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A double-change circular covering design (dcccd) is an ordered set of blocks with block

size k is an ordered collection of b block, B = {B1, · · · , Bb}, each an unordered subset of

k distinct elements from [v], which obey: (1) each block differs from the previous block by

two elements, as does the last from the first, and, (2) every unordered pair of [v] appears in

at least one block. The first object is to minimize b for a fixed v when k = 3 and arrange

them in a circular manner. And the second object is to determine whether the covering

designs are economical or tight.
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INTRODUCTION

The theory of Statictical and Combinatoral Designs was developed last century by

statisticians and mathematicians. It is now an important branch of combinatorics with

researchers, both industrial and academic worldwide.

Designs for experiments are used worldwide by agricultural scientists when testing

new fertilizers, pharmaceutical companies in testing new drugs, and sport organizations for

arranging game schedules. Any advance in the theory of Designs aids these people.

In Chapter 1, general definitions and properties of double-change covering designs are

introduced. And definitions of Latin square and quasigroups are given is the first chapter.

We will also give useful theorems that are used in next two chapters.

Chapter 2 deals with the Steiner Triple systems. By constructing Steiner Triple

systems we find that tight and economical circular double-change covering designs exists

for v ≡ 1 or 3 (mod 6).

In chapter 3 we will give constructions for circular double-change covering designs for

v ≡ 0, 2, 4, 5 (mod 6) when k = 3 and discuss whether they are economical or tight.
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CHAPTER 1

DOUBLE CHANGE COVERING DESIGNS

1.1 INTRODUCTION TO COMBINATORIAL COVERING DESIGNS

Combinatorial Design Theory is the study of arranging elements of a finite set into

subsets so that certain specified properties are satisfied. And if each pair of elements from

the set is covered by at least one subset then the design is called a covering design.

For example, suppose it is required to select 3-sets from the seven objects

{1,2,3,4,5,6,7} in such a way that each object occurs in three of the 3-sets and ev-

ery intersection of two 3-sets has precisely one member. The solution to this problem-

the way of selecting the 3-sets-is a combinatorial design. One possible solution is

{123,145,167,246,257,347,356} where 123 represents {1,2,3} and so on [6].

Many of the fundamental questions which combinatorial design theory concerns are

existence problems: Does a design of a specified type exist? Modern design theory includes

many existence results as well as nonexistence results.

Design theory is a field of combinatorics which makes use of tools from linear algebra,

group theory, the theory of finite fields, number theory as well as combinatorics and with

applications in areas such as statistics, computer science, biology, engineering and tourna-

ment scheduling.

We will use a specific type of covering design called a block design throughout this

paper. Consider the following example: Suppose a company wants to test certain number,

say v, types of cars to see which is the best? with minimum number of drivers, say b. It

would be expensive and time consuming if each driver compared all v cars, so the company

decides to have each driver compare a portion of cars. So the company forms subsets of

v into blocks, say B1, B2, · · · , Bb, to test for the b drivers. Thus a driver can make com-

parisons of each pair of cars in the given block; but in order to be efficient, we wish that

each pair of cars is tested exactly once. hence each pair of cars must appear in exactly one
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block. Answers to questions such as this one will be revealed in this paper.

1.2 BASIC DEFINITIONS AND PROPERTIES

Definition 1.2.1. A design is a pair (X,B) such that the following properties are satisfied:

• X is a set of elements called points.

• B is a collection of nonempty subsets of X called blocks.

Balanced incomplete block designs are probably the most-studied type of design. The study

of balanced incomplete block designs was begun in the 1930s by Fisher and Yates [5].

Definition 1.2.2. Let v, k and λ be positive integers such that v > k ≥ 2. A

(v, k, λ)−balanced incomplete block design ((v, k, λ)−BIBD) is a design (X,B) such that

the following properties are satisfied:

1. |X| = v

2. each block contains exactly k points

3. every pair of distinct points is contained in exactly λ blocks.

Property 3 in the definition above is the ”balance” property. A BIBD is called an incomplete

block design because k < v, and hence all its blocks are incomplete blocks.

Example 1.2.1. A (7, 3, 1)− BIBD.

X = {1, 2, 3, 4, 5, 6, 7} and

B = {123, 145, 167, 246, 257, 347, 356}

This BIBD has a nice diagrammatic representation; see Figure 1.1. The blocks of the BIBD

are the six lines and the circle in this diagram [1], [5].

3



Figure 1.1. The Fano plane: A (7,3,1)-BIBD

Definition 1.2.3. A double-change covering design(dccd) based on the set [v] =

{1, 2, · · · , v} with block size k is an ordered collection of b block, B = {B1, · · · , Bb}, each

an unordered subset of k distinct elements from [v], which obey:

1. each block differs from the previous block by two elements, i.e., |Bi−1 ∩ Bi| = k − 2

for i = 2, · · · , b;

2. every unordered pair {x, y} of [v], with x 6= y, appears in at least one block

We say the design is circular if the last block, Bb, differs from the first, B1, by two

elements, i.e., |Bb ∩ B1| = k − 2 and we say an element is introduced in a block if it one of

the two new elements changed in the block. The term ‘covering’ connotes that all pairs of

elements from X are covered within blocks [4].

4



For example, a dccd with (v, k) = (7, 3) is

1 2 3

1 4 6

1 5 7

3 5 4

2 5 6

3 7 6

2 7 4

We now state and prove the following general result of BIBDs.

Theorem 1.2.1. In a D = (v, k, λ) design based on S, let b be the number of blocks

and let r be the repetition number(i.e. the number of times each element occurs). Then

λ(v − 1) = r(k − 1) and bk = vr.

Proof : Choose any x ∈ S. Let it occur rx times in D. So, the number of pairs (x, y)

is rx(k − 1) since there are k − 1 such pairs per block and rx such blocks. Now x occurs

with v − 1 other elements y in pair (x, y), each pair occurs λ times. So, the number of

pairs containing x is also λ(v − 1). So, rx(k − 1) = λ(v − 1). So, rx = λ(v−1)
k−1

. Since rx is

uniquely determined by v, k and λ it is independent of the choice of x. So r = rx = λ(v−1)
k−1

and henceλ(v − 1) = r(k − 1).

To prove that bk = vr, note that each block has k elements and so the b blocks contain bk

elements including repetitions. But each x occurs r times in the blocks. So we must have

bk = vr.

For a fixed v and k, where v ≥ k + 1 and k ≥ 2, we denote by b∗(v, k) the smallest b

for which there exists circular dccd.
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Theorem 1.2.2. For v ≥ 4 and k ≥ 3, the value of b∗(v, k) satisfies

b∗(v, k) ≥

⌈

(v

2
)

2k−3

⌉

Proof : A circular dccd must cover all
(

v

2

)

pairs. Since two elements are introduced in

each block, 2(k − 2) + 1 pairs are covered per block. Thus,

b∗(v, k) ∗ (2k − 3) ≥
(

v

2

)

b∗(v, k) ≥

⌈

(v

2
)

2k−3

⌉

.

If b∗(v, k) =
(v

2
)

2k−3
then the design is called tight and if b∗(v, k) =

⌈

(v

2
)

2k−3

⌉

then the

design is called economical.

1.3 LATIN SQUARES AND QUASIGROUPS

Definition 1.3.1. A Latin square of order n with entries from an n−set X is an n × n

array L in which every cell contains an element of X such that every row and every column

of L is a permutation of X.

Example 1.3.1. A Latin square of order 4.

1 2 3 4

4 1 3 2

3 4 1 2

2 3 4 1

Definition 1.3.2. A quasigroup of order n is a pair (Q, ◦), where Q is a set of size n and

“◦” is a binary operation on Q such that for every pair of elements a, b ∈ Q, the equations

a ◦ x = b and y ◦ a = b have unique solutions.
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Example 1.3.2. A quasigroup of order 3.

◦ 1 2 3

1 1 2 3

2 3 1 2

3 2 3 1

Definition 1.3.3. A Latin square is said to be idempotent if cell (i, i) contains symbol i

for 1 ≤ i ≤ n. A Latin square is said to be commutative if cells (i, j) and (j, i) contain the

same symbol for all 1 ≤ i, j ≤ n.

Example 1.3.3. The following Latin square is both idempotent and commutative.

1 4 2 5 3

4 2 5 3 1

2 5 3 1 4

5 3 1 4 2

3 1 4 2 5

Definition 1.3.4. A Latin square (quasigroup) of order 2n is said to be half-idempotent if

for 1 ≤ i ≤ n cells (i, i) and (n + i, n + i) contains the symbol i.

Example 1.3.4. The following Latin square is both half-idempotent and commutative.

◦ 1 2 3 4

1 1 3 2 4

2 3 2 4 1

3 2 4 1 3

4 4 1 3 2

7



The building blocks we need for the Bose construction and for the Skolem construction

are idempotent commutative quasigroup of order 2n+1 and half-idempotent commutative

quasigroup of order 2n respectively.
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CHAPTER 2

THE STEINER TRIPLE SYSTEMS

2.1 INTRODUCTION TO STEINER TRIPLE SYSTEMS

Definition 2.1.1. A Steiner Triple System denoted by STS(v) is a pair (S, T ) consisting

of a set S with v elements and a set T consisting of triples of S (called blocks) such that

every pair of elements of S appear together in a unique triple of T .

In other words a (v, 3, 1) design is a Steiner Triple System.

Example 2.1.1. Consider the complete graph Kv on v vertices . A decomposition of Kv

into triangles(K3’s) with no common edges is equivalent to a Steiner Triple System.

Example 2.1.2. Kirkman’s school girls problem (1850): Fifteen young ladies in a

school walk out three abreast for seven days in succession: it is required to arrange them

daily so that no two shall walk twice abreast [2], [6].

