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mator to some subset U of the data. Applying principal component analysis to the subset

U can result in a robust principal component analysis with good properties.

KEY WORDs: multivariate location and dispersion, principal components,

outliers, scree plot.

iii



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Robust Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . 8

2 Examples and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



LIST OF TABLES

2.1 Estimation of Σ with γ = 0.4, n = 35p . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Variance Explained by PCA and RPCA, p = 4 . . . . . . . . . . . . . . . . . . 17

2.3 Variance Explained by PCA and RPCA, SSD = 107 SD, p = 50 . . . . . . . . 18

v



LIST OF FIGURES

2.1 First Two Principal Components for Buxton data. . . . . . . . . . . . . . . . . 11

2.2 First Two Robust Principal Components with Outliers Omitted. . . . . . . . . 12

2.3 Robust Scree Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



INTRODUCTION

Principal component analysis (PCA) is used to explain the dispersion structure with a

few linear combinations of the original variables, called principal components. These linear

combinations are uncorrelated if the sample covariance matrix S or the sample correlation

matrix R is used as the dispersion matrix. The analysis is used for data reduction and

interpretation. The notation ej will be used for orthonormal eigenvectors: eT
j ej = 1 and

eT
j ek = 0 for j 6= k. The eigenvalue eigenvector pairs of a symmetric matrix Σ will be

(λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. The eigenvalue eigenvector pairs of a matrix

Σ̂ will be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. The generalized correlation

matrix defined below is the population correlation matrix when second moments exist if

Σ = c Cov(x) for some constant c > 0 where Cov(x) is the population covariance matrix.

Let Σ = (σij) be a positive definite symmetric p × p dispersion matrix. A generalized

correlation matrix ρ = (ρij) where ρij =
σij√
σiiσjj

.

PCA is applied to data x1, ..., xn which are iid from some distribution. If a p × 1

random vector x has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)T Σ−1(z − µ)], (1)

then x has an elliptically contoured ECp(µ,Σ, g) distribution.

The following theorem holds since the eigenvalues and generalized correlation matrix

are continuous functions of Σ. When the distribution of the xi is unknown, then a good

dispersion estimator estimates cΣ on a large class of distributions where c > 0 depends on

the unknown distribution of xi. For example, if the xi ∼ ECp(µ,Σ, g), then the sample

covariance matrix S estimates Cov(x) = cXΣ.

Theorem 1. Suppose the dispersion matrix Σ has eigenvalue eigenvector pairs

(λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. Suppose Σ̂
P→ cΣ for some constant c > 0.

Let the eigenvalue eigenvector pairs of Σ̂ be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p.
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Then λ̂j(Σ̂)
P→ cλj(Σ) = cλj, ρ̂ P→ ρ and λ̂j (ρ̂) P→ λj (ρ) where λj(A) is the jth

eigenvalue of A for j = 1, ..., p.

Eigenvectors ej are not continuous functions of Σ, and if ej is an eigenvector of Σ

then so is −ej. The software produces êj which sometimes approximates ej and sometimes

approximates −ej if the eigenvalue λj is unique, since then the set of eigenvectors corre-

sponding to λj has the form aej for any nonzero constant a. The situation becomes worse

if some of the eigenvalues are equal, since the possible eigenvectors then span a space of

dimension equal to the multiplicity of the eigenvalue. Hence if the multiplicity is two and

both ej and ek are eigenvectors corresponding to the eigenvalue λi, then ei = xi/‖xi‖ is

also an eigenvector corresponding to λi where xi = ajej + akek for constants aj and ak

which are not both equal to 0. The software produces êj and êk that are approximately

in the span of ej and ek for large n by the following theorem, which also shows that êi

is asymptotically an eigenvector of Σ in that (Σ − λi)êi
P→ 0. It is possible that êi,n is

arbitrarily close to ei for some values of n and arbitrarily close to −ei for other values of

n so that êi ≡ êi,n oscillates and does not converge in probability to either ei or −ei.

Theorem 2. Assume the p × p symmetric dispersion matrix Σ is positive definite.

a) If Σ̂
P→ Σ, then Σ̂ei − λ̂iei

P→ 0.

b) If Σ̂
P→ Σ, then Σêi − λiêi

P→ 0.

