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AN ABSTRACT OF THE RESEARCH PAPER OF

OLIVE MBIANDA, for the Master of Science in MATHEMATICS AND COMPUTER

SCIENCE, presented on NOVEMBER 07,2013 at Southern Illinois University Carbondale.

TITLE: FULLY HOMOMORPHIC ENCRYPTION APPLIED TO WIRELESS NET-

WORK

MAJOR PROFESSOR: Dr. K. SPECTOR, Dr. K. AKKAYA .

This work provides a mathematical approach of the Fully homomorphic encryption (FHE)

and its implementation in a wireless network. FHE has been presented as the ”Holy Grail”

by the cryptographers. This special encryption scheme enables one to perform complex

operations(both addition and multiplication) on a cypher text without ever decrypting

the text. An immediate application is the delegated computation, an untrusted party

can process the data without endangering the privacy of the source and the integrity of

the data. The first FHE scheme was introduced in 2009, by Craig Gentry. His scheme

was based on the properties of rings especially on ideal lattices.As introduced by Gentry,

FHE was not practical due to the length of ciphertext (per bit encrypted) and the keys,

and its infeasible computational time. Many works have been done to make it somewhat

practical(Shai-Halevi(2010), Smart-Vercauteren(2011)).The proposed schemes were based

on algebra and number theory concepts. Following the idea of Smart-Vercauteren, and

the implementation of Michael Brenner we design an implementation for wireless network.

Such a system should allow operations on encrypted data that could result in reducing the

computation load and the size of the packets in a wireless network.The most challenging

part of this work will be to make the computational time of the FHE quasi real while

preserving its security scheme. Since the strength of the FHE comes from the hardness to
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approximate short vector problems on arbitrary lattices within a slightly super polynomial

factor, making that computational time logarithmic or less is quite challenging. This work

attempts to design and implement fully homomorphic encryption for wireless networks.
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CHAPTER 1

INTRODUCTION

Encryption is an ”efficient” and well-known way for preserving the privacy of sensitive

information sent through a network. The necessity for an encryption scheme allowing

total privacy of data has become of greatest interest among cryptographers over the last

few decades, due to recent development in the area of computer and mobile network.

People were seeking for an encryption scheme that could allow operations on a ciphertext

without any need to decrypting it first. In 1977, Rivest, Adleman and Shamir proposed

a scheme (RSA) in which given only the public key and the encryption of operands, one

could compute the encryption of their products. Therefore, the question of an encryption

scheme allowing both addition and multiplication on the ciphertext arose. More concretely,

was it possible to process encrypted data that is query it, write into it, and do any sort of

operations that can be expressed as a circuit? Such a scheme known as Fully Homomorphic

Encryption (FHE)today, was introduced in 1978 by Rivest, Adleman and Dertouzous. In

their paper, they considered a situation in which a loan company enlists the services of

a third-company to store and process its records. The loan company’s database contains

sensitive data and must be encrypted to ensure their privacy; so the third-party company

is storing encrypted data. Now, let assume the loan company would like to know how much

the average loan was or how many loans over 200 dollars were granted, but they don’t have

enough resources to compute such operations and need the help of the third-company to

process it. How could the company get those statistics without endangering the privacy of

the bank’s users? Delegating computations to an untrusted party, that is allowing it to carry

out extensive computation only on encrypted data, was the main goal of FHE. Nowadays

the range of its applications has increased. Many attempts to produce such an encryption

scheme have been made, but the real breakthrough came with Gentry in 2009. He proposed

the first FHE scheme (Gentry, 2009) using ideal lattices. Ideal lattices correspond to ideals
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in polynomial rings and they inherit natural additions and multiplications from the ring.

Gentry suggested a public-key encryption scheme where the public and private key were

respectively ”bad” and ”good” bases of an ideal lattice, and a small noise component was

added to the text to be encrypted. The main issues with Gentry’s scheme were the relatively

extended length of the generated ciphertext and the large size of the encryption/decryption

keys, both leading to an infeasible computational time. The practicability of FHE was

questioned aroused (Fan & Vercatauren, 2010) since computing homomorphically caused

the noise to increase leading to the failure of decryption. Since 2009, much research has

been conducted to make FHE practical. An attempt to solve the problem was to make

use of a somewhat homomorphic encryption leaving out the bootstrapping step, a partially

decryption of the ciphertext to reduce the noise like in Gentry’s scheme (Lauter et al., 2012).

But, this turns out to be suitable only for a limited number of applications like private

health care and online ads. In March 2012, a new somewhat homomorphic encryption

scheme was proposed by Yang and Xia. It reduced the key size from O(k7) to O(k3) based

on the approximate GCD problem, making it practical for cloud computing. In May 2012,

an efficient fully encryption scheme leading to a public key size of O(k) was proposed by

Brakersy and Vaikuntanathan. This encryption scheme is based on the learning with error

assumption (Brakersi et.al, 2012). In June 2012, Michael Brenner et al. implemented a

version of FHE based on Smart-Vercauteren approach (Brenner et al., 2012). The practical

FHE has led to a large number of applications in computer networks: secure multi party

computation (Kamara et al., 2012), private information retrieval (Dschai & Parski, 2010),

delegated computation (Chung & Kalai, 2010). In our work, we are going to follow the

implementation of Michael Brenner et.al, and use FHE for mobile wireless network, more

specifically for smart phones.

We would like to apply FHE to mobile crowd sensing with smart phones. Mobile phone

sensing is a new paradigm growing with the development of smart phones. Data are

collected from the users and are processed by an external party for different purposes namely
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traffic and weather monitoring. The challenge in this system is to preserve the privacy of the

source. Though,this could be done by encryption, still the integrity of the collected data

should be ensured. This means that after the encryption/decryption process, the result

should be as similar as possible to the original data. Solutions have been proposed to

address this issue ranging from PiRi, a privacy-aware framework for Participatory Sensing

systems (Kazemi & Shahabi, 2011) to protocols (Moffat et al., 2011). FHE has been left

out as a potential solution because of its complexity, but with its recent improvements

we would like to investigate if a suitable version of FHE designed specifically for mobile

networks can be derived from an existing practical FHE. Since many smart phone users

are reluctant to participate in crowd sensing because of the privacy issue, our aim in this

study is to provide the crowd sensing area with an efficient technique of users’ privacy and

data trustworthiness for the users.

Chapter 1 deals with cryptosystems settings. We will discuss security-related issues

of encryption schemes and provide examples of private and public cryptosystems as well

as their underlying security assumptions. This chapter also contains materials on groups,

integers and functions. The description of homomorphic encryption is provided as well and

is illustrated by two examples of additive and multiplicative homomorphic encryptions.

Chapter 2 deals with FHE. We will present the mathematical foundation of FHE:

rings, fields and lattices. Then we will discuss some problems classified as hard in Number-

theory and Algebra and being used as security assumptions for FHE encryption schemes.

We will finally present three different FHEs based on lattices, integers, and learning with

error.

Chapter 3 introduces our suggested algorithm. It is a combination of the three algo-

rithms above-mentioned. We will give a complete description of the scheme, generation of

the keys, encryption and decryption functions, verification of fully homomorphic properties

as well as security assumptions.
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CHAPTER 2

BACKGROUND

2.1 BACKGROUND IN CRYPTOGRAPHY

This section will provide some basic knowledge about cryptography. We will explain

what is cryptography, why it is useful and provide some related vocabulary.