A solution to this problem is a STS(15). If the girls are numbered from 1 to 15, the following

is one solution.

Table 2.1. A solution of Kirkman’s school girl problem

Mon Tue Wed Thu Fri Sat Sun

1,2,3 1,4,5 2,4,6 3,4,7 1,6,7 3,5,6 2,5,7

4,10,14 2,13,15 1,8,9 2,12,14 2,9,11 2,8,10 1,14,15

7,8,15 3,9,10 3,12,15 1,10,11 4,8,12 4,11,15 4,9,13

5,9,12 6,8,14 5,11,14 5,8,13 3,13,14 1,12,13 3,8,11

6,11,13 7,11,12 7,10,13 6,9,15 5,10,15 7,9,14 6,10,12
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Steiner triple system can exist only for certain values of v. Note that in a STS(v),

λ = 1 and k = 3. Therefore by the Theorem 1.2.1, we have v − 1 = 2r and 3b = vr. This

gives b = v(v−1)
6

.

Theorem 2.1.1. There exist an STS(v) only if v ≡1 or 3 (mod 6).

Proof : Since k = 3 and λ = 1 we have v = 2r + 1 ; i.e., v is odd. Since b = v(v−1)
6

and

b must be an integer we will have v(v − 1) ≡ 0 (mod 6). This is satisfied if and only if

v ≡ 0, 1, 3, 4 (mod 6). However since v is odd we have v ≡ 1 or 3 (mod 6).

2.2 CONSTRUCTION OF A CIRCULAR DCCD FOR V ≡ 3 (MOD 6)

The Bose Construction: Let v = 6n + 3 and let (Q, ◦) be an idempotent commutative

quasigroup of order 2n + 1, where Q = {1, 2, 3, · · · , 2n + 1}. Let S = Q × {1, 2, 3}, and

define T to contain the following two types of triples. [3]

Type 1: {(i, 1), (i, 2), (i, 3)} for 1 ≤ i ≤ 2n + 1

Type 2: {(i, 1), (j, 1), (i ◦ j, 2)}, {(i, 2), (j, 2), (i ◦ j, 3)}, {(i, 3), (j, 3), (i ◦ j, 1)}

for 1 ≤ i < j ≤ 2n + 1

Then (S, T ) is a Steiner triple system of order 6n + 3, STS(6n + 3).

Example 2.2.1. Construct an STS(9) using the Bose construction.

We will use the following idempotent commutative quasigroup of order 3.

◦ 1 2 3

1 1 3 2

2 3 2 1

3 2 1 3
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Let S = {1, 2, 3} × {1, 2, 3}. Then T contains the following 12 triples:

Type 1: {(1,1),(1,2),(1,3)},{(2,1),(2,2),(2,3)},{(3,1),(3,2),(3,3)}

Type 2: {(1, 1), (2, 1), (3, 2)} {(1, 1), (3, 1), (2, 2)} {(2, 1), (3, 1), (1, 2)}

{(1, 2), (2, 2), (3, 3)} {(1, 2), (3, 2), (2, 3)} {(2, 2), (3, 2), (1, 3)}

{(1, 3), (2, 3), (3, 1)} {(1, 3), (3, 3), (2, 1)} {(2, 3), (3, 3), (1, 1)}

2.2.1 Construction of a circular dccd for v = 6n + 3 when n ≥ 1

Let

• B1 be the set of blocks of Type 2 of the form {(i, 1), (j, 1), (i ◦ j, 2)}

for 1 ≤ i < j ≤ 2n + 1

• B2 be the set of blocks of Type 2 of the form {(i, 2), (j, 2), (i ◦ j, 3)}

for 1 ≤ i < j ≤ 2n + 1

• B3 be the set of blocks of Type 2 of the form {(i, 3), (j, 3), (i ◦ j, 1)}

for 1 ≤ i < j ≤ 2n + 1

Arrangement of Bk for k = 1, 2 and 3: Since the third element of each block is

uniquely determined by the construction if we arrange the first two elements as a single

change design we will get blocks with a double change. Arrange the first two elements

using following steps [7].

• Fix i = 1. Arrange the blocks by changing j from 2 to 2n + 1. So, the last block will

be {(1, k), (2n + 1, k), ∗}

• Increase i up to 2n while keeping j as 2n + 1 until {(2n, k), (2n + 1, k), ∗} is reached

• When n = 1 Stop the process since we have reached {(2, k), (3, k), ∗} otherwise con-

tinue to the following steps.

11



• Fix j = 2n and increase i from 2 to 2n − 1 until {(2n − 1, k), (2n, k), ∗} is reached

• Fix j = 2n − 1 and increase i from 2 to 2n − 2 until {(2n − 2, k), (2n − 1, k), ∗} is

reached

• Repeat the process until {(2, k), (3, k), ∗} is reached

Example 2.2.2. Let v = 9 then n = 1 and following is an idempotent commutative quasi-

group of order 3 and a circular dccd(9, 3) with 12 blocks.

◦ 1 2 3

1 1 3 2

2 3 2 1

3 2 1 3

(1, 1), (2, 1), (3, 2) (1, 2), (2, 2), (3, 3) (1, 3), (2, 3), (3, 1)

(1, 1), (3, 1), (2, 2) (1, 2), (3, 2), (2, 3) (1, 3), (3, 3), (2, 1)

(2, 1), (3, 1), (1, 2) (2, 2), (3, 2), (1, 3) (2, 3), (3, 3), (1, 1)

(2, 1), (2, 2), (2, 3) (1, 1), (1, 2), (1, 3) (3, 1), (3, 2), (3, 3)

And if n ≥ 2, let B
′

1 be the set of blocks obtained from B1 by applying the following

changes.

• Swap the first two blocks i.e. {(1, 1), (2, 1), ∗} and {(1, 1), (3, 1), ∗}

• Insert the block {(2n+1, 1), (2n+1, 2), (2n+1, 3)} from the Type 1 blocks in between

the two blocks {(1, 1), (2n + 1, 1), ∗} and {(2, 1), (2n + 1, 1), ∗}

• For 4 ≤ i ≤ 2n, insert the block {(i, 1), (i, 2), (i, 3)} from the Type 1 blocks in between

the two blocks {(i, 1), (i + 1, 1), ∗} and {(2, 1), (i, 1), ∗}

12



Then use the following steps to construct a circular double change covering design for n ≥ 2.

• Step 1: List the blocks of B
′

1.

• Step 2: Insert the block {(2, 1), (2, 2), (2, 3)} from the Type 1 blocks. This can be

done always since the last block of B
′

1 is {(2, 1), (3, 1), ∗}.

• Step 3: List the blocks of B2. This can be done always since the first block

of B2 is {(1, 2), (2, 2), ∗}. Then swap the two blocks {(1, 2), (3, 2), (1 ◦ 3, 3)} and

{(2, 2), (3, 2), (2 ◦ 3, 3)}.

• Step 4: Insert the block {(1, 1), (1, 2), (1, 3)} from the Type 1 blocks. This can be

done always since the last block of B2 is {(1, 2), (3, 2), ∗}.

• Step 5: List the blocks of B3. This can be done always since the first block of B3 is

{(1, 3), (2, 3), ∗}. Then insert the block {(3, 1), (3, 2), (3, 3)}.

Note that in this construction we have

• 2n + 1 blocks of Type 1

• n(2n + 1) ∗ 3 blocks of Type 2.

Thus, the number of blocks b = 6n2 + 5n + 1. And

v(v − 1)

6
=

(6n + 3)(6n + 2)

6
= 6n2 + 5n + 1.

Since d6n2 + 5n + 1e = 6n2 + 5n + 1, this design is both economical and tight by the

Theorem 1.2.2.

Example 2.2.3. Let v = 15 then n = 2 and following is an idempotent commutative

quasigroup of order 5 and a circular dccd(15, 3) with 35 blocks.

13



◦ 1 2 3 4 5

1 1 4 2 5 3

2 4 2 5 3 1

3 2 5 3 1 4

4 5 3 1 4 2

5 3 1 4 2 5

(1, 1), (3, 1), (2, 2) (2, 1), (2, 2), (2, 3) (1, 3), (2, 3), (4, 1)

(1, 1), (2, 1), (4, 2) (1, 2), (2, 2), (4, 3) (1, 3), (3, 3), (2, 1)

(1, 1), (4, 1), (5, 2) (2, 2), (3, 2), (5, 3) (1, 3), (4, 3), (5, 1)

(1, 1), (5, 1), (3, 2) (1, 2), (4, 2), (5, 3) (1, 3), (5, 3), (3, 1)

(5, 1), (5, 2), (5, 3) (1, 2), (5, 2), (3, 3) (2, 3), (5, 3), (1, 1)

(2, 1), (5, 1), (1, 2) (2, 2), (5, 2), (1, 3) (3, 3), (5, 3), (4, 1)

(3, 1), (5, 1), (4, 2) (3, 2), (5, 2), (4, 3) (4, 3), (5, 3), (2, 1)

(4, 1), (5, 1), (2, 2) (4, 2), (5, 2), (2, 3) (2, 3), (4, 3), (3, 1)

(4, 1), (4, 2), (4, 3) (2, 2), (4, 2), (3, 3) (3, 3), (4, 3), (1, 1)

(2, 1), (4, 1), (3, 2) (3, 2), (4, 2), (1, 3) (2, 3), (3, 3), (5, 1)

(3, 1), (4, 1), (1, 2) (1, 2), (3, 2), (2, 3) (3, 1), (3, 2), (3, 3)

(2, 1), (3, 1), (5, 2) (1, 1), (1, 2), (1, 3)
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Example 2.2.4. Let v = 21 then n = 3 and following is an idempotent commutative

quasigroup of order 7 and a circular dccd(21, 3) with 70 blocks.