If Σ̂− Σ = OP (n−δ) where 0 < δ ≤ 0.5, then

c) λiei − Σ̂ei = OP (n−δ), and

d) λ̂iêi −Σêi = OP (n−δ).

e) If Σ̂
P→ cΣ for some constant c > 0, and if the eigenvalues λ1 > · · · > λp > 0 of

Σ are unique, then the absolute value of the correlation of êj with ej converges to 1 in

probability: |corr(êj, ej)| P→ 1.

Proof. a) Σ̂ei − λ̂iei
P→ Σei − λiei = 0.

b) Note that (Σ− λiI)êi = [(Σ− λiI) − (Σ̂− λ̂iI)]êi = oP (1)OP (1)
P→ 0.
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c) λiei − Σ̂ei = Σei − Σ̂ei = OP (n−δ).

d) λ̂iêi −Σêi = Σ̂êi − Σêi = OP (n−δ).

e) Note that a) and b) hold if Σ̂
P→ Σ is replaced by Σ̂

P→ cΣ. Hence for large n,

êi ≡ êi,n is arbitrarily close to either ei or −ei, and the result follows.

Let the p × 1 column vector T (W ) be a multivariate location estimator, and let the

p× p symmetric positive definite matrix C(W ) be a dispersion estimator. The ith squared

Mahalanobis distance is

D2
i = D2

i (T (W ), C(W )) = (xi − T (W ))TC−1(W )(xi − T (W )) (2)

for each point xi. The population squared Mahalanobis distance corresponding to a pop-

ulation location vector µ and nonsingular dispersion matrix Σ is D2
x(µ,Σ) = D2

x =

(x − µ)TΣ−1(x − µ).

Rule of thumb 1. To use PCA, assume the DD plot of classical versus robust

Mahalanobis distances and the subplots of the scatterplot matrix are linear. Want n > 10p

for classical PCA and n > 20p for robust PCA that uses the FCH, RFCH or RMVN

estimators described in Olive and Hawkins (2010). For classical PCA, use the correlation

matrix R instead of the covariance matrix S if maxi=1,...,p S2
i /mini=1,...,p S2

i > 2. If S is

used, also do a PCA using R.

The trace of a matrix A is the sum of the diagonal elements of A, and if A is a p× p

matrix, then trace(A) = tr(A) =
∑p

i=1 Aii =
∑p

i=1 λi. Note that tr(Cov(x)) = σ2
1+· · ·+σ2

p

and tr(ρ̂) = p.

Let dispersion estimator Σ̂ have eigenvalue eigenvector pairs (λ̂1, ê1), ..., (λ̂p, êp) where

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then the p principal components corresponding to the jth case xj are

Zj1 = êT
1 xj, ..., Zjp = êT

p xj . Let the vector zj = (Zj1, ..., Zjp)
T . The proportion of the trace

explained by the first kth principal components is
∑k

i=1 λ̂i/
∑p

j=1 λ̂j =
∑k

i=1 λ̂i/tr(Σ̂). When

a correlation or covariance matrix is being estimated, “trace” is replaced by “variance.” The

population analogs use the dispersion matrix Σ with eigenvalue eigenvector pairs (λi, ei)
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for i = 1, ..., p. The population principal components corresponding to the jth case are

Yji = eT
i xj, and Zji = Ŷji for i = 1, ..., p.

Note that the principal components can be collected into an n × p data matrix

Z =

























Z1,1 Z1,2 . . . Z1,p

Z2,1 Z2,2 . . . Z2,p

...
...

. . .
...

Zn,1 Zn,2 . . . Zn,p

























=

[

u1 u2 . . . up

]

=

















zT
1

...

zT
n

















.

Then ui corresponds to the ith principal component.

The data matrix W corresponds to the usual axes where ei is a vector of zeroes

except for a one in the ith position. Hence the ith axis corresponds to the ith variable Xi.

The data matrix Z corresponds to axes that are parallel to the axes of the hyperellipsoid

corresponding to the dispersion matrix Σ̂. These axes are a rotation of the usual axes

about the origin.

If Σ̂ = S, then the definition of the estimated proportion of the total population

variance may make little sense if the variables are measured on different scales. Assume

the population covariance matrix is I2. Then λj/(λ1 + λ2) = 0.5, but if xj is multiplied

by 3 then V (xj) = 9 = λj, and λj/(λ1 + λ2) = 0.9. Then xj seems much more important

than the other variable just by scaling. This is why rule of thumb 1 says R should be used

instead of S if maxi=1,...,p S2
i /mini=1,...,p S2

i > 2.

