. cerifera 0.858 0.234 1.092 

WPF 70% No Surge 1 T. sebifera 5.1 1.2 6.3 

WPF 70% No Surge 2 T. sebifera 1.299 0.388 1.687 

WPF 70% No Surge 3 T. sebifera 15.4 4.955 20.355 

WPF 70% No Surge 4 T. sebifera . . . 

WPF 70% No Surge 5 T. sebifera . . . 

WPF 70% Surge 1 T. sebifera . . . 

WPF 70% Surge 2 T. sebifera . . . 

WPF 70% Surge 3 T. sebifera . . . 

WPF 70% Surge 4 T. sebifera . . . 

WPF 70% Surge 5 T. sebifera 10.5 3.096 13.596 

MHF 30% No Surge 1 B. halimifolia 15.2 4.142 19.342 

MHF 30% No Surge 2 B. halimifolia 12.1 3.7 15.8 

MHF 30% No Surge 3 B. halimifolia 1.975 0.569 2.544 

MHF 30% No Surge 4 B. halimifolia 5.5 3.312 8.812 

MHF 30% No Surge 5 B. halimifolia 10.7 5.781 16.481 

MHF 30% Surge 1 B. halimifolia 1.402 0.692 2.094 

MHF 30% Surge 2 B. halimifolia 10.2 4 14.2 

MHF 30% Surge 3 B. halimifolia 0.544 0.192 0.736 
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Appendix C (II). Biomass data from greenhouse experiment 

MHF 30% Surge 4 B. halimifolia . . . 

MHF 30% Surge 5 B. halimifolia 13 4.734 17.734 

MHF 30% No Surge 1 M. cerifera 0.112 0.122 0.234 

MHF 30% No Surge 2 M. cerifera 2.728 1.3 4.028 

MHF 30% No Surge 3 M. cerifera 0.374 0.339 0.713 

MHF 30% No Surge 4 M. cerifera 0.632 0.767 1.399 

MHF 30% No Surge 5 M. cerifera 4.308 2.3 6.608 

MHF 30% Surge 1 M. cerifera . . . 

MHF 30% Surge 2 M. cerifera 4.7 3.1 7.8 

MHF 30% Surge 3 M. cerifera . . . 

MHF 30% Surge 4 M. cerifera . . . 

MHF 30% Surge 5 M. cerifera 4.4 1.908 6.308 

MHF 30% No Surge 1 T. sebifera 7.228 7.2 14.428 

MHF 30% No Surge 2 T. sebifera 1.155 0.191 1.346 

MHF 30% No Surge 3 T. sebifera 10.5 10.811 21.311 

MHF 30% No Surge 4 T. sebifera 5.9 6.9 12.8 

MHF 30% No Surge 5 T. sebifera 5.5 6.5 12 

MHF 30% Surge 1 T. sebifera 5.531 4.766 10.297 

MHF 30% Surge 2 T. sebifera 3.3 3.321 6.621 

MHF 30% Surge 3 T. sebifera . . . 

MHF 30% Surge 4 T. sebifera . . . 

MHF 30% Surge 5 T. sebifera . . . 

MHF 90% No Surge 1 B. halimifolia . . . 

MHF 90% No Surge 2 B. halimifolia . . . 

MHF 90% No Surge 3 B. halimifolia . . . 

MHF 90% No Surge 4 B. halimifolia . . . 

MHF 90% No Surge 5 B. halimifolia . . . 

MHF 90% Surge 1 B. halimifolia . . . 

MHF 90% Surge 2 B. halimifolia . . . 

MHF 90% Surge 3 B. halimifolia . . . 

MHF 90% Surge 4 B. halimifolia . . . 

MHF 90% Surge 5 B. halimifolia . . . 

MHF 90% No Surge 1 M. cerifera . . . 

MHF 90% No Surge 2 M. cerifera . . . 

MHF 90% No Surge 3 M. cerifera . . . 

MHF 90% No Surge 4 M. cerifera . . . 
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Appendix C (II). Biomass data from greenhouse experiment 

MHF 90% No Surge 5 M. cerifera . . . 

MHF 90% Surge 1 M. cerifera . . . 

MHF 90% Surge 2 M. cerifera . . . 

MHF 90% Surge 3 M. cerifera . . . 

MHF 90% Surge 4 M. cerifera . . . 

MHF 90% Surge 5 M. cerifera . . . 

MHF 90% No Surge 1 T. sebifera . . . 

MHF 90% No Surge 2 T. sebifera . . . 

MHF 90% No Surge 3 T. sebifera 1.151 0.274 1.425 

MHF 90% No Surge 4 T. sebifera 1.184 0.259 1.443 

MHF 90% No Surge 5 T. sebifera 1.51 0.314 1.824 

MHF 90% Surge 1 T. sebifera . . . 

MHF 90% Surge 2 T. sebifera . . . 

MHF 90% Surge 3 T. sebifera . . . 

MHF 90% Surge 4 T. sebifera . . . 

MHF 90% Surge 5 T. sebifera . . . 
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Appendix D (I). Raw data from greenhouse experiment (Chapter 5). WPF = Wet pine forest, PFW = PFW, (+) = without fungicide, (–) = with fungicide, Rep = 

replication, % Colon = colonization 

Soil source Species 

 

VAM Rep Sample 

Negative score 

VAM  hyphae arbuscule  vesicle  

Number of 

intersections 

% 

Colon 

Total 

biomass (gm)  

WPF B. halimifolia (+) 1 a 68 10 2 0 80 17.5 0.188 

WPF B. halimifolia (+) 1 b 38 17 11 14 80 83.75 . 

WPF B. halimifolia (+) 1 c 70 3 2 5 80 21.25 . 

WPF B. halimifolia (+) 1 d 76 2 1 1 80 7.5 . 

WPF B. halimifolia (+) 1 e 68 7 3 2 80 21.25 . 

WPF B. halimifolia (+) 1 f 78 1 1 0 80 3.75 . 

WPF B. halimifolia (+) 1 g 69 6 3 2 80 20 . 

WPF B. halimifolia (+) 1 h 65 7 6 2 80 28.75 . 

WPF B. halimifolia (+) 1 i 80 0 0 0 80 0 . 

WPF B. halimifolia (+) 2 a 72 5 2 1 80 13.75 1.26 

WPF B. halimifolia (+) 2 b 67 4 4 5 80 27.5 . 

WPF B. halimifolia (+) 2 c 73 4 3 0 80 12.5 . 

WPF B. halimifolia (+) 2 d 50 12 10 8 80 60 . 

WPF B. halimifolia (+) 2 e 63 8 7 2 80 32.5 . 

WPF B. halimifolia (+) 2 f 73 5 2 0 80 11.25 . 

WPF B. halimifolia (+) 2 g 51 9 20 0 80 61.25 . 