◦ 1 2 3 4 5 6 7

1 1 5 2 6 3 7 4

2 5 2 6 3 7 4 1

3 2 6 3 7 4 1 5

4 6 3 7 4 1 5 2

5 3 7 4 1 5 2 6

6 7 4 1 5 2 6 3

7 4 1 5 2 6 3 7
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(1, 1), (3, 1), (5, 2) (2, 1), (3, 1), (6, 2) (1, 3), (2, 3), (5, 1)

(1, 1), (2, 1), (2, 2) (2, 1), (2, 2), (2, 3) (1, 3), (3, 3), (2, 1)

(1, 1), (4, 1), (6, 2) (1, 2), (2, 2), (5, 3) (1, 3), (4, 3), (6, 1)

(1, 1), (5, 1), (3, 2) (2, 2), (3, 2), (6, 3) (1, 3), (5, 3), (3, 1)

(1, 1), (6, 1), (7, 2) (1, 2), (4, 2), (6, 3) (1, 3), (6, 3), (7, 1)

(1, 1), (7, 1), (4, 2) (1, 2), (5, 2), (3, 3) (1, 3), (7, 3), (4, 1)

(7, 1), (7, 2), (7, 3) (1, 2), (6, 2), (7, 3) (2, 3), (7, 3), (1, 1)

(2, 1), (7, 1), (1, 2) (1, 2), (7, 2), (4, 3) (3, 3), (7, 3), (5, 1)

(3, 1), (7, 1), (5, 2) (2, 2), (7, 2), (1, 3) (4, 3), (7, 3), (2, 1)

(4, 1), (7, 1), (2, 2) (3, 2), (7, 2), (5, 3) (5, 3), (7, 3), (6, 1)

(5, 1), (7, 1), (6, 2) (4, 2), (7, 2), (2, 3) (6, 3), (7, 3), (3, 1)

(6, 1), (7, 1), (3, 2) (5, 2), (7, 2), (6, 3) (2, 3), (6, 3), (4, 1)

(6, 1), (6, 2), (6, 3) (6, 2), (7, 2), (3, 3) (3, 3), (6, 3), (1, 1)

(2, 1), (6, 1), (4, 2) (2, 2), (6, 2), (4, 3) (4, 3), (6, 3), (5, 1)

(3, 1), (6, 1), (1, 2) (3, 2), (6, 2), (1, 3) (5, 3), (6, 3), (2, 1)

(4, 1), (6, 1), (5, 2) (4, 2), (6, 2), (5, 3) (2, 3), (5, 3), (7, 1)

(5, 1), (6, 1), (2, 2) (5, 2), (6, 2), (2, 3) (3, 3), (5, 3), (4, 1)

(5, 1), (5, 2), (5, 3) (2, 2), (5, 2), (7, 3) (4, 3), (5, 3), (1, 1)

(2, 1), (5, 1), (7, 2) (3, 2), (5, 2), (4, 3) (2, 3), (4, 3), (3, 1)

(3, 1), (5, 1), (4, 2) (4, 2), (5, 2), (1, 3) (3, 3), (4, 3), (7, 1)

(4, 1), (5, 1), (1, 2) (2, 2), (4, 2), (3, 3) (2, 3), (3, 3), (6, 1)

(4, 1), (4, 2), (4, 3) (3, 2), (4, 2), (7, 3) (3, 1), (3, 2), (3, 3)

(2, 1), (4, 1), (3, 2) (1, 2), (3, 2), (2, 3)

(3, 1), (4, 1), (7, 2) (1, 1), (1, 2), (1, 3)
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2.3 CONSTRUCTION OF A CIRCULAR DCCD FOR V ≡ 1 (MOD 6)

The Skolem Construction: Let v = 6n+1 and let (Q, ◦) be a half-idempotent commu-

tative quasigroup of order 2n, where Q = {1, 2, 3, · · · , 2n}. Let S = {∞}∪ (Q× {1, 2, 3}),

and define T to contain the following three types of triples.[3]

Type 1: {(i, 1), (i, 2), (i, 3)} for 1 ≤ i ≤ n

Type 2: {∞, (n + i, 1), (i, 2)}, {∞, (n+ i, 2), (i, 3)}, {∞, (n+ i, 3), (i, 1)} for 1 ≤ i ≤ n

Type 3: {(i, 1), (j, 1), (i ◦ j, 2)}, {(i, 2), (j, 2), (i ◦ j, 3)}, {(i, 3), (j, 3), (i ◦ j, 1)}

for 1 ≤ i < j ≤ 2n

Then (S, T ) is a Steiner triple system of order 6n + 1.

Example 2.3.1. Construct an STS(7) using the Skolem construction.

We will use the following half-idempotent commutative quasigroup of order 2.

◦ 1 2

1 1 2

2 2 1

Let S = {∞} ∪ ({1, 2} × {1, 2, 3}). Then T contains the following 7 triples:

Type 1: {(1,1),(1,2),(1,3)}

Type 2: {∞, (2, 1), (1, 2)}, {∞, (2, 2), (1, 3)}, {∞, (2, 3), (1, 1)}

Type 3: {(1,1),(2,1),(2,2)}, {(1,2),(2,2),(2,3)}, {(1,3),(2,3),(2,1)}

Then the following is a circular dccd(7, 3) with 7 blocks. i.e. the 6n + 1 construction

when n = 1.
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(1,1) (1,2) (1,3)

∞ (2,1) (1,2)

∞ (2,2) (1,3)

∞ (2,3) (1,1)

(1,1) (2,1) (2,2)

(1,2) (2,2) (2,3)

(1,3) (2,3) (2,1)

2.3.1 Construction of a circular dccd for v = 6n + 1 when n ≥ 2

Let

• B1 be the set of blocks of Type 3 of the form {(i, 1), (j, 1), (i ◦ j, 2)}

for 1 ≤ i < j ≤ 2n

• B2 be the set of blocks of Type 3 of the form {(i, 2), (j, 2), (i ◦ j, 3)}

for 1 ≤ i < j ≤ 2n

• B3 be the set of blocks of Type 3 of the form {(i, 3), (j, 3), (i ◦ j, 1)}

for 1 ≤ i < j ≤ 2n

Arrangement of Bk for k = 1, 2 and 3: Since the third element of each block is

uniquely determined by the construction if we arrange the first two elements as a single

change design we will get blocks with a double change. Arrange the first two elements

using the following steps.

• Fix i = 1. Arrange the blocks by changing j from 2 to 2n. So, the last block will be

{(1, k), (2n, k), ∗}
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• Increase i up to 2n − 1 while keeping j as 2n until {(2n − 1, k), (2n, k), ∗} is reached

• Fix j = 2n − 1 and increase i from 2 to 2n − 2 until {(2n − 2, k), (2n − 1, k), ∗}

is reached. When n = 2 stop the process since we have reached {(2, k), (3, k), ∗}

otherwise continue to the following steps.

• Fix j = 2n − 2 and increase i from 2 to 2n − 3 until {(2n − 3, k), (2n − 2, k), ∗} is

reached

• Repeat the process until {(2, k), (3, k), ∗} is reached

Example 2.3.2. Let v = 13 then n = 2 and following is a half-idempotent commutative

quasigroup of order 4 and a circular dccd(13, 3) with 26 blocks.

◦ 1 2 3 4

1 1 3 2 4

2 3 2 4 1

3 2 4 1 3

4 4 1 3 2
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(1, 1), (1, 2), (1, 3) (1, 1), (4, 1), (4, 2) (3, 2), (4, 2), (3, 3)

∞, (3, 1), (1, 2) (2, 1), (4, 1), (1, 2) (2, 2), (3, 2), (4, 3)

∞, (4, 1), (2, 2) (3, 1), (4, 1), (3, 2) (2, 3), (4, 3), (1, 1)

∞, (3, 2), (1, 3) (2, 1), (3, 1), (4, 2) (1, 3), (2, 3), (3, 1)

∞, (4, 2), (2, 3) (2, 1), (2, 2), (2, 3) (1, 3), (3, 3), (2, 1)

∞, (3, 3), (1, 1) (1, 2), (2, 2), (3, 3) (3, 3), (4, 3), (3, 1)

∞, (4, 3), (2, 1) (1, 2), (3, 2), (2, 3) (2, 3), (3, 3), (4, 1)

(1, 1), (2, 1), (3, 2) (1, 2), (4, 2), (4, 3) (1, 3), (4, 3), (4, 1)

(1, 1), (3, 1), (2, 2) (2, 2), (4, 2), (1, 3)

And if n ≥ 3, let B
′

1 be the set of blocks obtained from B1 by applying the following

changes.

• Take the block {1, 1), (n, 1), (1 ◦ n, 2)} to the top of B1. If n = 3 this is the only

change.

• If n > 3, for the n − 3 blocks of Type 1 from the block {(4, 1), (4, 2), (4, 3)} to the

block {(n, 1), (n, 2), (n, 3)} insert the block {(t, 1), (t, 2), (t, 3)} in between the two

blocks {(t, 1), (t + 1, 1), ∗} and {(2, 1), (t, 1), ∗} where 4 ≤ t ≤ n.

Then use the following steps to construct a circular double change covering design for n ≥ 3.

• Step 1: List the block {(1,1),(1,2),(1,3)} of Type 1.

• Step 2: List the Type 2 blocks. This can be done since the first block of Type 2 is

{∞, (n + 1, 1), (1, 2)}.