The hyperellipsoid {x|D2
x ≤ h2} = {x : (x−µ)T Σ−1(x−µ) ≤ h2}, where h2 = u1−α

and P (D2
xi

≤ u1−α) = 1 − α, is the highest density region covering 1 − α of the mass

for a large class of elliptically contoured distributions. The hyperellipsoid is centered at

µ. If µ = 0, then points at squared distance wT Σ−1w = h2 from the origin lie on the

hyperellipsoid centered at the origin whose axes are given by the eigenvectors ei where the

half length in the direction of ei is h
√

λi.
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The projection vector of a vector x onto a vector e is

eeTx

eT e
.

Hence if eTe = 1, the projection vector is v = [eT x]e and ‖v‖ = |eT x|. So eT x is the

signed length of the projection vector of x onto e, and eTx is called the (scalar) projection

of x onto e.

The ei are the directions of the axes through the origin that are parallel to the axes

of the hyperellipsoid. Suppose µ = 0. Then the ith principle component is the linear

combination of the predictors that is the projection on the ith axis of the hyperellipsoid.

That is, get the projection vectors of the xi onto ei and find their signed lengths eT
i xi

from the origin. Then these scalars form the ith principal components corresponding to

the n data cases x1, ..., xn. So the first principal component is the projection on the major

axis, the second principal component is the projection on the next longest axis, ..., the pth

principal component is the projection on the minor axis. The axes are orthogonal, so the

directions ei are orthogonal. When µ 6= 0 the projections on ei are projections on the axes

through the origin that are parallel to the axes of the hyperellipsoid.

The first k principal components can be regarded as a good k dimensional approxi-

mation to the p dimensional data. Suppose the data cloud approximates the hyperellipsoid

{x|D2
x ≤ h2} where h2 = D2

(n), the largest squared distance, so the hyperellipsoid contains

all of the data. Then a good one dimensional approximation is the projection on the major

axis since this captures the dimension with the greatest variability or dispersion as mea-

sured by Σ. A good two dimensional approximation uses the projection on the major axis

and the projection on the next largest axis since these are the two orthogonal directions

where the two projections have the greatest variability. Following Mardia, Kent and Bibby

(1979, p. 220), if S (with centered data) or R is used as the dispersion matrix, then the

vector space spanned by the first k principal components has smaller mean square deviation

from the p variables than any other k−dimensional subspace.
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Since Z represents a new coordinate system, the ith case xi = (xT
i êi)ê1 + · · · +

(xT
i êp)êp = Zi,1ê1 + · · · + Zi,pêp. Also xi = x̃i(k) + ri(k) where x̃i(k) =

∑k
j=1 Zi,j êj and

the residual vector ri(k) =
∑p

j=k+1 Zi,j êj . The squared length of the residual vector is

‖ri(k)‖2 = ri(k)T ri(k) = Z2
i,k+1 + · · · + Z2

i,p.

Suppose S or R is used as the as the dispersion matrix and that T = 0 so the hyper-

ellisoid is centered at the origin. The eigenvector corresponding to the largest eigenvalue

determines the major axis of the hyperellipsoid. This axis forms the line through the origin

such that the sum of squared distances from the n data points xi to this line is a minimum.

If the data points are projected onto a hyperplane perpendicular to the major axis line, then

the eigenvector corresponding to the next largest eigenvalue determines the second longest

axis of the hyperellipsoid, and this axis is the line through the origin in the hyperplane

that minimizes the sum of squared distances, and so on.

When the covariance matrix is used, that the first principal component eT
1 x is the

linear combination gT
1 x that maximizes Var(gT

1 x) subject to gT
1 g1 = 1, while the jth

principal component is the linear combination gT
j x that maximizes Var(gT

j x) subject to

gT
j gj = 1 and Cov(gT

j x, gT
k x) = 0 for k < j.

Dimension reduction involves using the first k principal components to approximate

the data matrix without losing much important information. Want the proportion of the

trace explained by the first k principal components to be higher than 0.8 or 0.9.