WPF B. halimifolia (+) 2 h 75 1 4 0 80 11.25 . 

WPF B. halimifolia (+) 2 i 67 11 2 0 80 18.75 . 

WPF B. halimifolia (+) 3 a 72 6 2 0 80 12.5 0.115 

WPF B. halimifolia (+) 3 b 57 18 2 3 80 35 . 

WPF B. halimifolia (+) 3 c 65 13 2 0 80 21.25 . 

WPF B. halimifolia (+) 3 d 69 8 3 0 80 17.5 . 

WPF B. halimifolia (+) 3 e 71 7 2 0 80 13.75 . 

WPF B. halimifolia (+) 3 f 67 6 4 3 80 25 . 

WPF B. halimifolia (+) 4 a 78 2 0 0 80 2.5 . 

WPF B. halimifolia (+) 4 b 31 17 16 16 80 101.25 0.043 

WPF B. halimifolia (+) 4 c 80 0 0 0 80 0 . 

WPF B. halimifolia (+) 4 d 75 3 2 0 80 8.75 . 

WPF B. halimifolia (+) 4 e 57 9 8 6 80 46.25 . 

WPF B. halimifolia (+) 4 f 67 7 6 0 80 23.75 . 

WPF B. halimifolia (-) 1 a 78 2 0 0 80 2.5 0.159 

WPF B. halimifolia (-) 1 b 79 1 0 0 80 1.25 . 
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Appendix D (I). Raw data from greenhouse experiment (Chapter 5), continued 

WPF B. halimifolia (-) 1 c 78 2 0 0 80 2.5 . 

WPF B. halimifolia (-) 1 d 74 3 2 1 80 11.25 . 

WPF B. halimifolia (-) 1 e 80 0 0 0 80 0 . 

WPF B. halimifolia (-) 1 f 80 0 0 0 80 0 . 

WPF B. halimifolia (-) 2 a 75 3 2 0 80 8.75 0.41 

WPF B. halimifolia (-) 2 b 80 0 0 0 80 0 . 

WPF B. halimifolia (-) 2 c 75 3 1 1 80 8.75 . 

WPF B. halimifolia (-) 2 d 74 5 1 0 80 8.75 . 

WPF B. halimifolia (-) 2 e 76 4 0 0 80 5 . 

WPF B. halimifolia (-) 2 f 71 5 4 0 80 16.25 . 

WPF B. halimifolia (-) 2 g 80 0 0 0 80 0 . 

WPF B. halimifolia (-) 3 a 80 0  0  0 80 0 0.048 

WPF B. halimifolia (-) 3 b 80 0 0 0 80 0 . 

WPF B. halimifolia (-) 3 c 77 3 0 0 80 3.75 . 

WPF B. halimifolia (-) 3 d 79 1     80 1.25 . 

WPF B. halimifolia (-) 3 e 80 0 0 0 80 0 . 

WPF B. halimifolia (-) 3 f 80 0 0 0 80 0 . 

WPF B. halimifolia (-) 4 . . . . 

 

. . . 

WPF M. cerifera (+) 1 a 78 2 0 0 80 2.5 0.265 

WPF M. cerifera (+) 1 b 80 0 0 0 80 0 . 

WPF M. cerifera (+) 1 c 65 12 3 0 80 22.5 . 

WPF M. cerifera (+) 1 d 77 2 1 0 80 5 . 

WPF M. cerifera (+) 1 e 79 1 0 0 80 1.25 . 

WPF M. cerifera (+) 2 a 80 0 0 0 80 0 0.171 

WPF M. cerifera (+) 2 b 80 0 0 0 80 0 . 

WPF M. cerifera (+) 2 c 80 0 0 0 80 0 . 

WPF M. cerifera (+) 2 d 76 4 0 0 80 5 . 

WPF M. cerifera (+) 3 a 78 2 0 0 80 2.5 0.747 

WPF M. cerifera (+) 3 b 80 0 0 0 80 0 . 

WPF M. cerifera (+) 3 c 80 0 0 0 80 0 . 

WPF M. cerifera (+) 3 d 80 0 0 0 80 0 . 

WPF M. cerifera (+) 3 e 80 0 0 0 80 0 . 

WPF M. cerifera (+) 3 f 80 0 0 0 80 0 . 

WPF M. cerifera (+) 3 g 56 10 6 8 80 47.5 . 

WPF M. cerifera (+) 4 a 76 4 0 0 80 5 1.006 

WPF M. cerifera (+) 4 b 54 10 6 10 80 52.5 . 
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Appendix D (I). Raw data from greenhouse experiment (Chapter 5), continued 

WPF M. cerifera (+) 4 c 74 6 0 0 80 7.5 . 

WPF M. cerifera (+) 4 d 68 8 2 2 80 20 . 

WPF M. cerifera (-) 1 a 80 0 0 0 80 0 0.749 

WPF M. cerifera (-) 1 b 76 3 1 0 80 6.25 . 

WPF M. cerifera (-) 1 c 72 7 1 0 80 11.25 . 

WPF M. cerifera (-) 1 d 78 2 0 0 80 2.5 . 

WPF M. cerifera (-) 1 e 80 0 0 0 80 0 . 

WPF M. cerifera (-) 1 f 79 1 0 0 80 1.25 . 

WPF M. cerifera (-) 1 g 79 1 0 0 80 1.25 . 

WPF M. cerifera (-) 1 h 80 0 0 0 80 0 . 

WPF M. cerifera (-) 1 i 76 3 1 0 80 6.25 . 

WPF M. cerifera (-) 2 a 80 0 0 0 80 0 0.202 

WPF M. cerifera (-) 2 b 80 0 0 0 80 0 . 

WPF M. cerifera (-) 2 c 79 1 0 0 80 1.25 . 

WPF M. cerifera (-) 2 d 80 0 0 0 80 0 . 

WPF M. cerifera (-) 2 e 78 2 0 0 80 2.5 . 

WPF M. cerifera (-) 2 f 80 0 0 0 80 0 . 

WPF M. cerifera (-) 2 g 80 0 0 0 80 0 . 

WPF M. cerifera (-) 2 h 80 0 0 0 80 0 . 

WPF M. cerifera (-) 2 i 80 0 0 0 80 0 . 

WPF M. cerifera (-) 3 a 80 0 0 0 80 0 1.487 

WPF M. cerifera (-) 3 b 80 0 0 0 80 0 . 

WPF M. cerifera (-) 3 c 79 1 0 0 80 1.25 . 

WPF M. cerifera (-) 3 d 80 0 0 0 80 0 . 

WPF M. cerifera (-) 3 e 77 2 0 1 80 5 . 

WPF M. cerifera (-) 3 f 80 0 0 0 80 0 . 

WPF M. cerifera (-) 3 g 79 1 0 0 80 1.25 . 