• Step 3: List the blocks of B
′

1. Since the last block of Type 2 is {∞, (2n, 3), (n, 1)}

and the first block of B
′

1 is {(1, 1), (n, 1), (1 ◦ n, 2)}.
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• Step 4: Insert the block {(2, 1), (2, 2), (2, 3)} from Type 1 blocks. This can be done

since the last block of B
′

1 is {(2, 1), (3, 1), (2 ◦ 3, 2)}.

• Step 5: List the blocks of B2. This can be done since the first block of B2 is

{(1, 2), (2, 2), (1 ◦ 2, 3)}.

• Step 6: Insert the block {(3, 1), (3, 2), (3, 3)} from the Type 1 blocks. This can be

done since the last block of B2 is {(2, 2), (3, 2), (2 ◦ 3, 3)}.

• Step 7: List the blocks of B3. Then take the first block of B3 i.e. the block

{(1, 3), (2, 3), ∗} to the bottom of B3.

Note that in this construction we have

• n blocks of Type 1

• 3n blocks of Type 2

• n(2n − 1) ∗ 3 blocks of Type 3.

Thus, the number of blocks b = 6n2 + n. And

v(v − 1)

6
=

(6n + 1)(6n)

6
= 6n2 + n.

Since d6n2 + ne = 6n2 + n, this design is both economical and tight by the Theorem

1.2.2.

Example 2.3.3. Let v = 19 then n = 3 and following is a half-idempotent commutative

quasigroup of order 6 and a circular dccd(19, 3) with 57 blocks.
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◦ 1 2 3 4 5 6

1 1 4 2 5 3 6

2 4 2 5 3 6 1

3 2 5 3 6 1 4

4 5 3 6 1 4 2

5 3 6 1 4 2 5

6 6 1 4 2 5 3
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(1, 1), (1, 2), (1, 3) (2, 1), (5, 1), (6, 2) (2, 2), (4, 2), (3, 3)

∞, (4, 1), (1, 2) (3, 1), (5, 1), (1, 2) (3, 2), (4, 2), (6, 3)

∞, (5, 1), (2, 2) (4, 1), (5, 1), (4, 2) (2, 2), (3, 2), (5, 3)

∞, (6, 1), (3, 2) (2, 1), (4, 1), (3, 2) (3, 1), (3, 2), (3, 3)

∞, (4, 2), (1, 3) (3, 1), (4, 1), (6, 2) (1, 3), (3, 3), (2, 1)

∞, (5, 2), (2, 3) (2, 1), (3, 1), (5, 2) (1, 3), (4, 3), (5, 1)

∞, (6, 2), (3, 3) (2, 1), (2, 2), (2, 3) (1, 3), (5, 3), (3, 1)

∞, (4, 3), (1, 1) (1, 2), (2, 2), (4, 3) (1, 3), (6, 3), (6, 1)

∞, (5, 3), (2, 1) (1, 2), (3, 2), (2, 3) (2, 3), (6, 3), (1, 1)

∞, (6, 3), (3, 1) (1, 2), (4, 2), (5, 3) (3, 3), (6, 3), (4, 1)

(1, 1), (3, 1), (2, 2) (1, 2), (5, 2), (3, 3) (4, 3), (6, 3), (2, 1)

(1, 1), (2, 1), (4, 2) (1, 2), (6, 2), (6, 3) (5, 3), (6, 3), (5, 1)

(1, 1), (4, 1), (5, 2) (2, 2), (6, 2), (1, 3) (2, 3), (5, 3), (6, 1)

(1, 1), (5, 1), (3, 2) (3, 2), (6, 2), (4, 3) (3, 3), (5, 3), (1, 1)

(1, 1), (6, 1), (6, 2) (4, 2), (6, 2), (2, 3) (4, 3), (5, 3), (4, 1)

(2, 1), (6, 1), (1, 2) (5, 2), (6, 2), (5, 3) (2, 3), (4, 3), (3, 1)

(3, 1), (6, 1), (4, 2) (2, 2), (5, 2), (6, 3) (3, 3), (4, 3), (6, 1)

(4, 1), (6, 1), (2, 2) (3, 2), (5, 2), (1, 3) (2, 3), (3, 3), (5, 1)

(5, 1), (6, 1), (5, 2) (4, 2), (5, 2), (4, 3) (1, 3), (2, 3), (4, 1)
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CHAPTER 3

MINIMUM COVERING DESIGNS

3.1 THE GENERAL PROBLEM

As we know a STS(v) exists if and only if v ≡ 1 or 3 (mod 6), a natural question to

ask is how ”close” can we come to constructing a triple system for v ≡ 0, 2, 4 or 5 (mod 6).

In order to attack this problem we must first define what we mean by ”close”.

Definition 3.1.1. A covering of the complete graph Kv with triangles is a triple (S, T, P ),

where S is the vertex set of Kv, P is a subset of the edge set of λKv based on S (λKv is the

graph in which each pair of vertices is joined by λ edges), and T is a collection of triangles

which partitions the union of P and the edge set of Kv. The collection of edges P is called

the padding and the number v the order of the covering (S, T, P ).

If |P | is as small as possible the covering (S, T, P ) is called a minimum covering with

triangles (MCT ), or more simply a minimum covering of order v.

Example 3.1.1. Let

S = {1, 2, 3, 4, 5}

T = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {3, 4, 5}}

P = {{1, 2}, {1, 2}}

then (S,T ,P ) is a minimum covering of order 5.

The padding of a minimum covering is determined by its order. In particular, if

(S, T, P ) is a MCT of order v, then the padding is [3]

(i) a 1-factor if v ≡ 0 (mod 6)

(ii) a tripole if v ≡ 2 or 4 (mod 6)
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(iii) a double edge if v ≡ 5 (mod 6)

(iv) the empty set if v ≡ 1 or 3 (mod 6)

Definition 3.1.2. A pairwise balanced design (PBD) is an ordered pair (S, B), where S

is a finite set of symbols, and B is a collection of subsets of S called blocks, such that each

pair of distinct elements of S occurs together in exactly one block of B and |S| is called

the order of the PBD.

So a Steiner triple system is a minimum covering with padding P = ∅ and pairwise

balanced design in which each block has size 3.

Example 3.1.2. Let S = {1, 2, 3, · · · , 11} and B contains the following blocks, then (S, B)

is a PBD of order 11:

{1,2,3,4,5} {2,7,8} {3,7,9} {4,8,10}

{1,6,7} {2,9,10} {3,8,11} {5,6,8}

{1,8,9} {2,6,11} {4,6,9} {5,7,10}

{1,10,11} {3,6,10} {4,7,11} {5,9,11}

3.2 CONSTRUCTION OF CIRCULAR DCCD FOR V ≡ 5 (MOD 6)

We need to construct a PBD(S, B) of order v with exactly one block of size 5 and

the rest having size 3, for all v ≡ 5 (mod 6).

The 6n + 5 construction: Let Q = {1, 2, · · · , 2n + 1} and let α be the permutation

(1)(2 3 · · · 2n + 1). Let (Q, ◦) be an idempotent commutative quasigroup of order 2n + 1.

Let S = {∞1,∞2} ∪ ({1, 2, · · · , 2n + 1}× {1, 2, 3}) and let B contain the following blocks:
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Type 1: {∞1,∞2, (1, 1), (1, 2), (1, 3)}

Type 2: {∞1, (2i, 1), (2i, 2)}, {∞1, (2i, 3), (α(2i), 1)}, {∞1, (α(2i), 2), (α(2i), 3)},

{∞2, (2i, 2), (2i, 3)}, {∞2, (α(2i), 1), (α(2i), 2)}, {∞2, (α(2i), 1), (α−1(2i), 3)}

for 1 ≤ i ≤ n

Type 3: {(i, 1), (j, 1), (i ◦ j, 2)}, {(i, 2), (j, 2), (i ◦ j, 3)}, {(i, 3), (j, 3), (α(i ◦ j), 1)}

for 1 ≤ i < j ≤ 2n + 1.

Then (S, B) is a PBD(6n + 5) with exactly one block of size 5 and rest of size 3.

The Double Edge Covering Construction: Let v ≡ 5 (mod 6) and let (S, B) be

a PBD of order n with one block {a, b, c, d, e} of size 5 (i.e the Type 1 block) and the

remaining blocks of size 3. Denote by T the collection of blocks of size 3, and let T ∗ =

{{a, b, c}, {a, b, d}, {a, b, e}, {c, d, e}}. Then (S, T ∪ T ∗, P ) is a minimum covering of order

v, where P = {{a, b}, {a, b}}.

Example 3.2.1. Let v = 5, then n = 0 and B contains only the block {1,2,3,4,5} of Type

1. So T = ∅, T ∗ = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {3, 4, 5}} and P = {{1, 2}, {1, 2}}. Then

the design

1 2 3

1 2 4

1 2 5

3 4 5

is a covering design with 4 blocks, and

b =

⌈

(

5
2

)

2 ∗ 3 − 3

⌉

=

⌈

10

3

⌉

= 4

So by the Theorem 1.2.2 it is economical but not tight. But there is no dccd for n = 0.
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3.2.1 Construction of a circular dccd for v = 6n + 5 when n ≥ 1

Let

• B1 be the set of blocks of Type 3 of the form {(i, 1), (j, 1), (i ◦ j, 2)}

for 1 ≤ i < j ≤ 2n + 1

• B2 be the set of blocks of Type 3 of the form {(i, 2), (j, 2), (i ◦ j, 3)}

for 1 ≤ i < j ≤ 2n + 1

• B3 be the set of blocks of Type 3 of the form {(i, 3), (j, 3), (α(i ◦ j), 1)}

for 1 ≤ i < j ≤ 2n + 1

• B∞1
be the set of blocks of Type 2 which has ∞1 as the first element

• B∞2
be the set of blocks of Type 2 which has ∞2 as the first element

And there are four blocks of size 3 from the Type 1 block :

{∞1,∞2, (1, 1)}

{∞1,∞2, (1, 2)}

{∞1,∞2, (1, 3)}

{(1, 1), (1, 2), (1, 3)}

Arrangement of Bk for k = 1, 2, 3: Since the third element of each block is uniquely

determined by the construction if we arrange the first two elements as a single change design

we will get blocks with a double change. Arrange the first two elements using following

steps.