Rule of thumb 2. The value of k should be such that

∑k
i=1 λ̂i

∑p
i=1 λ̂i

≥ 0.9.

The scree plot of component number versus eigenvalue is also useful for choosing k since

often there is a sharp bend in the scree plot when the components are no longer important.

See Cattell (1966).

Following Johnson and Wichern (1988, p. 343, 347), let x = (X1, ..., Xp) be a random

vector such that the xi and x have the same distribution. Let Yi = eT
i x be the population

6



principal components based on the covariance matrix Cov(x) = Σx. Let ei = (e1i, ..., epi)
T .

Then eki is proportional to the correlation between Yi and Xk, in fact,

corr(Yi, Xk) =
eki

√
λi√

σkk

for i, k = 1, ..., p. If the correlation matrix ρ is used instead of Σx, then corr(Yi, Xk) =

eki

√
λi.

Following Johnson and Wichern (1988, p. 252-253), some software that uses S or R

centers the data by using xi − x. Centering does not change S or R but makes the ith

principal component equal to êT
i (x − x) for observation x.

Warning: If λ̂p ≈ 0, then Σ̂ is nearly singular, and there could be an unnoticed linear

dependency in the data set, e.g. Xp ≈ ∑p−1
i=1 ciXi. Then one or more of the variables is

redundant and should be deleted. Following Johnson and Wichern (1988, p. 360), suppose

p = 4 and X1, X2 and X3 are midterm exam scores while X4 is the total of the midterm

scores so that X4 = X1 + X2 + X3. Due to rounding, λ̂4 could be nonzero, but very close

to zero.
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CHAPTER 1

ROBUST PRINCIPAL COMPONENT ANALYSIS

A robust “plug in” method uses an analysis based on the (λ̂i, êi) computed from

a robust dispersion estimator C . The RPCA method performs the classical principal

component analysis on the RMVN subset U of cases that are given weight 1, using either

the sample covariance matrix CU = SU or the sample correlation matrix RU .

The following assumption (E1) gives a class of distributions where the Olive and

Hawkins (2010) FCH, RFCH and RMVN robust estimators can be proven to be
√

n consis-

tent. Cator and Lopuhaä (2010, 2012) show that MCD is consistent provided that the MCD

functional is unique. Distributions where the functional is unique are called “unimodal,”

and rule out, for example, a spherically symmetric uniform distribution.

Assumption (E1): The x1, ..., xn are iid from a “unimodal” ECp(µ,Σ, g) distribu-

tion with nonsingular covariance matrix Cov(xi) where g is continuously differentiable with

finite 4th moment:
∫

(xTx)2g(xTx)dx < ∞.

Under assumption (E1), CU and RU are
√

n consistent highly outlier resistant es-

timators of cΣ = dCov(x) and the population correlation matrix DCov(x)D = ρ, re-

spectively, where D = diag(1/
√

σ11, ..., 1/
√

σpp) and the σii are the diagonal entries of

Cov(x) = Σx = cXΣ. Let λi(A) be the eigenvalues of A where λ1(A) ≥ λ2(A) ≥ · · · ≥

λp(A). Let λ̂i(Â) be the eigenvalues of Â where λ̂1(Â) ≥ λ̂2(Â) ≥ · · · ≥ λ̂(Â).

Theorem 3. Under (E1), the correlation of the eigenvalues computed from the clas-

sical PCA and RPCA converges to 1 in probability.

Proof: The eigenvalues are continuous functions of the dispersion estimator, hence

consistent estimators of dispersion give consistent estimators of the population eigenvalues.

See Eaton and Tyler (1991) and Bhatia, Elsner and Krause (1990). Let λi(Σ) = λi be the

eigenvalues of Σ so cXλi are the eigenvalues of Cov(x) = Σx. Under (E1), λi(S)
P→ cXλi

8



and λi(CU )
P→ cλi =

c

cX
cXλi = d cX λi. Hence the population eigenvalues of Σx and

d Σx differ by the positive multiple d, and the population correlation of the two sets of

eigenvalues is equal to one.

Now let λi(ρ) = λi. Under (E1), both R and RU converge to ρ in probability, so

λ̂i(R)
P→ λi and λ̂i(RU)

P→ λi for i = 1, ..., p. Hence the two population sets of eigenvalues

are the same and thus have population correlation equal to one. QED

Note that if Σx e = λe, then

d Σx e = dλe.