WPF M. cerifera (-) 3 h 80 0 0 0 80 0 . 

WPF M. cerifera (-) 3 i 80 0 0 0 80 0 . 

WPF M. cerifera (-) 4 . . . . . . . . 

WPF T. sebifera (+) 1 a 67 10 3 0 80 20 0.535 

WPF T. sebifera (+) 1 b 58 13 6 3 80 38.75 . 

WPF T. sebifera (+) 1 c 60 12 6 2 80 35 . 

WPF T. sebifera (+) 1 d 49 15 14 2 80 58.75 . 

WPF T. sebifera (+) 1 e 56 12 8 4 80 45 . 

WPF T. sebifera (+) 2 a 59 5 6 10 80 46.25 0.717 



244 
 

 
 

Appendix D (I). Raw data from greenhouse experiment (Chapter 5), continued 

WPF T. sebifera (+) 2 b 80 0 0 0 80 0 . 

WPF T. sebifera (+) 2 c 67 2 6 5 80 30 . 

WPF T. sebifera (+) 2 d 57 10 8 5 80 45 . 

WPF T. sebifera (+) 2 e 58 8 7 7 80 45 . 

WPF T. sebifera (+) 2 f 78 2 0 0 80 2.5 . 

WPF T. sebifera (+) 2 g 79 1 0 0 80 1.25 . 

WPF T. sebifera (+) 3 a 46 18 11 5 80 62.5 0.374 

WPF T. sebifera (+) 3 b 41 13 12 14 80 81.25 . 

WPF T. sebifera (+) 3 c 46 13 10 11 80 68.75 . 

WPF T. sebifera (+) 3 d 65 5 4 6 80 31.25 . 

WPF T. sebifera (+) 3 e 59 9 5 7 80 41.25 . 

WPF T. sebifera (+) 3 f 63 11 3 3 80 28.75 . 

WPF T. sebifera (+) 3 g 79 1 0 0 80 1.25 . 

WPF T. sebifera (+) 4 a 25 24 16 15 80 107.5 0.302 

WPF T. sebifera (+) 4 b 48 15 10 7 80 61.25 . 

WPF T. sebifera (+) 4 c 48 15 10 7 80 61.25 . 

WPF T. sebifera (+) 4 d 72 5 3 0 80 13.75 . 

WPF T. sebifera (+) 4 e 58 9 8 5 80 43.75 . 

WPF T. sebifera (+) 4 f 72 5 3 0 80 13.75 . 

WPF T. sebifera (+) 4 g 77 3 0 0 80 3.75 . 

WPF T. sebifera (-) 1 a 74 6 0 0 80 7.5 0.478 

WPF T. sebifera (-) 1 b 74 5 1 0 80 8.75 . 

WPF T. sebifera (-) 1 c 65 9 4 2 80 26.25 . 

WPF T. sebifera (-) 1 d 71 6 1 2 80 15 . 

WPF T. sebifera (-) 1 e 76 4 0 0 80 5 . 

WPF T. sebifera (-) 1 f 62 7 5 6 80 36.25 . 

WPF T. sebifera (-) 1 g 80 0 0 0 80 0 . 

WPF T. sebifera (-) 1 f 80 0 0 0 80 0 . 

WPF T. sebifera (-) 1 h 52 12 10 6 80 55 . 

WPF T. sebifera (-) 2 a 80 0 0 0 80 0 0.311 

WPF T. sebifera (-) 2 b 80 0 0 0 80 0 . 

WPF T. sebifera (-) 2 c 78 2 0 0 80 2.5 . 

WPF T. sebifera (-) 2 d 80 0 0 0 80 0 . 

WPF T. sebifera (-) 2 e 80 0 0 0 80 0 . 

WPF T. sebifera (-) 2 f 77 3 0 0 80 3.75 . 

WPF T. sebifera (-) 2 g 80 0 0 0 80 0 . 
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Appendix D (I). Raw data from greenhouse experiment (Chapter 5), continued 

WPF T. sebifera (-) 2 f 75 5 0 0 80 6.25 . 

WPF T. sebifera (-) 3 a 69 11 0 0 80 13.75 0.074 

WPF T. sebifera (-) 3 b 80 0 0 0 80 0 . 

WPF T. sebifera (-) 3 c 80 0 0 0 80 0 . 

WPF T. sebifera (-) 3 d 60 17 3 0 80 28.75 . 

WPF T. sebifera (-) 3 e 80 0 0 0 80 0 . 

WPF T. sebifera (-) 3 f 77 3 0 0 80 3.75 . 

WPF T. sebifera (-) 4 a 80 0 0 0 80 0 0.144 

WPF T. sebifera (-) 4 b 78 2 0 0 80 2.5 . 

WPF T. sebifera (-) 4 c 80 0 0 0 80 0 . 

WPF T. sebifera (-) 4 d 80 0 0 0 80 0 . 

WPF T. sebifera (-) 4 e 80 0 0 0 80 0 . 

WPF T. sebifera (-) 4 f 74 3 0 3 80 11.25 . 

WPF T. sebifera (-) 4 g 80 0 0 0 80 0 . 

WPF T. sebifera (-) 4 f 80 0 0 0 80 0 . 

WPF T. sebifera (-) 4 g 80 0 0 0 80 0 . 

PFW M. cerifera (+) 1 a 79 1 0 0 80 1.25 0.695 

PFW M. cerifera (+) 1 b 68 7 3 2 80 21.25 . 

PFW M. cerifera (+) 1 c 78 1 0 1 80 3.75 . 

PFW M. cerifera (+) 1 d 77 2 0 1 80 5 . 

PFW M. cerifera (+) 1 e 75 2 1 2 80 10 . 

PFW M. cerifera (+) 2 a 80 0 0 0 80 0 1.46 

PFW M. cerifera (+) 2 b 67 7 4 2 80 23.75 . 

PFW M. cerifera (+) 2 c 80 0 0 0 80 0 . 

PFW M. cerifera (+) 2 d 72 5 3 0 80 13.75 . 

PFW M. cerifera (+) 2 e 79 0 0 1 80 2.5 . 

PFW M. cerifera (+) 2 f 76 3 1 0 80 6.25 . 

PFW M. cerifera (+) 2 g 80 0 0 0 80 0 . 

PFW M. cerifera (+) 2 h 73 5 0 2 80 11.25 . 

PFW M. cerifera (+) 3 a 76 4 0 0 80 5 0.322 

PFW M. cerifera (+) 3 b 80 0 0 0 80 0 . 

PFW M. cerifera (+) 3 c 69 8 3   80 17.5 . 

PFW M. cerifera (+) 3 d 80 0 0 0 80 0 . 

PFW M. cerifera (+) 3 e 80 0 0 0 80 0 . 

PFW M. cerifera (+) 3 f 20 25 19 16 80 118.75 . 