• Fix i = 1. Arrange the blocks by changing j from 2 to 2n + 1. So, the last block will

be {(1, k), (2n + 1, k), ∗}

• Increase i up to 2n while keeping j as 2n + 1 until {(2n, k), (2n + 1, k), ∗} is reached.

• Fix j = 2n and increase i from 2 to 2n − 1 until {(2n − 1, k), (2n, k), ∗} is reached.
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• Fix j = 2n − 1 and increase i from 2 to 2n − 2 until {(2n − 2, k), (2n − 1, k), ∗} is

reached.

• Repeat the process until {(2, k), (3, k), ∗} is reached.

Arrangement of B∞1
: For 1 ≤ i ≤ n write down the following blocks.

{∞1, (2i, 1), (2i, 2)}

{∞1, (2i, 3), (α(2i), 1)}

{∞1, (α(2i), 2), (α(2i), 3)}

Arrangement of B∞2
: For 1 ≤ i ≤ n write down the following blocks.

{∞2, (2i, 2), (2i, 3)}

{∞2, (α(2i), 1), (α(2i), 2)}

{∞2, (2i, 1), (α
−1(2i), 3)}

Then use the following steps to construct a circular double change covering design.

• Step 1: Start with the {∞1,∞2, (1, 1)} block

• Step 2: Then, list the blocks from B1. This can be done since the first block of B1

is {(1, 1), (2, 1), (1 ◦ 2, 2)} and only common element is (1, 1)

• Step 3: Next list the blocks from B∞1
. This can always be done since the last

block of B1 is {(2, 1), (3, 1), (2◦3, 2)} and the first block of B∞1
is {∞1, (2, 1), (2, 2)}.

Further, 2 ◦ 3 = 1 for n = 1 and for n ≥ 2, 2 ◦ 3 = 5 and we interchange 5 with

n+3 in the construction of idempotent commutative quassigroup. So, (2◦3, 2) never

equals to (2, 2).

• Step 4: List the {∞1,∞2, (1, 2)} block. Since α(1) = 1, (α(2n), 2) 6= (1, 2) and

hence the only common element is ∞1
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• Step 5: Now list the blocks from B2. Since the first block of B2 is {(1, 2), (2, 2), (1 ◦

2, 3)} the only common element is (1, 2).

• Step 6: Then list the blocks of B∞2
. This can always be done from the same

reasoning as in Step 3.

• Step 7: Next list the {∞1,∞2, (1, 3)} block. Since α(1) = 1, (α−1(2n), 3) 6= (1, 3)

and hence the only common element is ∞2.

• Step 8: Now list the blocks from B3. Since the first block of B3 is {(1, 3), (2, 3), (1 ◦

2, 1)} the only common element is (1, 3).

• Step 9: Then swap the two blocks {(1, 3), (3, 3), (1◦3, 1)} and {(2, 3), (3, 3), (2◦3, 1)}

in B3. This can always be done since (α(2 ◦ 3), 1) = (α(1 ◦ 4), 1) and (α(1 ◦ 2), 1) 6=

(α(2 ◦ 3), 1).

• Step 10: Finaly, write down the {(1, 1), (1, 2), (1, 3)} block. This can be done since

α(1) = 1 we have (α(1 ◦ 3), 1) 6= (1, 1).

Then we will have a circular double change covering design.

Note that in this construction we have

• 4 blocks of Type 1

• 6n blocks of Type 2, since there are 6 blocks for each i and 1 ≤ i ≤ n

• n(2n + 1) ∗ 3 blocks of Type 3.

Thus, the number of blocks b = 6n2 + 9n + 4.

And

v(v − 1)

6
=

(6n + 5)(6n + 4)

6
=

18n2 + 27n + 10

3
= 6n2 + 9n +

10

3
.

Since
⌈

6n2 + 9n + 10
3

⌉

= 6n2 + 9n + 4, this design is economical but not tight because the

pair {∞1,∞2} is repeated.
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Example 3.2.2. Let v = 11 then n = 1 and following is an idempotent commutative

quasigroup of order 3 used to construct the circular dccd(11, 3) with 19 blocks below.

◦ 1 2 3

1 1 3 2

2 3 2 1

3 2 1 3

∞1,∞2, (1, 1) ∞1,∞2, (1, 2) ∞1,∞2, (1, 3)

(1, 1), (2, 1), (3, 2) (1, 2), (2, 2), (3, 3) (1, 3), (2, 3), (2, 1)

(1, 1), (3, 1), (2, 2) (1, 2), (3, 2), (2, 3) (2, 3), (3, 3), (1, 1)

(2, 1), (3, 1), (1, 2) (2, 2), (3, 2), (1, 3) (1, 3), (3, 3), (3, 1)

∞1, (2, 1), (2, 2) ∞2, (2, 2), (2, 3) (1, 1), (1, 2), (1, 3)

∞1, (2, 3), (3, 1) ∞2, (3, 1), (3, 2)

∞1, (3, 2), (3, 3) ∞2, (2, 1), (3, 3)

Example 3.2.3. Let v = 17 then n = 2 and following is an idempotent commutative

quasigroup of order 5 used to construct the circular dccd(17, 3) with 46 blocks below.

◦ 1 2 3 4 5

1 1 4 2 5 3

2 4 2 5 3 1

3 2 5 3 1 4

4 5 3 1 4 2

5 3 1 4 2 5
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∞1,∞2, (1, 1) ∞1,∞2, (1, 2) ∞1,∞2, (1, 3)

(1, 1), (2, 1), (4, 2) (1, 2), (2, 2), (4, 3) (1, 3), (2, 3), (5, 1)

(1, 1), (3, 1), (2, 2) (1, 2), (3, 2), (2, 3) (2, 3), (3, 3), (2, 1)

(1, 1), (4, 1), (5, 2) (1, 2), (4, 2), (5, 3) (1, 3), (4, 3), (2, 1)

(1, 1), (5, 1), (3, 2) (1, 2), (5, 2), (3, 3) (1, 3), (5, 3), (4, 1)

(2, 1), (5, 1), (1, 2) (2, 2), (5, 2), (1, 3) (2, 3), (5, 3), (1, 1)

(3, 1), (5, 1), (4, 2) (3, 2), (5, 2), (4, 3) (3, 3), (5, 3), (5, 1)

(4, 1), (5, 1), (2, 2) (4, 2), (5, 2), (2, 3) (4, 3), (5, 3), (3, 1)

(2, 1), (4, 1), (3, 2) (2, 2), (4, 2), (3, 3) (2, 3), (4, 3), (4, 1)

(3, 1), (4, 1), (1, 2) (3, 2), (4, 2), (1, 3) (3, 3), (4, 3), (1, 1)

(2, 1), (3, 1), (5, 2) (2, 2), (3, 2), (5, 3) (1, 3), (3, 3), (3, 1)

∞1, (2, 1), (2, 2) ∞2, (2, 2), (2, 3) (1, 1), (1, 2), (1, 3)

∞1, (2, 3), (3, 1) ∞2, (3, 1), (3, 2)

∞1, (3, 2), (3, 3) ∞2, (2, 1), (3, 3)

∞1, (4, 1), (4, 2) ∞2, (4, 2), (4, 3)

∞1, (4, 3), (5, 1) ∞2, (5, 1), (5, 2)

∞1, (5, 2), (5, 3) ∞2, (4, 1), (3, 3)
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3.3 CONSTRUCTION OF A CIRCULAR DCCD FOR V ≡ 0 (MOD 6)

Consider v = 6(n + 1), where n = 0, 1, 2, · · ·

The 1-factor Covering Construction: Let v ≡ 0 (mod 6) and let (X, B) be a

PBD of order v − 1 ≡ 5 (mod 6) with one Type 1 block {a, b, c, d, e} of size 5

and the remaining blocks of size 3. Denote by T the collection of blocks of size 3.

Let S = {∞} ∪ X and let π = {{x1, y1}, {x2, y2}, · · · , {xt, yt}} be any partition of

X \ {a, b, c, d, e}. Let π(∞) = {{∞, x1, y1}, {∞, x2, y2}, · · · , {∞, xt, yt}} and F (∞) =

{{∞, a, e}, {∞, b, e}, {∞, c, d}, {a, b, c}, {a, b, d}, {c, d, e}}. Then (S, T ∗, P ) is a minimum

covering of order v, where T ∗ = T ∪ π(∞) ∪ F (∞), and P = π ∪ {{a, b}, {c, d}, {e,∞}}.

(Note that F (∞) is a MCT of order 6.)

Example 3.3.1. Consider the PBD of order 11 in Example 3.1.2 with {a, b, c, d, e} =

{1, 2, 3, 4, 5}. Then

T = {{1, 6, 7}, {1, 8, 9}, {1, 10, 11}, {2, 7, 8}, {2, 9, 10}, {2, 6, 11}, {3, 6, 10}, {3, 7, 9},

{3, 8, 11}, {4, 6, 9}, {4, 7, 11}, {4, 8, 10}, {5, 6, 8}, {5, 7, 10}, {5, 9, 11}}.