Thus λ̂i(S)
P→ λi(Σx) and λ̂i(CU)

P→ dλi(Σx) for i = 1, ..., p. Since plotting software

fills space, two scree plots of two sets of eigenvalues that differ by a constant positive

multiple will look nearly the same, except for the labels of the vertical axis, and the “trace

explained” by the largest k eigenvalues will be the same for the two sets of eigenvalues.

Theorem 2 implies that for a large class of elliptically contoured distributions and for large

n, the classical and robust scree plots should be similar visually, and the “trace explained”

by the classical PCA and the robust PCA should also be similar.

The eigenvectors are not continuous functions of the dispersion estimator, and the

sample size may need to be massive before the robust and classical eigenvectors or principal

components have high absolute correlation. In the software, sign changes in the eigenvectors

are common, since Σx e = λe implies that Σx (−e) = λ(−e).

9



CHAPTER 2

EXAMPLES AND SIMULATIONS

Table 2.1. Estimation of Σ with γ = 0.4, n = 35p

p type n pm Q

5 1 135 16 0.153

5 2 135 6 0.213

10 1 350 21 0.326

10 2 350 6 0.326

15 1 525 26 0.856

15 2 525 7 0.675

20 1 700 33 0.798

20 2 700 8 0.792

25 1 875 39 1.014

25 2 875 10 1.867

The robust estimator used was the RMVN estimator of Olive and Hawkins (2010) and

Zhang, Olive and Ye (2012). This estimator was shown to be
√

n consistent and highly

outlier resistant for a large class of elliptically contoured distributions.

A simulation was done to check that RMVN estimates Σ if the clean data is MVN

and γ is the percentage of outliers. The clean cases were multivariate normal (MVN):

x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were x ∼ Np((0, ..., 0, pm)T , 0.0001Ip), a near

point mass at the major axis, and the mean shift x ∼ Np(pm1, diag(1, 2, ..., p)) where

1 = (1, ..., 1)T . On clean MVN data, n ≥ 20p gave good results for 2 ≤ p ≤ 100. For the

10



contaminated MVN data, the first nγ cases were outliers, and the classical estimator Sc

was computed on the clean cases. The diagonal elements of Sc and Σ̂RMV N should both

be estimating (1, 2, ..., p)T . The average diagonal elements of both matrices were computed

for 20 runs, and the criterion Q was the sum of the absolute differences of the p diagonal

elements from the two averaged matrices. Since γ = 0.4 and the initial subsets for the

RMVN estimator are half sets, the simulations used n = 35p. The values of Q shown in

Table 2.1 correspond to good estimation of the diagonal elements. Values of pm slightly

smaller than the tabled values led to poor estimation of the diagonal elements.

−1300 −1250 −1200 −1150

−
1
0
0
0

0
5
0
0

1
0
0
0

PC2

P
C

1

Figure 2.1. First Two Principal Components for Buxton data.

Example 1. Buxton (1920) gives various measurements on 87 men including height,

head length, nasal height, bigonal breadth and cephalic index. Five heights were recorded

to be about 19mm with the true heights recorded under head length. Performing a

classical principal components analysis on these five variables using the covariance ma-

trix resulted in a first principal component corresponding to a major axis that passed

through the outliers. See Figure 2.1 where the second principal component is plotted

versus the first. The robust PCA, or the classical PCA performed after the outliers are

removed, resulted in a first principal component that was approximately − height with
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RPC2
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1

Figure 2.2. First Two Robust Principal Components with Outliers Omitted.

ê1 ≈ (−1.000, 0.002,−0.023,−0.002,−0.009)T while the second robust principal compo-

nent was based on the eigenvector ê2 ≈ (−0.005, 0.848,−0.054,−0.048, 0.525)T . The plot

of the first two robust principal components, with the outliers deleted, is shown in Figure

2.2. These two components explain about 86% of the variance.

The R function prcomp can be used to compute output. Suppose the data matrix is

z. The commands

zz <- prcomp(z)

zz

will create and display output. The term zz$sd gives the square roots of the eigenvalues

while the term zz$rot displays the eigenvectors using the covariance matrix. Hence Figure

2.1 can be made with the following commands.

z <- cbind(buxy,buxx)

zz <- prcomp(z)

PC1 <- z%*%zz$rot[,1]

PC2 <- z%*%zz$rot[,2]
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plot(PC2,PC1)
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Figure 2.3. Robust Scree Plot.