PFW M. cerifera (+) 3 g 80 0 0 0 80 0 . 
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Appendix D (I). Raw data from greenhouse experiment (Chapter 5), continued 

PFW M. cerifera (+) 4 a 80 0 0 0 80 0 0.478 

PFW M. cerifera (+) 4 b 80 0 0 0 80 0 . 

PFW M. cerifera (+) 4 c 80 0 0 0 80 0 . 

PFW M. cerifera (+) 4 d 71 4 2 3 80 17.5 . 

PFW M. cerifera (+) 4 e 71 5 3 1 80 16.25 . 

PFW M. cerifera (+) 4 f 80 0 0 0 80 0 . 

PFW M. cerifera (+) 4 g 68 8 3 1 80 20 . 

PFW M. cerifera (+) 4 h 80 0 0 0 80 0 . 

PFW M. cerifera (+) 4 i 80 0 0 0 80 0 . 

PFW M. cerifera (-) 1 a 80 0 0 0 80 0 0.541 

PFW M. cerifera (-) 1 b 80 0 0 0 80 0 . 

PFW M. cerifera (-) 1 c 79 1 0 0 80 1.25 . 

PFW M. cerifera (-) 1 d 80 0 0 0 80 0 . 

PFW M. cerifera (-) 1 e 80 0 0 0 80 0 . 

PFW M. cerifera (-) 1 f 80 0 0 0 80 0 . 

PFW M. cerifera (-) 1 g 80 0 0 0 80 0 . 

PFW M. cerifera (-) 1 h 80 0 0 0 80 0 . 

PFW M. cerifera (-) 1 i 80 0 0 0 80 0 . 

PFW M. cerifera (-) 2 a 69 5 2 4 80 21.25 0.333 

PFW M. cerifera (-) 2 b 76 2 1 1 80 7.5 . 

PFW M. cerifera (-) 2 c 79 0 0 1 80 2.5 . 

PFW M. cerifera (-) 2 d 80 0 0 0 80 0 . 

PFW M. cerifera (-) 2 e 80 0 0 0 80 0 . 

PFW M. cerifera (-) 2 f 80 0 0 0 80 0 . 

PFW M. cerifera (-) 2 g 80 0 0 0 80 0 . 

PFW M. cerifera (-) 2 h 80 0 0 0 80 0 . 

PFW M. cerifera (-) 2 i 77 3 0 0 80 3.75 . 

PFW M. cerifera (-) 3 a 80 0 0 0 80 0 0.48 

PFW M. cerifera (-) 3 b 80 0 0 0 80 0 . 

PFW M. cerifera (-) 3 c 67 3 2 8 81 29.62 . 

PFW M. cerifera (-) 3 d 80 0 0 0 82 2.43 . 

PFW M. cerifera (-) 3 e 68 3 2 7 83 28.91 . 

PFW M. cerifera (-) 3 f 68 2 1 9 84 30.95 . 

PFW M. cerifera (-) 3 g 80 0 0 0 85 5.88 . 

PFW M. cerifera (-) 3 h 67 4 2 7 86 32.55 . 

PFW M. cerifera (-) 3 i 80 0 0 0 87 8.04 . 
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Appendix D (I). Raw data from greenhouse experiment (Chapter 5), continued 

PFW M. cerifera (-) 4 a 71 5 0 4 88 23.86 0.869 

PFW M. cerifera (-) 4 b 80 0 0 0 89 10.11 . 

PFW M. cerifera (-) 4 c 76 3 0 1 80 6.25 . 

PFW M. cerifera (-) 4 d 64 7 0 9 80 31.25 . 

PFW M. cerifera (-) 4 e 75 3 0 2 80 8.75 . 

PFW M. cerifera (-) 4 f 76 0 0 0 80 10 . 

PFW M. cerifera (-) 4 g 75 3 0 4 80 8.75 . 

PFW M. cerifera (-) 4 h 78 1 0 2 80 3.75 . 

PFW M. cerifera (-) 4 i 77 0 0 1 80 7.5 . 

PFW B. halimifolia (+) 1 a 66 7 4 3 80 26.25 1.55 

PFW B. halimifolia (+) 1 b 71 5 4 0 80 16.25 . 

PFW B. halimifolia (+) 1 c 70 8 2 0 80 15 . 

PFW B. halimifolia (+) 2 a 57 12 6 5 80 42.5 0.093 

PFW B. halimifolia (+) 2 b 66 13 1 0 80 18.75 . 

PFW B. halimifolia (+) 2 c 53 14 9 4 80 49 . 

PFW B. halimifolia (+) 3 a 78 2 0 0 80 2.5 0.301 

PFW B. halimifolia (+) 3 b 67 11 2 0 80 18.75 . 

PFW B. halimifolia (+) 3 c 75 4 0 1 80 7.5 . 

PFW B. halimifolia (+) 3 d 73 7 0 0 80 8.75 . 

PFW B. halimifolia (+) 3 e 78 2 0 0 80 2.5 . 

PFW B. halimifolia (+) 3 f 80 0 0 0 80 0 . 

PFW B. halimifolia (+) 3 g 58 7 5 10 80 46.25 . 

PFW B. halimifolia (+) 3 h 77 3 0 0 80 3.75 . 

PFW B. halimifolia (+) 3 i 64 10 5 1 80 27.5 . 

PFW B. halimifolia (+) 4 a 62 11 4 3 80 31.25 0.573 

PFW B. halimifolia (+) 4 b 72 7 1 0 80 11.25 . 

PFW B. halimifolia (+) 4 c 71 6 3 0 80 15 . 

PFW B. halimifolia (+) 4 d 73 5 2 0 80 11.25 . 

PFW B. halimifolia (+) 4 e 80 0 0 0 80 0 . 

PFW B. halimifolia (-) 1 a 77 3 0 0 80 3.75 0.235 

PFW B. halimifolia (-) 1 b 75 3 2 0 80 8.75 . 

PFW B. halimifolia (-) 1 c 74 5 1 0 80 8.75 . 

PFW B. halimifolia (-) 1 d 72 6 2 0 80 12.5 . 

PFW B. halimifolia (-) 1 e 80 0 0 0 80 0 . 

PFW B. halimifolia (-) 1 f 73 7 0 0 80 8.75 . 

PFW B. halimifolia (-) 2 a 80 0 0 0 80 0 0.39 
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Appendix D (I). Raw data from greenhouse experiment (Chapter 5), continued 

PFW B. halimifolia (-) 2 b 72 8 0 0 80 12.5 . 

PFW B. halimifolia (-) 2 c 78 0 2 0 80 2.5 . 

PFW B. halimifolia (-) 2 d 74 6 0 0 80 7.5 . 

PFW B. halimifolia (-) 2 e 75 5 0 0 80 6.25 . 

PFW B. halimifolia (-) 2 f 76 4 0 0 80 5 . 