Alice and Bob are two friends and they would like to exchange messages over an insecure

channel. The channel is considered insecure whenever it is feasible for Trudy (an adversary)

to have access to the conversation. Since, they are aware of a potential eavesdropper, Trudy,

trying to break into their conversation, they decide to encrypt it. The goal of encryption

is to keep information secret from all, except to the authorized users. They might decide

to map every bit or set of bits of their conversation to another bit or set of bits. A simple

example would be the Caesar cipher. This encryption scheme is attributed to the emperor

Caesar; He used it to secretly transmit his strategy to his troops in the field. In the Caesar

cipher, each letter of a message is replaced with another letter of a fixed number of places

after it in the alphabet. Example Bob wants to send the word ATTACK to Alice, he

could chose to replace each letter by the third letter after it , so that A will be replaced by

D,etc... so that ATTACK will be send as DWWDFN. Alice would know she will have to

go back three letters to recover the original message.

We will call the original message(the one sent by Bob) a plaintext, and the encrypted

version received by Alice a ciphertext, and the shift by 3 the key. Cryptography is the

art and science of designing secure cryptosystems to guarantee ”secure” communication

over an insecure network. This mean,they should be guaranteed that after encrypting the

data, they could always and are the only one(s )to decrypt it (i.e to reverse the mapping.).

A cryptosystem is a quadruple S=(M,C,K,E ,D) such that :

1- M,C, and K are sets, where M is the message space (or ”plaintext” space), C is the

ciphertext space and K is the key space.
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2- E = {Ek|k ∈ K} is a family of functions Ek : M → C that are used for encryption and

D = {Dk|k ∈ K} is a family of functions Dk : C →M that are used for decryption.

3- For each key e ∈ K, there exists a key d ∈ K such that for each message m ∈ m:

Dd(Ee(m)) = m, where e and d are respectively called the encryption and decryption key.

Let consider our previous example: Alice and Bob, communicating over an insecure channel

and therefore using a cryptosystem S=(M,C,K,E ,D) as defined above. Let assume the

messages are distributed on M according to a probability distribution Prm(that may depend

on the language used). For each new message m, Alice chooses a new key from K that

is independent of the message to be encrypted (the key is usually generated before the

plaintext). The keys are distributed according to a probability distribution Prk on K. The

distributions Prm and Prk induce a probability distribution: PrM×K on M ×K. That is

for each message m ∈M and for each k ∈ K,

PrM×K = PrM(m)PrK(k)

is the probability that the message m is encrypted with the key k, where m and k are

independent. Then we have:

• For m ∈ M , let m denote the event {(m, k)|k ∈ K}. Then Pr(m) = PrM(m) is the

probability that the message m will be encrypted.

• For k ∈ K, let k denote the event {(m, k)|m ∈ M}. Then Pr(k) = PrK(k) is the

probability that the key k will be used.

• For c ∈ C, let c denote the event {(m, k)|Ek(m) = c}.

Then, Pr(m|c) is the probability that m is encrypted given that c is received.

Kerchoff’s principle: The security of a cryptosystem must not depend on the secrecy of

the system used. Rather, the security of a cryptosystem may depend only on the secrecy

of the keys used.
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Definition 2.1.0.1. (Perfect secrecy)

A cryptosystem

S = (M, C, K, E ,D) is said to guarantee perfect secrecy,

iff ∀m ∈M, ∀c ∈ C, Pr(m|c) = Pr(m)

The perfect secrecy is the aim of any cryptosystem.

Theorem (Shannon)

Let S=(M,C,K,E ,D) be a cryptosystem with |C| = |K| and Pr(m) > 0 for each m ∈ M .

Then S guarantees perfect secrecy iff:

1-For each m ∈ M and for each c ∈ C, there exists a unique key k ∈ K with Ek(m) = c

and,

2- The keys in K are uniformly distributed.

According to the Kerchoff’s principle, in cryptography settings, provable inefficiency means

security: The security of current cryptosystems usually depends on the assumption that

certain problems from algebra and number theory are intractable. Thus, to describe such

cryptosystems and discuss related security issues, we need algebraic and number-theoretical

notions, and results. In the next section we will give some background on groups, integers

and present some related hard problems used in cryptography.

2.2 MATHEMATICAL BACKGROUND

This section will provide mathematical notions and useful theorems necessary to

clearly understand fully homomorphic encryption algorithms and their security assump-

tions. We will start by giving some algebraic and number theory foundation, then we will

discuss integers and theorems around them.
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2.2.1 Background in Algebra

Groups

Definition 2.2.1.1. A group G is a non-empty set (G, ∗) together with a binary operation

G×G→ G.

(α, β)→ α ∗ β, (closure of the group)such that the following holds:

a) Associativity

∀α, β, γ,∈ G : α ∗ (β ∗ γ) = (α ∗ β) ∗ γ

b) Existence of an identity element e

∃e ∈ G such that ∀α ∈ G : α ∗ e = e ∗ α = α. The identity element is unique.

c) Existence of an inverse element

∀α ∈ G, ∃α−1 ∈ G, such thatα ∗ α−1 = α−1 ∗ α = e

Example:

• Let define the group of plaintext (M, ⊕) where ⊕ is the XOR(Exclusive OR)or the

addition mod 2 and M={(0, 1)k} where k is a positive integer.

Let recall the logical table for XOR

⊕ 0 1

0 0 1

1 1 0

Claim M is a group under ⊕, and we will call it he group of plaintexts under addi-

tion.

Proof:

* Associativity

Let m1, m2, m3 ∈ Z2, we have:
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m1 m2 m3 m1 ⊕ (m2 ⊕m3) (m1 ⊕m2)⊕m3

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 0

1 0 0 1 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Notice that m1 ⊕ (m2 ⊕m3) = (m1 ⊕m2)⊕m3, thus the associativity is satisfied.

* Identity element is 0

Notice that 0⊕ 0 = 0 and 1⊕ 0 = 1.

* Inverse element

0⊕ 0 = 0 so that 0 is the inverse of 0 and 1⊕ 1 = 0 so that 1 is the inverse of 1, every

element of M has an inverse in M. We can conclude that (M,⊕) is a group.

• Is (Z2, ·) a group, where · is the multiplication mod 2?

Let recall

· 0 1

0 0 0

1 0 0

We notice that we have an identity element 1, but not all element has an inverse for

instance 0, thus (Z2, ·) is not a group
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Definition 2.2.1.2. A semi group is an algebraic structure consisting of a set together

with an associative binary operation

(Z2, ·) is a semi-group, and since it has an identity element it is referred to as monoid.

The requirement for cryptography settings is the closure of the groups, associativity and

the existence of the identity element, so we will be working with monoids and groups.

2.2.2 Functions

Let recall that a binary relation from a non-empty set A to a set B is any subset of

A × B, where A×B = {(a, b)|a ∈ A and b ∈ B}.

Definition 2.2.2.1. A function f is a binary relation between a set A( set of inputs ) and

a set B (valid outputs ). Each input has exactly one output. In other words if (a,b1) ∈ f

and (a,b2) ∈ f, then b1 = b2.

Let M, C, K be respectively the sets of plaintexts, ciphertexts, and keys then we define:

Encrypt:= EK : M ×K → C

(m, e) 7→ c,

Decrypt:= DK : C ×K →M

(c, d) 7→ m,

The functions Encrypt and Decrypt should both be easy to compute, and moreover should

guarantee the perfect secrecy that is we must have ∀ m ∈ M, d,d’ ∈ K with d 6= d′

Decrypt(Encrypt(m,e),d’) 6= m

2.2.3 Homomorphisms

Definition 2.2.3.1. A homomorphism is a mapping φ between two groups (G,♦) and

(H, ∗) such that φ (x ♦ y)=φ(x) ∗ φ(y) for x,y ∈ G and φ(x),φ(y) ∈ H. Such a function φ

is called a homomorphic function.
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Example: Let define the function φ : M → C, and φ(m) = me where e is an integer.