It usually makes more sense to use the correlation matrix. The mpack function rprcomp

does robust principal components. The two functions use “scale=T” or “cor=T” to use a

correlation matrix.

zzcor <- prcomp(z,scale=T)

zrcor <- rprcomp(z,cor=T)

Then

zrcor$out$sd^2

gives the eigenvalues and zrcor$out$rot gives the eigenvectors. Scree plots can be made

with the following commands, and Figure 2.3 shows the robust scree plot which suggests

that the last principal component can be deleted.

EIG <- zzcor$sd^2

plot(EIG)

#robust scree plot
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REIG <- zrcor$out$sd^2

plot(REIG)

The outliers are known from the DD plot so the robust principal component analysis

can be done with and without the outliers. The data matrix zw is the clean data without

the outliers.

zw <-z[-c(61,62,63,64,65),]

zzcorc <- prcomp(zw,scale=T)

# clean data with corr matrix

> zzcorc

Standard deviations:

[1] 1.3184358 1.1723991 1.0155266 0.7867349 0.4867867

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy 0.01551 0.71466 0.02247 -0.68890 -0.11806

len 0.70308 -0.06778 0.07744 -0.16901 0.68302

nasal 0.15038 0.68868 0.02042 0.70385 0.08539

bigonal 0.11646 -0.04882 0.96504 0.02261 -0.22855

cephalic -0.68502 0.08950 0.24854 -0.03071 0.67825

zrcor <- rprcomp(z,cor=T)

> zrcor

$out

Standard deviations:

[1] 1.3323400 1.1548879 0.9988643 0.8182741 0.4730769

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy -0.10724 -0.69431 -0.11325 0.69184 -0.12238
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len 0.69909 -0.06324 0.02560 0.17129 0.69085

nasal 0.04094 -0.70310 -0.08718 -0.70093 0.07123

bigonal 0.02638 -0.13994 0.98660 0.01120 -0.07884

cephalic -0.70527 -0.00317 0.07443 0.02432 0.70460

> zrcorc <- rprcomp(zw,cor=T)

> zrcorc

$out

Standard deviations:

[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy -0.21306 0.67557 -0.01727 -0.68852 -0.15446

len 0.67272 0.21639 0.05560 -0.15178 0.68884

nasal -0.22213 0.66958 0.05174 0.68978 0.15441

bigonal -0.01374 -0.02995 0.99668 -0.03546 -0.06543

cephalic -0.67270 -0.21807 0.02363 -0.16076 0.68813

Note that the square roots of the eigenvalues, given by “Standard deviations,” do

not change much for the following three estimators: the classical estimator applied to the

clean data, and the robust estimator applied to the full data or the clean data. The first

eigenvector is roughly proportional to length − cephalic while the second eigenvector is

roughly proportional to buxy + nasal. The third principal component is highly correlated

with bigonal, the fourth principal component is proportional to buxy − nasal, and the fifth

principal component to length + cephalic.

Consider several estimators described in Olive and Hawkins (2010). In simulations for

principal component analysis, FCH, RMVN, OGK and Fake-MCD seem to estimate cΣx

if x = Az + µ where z = (z1, ..., zp)
T and the zi are iid from a continuous distribution
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with variance σ2. Here Σx = Cov(x) = σ2AAT . The bias for the MB estimator seemed to

be small. It is known that affine equivariant estimators give unbiased estimators of cΣx if

the distribution of zi is also symmetric. DGK and Fake-MCD (with fixed random number

seed) are affine equivariant. FCH and RMVN are asymptotically equivalent to a scaled

DGK estimator. But in the simulations the results also held for skewed distributions.