PFW B. halimifolia (-) 3 a 80 0 0 0 80 1.25 0.039 

PFW B. halimifolia (-) 3 b 70 9 1 0 80 12.5 . 

PFW B. halimifolia (-) 3 c 80 0 0 0 80 0 . 

PFW B. halimifolia (-) 3 d 80 0 0 0 80 0 . 

PFW B. halimifolia (-) 3 e 80 0 0 0 80 5 . 

PFW B. halimifolia (-) 3 f 69 7 4 0 80 25 . 

PFW B. halimifolia (-) 4 a 62 9 5 4 80 28.75 0.087 

PFW B. halimifolia (-) 4 b 63 12 3 2 80 22.5 . 

PFW B. halimifolia (-) 4 c 78 1 0 1 80 11.25 . 

PFW B. halimifolia (-) 4 d 63 10 4 3 80 21.25 . 

PFW B. halimifolia (-) 4 e 78 2 0 0 80 5 . 

PFW B. halimifolia (-) 4 f 75 3 0 2 80 6.25 . 

PFW B. halimifolia (-) 4 g 80 0 0 0 80 0 . 

PFW B. halimifolia (-) 4 h 80 0 0 0 80 15 . 

PFW B. halimifolia (-) 4 i 59 9 5 7 80 40 . 

PFW T. sebifera (+) 1 a 49 20 10 1 80 52.5 1.035 

PFW T. sebifera (+) 1 b 51 19 8 2 80 48.75 . 

PFW T. sebifera (+) 1 c 44 22 11 3 80 62.5 . 

PFW T. sebifera (+) 1 d 58.5 15 4.5 2 80 35 . 

PFW T. sebifera (+) 2 a 70 8 2 0 80 15 0.274 

PFW T. sebifera (+) 2 b 56 15 6 3 80 41.25 . 

PFW T. sebifera (+) 2 c 57 14 4 5 80 40 . 

PFW T. sebifera (+) 2 d 38 29 11 2 80 68.75 . 

PFW T. sebifera (+) 3 a 47 23 7 3 80 53.75 0.597 

PFW T. sebifera (+) 3 b 68 12 0 0 80 15 . 

PFW T. sebifera (+) 3 c 45 15 12 8 80 68.75 . 

PFW T. sebifera (+) 3 d 68 7 4 1 80 22 . 

PFW T. sebifera (+) 4 a 71 6 3 0 80 15 0.577 

PFW T. sebifera (+) 4 b 60 13 7 0 80 33.75 . 

PFW T. sebifera (+) 4 c 56 15 8 1 80 41.25 . 

PFW T. sebifera (+) 4 d 52 13 7 8 80 53.75 . 



249 
 

 
 

Appendix D (I). Raw data from greenhouse experiment (Chapter 5), continued 

PFW T. sebifera (+) 4 e 32 22 16 10 80 92.5 . 

PFW T. sebifera (+) 4 f 27 23 18 12 80 103.75 . 

PFW T. sebifera (-) 1 a 80 0 0 0 80 0 0.273 

PFW T. sebifera (-) 1 b 76 4 0 0 80 5 . 

PFW T. sebifera (-) 1 c 80 0 0 0 80 0 . 

PFW T. sebifera (-) 1 d 80 0 0 0 80 0 . 

PFW T. sebifera (-) 1 e 78 2 0 0 80 2.5 . 

PFW T. sebifera (-) 1 f 80 0 0 0 80 0 . 

PFW T. sebifera (-) 1 g 77 3 0 0 80 3.75 . 

PFW T. sebifera (-) 1 f 80 0 0 0 80 0 . 

PFW T. sebifera (-) 1 g 80 0 0 0 80 0 . 

PFW T. sebifera (-) 2 a 65 15 0 0 80 18.75 0.201 

PFW T. sebifera (-) 2 b 77 3 0 0 80 3.75 . 

PFW T. sebifera (-) 2 c 80 0 0 0 80 0 . 

PFW T. sebifera (-) 2 d 78 2 0 0 80 2.5 . 

PFW T. sebifera (-) 2 e 76 4 0 0 80 5 . 

PFW T. sebifera (-) 2 f 80 0 0 0 80 0 . 

PFW T. sebifera (-) 2 g 77 3 0 0 80 3.75 . 

PFW T. sebifera (-) 2 f 78 2 0 0 80 2.5 . 

PFW T. sebifera (-) 2 g 80 0 0 0 80 0 . 

PFW T. sebifera (-) 3 a 76 4 0 0 80 5 0.19 

PFW T. sebifera (-) 3 b 78 2 0 0 80 2.5 . 

PFW T. sebifera (-) 3 c 79 1 0 0 80 1.25 . 

PFW T. sebifera (-) 3 d 78 2 0 0 80 2.5 . 

PFW T. sebifera (-) 3 e 76 4 0 0 80 5 . 

PFW T. sebifera (-) 3 f 77 3 0 0 80 3.75 . 

PFW T. sebifera (-) 3 g 77 3 0 0 80 3.75 . 

PFW T. sebifera (-) 3 f 80 0 0 0 80 0 . 

PFW T. sebifera (-) 3 g 80 0 0 0 80 0 . 

PFW T. sebifera (-) 4 a 80 0 0 0 80 0 0.199 

PFW T. sebifera (-) 4 b 80 0 0 0 80 0 . 

PFW T. sebifera (-) 4 c 80 0 0 0 80 0 . 

PFW T. sebifera (-) 4 d 80 0 0 0 80 0 . 

PFW T. sebifera (-) 4 e 76 4 0 0 80 5 . 

PFW T. sebifera (-) 4 f 77 3 0 0 80 3.75 . 

PFW T. sebifera (-) 4 g 77 3 0 0 80 10 . 

PFW T. sebifera (-) 4 f 65 10 5 0 80 18.75 . 
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Appendix D (II). Raw data from field experiment (Harvest I) (Chapter 5). WPF = Wet pine forest, PFW = PFW, (+) = without fungicide, (–) = with fungicide, 

Rep = replication, % Colon = colonization 

Habitats Species Rep Sample 

Negative score 

(VAM)  hyphae arbuscule  vesicle  # Intersections 

% 

Colon 

Total 

biomass (g)  

WPF B. halimifolia 1 a 214 13 7 6 240 16.25 0.199 

WPF B. halimifolia 1 b 217 15 3 5 240 12.92 . 

WPF B. halimifolia 1 c 220 12 4 4 240 11.67 . 

WPF B. halimifolia 2 a 195 21 17 7 240 28.75 0.411 

WPF B. halimifolia 2 b 206 22 9 3 240 19.17 . 

WPF B. halimifolia 2 c 204 21 9 6 240 21.25 . 

WPF B. halimifolia 3 a 202 13 13 12 240 26.25 0.257 

WPF B. halimifolia 3 b 205 16 8 11 240 22.50 . 