We easily verify that φ(m1 ·m2) = (m1 ·m2)
e = m1

e ·m2
e = φ(m1) · φ(m2)

Definition 2.2.3.2. A multiplicative(resp. additive) homomorphic function is a homo-

morphic function with respect to multiplication (resp. addition), i.e φ(x♦y) = φ(x) · φ(y)

( resp. φ(x♦y) = φ(x) + φ(y)), for x, y ∈ G and φ(x), φ(y) ∈ H.

Following definition 1.2.3.2,

An encryption scheme would be said to be additively homomorphic if the following holds:

(i) Decrypt (c1 +C c2)= Decrypt(c1) +P Decrypt(c2) for ciphertexts c1 and c2

(ii) Encrypt(m1) +C Encrypt(m2) ”is like” Encrypt(m1 +P m2) where m1 and m2 are

two plaintexts.

Similarly, an encryption scheme would be said to be multiplicatively homomorphic if

we have:

(i) Decrypt (c1 ×C c2)= Decrypt(c1) ×P Decrypt(c2) for ciphertexts c1 and c2

(ii) Encrypt(m1) ×C Encrypt(m2) ”is like” Encrypt(m1 ×P m2) where m1 and m2 are

two plaintexts.

Earlier homomorphic schemes were homomorphic with respect to either addition or mul-

tiplication but not to both at the same time. Before going into details of homomorphic

encryptions, it is necessary to give some background on integers, since most cryptographic

security assumptions rely on hardness of some mathematical problems related to integers.

The next section provides some useful results and theorems which are essential for cryp-

tosystems.

2.2.4 Background on integers

Most encryption schemes rely on the properties of integers to provide encryption and

decryption algorithms as well as ensuring the security of the scheme. It is important to

present some useful properties of integers.
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Definition 2.2.4.1. Let S be a set , a relation R, a and b ∈ S. R is an equivalent relation

on S if the following properties hold:

(i) Reflexivity aRa

(ii) Symmetry If aRb ⇒ bRa

(iii)Transitivity If aRb and bRc ⇒ aRc

We usually denote R by ∼

The equivalence class of a under ∼, denoted by [a] is defined as [a]={b ∈ A|a ∼ b}

Divisibility

For every two integers a and b with b6= 0 a =r+qb with r < b where r is the remainder of

the division of a by b.

Definition 2.2.4.2. We say b divides a if r=0, i.e a=qb, b is called a divisor of a; and a

is called a multiple of b. We denote by [0] the class of integers for which the remainder

of the division by n is 0 and by [1] the class of integers for which the remainder of the

division by n is 1. These equivalence classes are called residue classes modulo n.

Definition 2.2.4.3. ”a is congruent to b modulo n” denoted a≡ b mod n iff a-b is

divisible by n.

Let show that congruence is an equivalence relation.

1- Reflexive property : a≡ a mod n since a-a=0 is divisible by n.

2- Symmetric property: if a≡ b mod n, then b≡ a mod n, since if a-b is divisible by n

then b-a=-(a-b) is divisible by n.

3-Transitive property: if a≡ b mod n and b≡ c mod n, then a≡ c mod n since

a− b

n
= q1, where q1 is an integer, and also

b− c

n
= q2, where q2 is an integer, then

a− b

n
+

b− c

n
= q1 + q2 =

a− c

n
⇒ a− c

n
= q1 + q2 where q1 + q2 is an integer

We denote by Zn={[0],[1],[2],...[n-1]} and by Zn2={[0],[1],[2],...[n2 − 1]} .
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Definition 2.2.4.4. Let a ∈ Zn, a has an inverse in Zn if ∃b ∈ Zn such that a·b = 1 mod n.

We denote by Z∗
n ={a ∈ Zn/∃b ∈ Zn a · b = 1 mod n}.

Definition 2.2.4.5. The greatest common divisor (gcd) of a and b , denoted by

gcd(a,b) or simply (a,b) is a positive number d such that d/a and d/b and if x is any

integer such that x/a and x/b then x/d .

The gcd (a,b) always exists and is unique.

Theorem: (Bezout’s theorem) Let a and b two nonnegative integers, a and b are

relatively prime if ∃ u, v ∈ Z such that au+bv=1.

Proof

Let S={au + bv > 0 a,b ∈ N}. There exists a least element d ∈ S such that au+bv=d.

* S ⊆ N⇒ S 6= O

* We want to show that d=1

d = au1+bv1 (1), let consider the Euclidean division of a by d, a= dq + r (2) with 0 ≤ r < d

(3).

(1) in (2)⇒ a= (au1 + bv1)q + r

⇒ a - au1q - bv1q= a(1-u1q)- b(v1q)=r ⇒ r=au′1 + bv′1 ⇒ r ∈ S and r < d (from (3))

which is a contradiction, so r must be 0, thus d divides a.

We apply a similar reasoning for b, so d divides b and d divides both a and b.

It follows
d

d
=

a

d
u1 +

b

d
v1 ⇒ 1= a’u1 +b’v1 (a’ and b’ ∈ Z since d divides a and d divides

b).

1= a’u1 +b’v1 ⇒ 1∈ S and 1 ≥ d (since d is the least element of S), so finally we have d=1.

Definition 2.2.4.6. The least common multiple (lcm) of a and b, denoted by

lcm(a,b) is a positive number l such that a/l and b/l and if a/x and b/x then l/x.

Note: The lcm of two positive integers always exists and is unique.

Definition 2.2.4.7. A prime number is a positive integer greater than 1 that has no

positive divisors other than 1 and itself.
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Definition 2.2.4.8. a and b are said to be coprime or relatively prime if their only

common divisor is 1.

Definition 2.2.4.9. The Euler totient function φ(n) is the number of integers less than or

equal to n and which are relatively prime to n.

Example: Let calculate φ(6), 1,2,3,4,5 are integers less than 6 but only 1 and 5 are

relatively prime to 6, thus φ(6) = 2

Theorem : Let φ(n) be the Euler totient function and n be an integer. Then φ(n) has

the following properties:

1- φ is a multiplicative function : if m and n are relatively prime then φ(mn) = φ(m)φ(n)

2- For p prime and k ≥ 1 where k is an integer : φ(pk) = (p− 1)pk−1.

3- φ(nk) = nk−1φ(n) Theorem: Fermat’s little theorem

For any prime p, and any integer a 6= 0 (mod p), we have ap−1 ≡ 1 mod p

Definition 2.2.4.10. The Carmichael’s function For a positive integer n, λ(n) denotes the

least positive integer t such that mt ≡ 1 mod n for all integers m with gcd(m,n)=1. λ(n)

as defined above is called the Carmichael function.

Example Let compute λ(6). We have gcd(1,6)=gcd(5,6)=1, then we have 1n ≡ 1 mod 6

for n ≥ 1, and 52 ≡ 1 mod 6, and since we are looking for the least integer, we will set n=2

and thus λ(6) = 2

This section provides very important notions to understand the mathematical foundation

of Paillier cryptosystem.

2.2.5 Integer factorization problem

Definition 2.2.5.1. A composite number n is a positive integer n > 1 such that n is not

prime i.e n can be divided evenly by other numbers (other than 1 and itself).