Let π = {{6, 7}, {8, 9}, {10, 11}} then

π(∞) = {{∞, 6, 7}, {∞, 8, 9}, {∞, 10, 11}} and

F (∞) = {{∞, 1, 5}, {∞, 2, 5}, {∞, 3, 4}, {1, 2, 3}, {1, 2, 4}, {3, 4, 5}}.

Then (S,T ∗,P ) is a minimum covering of order 12, where T ∗ = T ∪ π(∞) ∪ F (∞) and

P = π ∪ {{1, 2}, {3, 4}, {5,∞}}

3.3.1 Construction of a circular dccd for v = 6(n + 1) when n = 0

Consider S = {1, 2, 3, 4, 5, 6} and let X = {1, 2, 3, 4, 5}. Since v = 6, (X, B) is a PBD

of order 5 with one block of size 5. So, T = ∅ and π = ∅ and therefore π(∞) = ∅. And

F (∞) = F (6) = {{1, 5, 6}, {2, 5, 6}, {3, 4, 6}, {1, 2, 3}, {1, 2, 4}, {3, 4, 5}} and

P = {{1, 2}, {3, 4}, {5, 6}}. Then the design
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1 2 3

1 5 6

3 4 6

1 2 4

3 4 5

2 5 6

is a circular dccd with 6 blocks. Since

⌈

(

6
2

)

2 ∗ 3 − 3

⌉

=

⌈

15

3

⌉

= 5 < 6

this design is neither economical nor tight by the Theorem 1.2.2.

3.3.2 Construction of a circular dccd for v = 6(n + 1) when n ≥ 1

Consider the 6n + 5 construction with the Type 1 block {∞1,∞2, (1, 1), (1, 2), (1, 3)}

of size 5 and Type 2 and Type 3 blocks of size 3. Then F (∞) contains the following blocks:

{∞,∞1, (1, 3)}

{∞,∞2, (1, 3)}

{∞, (1, 1), (1, 2)}

{∞1,∞2, (1, 1)}

{∞1,∞2, (1, 2)}

{(1, 1), (1, 2), (1, 3)}

Since π partitions the set X \ {∞1,∞2, (1, 1), (1, 2), (1, 3)}, blocks of π(∞) form a

double change design with ∞ as the common element. Then following is the procedure to

construct a circular double change covering design.
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• Step 1: Start with the {∞1,∞2, (1, 1)} block

• Step 2: Then list the blocks from B1. This can be done since the first block of B1

is {(1, 1), (2, 1), (1 ◦ 2, 2)} and the only common element is (1, 1).

• Step 3: Next list the blocks from B∞1
. This can always be done since the last

block of B1 is {(2, 1), (3, 1), (2◦3, 2)} and the first block of B∞1
is {∞1, (2, 1), (2, 2)}.

Further, 2 ◦ 3 = 1 for n = 1 and for n ≥ 2, 2 ◦ 3 = 5 and we interchange 5 with n + 3

in the construction of idempotent commutative quasigroup. So, (2 ◦ 3, 2) 6= (2, 2).

• Step 4: List the {∞1,∞2, (1, 2)} block. Since α(1) = 1, (α(2n), 2) 6= (1, 2) and

hence the only common element is ∞1.

• Step 5: Now list the blocks from B2. Since the first block of B2 is {(1, 2), (2, 2), (1 ◦

2, 3)} the only common element is (1, 2).

• Step 6: Then list the blocks of B∞2
. This can always be done by the same reasoning

as in Step 3.

• Step 7: Next list the {∞,∞2, (1, 3)} block. Since α(1) = 1, (α−1(2n), 3) 6= (1, 3)

and hence the only common element is ∞2.

• Step 8: List the {∞, (1, 1), (1, 2)} block.

• Step 9: Next list the blocks from π(∞). This can always be done since (1, 1) or

(1, 2) /∈ π so as in π(∞) and the only common element is ∞.

• Step 10: Next list the {∞,∞1, (1, 3)} block. This can be done because (1, 3) never

occurs in π(∞).

• Step 11: Now list the blocks from B3. Since the first block of B3 is {(1, 3), (2, 3), (1◦

2, 1)} the only common element is (1, 3).
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• Step 12: Then swap the two blocks {(1, 3), (3, 3), (1◦3, 1)} and {(2, 3), (3, 3), (2◦3, 1)}

in B3. This can always be done since (α(2 ◦ 3), 1) = (α(1 ◦ 4), 1) and (α(1 ◦ 2), 1) 6=

(α(2 ◦ 3), 1).

• Step 13: Finaly, write down the {(1, 1), (1, 2), (1, 3)} block. This can be done since

α(1) = 1 we have (α(1 ◦ 3), 1) 6= (1, 1).

Then we will have a circular double change covering design of order v.

Note that in this construction we have

• 6 blocks in F (∞)

• v−6
2

= 3n blocks in π(∞)

• 6n blocks of Type 2, since there are 6 blocks for each i and 1 ≤ i ≤ n

• n(2n + 1) ∗ 3 blocks of Type 3.

Thus, the number of blocks b = 6n2 + 12n + 6.

And

v(v − 1)

6
=

(6n + 6)(6n + 5)

6
= 6n2 + 11n + 5.

Since 6n2 + 12n + 6 > 6n2 + 11n + 5, this design is neither economical nor tight by the

Theorem 1.2.2.
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Example 3.3.2. Let v = 12 then n = 1 and the idempotent commutative quasigroup is

as same as in Example 3.2.2. So we have

X \ {∞1,∞2, (1, 1), (1, 2), (1, 3)} = {(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}.

Let π = {{(2, 1), (2, 2)}, {(2, 3), (3, 1)}, {(3, 2), (3, 3)}} and then

π(∞) = {{∞, (2, 1), (2, 2)}, {∞, (2, 3), (3, 1)}, {∞, (3, 2), (3, 3)}}

Then following is a circular dccd(12, 3) with 24 blocks.

∞1,∞2, (1, 1) (1, 2), (2, 2), (3, 3) ∞, (2, 1), (2, 2)

(1, 1), (2, 1), (3, 2) (1, 2), (3, 2), (2, 3) ∞, (2, 3), (3, 1)

(1, 1), (3, 1), (2, 2) (2, 2), (3, 2), (1, 3) ∞, (3, 2), (3, 3)

(2, 1), (3, 1), (1, 2) ∞2, (2, 2), (2, 3) ∞,∞1, (1, 3)

∞1, (2, 1), (2, 2) ∞2, (3, 1), (3, 2) (1, 3), (2, 3), (2, 1)

∞1, (2, 3), (3, 1) ∞2, (2, 1), (3, 3) (2, 3), (3, 3), (1, 1)

∞1, (3, 2), (3, 3) ∞,∞2, (1, 3) (1, 3), (3, 3), (3, 1)

∞1,∞2, (1, 2) ∞, (1, 1), (1, 2) (1, 1), (1, 2), (1, 3)
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Example 3.3.3. Let v = 18 then n = 2 and use the same idempotent commutative quasi-

group of order 5 as in Example 3.2.3. So we have

X \ {∞1,∞2, (1, 1), (1, 2), (1, 3)} = {(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),

(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)}.

Let π = {{(2,1),(2,2)},{(2,3),(3,1)},{(3,2),(3,3)},{(4,1),(4,2)},{(4,3),(5,1)},{(5,2),(5,3)}}

and then

π(∞) = {{∞, (2, 1), (2, 2)}, {∞, (2, 3), (3, 1)}, {∞, (3, 2), (3, 3)},

{∞, (4, 1), (4, 2)}, {∞, (4, 3), (5, 1)}, {∞, (5, 2), (5, 3)}}.

Then following is a circular dccd(18, 3) with 54 blocks.
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∞1,∞2, (1, 1) (1, 2), (2, 2), (4, 3) ∞, (2, 1), (2, 2)

(1, 1), (2, 1), (4, 2) (1, 2), (3, 2), (2, 3) ∞, (2, 3), (3, 1)

(1, 1), (3, 1), (2, 2) (1, 2), (4, 2), (5, 3) ∞, (3, 2), (3, 3)

(1, 1), (4, 1), (5, 2) (1, 2), (5, 2), (3, 3) ∞, (4, 1), (4, 2)

(1, 1), (5, 1), (3, 2) (2, 2), (5, 2), (1, 3) ∞, (4, 3), (5, 1)

(2, 1), (5, 1), (1, 2) (3, 2), (5, 2), (4, 3) ∞, (5, 2), (5, 3)

(3, 1), (5, 1), (4, 2) (4, 2), (5, 2), (2, 3) ∞,∞1, (1, 3)

(4, 1), (5, 1), (2, 2) (2, 2), (4, 2), (3, 3) (1, 3), (2, 3), (5, 1)

(2, 1), (4, 1), (3, 2) (3, 2), (4, 2), (1, 3) (2, 3), (3, 3), (2, 1)

(3, 1), (4, 1), (1, 2) (2, 2), (3, 2), (5, 3) (1, 3), (4, 3), (2, 1)

(2, 1), (3, 1), (5, 2) ∞2, (2, 2), (2, 3) (1, 3), (5, 3), (4, 1)

∞1, (2, 1), (2, 2) ∞2, (3, 1), (3, 2) (2, 3), (5, 3), (1, 1)

∞1, (2, 3), (3, 1) ∞2, (2, 1), (3, 3) (3, 3), (5, 3), (5, 1)

∞1, (3, 2), (3, 3) ∞2, (4, 2), (4, 3) (4, 3), (5, 3), (3, 1)

∞1, (4, 1), (4, 2) ∞2, (5, 1), (5, 2) (2, 3), (4, 3), (4, 1)

∞1, (4, 3), (5, 1) ∞2, (4, 1), (3, 3) (3, 3), (4, 3), (1, 1)

∞1, (5, 2), (5, 3) ∞,∞2, (1, 3) (1, 3), (3, 3), (3, 1)

∞1,∞2, (1, 2) ∞, (1, 1), (1, 2) (1, 1), (1, 2), (1, 3)
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3.4 CONSTRUCTION OF A CIRCULAR DCCD FOR V ≡ 2 OR 4 (MOD 6)

The Tripole Covering Construction: Let v ≡ 2 or 4 (mod 6) and let (X, T ) be a STS of

order v−1 ≡ 1 or 3 (mod 6). Let {a, b, c} ∈ T and let π = {{x1, y1}, {x2, y2}, · · · , {xt, yt}}

be any partition of X \{a, b, c}. Let π(∞) = {{∞, x1, y1}, {∞, x2, y2}, · · · , {∞, xt, yt}} and

T (∞) = {{∞, a, b}, {∞, b, c}, {a, b, c}}. Let S = {∞} ∪ X then (S, T ∗, P ) is a minimum

covering of order v, where T ∗ = T ∪ π(∞) ∪ T (∞), and P = π ∪ {{a, b}, {b, c}, {∞, b}}.