The simulations used 1000 runs where x = Az and z ∼ Np(0, Ip), z ∼ LN(0, Ip)

where the marginals are iid lognormal(0,1), or z ∼ MV Tp(1), a multivariate t dis-

tribution with 1 degree of freedom so the marginals are iid Cauchy(0,1). The choice

A = diag(
√

1, ...,
√

p) results in Σ = diag(1, ..., p). Note that the population eigenval-

ues will be proportional to (p, p − 1, ..., 1)T and the population “variance explained” by

the ith principal component is λi/
∑p

j=1 λj = 2(p + 1 − i)/[p(p + 1)]. For p = 4, these

numbers are 0.4, 0.3 and 0.2 for the first three principal components. If the “correlation”

option is used, then the population “correlation matrix” is the identity matrix Ip, the ith

population eigenvalue is proportional to 1/p and the population “variance explained” by

the ith principal component is 1/p.

Table 2.2 shows the mean “variance explained” (M) along with the standard deviations

(S) for the first three principal components. Also ai and pi are the average absolute value of

the correlation between the ith eigenvectors or the ith principal components of the classical

and robust methods. Two rows were used for each “n–data type” combination. The ai are

shown in the top row while the pi are in the lower row. The values of ai and pi were similar.

The standard deviations were slightly smaller for the classical PCA for normal data. The

classical method failed to estimate (0.4,0.3,0.2) for the Cauchy data. For the lognormal

data, RPCA gave better estimates, and the pi were not high except for n = 10000.

To compare affine equivariant and non-equivariant estimators, Maronna and Zamar

(2002) suggest using Ai,i = 1 and Ai,j = ρ for i 6= j and ρ = 0, 0.5, 0.7, 0.9, and 0.99. Then

Σ = A2. If ρ is high, or if p is high and ρ ≥ 0.5, then the data are concentrated about

the line with direction 1 = (1, ..., 1)T . For p = 50 and ρ = 0.99, the population variance
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Table 2.2. Variance Explained by PCA and RPCA, p = 4