Definition 2.2.5.2. Let N be a composite integer. There exists integers u,v such that
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N=u · v and such that both u, v > 1.

u and v are called factors.

Definition 2.2.5.3. Computational Integer factorization. Given an integer N and an in-

teger M with 1 ≤M ≤ N , does N have a factor d with 1 < d < M ?

When the numbers are very large, no efficient integer factorization algorithm is publicly

known. Not all numbers of a given length are equally hard to factor. The hardest instances

of these problems are semi-primes, the product of two prime numbers, when they are both

large, randomly chosen and about the same size.

In the following section we will consider n=pq where p and q are prime numbers, then

φ(n) = φ(pq) = φ(p)φ(q) and λ(n) = lcm(p−1, q−1) where φ(n) and λ(n) are respectively

the Euler totient function and the Carmichael’s function.

The composite residue problem

Let recall that Z∗
n2={ a∈ Zn2/∃ b∈ Zn2 , a· b ≡ 1 mod n2}.

Let g be some element of Z∗
n2 and denote by εg the integer valued function defined by:

εg(x,y)

Zn × Z∗
n → Z∗

n2

(x, y) 7→ gx · yn mod n2

We denote by Bα ⊂ Z∗
n2 the set of elements of order nα and by B their disjoint union

Definition 2.2.5.4. A number z is said to be a n-th residue modulo n2 if there exists

a number y ∈ Z∗
n such that z ≡ yn (mod ) n2.

Definition 2.2.5.5. Assume that g ∈ B . For w ∈ Z∗
n2 , n-th residuosity class of w

with respect to g the unique integer x ∈ Z∗
n such that εg(x, y) = w.

Definition 2.2.5.6. A composite residuosity class problem is the computational class

problem defined as follows: given w∈ Z∗
n2 and g ∈ B, compute [[w]]g, where [[w]]g

=
L(wλ mod n2)

L(gλ mod n2))
=

wλ mod (n2)− 1

gλ mod (n2)− 1
.
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2.3 MORE ON CRYPTOGRAPHY

Alice and Bob (from the section 1) wants their conversation to remain secret from the

eavesdropper Trudy, so they mapped the real conversation into another one. This mapping

protects them from any intruder, now the mapping has to be easier to reverse for Alice

(assuming that Bob is the sender). There is one big issue associated to the mapping, the

way of reversing it, has to be known by each protagonists but remain unknown by Alice

and Bob. From our previous example(see section 1), how Bob would tell Alice to replace

the letter by the one in the third position above it?

An immediate solution would be for Alice and Bob to change their keys in person and

use the same key for all their conversations. In the reality, there might be no possibility

for Alice and Bob to communicate in person (that’s the main reason why we assume they

communicate through a network), so practically how could they agree on the keys? Would

they use the same key for encryption and decryption?

2.3.1 Symmetric-key cryptography

Definition

An encryption scheme is said to be symmetric if a secret key k ∈ K is shared by

the sender and the receiver, i.e k=e=d

The Caesar cipher, mentioned in section 1 is an example of a symmetric-key encryption.

In our example the shared key is 3, and the encryption function is c=m+3, while the

decryption function is m=c−3

Example of a symmetric-key encryption scheme

AES
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2.3.2 Public-key or asymmetric key cryptography

Definition

An encryption scheme is said to be asymmetric if a public key e ∈ K used by the

sender to encrypt the message and a secret key d ∈ K used by the receiver to decrypt the

message, i.e e 6= d .

An analogy to the asymmetric cryptography is that everyone can send a letter to Alice

(using her mailing address, it is publicly known), but only Alice can read the letter (she is

the only one to have the key of her mailbox).

We will present two examples of public-key encryptions which happen to be homomorphic

also.

2.3.3 RSA

Rivest Shamir and Adleman (RSA) is a public encryption created in 1977 by Ron

Rivest, Adi Shamir and Len Adleman at MIT. The security of the scheme is based on

the difficulty of factoring large integers. By the fundamental theorem of arithmetic, every

positive integer has a unique prime factorization. The most difficult integers to factor in

practice are those that are products of two large primes of close size. Another interesting

property of RSA is its multiplicative homomorphism.

Let recall that a scheme is multiplicative homomorphic if for a plaintext m=m1 ×M m2

Decrypt(Encrypt(m))=Decrypt(Encrypt(m1 ×P m2))=Decrypt(c1 ×C c2)= m1 ×M m2.

In simpler words, that is given only the public key and the encryption of m1 and m2, one

can compute the encryption of m1 ×M m2

Description of the RSA cryptosystem

We will assume Bob and Alice are communicating, and Alice is sending a message to Bob.

Step 1: KeyGen (Generation of the keys)

- Input: Bob chooses two large distinct prime numbers p, q

Then he computes n=pq and φ(n) = (p− 1)(q − 1).
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He chooses e such that 1 < e < φ(n), gcd(e,φ(n)) = 1

Finally he determines the inverse element of e mod φ(n), i.e the unique number d such that

1 < d < (mod φ)(n) and e · d = 1 (mod φ)(n)

e and n are called respectively the encryption and the decryption exponents

- Output: public and private(secret) keys (pk,sk)

Bob’s public key is pk=(e,n), and his secret key is sk=d

Now, Alice knows Bob,s public key, she will use that to encrypt a message and send it to

him.

Step 2: Encrypt (m, pk)

- Input: plaintext m ∈ Zn and public key pk=(e,n)

Alice wants to send m∈ Zn

She computes c = E(n,e)(m) where E(n,e)(m) = me (mod n)∀m ∈ Zn

- Output: ciphertext c ∈ Zn

Now Alice sends c to Bob, Bob will receive c and will apply the decryption function to

recover m.

Step 3: Decrypt(c,sk)

- Input: ciphertext c ∈ Zn and secret key sk =d

He computes Dd(c) = cd (mod n)

med = med

= m1+k(p−1)(q−1)

= m(mp−1)
k(q−1)

Then med = m (mod p) and if p does not divide m, then we have mp−1 = 1 (mod p)(1)

(by Fermat little theorem), by a symmetric argument we show that med = m (mod q) (2).

Since p and q are distinct primes, from (1) and (2)we have med = m (mod p)

- Output: m ∈ Zn

Multiplicative homomorphic property of RSA
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Claim: RSA is multiplicatively homomorphic i.e Enc(m1) ×c Enc(m2)=Enc(m1 ×p

m2)

Proof Let consider the groups (M,·) and (C,·) to be respectively the groups of plaintext,

and ciphertext. Let recall the encryption function:

(M, ·)→ (C, ·)

m 7→ me (mod n)

Let m ∈ M such that m = m1 ·m2 where m1, m2 ∈M ,

We have

Enc(m1) · Enc(m2) = m1
e (mod n) ·m2

e (mod n)

= m1 ·m2
e (mod n)

= me (mod n)

= Enc(m)

Bob would like to send a message to Alice, for instance w (the ascii code is 119). He wants

Alice to be the only person able to read the message.

1- He chooses two (large) distinct primes number p and q at random

p=29 and q=31

2- He computes the RSA modulus n=pq

n=31 × 29=899

3-He computes φ(n) = (p− 1)(q − 1)

φ(n) = 28× 30 = 840

4-He selects a random integer e such that gcd(e,φ(n)) = 1

we choose e to be 11 since gcd(11,840)=1

5-He computes the unique integer d such that ed mod φ(n) = 1

we have 11d mod 840 = 1⇒ d = 611.

6- The public key is (e,n), the private key is (d,n)
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(11,899) is the public key and (611,840) is the private key.