Example 3.4.1. Let (X, T ) be the Steiner Triple System in Example 2.3.1 where X =

{1, 2, 3, 4, 5, 6, 7} and T = {{1, 2, 3}, {2, 4, 7}, {3, 5, 7}, {1, 6, 7}, {1, 4, 5}, {2, 5, 6}, {3, 4, 6}}.

Let π = {{4, 5}, {6, 7}} be a partition of X \ {1, 2, 3} then

π(∞) = {{∞, 4, 5}, {∞, 6, 7}} and

T (∞) = {{∞, 1, 2}, {∞, 2, 3}, {1, 2, 3}}.

Then (S,T ∗,P ) is a minimum covering of order 8, where T ∗ = T ∪ π(∞) ∪ T (∞) and

P = π ∪ {{1, 2}, {2, 3}, {∞, 2}}

Example 3.4.2. Let (X, T ) be the Steiner Triple System in Example 2.2.1 where X =

{1, 2, 3, 4, 5, 6, 7, 8, 9}. Let π = {{4, 5}, {6, 7}, {8, 9}} be a partition of X \ {1, 2, 3} then

π(∞) = {{∞, 4, 5}, {∞, 6, 7}, {∞, 8, 9} and

T (∞) = {{∞, 1, 2}, {∞, 2, 3}, {1, 2, 3}.

Then (S,T ∗,P ) is a minimum covering of order 10, where T ∗ = T ∪ π(∞) ∪ T (∞) and

P = π ∪ {{1, 2}, {2, 3}, {∞, 2}}

3.4.1 Construction of a circular dccd for v ≡ 4 (mod 6)

Consider the 6n + 3 construction with the Type 1 block {(1, 1), (1, 2), (1, 3)} ∈ T .

Then T (∞) contains the following three blocks:

{∞, (1, 1), (1, 2)}

{∞, (1, 2), (1, 3)}

{(1, 1), (1, 2), (1, 3)}
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Let π = {{(2i+2, 1), (2i+3, 1)}, {(2i+2, 2), (2i+3, 2)}, {(2i+2, 3), (2i+3, 3)}} where

0 ≤ i ≤ n − 1, be a partition of X \ {(1, 1), (1, 2), (1, 3)}.

Since π partitions the set X\{(1, 1), (1, 2), (1, 3)}, blocks of π(∞) form a double change

design with ∞ as the common element. Then the following is a procedure to construct a

circular double change covering design for n ≥ 1.

• Step 1: List down the circular dccd for 6n + 3.

• Step 2: Insert the blocks of π(∞) after the block {(2, 1), (2, 2), (2, 3)} (i.e. after Step

2 in the 6n + 3 construction). This can be always done since the first block of π(∞)

is {∞, (2, 1), (3, 1)} and (2,1) is the common element.

• Step 3: Insert the block {∞, (1, 2), (1, 3)} from T (∞) in between any two blocks of

π(∞). This can be done since (1,2) or (1,3) /∈ π so the only common element is ∞

and π contains more than 2 elements.

• Step 4: Insert the block {∞, (1, 1), (1, 2)} from T (∞). This can be done since (1,1)

or (1,2) /∈ π so the only common element is ∞.

• Step 5: Continue from Step 3 in the 6n + 3 construction. This can always be done

since the first block of B2 is {(1, 2), (2, 2), (1 ◦ 2, 3)} and only (1,2) is common.

Note that in this construction we have

• 6n2 + 5n + 1 blocks in T .

• 2 blocks in T (∞). Since the block {(1, 1), (1, 2), (1, 3)} ∈ T there are only 2 new

blocks in T (∞).

• 3n blocks in π(∞).
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Thus, the number of blocks b = 6n2 + 8n + 3. And

v(v − 1)

6
=

(6n + 4)(6n + 3)

6
= 6n2 + 7n + 2.

Since d6n2 + 7n + 2e < 6n2 + 8n + 3, this design is neither economical nor tight by the

Theorem 1.2.2.

Example 3.4.3. Let v = 10 then n = 1 and we will use a dccd(9, 3) to construct a

dccd(10, 3) with 17 blocks. Here we have

T (∞) = {{∞, (1, 1), (1, 2)}, {∞, (1, 2), (1, 3)}, {(1, 1), (1, 2), (1, 3)}}

π = {{(2, 1), (3, 1)}, {(2, 2), (3, 2)}, {(2, 3), (3, 3)}}

π(∞) = {{∞, (2, 1), (3, 1)}, {∞, (2, 2), (3, 2)}, {∞, (2, 3), (3, 3)}}

Then the following is a circular dccd(10, 3) with 17 blocks.

(1, 1), (2, 1), (3, 2) ∞, (2, 2), (3, 2) (1, 1), (1, 2), (1, 3)

(1, 1), (3, 1), (2, 2) ∞, (2, 3), (3, 3) (1, 3), (2, 3), (3, 1)

(2, 1), (3, 1), (1, 2) ∞, (1, 1), (1, 2) (1, 3), (3, 3), (2, 1)

(2, 1), (2, 2), (2, 3) (1, 2), (2, 2), (3, 3) (2, 3), (3, 3), (1, 1)

∞, (2, 1), (3, 1) (1, 2), (3, 2), (2, 3) (3, 1), (3, 2), (3, 3)

∞, (1, 2), (1, 3) (2, 2), (3, 2), (1, 3)
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Example 3.4.4. Let v = 16 then n = 2 and the following is a circular dccd(16, 3) with 43

blocks. Here we have

T (∞) = {{∞, (1, 1), (1, 2)}, {∞, (1, 2), (1, 3)}, {(1, 1), (1, 2), (1, 3)}}

π = {{(2, 1), (3, 1)}, {(2, 2), (3, 2)}, {(2, 3), (3, 3)},

{(4, 1), (5, 1)}, {(4, 2), (5, 2)}, {(4, 3), (5, 3)}}

π(∞) = {{∞, (2, 1), (3, 1)}, {∞, (2, 2), (3, 2)}, {∞, (2, 3), (3, 3)},

{∞, (4, 1), (5, 1)}, {∞, (4, 2), (5, 2)}, {∞, (4, 3), (5, 3)}}

and the dccd(16, 3) is:

(1, 1), (3, 1), (2, 2) ∞, (2, 2), (3, 2) (3, 2), (4, 2), (1, 3)

(1, 1), (2, 1), (4, 2) ∞, (2, 3), (3, 3) (1, 2), (3, 2), (2, 3)

(1, 1), (4, 1), (5, 2) ∞, (4, 1), (5, 1) (1, 1), (1, 2), (1, 3)

(1, 1), (5, 1), (3, 2) ∞, (4, 2), (5, 2) (1, 3), (2, 3), (4, 1)

(5, 1), (5, 2), (5, 3) ∞, (4, 3), (5, 3) (1, 3), (3, 3), (2, 1)

(2, 1), (5, 1), (1, 2) ∞, (1, 1), (1, 2) (1, 3), (4, 3), (5, 1)

(3, 1), (5, 1), (4, 2) (1, 2), (2, 2), (4, 3) (1, 3), (5, 3), (3, 1)

(4, 1), (5, 1), (2, 2) (2, 2), (3, 2), (5, 3) (2, 3), (5, 3), (1, 1)

(4, 1), (4, 2), (4, 3) (1, 2), (4, 2), (5, 3) (3, 3), (5, 3), (4, 1)

(2, 1), (4, 1), (3, 2) (1, 2), (5, 2), (3, 3) (4, 3), (5, 3), (2, 1)

(3, 1), (4, 1), (1, 2) (2, 2), (5, 2), (1, 3) (2, 3), (4, 3), (3, 1)

(2, 1), (3, 1), (5, 2) (3, 2), (5, 2), (4, 3) (3, 3), (4, 3), (1, 1)

(2, 1), (2, 2), (2, 3) (4, 2), (5, 2), (2, 3) (2, 3), (3, 3), (5, 1)

∞, (2, 1), (3, 1) (2, 2), (4, 2), (3, 3) (3, 1), (3, 2), (3, 3)

∞, (1, 2), (1, 3)
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3.4.2 Construction of a circular dccd for v ≡ 2 (mod 6)

Let (X, T ) be a STS of order v − 1 ≡ 1 (mod 6) where X = {∞1} ∪ (Q× {1, 2, 3}).