n type M/S vexpl rvexpl a1/p1 a2/p2 a3/p3

40 N M 0.445,0.289,0.178 0.472,0.286,0.166 0.895 0.821 0.825

S 0.050,0.037,0.032 0.062,0.043,0.037 0.912 0.813 0.804

100 N M 0.419,0.295,0.191 0.425,0.293,0.189 0.952 0.926 0.963

S 0.033,0.030,0.024 0.040,0.032,0.027 0.956 0.923 0.953

200 N M 0.410,0.296,0.196 0.410,0.296,0.196 0.988 0.978 0.979

S 0.024,0.024,0.017 0.027,0.024,0.019 0.991 0.973 0.980

400 N M 0.404,0.298,0.198 0.406,0.298,0.198 0.994 0.991 0.996

S 0.019,0.017,0.014 0.021,0.019,0.015 0.995 0.990 0.994

1000 N M 0.399,0.301,0.199 0.399,0.300,0.199 0.998 0.998 0.999

S 0.013,0.010,0.009 0.014,0.011,0.010 0.999 0.997 0.998

40 C M 0.765,0.159,0.056 0.514,0.275,0.147 0.563 0.519 0.511

S 0.165,0.112,0.051 0.078,0.055,0.040 0.776 0.383 0.239

100 C M 0.762,0.156,0.060 0.455,0.286,0.173 0.585 0.527 0.528

S 0.173,0.112,0.055 0.054,0.041,0.034 0.797 0.377 0.269

200 C M 0.743,0.172,0.062 0.432,0.290,0.184 0.620 0.555 0.580

S 0.185,0.125,0.055 0.042,0.0313,0.029 0.800 0.445 0.300

400 C M 0.756,0.162,0.060 0.413,0.296,0.194 0.608 0.562 0.575

S 0.172,0.113,0.054 0.030,0.025,0.022 0.796 0.397 0.308

1000 C M 0.751,0.168,0.058 0.408,0.297,0.196 0.629 0.563 0.582

S 0.159,0.107,0.047 0.023,0.019,0.015 0.811 0.437 0.325

40 L M 0.539,0.256,0.139 0.521,0.268,0.146 0.610 0.509 0.530

S 0.127,0.075,0.054 0.099,0.061,0.047 0.643 0.439 0.398

100 L M 0.482,0.270,0.165 0.459,0.279,0.172 0.647 0.555 0.566

S 0.180,0.063,0.052 0.077,0.047,0.041 0.654 0.492 0.474

200 L M 0.463,0.272,0.173 0.436,0.285,0.182 0.668 0.544 0.633

S 0.110,0.059,0.054 0.056,0.041,0.034 0.642 0.519 0.565

400 L M 0.437,0.282,0.185 0.416,0.290,0.194 0.748 0.639 0.739

S 0.080,0.048,0.044 0.049,0.035,0.033 0.727 0.594 0.690

1000 L M 0.423,0.289,0.188 0.425,0.293,0.189 0.871 0.797 0.928

S 0.073,0.042,0.039 0.032,0.024,0.025 0.837 0.778 0.893

10000 L M 0.400,0.301,0.200 0.403,0.293,0.204 0.982 0.967 0.991

S 0.027,0.023,0.018 0.013,0.011,0.009 0.976 0.967 0.989
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explained by the first principal component is 0.999998. If the “correlation” option is used,

then there is still one extremely dominant principal component unless both p and ρ are

small.

Table 2.3. Variance Explained by PCA and RPCA, SSD = 107 SD, p = 50

n type vexpl SSD rvexpl SSD a1

200 N 0.999998 1.958 0.999998 2.867 0.687

400 N 0.999981 1.600 0.999981 1.632 0.883

800 N 0.999981 1.214 0.999981 1.275 0.872

1000 N 0.999998 0.917 0.999998 0.971 0.944

200 C 0.999954 109.3 0.999981 4.352 0.460

400 C 0.999913 601.4 0.999981 2.716 0.450

800 C 0.999974 363.6 0.999981 2.058 0.435

1000 C 0.999996 161.3 0.999998 1.482 0.112

200 L 0.999982 2.024 0.999979 3.292 0.486

400 L 0.999981 2.047 0.999979 2.134 0.506

800 L 0.999981 1.131 0.999979 1.657 0.468

1000 L 0.999998 0.919 0.999998 1.508 0.175

Table 2.3 shows the mean “variance explained” along with the standard deviations

multiplied by 107 for the first principal component. The a1 value is given but p1 was

always 1.0 to many decimal places even with Cauchy data. Hence the eigenvectors from

the robust and classical methods could have low absolute correlation, but the data was so

tightly clustered that the first principal components from the robust and classical methods
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had absolute correlation near 1.
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CHAPTER 3

CONCLUSIONS

Jolliffe (2010) is an authoritative text on PCA. Cattell (1966) and Bentler and Yuan

(1998) are good references for scree plots. Mφller, von Frese and Bro (2005) discuss PCA,

principal component regression and drawbacks of M estimators. Waternaux (1976) gives

some large sample theory for PCA. In particular, if the xi are iid from a multivariate

distribution with fourth moments and a covariance matrix Σx such that the eigenvalues

are distinct and positive, then
√

n(λ̂i −λi)
D→ N(0, κi +2λ2

i ) where κi is the kurtosis of the

marginal distribution of xi, for i = 1, ..., p.

The literature for robust PCA is large, but the “high breakdown” methods are im-

practical or not backed by theory. Some of these methods may be useful as outlier diagnos-

tics. The theory of Boente (1987) for mildly outlier resistant principal components is not

based on DGK estimators since the weighting function on the Di is continuous. Spherical

principal components is a mildly outlier resistant bounded influence approach suggested

by Locantore, Marron, Simpson, Tripoli, Zhang and Cohen (1999). Boente and Fraiman

(1999) claim that basis of the eigenvectors is consistently estimated by spherical principal

components for elliptically contoured distributions. Also see Maronna, Martin and Yohai

(2006, p. 212-213) and Taskinen, Koch and Oja (2012).

Simulations were done in R. The MASS library was used to compute FMCD and the

robustbase library was used to compute OGK. The mpack function covrmvn computes

the FCH, RMVN and MB estimators while covfch computes the FCH, RFCH and MB

estimators. The following functions were used in the three simulations and have more

outlier configurations than the two described in the simulation. Function covesim was

used to produce Table 2.1 and pcasim for Tables 2.2 and 2.3.

For a nonsingular matrix, the inverse of the matrix, the determinant of the matrix

and the eigenvalues of the matrix are continuous functions of the matrix. Hence if Σ̂
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is a consistent estimator of Σ, then the inverse, determinant and eigenvalues of Σ̂ are

consistent estimators of the inverse, determinant and eigenvalues of Σ. See, for example,

Bhatia, Elsner and Krause (1990), Stewart (1969) and Severini (2005, p. 348-349).
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