Step 2: Encrypt

- Input: plaintext p and public key pk

- Output:ciphertext c, c = pe mod n

- Function: Encrypt (p, pk)

Bob sends to Alice c=11911 mod 899 = 595

Step 3: Decrypt

- Input: ciphertext and secret key sk

- Output: plaintext p, p = cd mod n

- Function: Decrypt (c, sk)

Alice computes p = 595611 mod 899 = 119 and recovers the original message

Evaluate

Let consider a plaintext m = m1 × m2. We have c = me mod n = m1 ×m2
e mod n =

m1
e ×m2

e mod n = m1
e mod n×m2

e mod n = c1 × c2.

Let consider a ciphertext c which is such that c = c1 × c2, P = c1 × c2
d mod n =

(c1
d × c2

d) mod n = c1
d mod n× c2

d mod n = m1 ×m2

Paillier cryptosystem

It was invented in 1999 by Pascal Paillier. It is a public-key crypto-system based on

composite degree residue classes. The security of this scheme is ensured by the hardness of

computing the n-th residue classes i.e given a composite n ( n=pq where p and q are large

prime numbers) and an integer z it is hard to decide whether z is a n-residue modulo n2 or

not, i.e whether ∃ y such that z ≡ yn (mod ) n2. Moreover,Paillier cryptosystem is an

additive homomorphic cryptosystem.

Let recall that a scheme is additive homomorphic if for a plaintext p=p1 +P

p2 we have Encrypt(p)=Encrypt(p1 +P p2)=Encrypt(p1) +Encrypt(p2) and De-

crypt(Encrypt(p))=p1 +C p2. That is given only the public key and the encryption of m1
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and m2, one can compute the encryption of m1 +M m2. Notice that we don’t need to know

the original message, and such a scheme is useful if the cost to compute Encrypt(m1) and

Encrypt(m2)is less than computing Encrypt(m1)+C Encrypt(m2).

In this section we will describe the Paillier’s scheme and illustrate it by an example.

Description of the Paillier’s scheme

The Paillier crypto system works as follows: Bob wants to send a message to Alice.

Step 1: KeyGen (Generation of the keys)

- Input: Two large prime numbers p, q ∈ N

Compute n=pq

Choose g ∈ Z∗
n2 such that gcd(L(gλ (mod n2)), n) = 1 with L(u)=u−1

n

- Output: public and private(secret) keys (pk,sk)

pk=(n,g), sk=(p,q)

Step 2: Encrypt (m, pk)

- Input: plaintext m ∈ Zn and pubblic key pk=(n,g)

Choose r∈ Z∗
n

Compute c= gmrn (mod n2)

- Output: ciphertext c ∈ Zn2

Step 3: Decrypt(c,sk)

- Input: ciphertext c ∈ Zn2 and secret key sk =(p,q)

Compute m=L(cλ (mod n2)
L(gλ (mod n2)

(mod n)

- Output: m ∈ Z∗
n

Additively homomorphic property of the Paillier’s cryptosystem

Claim: Paillier’s cryptosystem is additively homomorphic i.e Enc(m1) +c

Enc(m2)=Enc(m1 +p m2)

Proof Let consider the groups (M,+) and (C,·) to be respectively the groups of plaintext,

and ciphertext. Let recall the encryption function:

Enc(m) : (M,+) → (C,·)
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m 7→ c=gmrn mod n2

Let m1, m2 be two plaintexts, then we have Enc(m1) · Enc(m2)=(gm1r1
n mod n2)

·(gm2r2
n mod n2) =gm1+m2r1r2

n mod n2 since r1, r2 ∈ Zn → r1 · r2 ∈ Zn, let r=r1r2,

so we have Enc(m1) · Enc(m2)=gm1+m2rn mod n2=Enc(m1 + m2), thus Paillier cryptosys-

tem is an additively homomorphic.

Example: Bob wants to send a message to Alice. He will like to use the Paillier encryption

scheme. In the following example we illustrate the steps.

1- Bob chooses two large prime numbers randomly and independently of

each other such that gcd(pq,(p-1)(q-1))=1.

Bob chooses for instance p=31 q=17; then he computes n=pq=527 and t (p-1)(q-1)=480

and he checks that gcd (527, 480)=1

2- Then he computes n=pq and λ=lcm(p-1,q-1)

n= pq= 527 and λ= lcm(30,16)= 240

3- He selects a random integer where g ∈ Z∗
n2 and he makes sure that n divides the order of

g, by checking if he can find µ = (L(gλ mod n2))
−1

mod n where the function L is defined

as ∀u ∈ Sn, L(u)=u−1
n

with Sn={ u ≤ n2 | u ≡ 1mod n}.

In other words we can set g=n+1, λ = φ(n) = (p− 1)(q − 1) and µ = φ−1(n) mod n.

He selects g=1055

The public key pk is (n,g) so pk=(527,1055)

The private key sk is (p,q)=(31,17)

The first step is completed,we have computed the keys. Now let assume Bob wants to send

m=50 , he chooses r=35 .

c=10555035527 (mod 5272)=165122

Now let assume Bob doesn’t have enough resources to compute m=50, so he writes

m=m1 + m2=50 with m1 =34, and m2= 16. He also chooses r1=5 and r2=7.

He computes c1 and c2 and sends it to Alice. c1 = 1055345527 (mod 5272)=88220
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c2 = 1055167527 (mod 5272)=8760

Alice will receive c1 and c2 and will compute c1 · c2 = 88220× 8760 (mod 5272)=165122.

The second step is completed, Bob has encrypted the message and has send it to Alice.

Alice will use her secret key to decrypt the received message and recover the original mes-

sage. she will compute: m=
L(165122240 (mod 5272)

L(1055240 (mod 5272)
(mod 527)=50

2.4 TOWARDS FULLY HOMOMORPHIC ENCRYPTION

Earlier homomorphic encryption schemes were partially homomorphic, they were ei-

ther additive or multiplicative.The idea of an encryption scheme allowing one to perform

complex mathematical operations on a cipher text without ever decrypting the text was

introduced by Rivest, Shamir and Adleman in 1978. Many attempts to produce such an

encryption scheme have been made, but the real breakthrough came with Gentry in 2009.

Fully homomorphic encryption is considered as the ”Holy grail” by cryptographers due to

the numerous applications it can lead to. Let take a practical example, there is an on-

line software you can use to evaluate your insurance premium. The required inputs are

your bank information, credit information, age, and some other sensitive information and

you don’t feel comfortable sending those information in clear through the network. Now,

somebody assure you that, there is no need for you to send those data in clear, that you

just have to encrypt your data(he has zero-knowledge of your data), and he will compute

the function to evaluate your premium and would send you the encrypted result, and you

again will be the only one to access your result. Among other things, a fully homomor-

phic encryption (FHE) scheme allows one to perform non-interactive secure computation,

and in many applications this is crucial. The classic example is cloud computing: if you

don’t trust your cloud provider with your data, you are in trouble: either you have to

give away your private data in clear (running the risk that the cloud provider looks into

possibly confidential data), or you have to encrypt the data before uploading it (losing the
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advantages of having the cloud computing for you). Another example is encrypted a Spam

filter: you like that your mailbox is not filled with junk, but you might not be happy about

Google/Microsoft/etc. reading the contents of all your email.