WPF B. halimifolia 3 c 208 18 6 8 240 19.17 . 

PFW B. halimifolia 1 a 201 21 11 7 240 23.75 0.223 

PFW B. halimifolia 1 b 197 27 9 7 240 24.58 . 

PFW B. halimifolia 1 c 200 23 8 9 240 23.75 . 

PFW B. halimifolia 2 a 210 17 9 4 240 17.92 0.187 

PFW B. halimifolia 2 b 209 15 7 9 240 19.58 . 

PFW B. halimifolia 2 c 193 25 11 11 240 28.75 . 

WPF M. cerifera 1 a 223 11 3 3 240 9.58 0.052 

WPF M. cerifera 1 b 230 7 1 2 240 5.42 . 

WPF M. cerifera 1 c 234 5 0 1 240 2.92 . 

WPF M. cerifera 2 a 220 9 7 4 240 12.92 0.105 

WPF M. cerifera 2 b 221 11 5 3 240 11.25 . 

WPF M. cerifera 2 c 207 15 11 7 240 21.25 . 

WPF M. cerifera 3 a 224 7 5 4 240 10.42 0.006 

WPF M. cerifera 3 b 223 9 2 6 240 10.42 . 

WPF M. cerifera 3 c 223 12 3 2 240 9.17 . 

PFW M. cerifera 1 a 214 13 7 6 240 16.25 0.011 

PFW M. cerifera 1 b 230 4 2 4 240 6.67 . 

PFW M. cerifera 1 c 230 7 0 3 240 5.42 . 

PFW M. cerifera 2 a 215 15 7 3 240 14.58 0.095 

PFW M. cerifera 2 b 213 11 9 7 240 17.92 . 

PFW M. cerifera 2 c 217 14 4 5 240 13.33 . 

PFW M. cerifera 3 a 214 12 4 10 240 16.67 0.01 

PFW M. cerifera 3 b 228 8 3 1 240 6.67 . 
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Appendix D (II). Raw data from field experiment (Harvest I) (Chapter 5), continued 

PFW M. cerifera 3 c 220 10 5 5 240 12.50 . 

WPF T. sebifera 1 a 212 19 7 2 240 15.42 0.413 

WPF T. sebifera 1 b 194 23 11 12 240 28.75 . 

WPF T. sebifera 1 c 198 28 9 5 240 23.33 . 

WPF T. sebifera 2 a 183 33 14 10 240 33.75 0.638 

WPF T. sebifera 2 b 192 24 11 13 240 30.00 . 

WPF T. sebifera 2 c 196 27 13 4 240 25.42 . 

WPF T. sebifera 3 a 198 17 11 14 240 27.92 0.396 

WPF T. sebifera 3 b 199 21 15 5 240 25.42 . 

WPF T. sebifera 3 c 202 25 9 4 240 21.25 . 

PFW T. sebifera 1 a 193 31 13 3 240 26.25 0.311 

PFW T. sebifera 1 b 203 21 9 7 240 22.08 . 

PFW T. sebifera 1 c 195 23 11 11 240 27.92 . 

PFW T. sebifera 2 a 200 25 10 5 240 22.92 0.258 

PFW T. sebifera 2 b 199 23 9 9 240 24.58 . 

PFW T. sebifera 2 c 196 26 5 13 240 25.83 . 

PFW T. sebifera 3 a 197 28 7 8 240 24.17 0.457 

PFW T. sebifera 3 b 186 32 9 13 240 31.67 . 

PFW T. sebifera 3 c 183 37 13 7 240 32.08 . 
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Appendix D (III). Raw data from field experiment (Harvest II) (Chapter 5). WPF = Wet pine forest, PFW = PFW, (+) = without fungicide, (–) = with fungicide, 

Rep = replication, % Colon = colonization 

Habitat species Rep sample 

Negative score 

(VAM)  hyphae arbuscule  vesicle  # intersections % Colon 

Total 

biomass (g)  

WPF B. halimifolia 1 a 217 14 9 0 240 13.33 0.246 

WPF B. halimifolia 1 b 221 14 5 0 240 10.00 . 

WPF B. halimifolia 1 c 213 17 10 0 240 15.42 . 

WPF B. halimifolia 2 a 183 34 16 7 240 33.33 0.542 

WPF B. halimifolia 2 b 203 23 9 5 240 21.25 . 

WPF B. halimifolia 2 c 191 34 12 3 240 26.67 . 

WPF B. halimifolia 3 a 218 15 7 0 240 12.08 0.286 

WPF B. halimifolia 3 b 219 14 3 4 240 11.67 . 

WPF B. halimifolia 3 c 220 11 2 7 240 12.08 . 

PFW B. halimifolia 1 a 204 31 5 0 240 17.08 0.066 

PFW B. halimifolia 1 b 206 23 5 6 240 18.75 . 

PFW B. halimifolia 1 c 198 30 10 2 240 22.50 . 

PFW B. halimifolia 2 . . . . . . . . 

PFW B. halimifolia 2 . . . . . . . . 

PFW B. halimifolia 2 . . . . . . . . 

PFW B. halimifolia 3 . . . . . . . . 

PFW B. halimifolia 3 . . . . . . . . 

PFW B. halimifolia 3 . . . . . . . . 

WPF M. cerifera 1 a 225 9 2 4 240 8.75 0.159 

WPF M. cerifera 1 b 204 18 7 11 240 22.50 . 

WPF M. cerifera 1 c 225 11 3 1 240 7.92 . 

WPF M. cerifera 2 a 220 12 5 3 240 11.67 0.126 

WPF M. cerifera 2 b 227 10 2 1 240 6.67 . 

WPF M. cerifera 2 c 226 7 3 4 240 8.75 . 

WPF M. cerifera 3 a 237 3 0 0 240 1.25 0.101 

WPF M. cerifera 3 b 232 5 1 2 240 4.58 . 

WPF M. cerifera 3 c 229 7 1 3 240 6.25 . 

PFW M. cerifera 1 a 234 3 1 2 240 3.75 0.07 

PFW M. cerifera 1 b 227 10 1 2 240 6.67 . 

PFW M. cerifera 1 c 234 6 0 0 240 2.50 . 

PFW M. cerifera 2 a 221 13 3 3 240 10.42 0.067 

PFW M. cerifera 2 b 225 9 2 4 240 8.75 . 
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Appendix D (III). Raw data from field experiment (Harvest II) (Chapter 5), continued 

PFW M. cerifera 2 c 224 13 1 2 240 7.92 . 

PFW M. cerifera 3 . . . . . . . . 

PFW M. cerifera 3 . . . . . . . . 

PFW M. cerifera 3 . . . . . . . . 

WPF T. sebifera 1 a 217 17 5 1 240 12.08 0.518 

WPF T. sebifera 1 b 214 16 7 3 240 15.00 . 