Consider the Type 1 block {(1, 1), (1, 2), (1, 3)} ∈ T then T (∞) contains the following three

blocks:

{∞, (1, 1), (1, 2)}

{∞, (1, 2), (1, 3)}

{(1, 1), (1, 2), (1, 3)}

Let π = ({(2i, 1), (2i + 1, 1)}, {(2i, 2), (2i + 1, 2)}, {(2i, 3), (2i + 1, 3)} ; 1 ≤ i ≤ n − 1)

∪({(2n, 1), (2n, 2)}, {∞1, (2n, 3)}) be a partition of X \ {(1, 1), (1, 2), (1, 3)}.

Example 3.4.5. Let v = 8 then n = 1 and consider the half-idempotent commutative

quassigroup of order 2 in Example 2.3.1 and let X = {∞1} ∪ ({1, 2} × {1, 2, 3}). Then

we have

π = {{(2, 1), (2, 2)}, {∞1, (2, 3)}} and then

π(∞) = {{∞, (2, 1), (2, 2)}, {∞,∞1, (2, 3)}}

Then the following is a circular dccd(8, 3) with 11 blocks. i.e. the 6n+2 construction when

n = 1.
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(1,1) (1,2) (1,3)

∞1 (2,1) (1,2)

∞1 (2,2) (1,3)

∞1 (2,3) (1,1)

(1,1) (2,1) (2,2)

(1,2) (2,2) (2,3)

∞ (1,1) (1,2)

∞ (2,1) (2,2)

∞ ∞1 (2,3)

∞ (1,2) (1,3)

(1,3) (2,3) (2,1)

Since π partitions the set X\{(1, 1), (1, 2), (1, 3)}, blocks of π(∞) form a double change

design with ∞ as the common element. Then the following is a procedure to construct a

circular double change covering design for n ≥ 2.

• Step 1: List the circular dccd for 6n + 1.

• Step 2: Insert the blocks of π(∞) after the block {(2, 1), (2, 2), (2, 3)} (i.e. after Step

4 in the 6n + 1 construction). This can be always done since the first block of π(∞)

is {∞, (2, 1), (3, 1)} and (2,1) is the common element.

• Step 3: Insert the block {∞, (1, 2), (1, 3)} from T (∞) in between any two blocks of

π(∞). This can be done since (1,2) or (1,3) /∈ π so the only common element is ∞

and π contains more than 2 elements.
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• Step 4: Insert the block {∞, (1, 1), (1, 2)} from T (∞). This can be done since (1,1)

or (1,2) /∈ π so the only common element is ∞.

• Step 5: Continue from Step 5 in the 6n + 1 construction. This can always be done

since the first block of B2 is {(1, 2), (2, 2), (1 ◦ 2, 3)} and only (1,2) is common.

Note that in this construction we have

• 6n2 + n blocks in T .

• 2 blocks in T (∞). Since the block {(1, 1), (1, 2), (1, 3)} ∈ T there are only 2 new

blocks in T (∞).

• 3n − 1 blocks in π(∞).

Thus, the number of blocks b = 6n2 + 4n + 1. And

v(v − 1)

6
=

(6n + 2)(6n + 1)

6
=

18n2 + 9n + 1

3
.

Since
⌈

18n
2+9n+1

3

⌉

= 6n2 + 3n + 1 < 6n2 + 4n + 1, this design is neither economical nor

tight by the Theorem 1.2.2.

Example 3.4.6. Let v = 14 then n = 2 and we have

π = {{(2, 1), (3, 1)}, {(2, 2), (3, 2)}, {(2, 3), (3, 3)}, {(4, 1), (4, 2)}, {∞1 , (4, 3)}} and

π(∞) = {{∞, (2, 1), (3, 1)}, {∞, (2, 2), (3, 2)}, {∞, (2, 3), (3, 3)},

{∞, (4, 1), (4, 2)}, {∞,∞1, (4, 3)}}

Then following is a circular dccd(14, 3) with 33 blocks.
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(1, 1), (1, 2), (1, 3) (3, 1), (4, 1), (3, 2) (1, 2), (3, 2), (2, 3)

∞1, (3, 1), (1, 2) (2, 1), (3, 1), (4, 2) (1, 2), (4, 2), (4, 3)

∞1, (4, 1), (2, 2) (2, 1), (2, 2), (2, 3) (2, 2), (4, 2), (1, 3)

∞1, (3, 2), (1, 3) ∞, (2, 1), (3, 1) (1, 3), (2, 3), (3, 1)

∞1, (4, 2), (2, 3) ∞, (1, 2), (1, 3) (1, 3), (3, 3), (2, 1)

∞1, (3, 3), (1, 1) ∞, (2, 2), (3, 2) (3, 2), (4, 2), (3, 3)

∞1, (4, 3), (2, 1) ∞, (2, 3), (3, 3) (2, 2), (3, 2), (4, 3)

(1, 1), (2, 1), (3, 2) ∞, (4, 1), (4, 2) (2, 3), (4, 3), (1, 1)

(1, 1), (3, 1), (2, 2) ∞,∞1, (4, 3) (3, 3), (4, 3), (3, 1)

(1, 1), (4, 1), (4, 2) ∞, (1, 1), (1, 2) (2, 3), (3, 3), (4, 1)

(2, 1), (4, 1), (1, 2) (1, 2), (2, 2), (3, 3) (1, 3), (4, 3), (4, 1)

Example 3.4.7. Let v = 20 then n = 3 and we have

π = {{(2, 1), (3, 1)}, {(2, 2), (3, 2)}, {(2, 3), (3, 3)}, {(4, 1), (5, 1)},

{(4, 2), (5, 2)}, {(4, 3), (5, 3)}, {(6, 1), (6, 2)}, {∞1 , (6, 3)}} and

π(∞) = {{∞, (2, 1), (3, 1)}, {∞, (2, 2), (3, 2)}, {∞, (2, 3), (3, 3)}, {∞, (4, 1), (5, 1)},

{∞, (4, 2), (5, 2)}, {∞, (4, 3), (5, 3)}, {∞, (6, 1), (6, 2)}, {∞,∞1, (6, 3)}}

Then following is a circular dccd(19, 3) with 67 blocks.
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(1, 1), (1, 2), (1, 3) (3, 1), (4, 1), (6, 2) (2, 2), (5, 2), (6, 3)

∞1, (4, 1), (1, 2) (2, 1), (3, 1), (5, 2) (3, 2), (5, 2), (1, 3)

∞1, (5, 1), (2, 2) (2, 1), (2, 2), (2, 3) (4, 2), (5, 2), (4, 3)

∞1, (6, 1), (3, 2) ∞, (2, 1), (3, 1) (2, 2), (4, 2), (3, 3)

∞1, (4, 2), (1, 3) ∞, (1, 2), (1, 3) (3, 2), (4, 2), (6, 3)

∞1, (5, 2), (2, 3) ∞, (2, 2), (3, 2) (2, 2), (3, 2), (5, 3)

∞1, (6, 2), (3, 3) ∞, (2, 3), (3, 3) (3, 1), (3, 2), (3, 3)

∞1, (4, 3), (1, 1) ∞, (4, 1), (5, 1) (1, 3), (3, 3), (2, 1)

∞1, (5, 3), (2, 1) ∞, (4, 2), (5, 2) (1, 3), (4, 3), (5, 1)

∞1, (6, 3), (3, 1) ∞, (4, 3), (5, 3) (1, 3), (5, 3), (3, 1)

(1, 1), (3, 1), (2, 2) ∞, (6, 1), (6, 2) (1, 3), (6, 3), (6, 1)

(1, 1), (2, 1), (4, 2) ∞,∞1, (6, 3) (2, 3), (6, 3), (1, 1)

(1, 1), (4, 1), (5, 2) ∞, (1, 1), (1, 2) (3, 3), (6, 3), (4, 1)

(1, 1), (5, 1), (3, 2) (1, 2), (2, 2), (4, 3) (4, 3), (6, 3), (2, 1)

(1, 1), (6, 1), (6, 2) (1, 2), (3, 2), (2, 3) (5, 3), (6, 3), (5, 1)

(2, 1), (6, 1), (1, 2) (1, 2), (4, 2), (5, 3) (2, 3), (5, 3), (6, 1)

(3, 1), (6, 1), (4, 2) (1, 2), (5, 2), (3, 3) (3, 3), (5, 3), (1, 1)

(4, 1), (6, 1), (2, 2) (1, 2), (6, 2), (6, 3) (4, 3), (5, 3), (4, 1)

(5, 1), (6, 1), (5, 2) (2, 2), (6, 2), (1, 3) (2, 3), (4, 3), (3, 1)

(2, 1), (5, 1), (6, 2) (3, 2), (6, 2), (4, 3) (3, 3), (4, 3), (6, 1)

(3, 1), (5, 1), (1, 2) (4, 2), (6, 2), (2, 3) (2, 3), (3, 3), (5, 1)

(4, 1), (5, 1), (4, 2) (5, 2), (6, 2), (5, 3) (1, 3), (2, 3), (4, 1)

(2, 1), (4, 1), (3, 2) 47



3.5 CONCLUSION

To answer the question given in the first section of the paper about the car testing,

suppose the company has 11 types of cars and each driver tests exactly 3 cars and drives

only one type of cars as the previous driver. Since k = 3 we have number of drivers b = 19.

So problem asks to construct a circular dccd(11, 3) with 19 blocks. We see that 11 ≡ 5

(mod 6), so we use the 6n + 5 construction and then arrange the blocks using the method

described to get a circular double-change covering design. If we get the eleven cars be

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, following is an economical circular dccd(11, 3) with 19 blocks.

1 2 3 5 7 10

3 6 10 2 7 8

3 7 9 2 9 10

4 6 9 2 6 11

1 6 7 1 2 5

1 8 9 5 6 8

1 10 11 3 8 11

1 2 4 5 9 11

4 7 11 3 4 5

4 8 10
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