In the next chapter we will present some fully homomorphic encryption schemes along

with their mathematical underlying structures and security assumptions.
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CHAPTER 3

FULLY HOMOMORPHIC ENCRYPTION

3.1 EVOLUTION OF FULLY HO-

MOMORPHIC ENCRYPTION SCHEMES(FHE): FROM THE FIRST

FHE TO PRACTICAL FHE

The need for more and more secure cryptosystems has increased drastically with tech-

nology, and in 1978, the idea of privacy homomorphism (today known as Fully Homo-

morphic Encryption (FHE)) was introduced by Rivest, Shamir and Dertouzous. That

special encryption scheme should allow an unlimited chaining of algebraic operations, that

means an arbitrary number of additions and multiplications can be applied to encrypted

operands. The underlying question was to find if there was an encryption function such

that both Encrypt(x + y) and Encrypt(x · y) are easy to compute from Encrypt(x) and

Encrypt(y)? Finding such an encryption function was the promise of a whole bunch of

applications,ranging from delegation of computation to untrusted parties to search on en-

crypted data. That is the reason why FHE is considered as the ”HOLY GRAIL” in cryp-

tography. Many attempts to produce such an encryption scheme have been made, but the

real breakthrough came with Gentry. He proposed the first fully homomorphic encryp-

tion (FHE) scheme (Gentry, 2009),based on ”ideal lattices”. His scheme later on was not

found practical, and researchers have been working to make FHE somewhat practical. The

major concern in FHE is that, the noise introduced in the ciphertext to ensure security,

increases with every single operation on the ciphertext lowering the accuracy of decryption

and, eventually leading to its failure. To address this issue, cryptographers use ”a hint”

in the key to help refreshing the ciphertext, or simply use long ciphertexts (with unused

bits). A somewhat homomorphic encryption (SHE) is a scheme in which no re-encryption

is required(no need to refresh the ciphertext), but only a limited number of operations is
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possible. An SHE is capable of evaluating ”low degree” polynomials homomorphically. All

known FHE encryption schemes are constructed from SHE. Thus, an FHE is obtained by

squashing the decryption circuit, that is to use an encrypted secret key as a component of

the public key and evaluate it under encryption by SHE. After squashing, the next step

towards FHE is bootstrapping, which is partially decrypting ((refreshed) the ciphertext,

and then use it in new homomorphic evaluations of low-degree polynomials. In this chap-

ter, we will present the mathematics behind the FHE, we will provide some background on

rings, fields, lattices then we will discuss two different FHE schemes based on lattices and

integers.

3.1.1 Rings and Polynomials

Definition 3.1.1.1. A ring R is a non-empty set together with two operations + and ·

satisfying:

(i) The associative law for addition (a+b)+c=a+(b+c) ∀a, b, c ∈ R

(ii) The commutative law for addition a+b=b+a

(iii) The existence of 0: ∃0 ∈ R such that,∀a ∈ Ra + 0 = 0 + a = a

(iv) The existence of negatives: ∀a,∈ R ∃ − a ∈ R such that a+(-a)=0

(v) The associative law for multiplication (ab)c=a(bc) ∀a, b, c ∈ R

(vi) The distributive laws: a(b+c)=ab+ac, (a+b)c=ac+bc, ∀a, b, c ∈ R

A ring is said to be commutative if multiplication is commutative, i.e a · b = b · a,

where a, b∈ R

Example 3.1.1.1. (Z2, +, ·) is a ring.

More generally (Zp, +, ·) where + and · are respectively the addition and multiplication

modulo p

Definition 3.1.1.2. Let (R, +·) be a ring with identity and let x be an indeterminate over
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R. We denote by R[x] the set of all formal expressions

anx
n + an−1x

n−1 + .... + a1x + a0 (2.1)

where n is a nonnegative integer and aj ∈ R for j=0,1,...n.

We define 1 · x = x and for any a ∈ R, a = ax0.

aj is called the coefficient of xj. Any expression of the form (2.1) is called a polynomial

in x with coefficients in R.

Example 3.1.1.2. a) Let consider the ring ( Z[x], +, ·) we define Z[x] the set of polyno-

mials with integer coefficients, Z[x] = {f(x) = a0 + a1x + a2x
2 + ..... + anx

n|ai ∈ Z with

0 ≤ i ≤ n}. an is called the leading coefficient and a0 the constant term.

b) Similarly we define Zp[x] to be the set of polynomials with coefficients in Zp (p is

a prime) in the ring ( Zp[x], +, ·) , Zp[x] = {f(x) = a0 + a1x + a2x
2 + ..... + anx

n|ai ∈ Zp

with 0 ≤ i ≤ n}.

We will be working with the ring (Zp[x], +, ·)

Definition 3.1.1.3. For every nonzero polynomial, p(x) ∈ R[x] , there is a largest non-

negative integer m(1 ≤ m ≤ n) such that am 6= 0 (recall that am is the coefficient of xm),

m is called the degree of p(x) and denoted deg(p(x)). am is called the the leading

coefficient of p(x), a0 is called the constant term of p(x)

A polynomial of the form akx
k is called a monomial

A nonzero polynomial p(x) with deg(p(x))=n is called a monic if an = 1

Definition 3.1.1.4. A division ring is a ring in which every nonzero element has a

multiplicative inverse.

A field is a commutative division ring.

Example: Zp with p prime is a field.
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Theorem

Let F be a field. The polynomial ring F[x] is a Euclidean domain. Specifically, if a(x) and

b(x) are two polynomials in F[x] with b(x) nonzero, then there are unique q(x) and r(x) in

F[x] such that a(x) = q(x)b(x) + r(x) with r(x) = 0 or degr(x) < deg(b(x).

Proof

• If a(x) = 0, then we take q(x) = r(x) = 0 and we have a(x) = q(x)b(x) + r(x)

• If a(x) 6= 0

let deg(a(x)) = n and deg(b(x)) = m, if n < m, then we take q(x) = 0 and r(x) = a(x)

and we have a(x) = 0.b(x) + a(x) , otherwise i.e n ≥ m, we have:

a(x) = anx
n + an−1x

n−1 + ... + a1x + a0 and b(x) = bnx
n + bn−1x

n−1 + ... + b1x + b0

Then the polynomial a′(x) = a(x)− an

bm

xn−mb(x) is of degree less than n.

By induction then, there exists polynomials q′(x) and r(x) with a′(x) = q′(x)b(x) +

r(x) with r(x) = 0ordegr(x) < degb(x)

Then, letting q(x) = q′(x) +
an

bm

xn−m we have

a(x) = q(x)b(x) + r(x) with r(x) = 0 or deg r(x) < deg b(x)

Definition 3.1.1.5. Let g(x), h(x) ∈ Zp[x], where no both are zero. Then, greatest

common divisor of g(x) and h(x) denoted by gcd(g(x),h(x)) is the the unique monic

polynomial d(x) ∈ Zp[x] for which:

• d(x) divides both g(x) and h(x).

• if r(x) ∈ Zp[x] and r(x)|g(x), and r(x)|h(x) then r(x)|d(x)

Theorem Let F be a field and let f,g ∈ F[x] be any two nonzero polynomials. For

every polynomial d∈ F[x], the following properties are equivalent.

• (1) The polynomial d is the gcd of f and g

• (2) The polynomial d divides f and g and there exists u,v ∈ F[x] such that d = uf +vg
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Proof

Let d=gcd(f,g), then d|f → ∃α ∈ F[x] such that f = αd, similarly d divides g and g = βd,

thus f + g = (α + β)d then d = λf + λg

Now let assume ∃u, v ∈ F[x] such that d=uf +vg, then if ∃h ∈ F[x] such that h divides

both u and v, then h must divide d, thus d=gcd(f,g).