WPF T. sebifera 1 c 202 14 17 7 240 25.83 . 

WPF T. sebifera 2 a 202 28 5 5 240 20.00 0.893 

WPF T. sebifera 2 b 183 32 5 20 240 34.17 . 

WPF T. sebifera 2 c 199 29 9 3 240 22.08 . 

WPF T. sebifera 3 . . . . . . . . 

WPF T. sebifera 3 . . . . . . . . 

WPF T. sebifera 3 . . . . . . . . 

PFW T. sebifera 1 A 167 43 14 16 240 42.92 0.07 

PFW T. sebifera 1 B 161 33 24 22 240 52.08 . 

PFW T. sebifera 1 C 190 35 8 7 240 27.08 . 

PFW T. sebifera 2 A 187 28 18 7 240 32.50 0.067 

PFW T. sebifera 2 B 174 39 17 10 240 38.75 . 

PFW T. sebifera 2 C 177 32 17 14 240 39.17 . 

PFW T. sebifera 3 . . . . . . . . 

PFW T. sebifera 3 . . . . . . . . 

PFW T. sebifera 3 . . . . . . . . 
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Appendix D (IV). Raw data from field experiment (Harvest III) (Chapter 5). WPF = Wet pine forest, PFW = PFW, (+) = without fungicide, (–) = with fungicide, 

Rep = replication, % Colon = colonization 

Habitat species Rep Sample 

Negative 

score (VAM) 

 

hyphae arbuscule  vesicle  # Intersections % Colon 

Total 

biomass (g)  

WPF B. halimifolia 1 a 206 24 9 1 240 18.33 1.49 

WPF B. halimifolia 1 b 202 28 10 0 240 20.00 . 

WPF B. halimifolia 1 c 209 26 4 1 240 15.00 . 

WPF B. halimifolia 2 a 184 34 15 7 240 32.50 1.54 

WPF B. halimifolia 2 b 185 26 20 9 240 35.00 . 

WPF B. halimifolia 2 c 208 17 10 5 240 19.58 . 

WPF B. halimifolia 3 a 204 24 12 0 240 20.00 0.15 

WPF B. halimifolia 3 b 211 14 9 6 240 18.33 . 

WPF B. halimifolia 3 c 197 20 11 12 240 27.50 . 

PFW B. halimifolia 1 . . . . . . . . 

PFW B. halimifolia 1 . . . . . . . . 

PFW B. halimifolia 1 . . . . . . . . 

PFW B. halimifolia 2 . . . . . . . . 

PFW B. halimifolia 2 . . . . . . . . 

PFW B. halimifolia 2 . . . . . . . . 

PFW B. halimifolia 3 . . . . . . . . 

PFW B. halimifolia 3 . . . . . . . . 

PFW B. halimifolia 3 . . . . . . . . 

WPF M. cerifera 1 a 198 21 11 10 240 26.25 0.09 

WPF M. cerifera 1 b 220 16 4 0 240 10.00 . 

WPF M. cerifera 1 a 226 13 1 0 240 6.25 0.08 

WPF M. cerifera 2 b 235 5 0 0 240 2.08 . 

WPF M. cerifera 2 . . . . . . . . 

WPF M. cerifera 2 . . . . . . . . 

WPF M. cerifera 3 . . . . . . . . 

WPF M. cerifera 3 . . . . . . . . 

WPF M. cerifera 3 . . . . . . . . 

PFW M. cerifera 1 a 207 15 9 9 240 21.25 0.04 

PFW M. cerifera 1 b 206 18 10 6 240 20.83 . 

PFW M. cerifera 1 . . . . . . . . 

PFW M. cerifera 2 . . .   . . . . 

PFW M. cerifera 2 . . .   . . . . 
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Appendix D (IV). Raw data from field experiment (Harvest III) (Chapter 5), continued 

PFW M. cerifera 2 . . . . . . . . 

WPF T. sebifera 1 a 186 33 9 12 240 31.25 0.78 

WPF T. sebifera 1 b 182 24 21 13 240 38.33 . 

WPF T. sebifera 1 c 193 25 11 11 240 28.75 . 

WPF T. sebifera 2 a 187 27 12 14 240 32.92 0.49 

WPF T. sebifera 2 b 189 31 15 5 240 29.58 . 

WPF T. sebifera 2 c 201 20 10 9 240 24.17 . 

WPF T. sebifera 3 . . . . . . . . 

WPF T. sebifera 3 . . . . . . . . 

WPF T. sebifera 3 . . . . . . . . 

PFW T. sebifera 1 . . . . . . . . 

PFW T. sebifera 1 . . . . . . . . 

PFW T. sebifera 1 . . . . . . . . 

PFW T. sebifera 2 . . . . . . . . 

PFW T. sebifera 2 . . . . . . . . 

PFW T. sebifera 2 . . . . . . . . 

PFW T. sebifera 3 . . . . . . . . 

PFW T. sebifera 3 . . . . . . . . 

PFW T. sebifera 3 . . . . . . . . 

 

 

 

 

 

 

 

 

 



256 
 

 
 

Appendix D (V). Raw data from allelopathy experiment (Chapter 5). No Triadica = soil from Triadica uninvaded site, Triadica = soil from Triadica invaded site, 

(+) = with activated carbon, (–) = without activated carbon, Rep = replication, % Colon = colonization 

Species Soil source 

Carbon    

( +/-) Rep Sample Absence Hyphae Arbuscule Vesicle # Intersections 

% 

Colon 

shoot 

biomass 

(g) 

root 

biomass 

(g) 