Definition 3.1.1.6. If f(x) ∈ F [x] where F is a field, then a root of f(x) in F is an element

a∈ F with f(a) = 0

Lemma

Let F be a field and let f(x) ∈ F [x]. Then,for any a ∈ F , there exists q(x) ∈ F [x] such

that f(x) = (x− a)q(x) + f(a)

Proof

By the division algorithm, we have f(x) = (x−a)q(x)+r(x) where deg(r)<deg (x−a) = 1,

and therefore deg(r)=0,i.e r(x) = r is a constant.

So, f(x) = (x− a)q(x) + r ⇒ f(a) = (a− a)q(a) + r = r = r(x)

Definition 3.1.1.7. Let R be a ring. An ideal of R is a non-empty subset I of R with the

properties:

i)a,b ∈ I ⇒ a− b ∈ I

ii)a ∈ I and r ∈ R⇒ ra ∈ I

Definition 3.1.1.8. A principal Ideal I is an ideal generated by a single element. Let R

be a commutative ring( and x ∈ R, the principal ideal generated by x is the set < x >=

{rx |x ∈ R}

Example 3.1.1.3. I=< 2 > , is the set of vectors with all even coefficients.

Example 3.1.1.4. If p is prime, then the ring Zp[x] obtained by reducing Z[x] modulo the

prime ideal < p > is a principal ideal domain, since the coefficients lie in the field Zp[x] .
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Definition 3.1.1.9. Let R and S be rings :

A ring homomorphism is a map φ : R→ R satisfying :

(i) φ(a + b) = φ(a) + φ(b)

(ii)φ(ab) = φ(a)φ(b) ∀a, b ∈ R

3.1.2 Lattices

Studies on lattices have been going on since the late eighteenth century by mathemati-

cians such as Lagrange, Gauss and later Minkowski. In 1996, Miklos showed in a seminal

result the use of lattices as cryptography primitives. He generated hard instances of lattices

problems which have been used as buildings blocks for lattice-based public-key cryptosys-

tems. We will start by studying in detail some properties of lattices and we will present

some underlying hard problems. Then we will present two lattice-based cryptosystems.

Definition 3.1.2.1. A nonempty set X ⊂ Rnis a vector space if x + y ∈ X and cx ∈

X∀x, y ∈ X and for all scalars c in Z .

If x1, x2, ...., xn ∈ Rn and c1, c2, ....ck are scalars, the linear combination

c1x1 + c2x2 + ... + ckxk

is independent if

c1x1 + c2x2 + ... + ckxk = 0⇒ c1 = c2 = ....ck = 0

Then we say {x1, x2, ....xk} is a set of linearly independent vectors∈ Rn

Let b1, b2, ...., bn be n linearly independent vector ∈ Rn , the lattice L in Rn generated

by them is defined as L=L(b1, b2, ...., bn)={
n∑

i=1

xibi, xi ∈ Z, ∀1 ≤ i ≤ n}, the set of all linear

integer combinations of b1, b2, ...., bn

Equivalently , if we define B as the m× n matrix whose columns are b1, b2, ...., bn, then the

lattice generated by B is L=L(B)=L(b1, b2, ...., bn) = {Bx|x ∈ Zn} Any linearly independent

set of vectors that generates L is a basis for L. Every lattice has an infinite number of
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lattice bases. We say that the rank of the lattice is n and its dimension is m. If n=m,

the lattice is called a full-rank lattice.

Example The lattice generated by {(1, 0)T , (0, 1)T} is Z2, the lattice of all integers points.

Another basis of Z2 is {(1, 0)T , (0, 1)T}, but {(1, 1)T , (2, 0)T} is not a basis for Z2

Definition 3.1.2.2. Let U ∈ Zn×n , with the property that ±det(U) , then we say that U

is unimodular.

Lemma Two n ×m matrices B and B’ generate the same lattice L iff and only if B

and B’ are related by a unimodular matrix, i.e B’=UB where U is a n× n matrix.

Proof

Let assume L(B)=L(B’), then for each of the n columns bi of B’, bi ∈ L(B). This

implies that there exists an integer matrix U ∈ Zn×n for which B’=BU. Similarly,

there exists V ∈ Zn×n such that B=B’V. Hence B’=BU=B’VU , and we get B′T B =

(V U)T B′T B′(V U). Taking determinants, we obtain that det(B′T B) = det(V U)2det(B′T B′)

and hence det(V)det(U)= ±1. Since V, U are both integer matrices, this means that

det(U) = ±1

Now let assume that B’=BU for some unimodular matrix U. Therefore each column of B’

is contained in L(B) and we get L(B′) ⊆ L(B). In addition , B = B′U−1, and since U−1 is

unimodular, we get that L(B′) ⊆ L(B). We conclude that L(B)=L(B’).

Since every lattice has an infinite number of bases, but not every set of n linear independent

vectors in Zn is a basis of Zn. How can we tell that a given set of vectors forms a basis for

a lattice?

Definition 3.1.2.3. Let L be a lattice of dimension n, and let b1, b2, ..., bn be a basis for

L.The fundamental domain (or fundamental parallelepiped) for L corresponding to this

basis is the set P (b1, b2, ..., bn) = {t1b1 + t2b2 + .... + tnbn|x ∈ Rn,∀i : 0 ≤ ti < 1}

For a lattice basis B we define the half open fundamental parallelepiped for a lattice basis

B to be P (B) = {Bx|x ∈ Rn,∀i : −1

2
≤ xi <

1

2
}
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Lemma

Let L be a lattice of rank n, then b1, b2, ..., bn form a basis of L iff P (b1, b2, ..., bn)∩L = {0}

Proof

First, let assume that b1, b2, ..., bn form a basis of L. Then by definition, L is the set of all

their integer linear combinations. Since P (b1, b2, ..., bn) is defined as the set of all linear

combinations of b1, b2, ..., bn with coefficients in [0, 1), the intersection of the two sets is {0}

Now let assume, that P (b1, b2, ..., bn)∩L = {0}. Since L is a rank n lattice, and b1, b2, ..., bn

are linearly independent, we can write any lattice vector x ∈ L as
∑

yibi for some yi ∈ R.

Since, by definition a lattice is closed under addition, the vector x′ =
∑

(yi − [yi]bi) is also

in L. Then from our assumption, x′ = 0. This implies that all yi are integers and hence x

is an integer combination of b1, b2, ..., bn.

Let L(B) be a lattice of rank n. We define the determinant of L denoted det(L), as the

volume of the fundamental parallelepiped, it is also equal to the determinant of any basis

of L, namely vol(P(B)=det(L)=
√

BT B

In our context of lattice-based cryptography, there are ”good” and ”bad” bases of a

lattice. A basis B is said to be good, if the vectors are short and nearly orthogonal. For

any basis B, it is true that
∏n

i=1 ||bi|| ≥ det(L)

That means, for a good base we have
∏n

i=1 ||bi|| ∼ det(L)

Hermite Normal Form

Given a square n× n non singular integer matrix , there exists an n× n unimodular matrix

U and n× n matrix H such that AU = H. H is a lower triangular and is called the Hermite

Normal Form (HNF) of A:

i) hij = 0forj > i

ii) hii > 0 ∀ i and,

iii)hij ≤ 0 and |hij| < hii

Lemma: If B is the basis matrix of a lattice L, then HNF(B) is also a basis matrix for L.
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The HNF of a basis is unique and can be computed in polynomial time.