B. halimifolia No Triadica (+) 1 a 208 21 7 4 240 17.92 4.237 1.01 

B. halimifolia No Triadica (+) 1 b 228 11 1 0 240 5.42 . . 

B. halimifolia No Triadica (+) 2 a 199 24 8 9 240 24.17 5.239 0.74 

B. halimifolia No Triadica (+) 2 b 217 16 2 5 240 12.50 . . 

B. halimifolia No Triadica (+) 3 a 215 11 5 9 240 16.25 3.372 0.87 

B. halimifolia No Triadica (+) 3 b 222 13 5 0 240 9.58 . . 

B. halimifolia No Triadica (+) 4 a 226 11 2 1 240 7.08 3.754 0.62 

B. halimifolia No Triadica (+) 4 b 232 8 0 0 240 3.33 . . 

B. halimifolia No Triadica (+) 5 a 222 11 3 4 240 10.42 2.942 0.49 

B. halimifolia No Triadica (+) 5 b 189 33 7 11 240 28.75 . . 

B. halimifolia No Triadica (-) 1 a 204 24 12 0 240 20.00 1.786 0.34 

B. halimifolia No Triadica (-) 1 b 209 25 6 0 240 15.42 . . 

B. halimifolia No Triadica (-) 2 a 202 28 5 5 240 20.00 2.667 0.28 

B. halimifolia No Triadica (-) 2 b 175 32 17 16 240 40.83 . . 

B. halimifolia No Triadica (-) 3 a 207 17 9 7 240 20.42 0.11 0.02 

B. halimifolia No Triadica (-) 3 b 226 9 3 2 240 7.92 . . 

B. halimifolia No Triadica (-) 4 a 210 11 7 12 240 20.42 2.757 0.31 

B. halimifolia No Triadica (-) 4 b 230 6 3 1 240 5.83 . . 

B. halimifolia No Triadica (-) 5 a 196 31 11 2 240 23.75 3.881 0.36 

B. halimifolia No Triadica (-) 5 b 216 17 3 4 240 12.92 . . 

B. halimifolia Triadica (+) 1 a 214 18 7 1 240 14.17 2.739 0.73 

B. halimifolia Triadica (+) 1 b 207 28 3 2 240 15.83     

B. halimifolia Triadica (+) 2 a 220 10 7 3 240 12.50 3.423 1.32 

B. halimifolia Triadica (+) 2 b 210 20 9 1 240 16.67     

B. halimifolia Triadica (+) 3 a 218 19 3 0 240 10.42 3.77 1.23 

B. halimifolia Triadica (+) 3 b 218 16 5 1 240 11.67 . . 

B. halimifolia Triadica (+) 4 a 239 1 0 0 240 0.42 3.364 1.05 

B. halimifolia Triadica (+) 4 b 226 11 1 2 240 7.08 . . 

B. halimifolia Triadica (+) 5 a 226 11 2 1 240 7.08 3.103 1.51 

B. halimifolia Triadica (+) 5 b 227 12 1 0 240 5.83 . . 

B. halimifolia Triadica (-) 1 a 219 18 3 0 240 10.00 2.84 0.71 
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Appendix D (V). Raw data from allelopathy experiment (Chapter 5), continued 

B. halimifolia Triadica (-) 1 b 210 19 6 5 240 17.08 . . 

B. halimifolia Triadica (-) 2 a 228 11 1 0 240 5.42 1.97 0.48 

B. halimifolia Triadica (-) 2 b 214 17 6 3 240 14.58 . . 

B. halimifolia Triadica (-) 3 a 203 22 15 0 240 21.67 2.948 0.51 

B. halimifolia Triadica (-) 3 b 221 14 5 0 240 10.00 . . 

B. halimifolia Triadica (-) 4 a 203 25 9 3 240 20.42 2.436 0.6 

B. halimifolia Triadica (-) 4 b 211 25 2 2 240 13.75 . . 

B. halimifolia Triadica (-) 5 a 221 15 3 1 240 9.58 2.866 1.45 

B. halimifolia Triadica (-) 5 b 211 18 7 4 240 16.67 . . 

M. cerifera No Triadica (+) 1 a 233 5 2 0 240 3.75 2.018 0.82 

M. cerifera No Triadica (+) 1 b 218 8 7 7 240 15.00 . . 

M. cerifera No Triadica (+) 2 a 236 3 1 0 240 2.08 2.267 1.33 

M. cerifera No Triadica (+) 2 b 240 0 0 0 240 0.00 . . 

M. cerifera No Triadica (+) 3 a 232 5 3 0 240 4.58 2.854 1.35 

M. cerifera No Triadica (+) 3 b 228 7 5 0 240 7.08 . . 

M. cerifera No Triadica (+) 4 a 230 6 4 0 240 5.83 1.189 0.51 

M. cerifera No Triadica (+) 4 b 237 3 0 0 240 1.25 . . 

M. cerifera No Triadica (+) 5 a 222 10 5 3 240 10.83 1.339 0.57 

M. cerifera No Triadica (+) 5 b 239 1 0 0 240 0.42 . . 

M. cerifera No Triadica (-) 1 a 229 6 5 0 240 6.67 2.312 0.26 

M. cerifera No Triadica (-) 1 b 232 7 1 0 240 3.75 . . 

M. cerifera No Triadica (-) 2 a 202 20 12 6 240 23.33 1.455 1.1 

M. cerifera No Triadica (-) 2 b 213 18 5 4 240 15.00 . . 

M. cerifera No Triadica (-) 3 a 222 13 4 1 240 9.58 1.362 0.6 

M. cerifera No Triadica (-) 3 b 218 14 4 4 240 12.50 . . 

M. cerifera No Triadica (-) 4 a 231 7 2 0 240 4.58 2.335 1.14 

M. cerifera No Triadica (-) 4 b 231 5 2 2 240 5.42 . . 

M. cerifera No Triadica (-) 5 a 240 0 0 0 240 0.00 0.876 0.29 

M. cerifera No Triadica (-) 5 b 240 0 0 0 240 0.00 . . 

M. cerifera Triadica (+) 1 a 234 2 2 2 240 4.17 0.867 0.25 

M. cerifera Triadica (+) 1 b 235 3 2 0 240 2.92 . . 

M. cerifera Triadica (+) 2 a 232 5 3 0 240 4.58 1.998 0.59 

M. cerifera Triadica (+) 2 b 236 2 2 0 240 2.50 . . 

M. cerifera Triadica (+) 3 a 233 6 1 0 240 3.33 1.045 0.27 

M. cerifera Triadica (+) 3 b 236 4 0 0 240 1.67 . . 

M. cerifera Triadica (+) 4 a 228 10 2 0 240 5.83 1.777 0.45 
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Appendix D (V). Raw data from allelopathy experiment (Chapter 5), continued 

M. cerifera Triadica (+) 4 b 234 4 1 1 240 3.33 . . 

M. cerifera Triadica (+) 5 a 227 8 3 2 240 7.50 4.065 1.58 

M. cerifera Triadica (+) 5 b 233 5 2 0 240 3.75 . . 

M. cerifera Triadica (-) 1 a 232 5 3 0 240 4.58 0.051 0.33 

M. cerifera Triadica (-) 1 b 235 3 2 0 240 2.92 . . 

M. cerifera Triadica (-) 2 a 223 11 4 2 240 9.58 1.471 0.54 

M. cerifera Triadica (-) 2 b 236 2 1 1 240 2.50 . . 

M. cerifera Triadica (-) 3 a 235 5 0 0 240 2.08 1.754 0.65 

M. cerifera Triadica (-) 3 b 232 7 0 1 240 3.75 . . 

M. cerifera Triadica (-) 4 a 226 7 3 4 240 8.75 0.568 0.23 

M. cerifera Triadica (-) 4 b 234 3 2 1 240 3.75 . . 

M. cerifera Triadica (-) 5 a 227 6 4 3 240 8.33 1.427 0.69 

M. cerifera Triadica (-) 5 b 236 3 1 0 240 2.08 . . 
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