Definition 3.1.2.4. Let consider ~v = (v0, v1, ..., vn)T of a polynomial v(x) ∈ R, we define

the cyclic rotation denoted by rot(~v), and rot(~v) := (−vn−1, v0, ..., vn−2)
T

and its corresponding circulant matrixRot(v)= (~v, rot(~v), ..., rotn−1(~v)
T
, Rot(~v) is also

called the rotation basis of the ideal lattice < u >.

Example

let v(x) = 5x3 + 3x2 + 1, then rot(~v) = (−5, 1, 3)T and Rot(v) =



1 3 5

−5 1 3

−3 5 1

−1 3 5


3.1.3 Lattice-based cryptosystems

Let us describe the two following hard problems in lattices, used as security assump-

tions in the lattice-based cryptosystems.

For every n-dimensional lattice L, and i=1,2,...n, the ith successive minimum λi(L) is the

smallest radius r such that Ball(0,r)contains i linearly independent lattice vectors.

The shortest vector problem (SVP) is defined as: given a lattice L, find the nonzero

lattice vector ~v closest to the origin (||~v|| ≤ γλ1(L)), where γ is a factor depending on

the dimension of the matrix. This problem is considered particularly hard to solve for

γ ≥ nk, withk > 5.

Let dist(L, t) = min~v∈L{||t−v||} denote the minimum distance from the target vector

t to the lattice L.

For a vector ~v ∈ Rn, ~v (mod B) is the unique vector ~v” ∈ P (B) so that ~v − ~v” ∈ L,

that is ~v (mod B) = B[B−1~v] where [.] denotes the distance between the coefficients of

a vector and the nearest integers.
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The closest vector problem (CVP) is defined as: Given lattice L and target point t,

find lattice vector ~v closest to ~t: ||~v − ~t|| ≤ γ dist(L,t).

During the mid-1990’s, many cryptosystems were introduced whose underlying hard prob-

lem was SVP and | or CVP in a lattice of large dimension. The most interesting of those

were the GGHcrypstosystem of Goldreich, Goldwasser and Silverman. The motivation for

introducing these cryptosystems was mainly due to the fact that lattice-based cryptosys-

tems are frequently much faster than factorization or discrete logarithm based ones. RSA

for example, would require O(k3) operations to achieve k bits of security, while encryption

and decryption for lattice based require only O(k2) operations. Lattice-based cryptosys-

tems can also be associated with rings, allowing naturally additions and multiplications.

The GGH cryptosystem works as follow : Alice’s private key is a good basis for a lattice

L and her public key is a bad basis Bbad for L. Bob’s message is a binary vector m, which

he uses to form a linear combination
∑

mibi
bad of the vectors in Bbad. He then pertubes

the sum by adding a small random vector r. The resulting vector differs from a lattice

vector by the vector r. Since Alice knows a good basis for L, she can use Babai’s algorithm

to find v, and then she expresses v in terms of the bad basis to recover m. Trudy in the

other hand, knowing only the bad basis Bbad, would not be able to solve the closest vector

problem in L.

The N th degree truncated polynomial ring (NTRU) is another important lattice-

based cryptosystem based on polynomial rings. Let N, p,q be integers such that

gcd(N,q)=gcd(p,q)=1 and let define the following R = Z[x]/xN − 1, Rp = Zp[x]/xN − 1,

Rq = Zq[x]/xN − 1.

Definition 3.1.3.1. For any positive integers d1 and d2 we let T (d1, d2) = {a(x) ∈ R : a(x)

has d1 coefficients equal to 1, a(x) has d2 coefficients equal to −1, a(x) has all the other

coefficients equal to 0}.

Alice chooses public key (N, p,q,d). Alice’s private keys consists of two randomly
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chosen polynomials f(x) ∈ T (d + 1, d) and g(x) ∈ T (d, d). Alice computes the inverse

Fq(x) = f(x)−1 ∈ Rp. Then she computes h(x) = Fq(x)× g(x) ∈ Rq

. The polynomial h(x) is Alice’s public key and the pair (f(x), Fp(x)) is her private key. Bob

chooses a polynomial m(x) ∈ R whose coefficients ∈ (−p

2
,
p

2
), he also chooses a random

polynomial r(x) ∈ T (d, d). He, then computes e(x) = (ph(x) × r(x) + m(x)) mod q.

Alice started the decryption by computing a(x) = f(x) × e(x) mod q, then she computes

b(x) = Fp(x)× a(x) mod p and recover the message m(x) = b(x).

In the next section, we will describe the first FHE invented by Gentry. The construc-

tion has many parameters:

γ is the bit-length of the integers in the public key

Theorem: Babai’s closest vector algorithm

Let L ⊂ Rn be a lattice with basis b1, b2, ..., bn and let w ∈ Rn be an arbitrary vector. If

the vectors in the basis are sufficiently orthogonal to another, then the following solves the

”Closest Vector problem”:

write w = t1v1 + t2v2 + ... + tnvn with t1, ..., tn ∈ R

set ai = [ti] for i=1,2,...,n

η is the bit-length of the secret key

ρ is the bit-length of the noise

τ is the number of integers in the public key

3.1.4 Gentry FHE

Craig Gentry proposed in 2009, the first fully homomorphic encryption based on ideal

in lattices. The Key generation algorithm takes as inputs a fixed ring R and a basis Bi. The

public key consists of a ”bad” basis Bpk of an ideal lattice J, along with some basis BI of a

small ideal I. A ciphertext is a vector close to a J-point, with the message being embedded

in the distance to the nearest lattice point. The plaintext space is R/I = {0, 1}n, for a

34



message ~m ∈ {0, 1}n, we set ~e = 2~r + ~m for a random small vector ~r and then output the

ciphertext ~c ← ~e (mod B)pk. We will be working with R, the ring of integer polynomials

modulo fn(x), i.e R := Zp[x]/fn(x) where fn(x) = xn + 1 with n a power of two. We

will also consider the principal ideal I of R. We will denote by ~u = (u0, u1, ..., un)T , the

coefficient vectors of u ∈ R

Generation of the keys of SHE

• Bob chooses a random polynomial u(x) =
∑n−1

i=0 uix
i ∈ Z[x], where each entry is a

η-bit integer, and he computes p=det (Rot(u(x))should be an odd integer.

• He computes d(x) = gcd(u(x), fn(x)) over Rp[x], and he finds α the unique root of

d(x).

Then he finds a polynomial v(x) =
∑n−1

i=0 vix
i ∈ Z[x] such that u(x)× v(x) = p mod

fn(x)

Remark: Not all polynomial u(x) ∈ Z[x] will work. We required that u(x) should be

such that HNF (J) = Rot(u(x)) has the following form:

HNF (J) =



p 0 0 ... 0

−α 1 0 ... 0

−α2 mod p 0 1 ... 0

... ... ...

−αn−1 mod p 0 0 ... 1


• The public key is pk = (p, α), and the secret key is sk = (p, v(x))

Now Bob is ready to encrypt his message and send it to Alice.

Encryption of the message

Bob chooses a small random polynomial (noise) and a message m ∈ {0, 1}, then he computes

c = (2r(α) + m) mod p
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3.1.5 Smart-Vercauteren

In 2010, Nigel Smart and Frederick Vercauteren proposed a variant of Gentry scheme.

Their scheme is also based on lattices, but they succeeded in reducing the size of the

ciphertext and they length of the key. Their scheme also allows efficient fully homomorphic

encryption over any filed of characteristic two.

Generation of the keys of SHE

• Bob chooses a random polynomial u(x) =
∑n−1

i=0 uix
i ∈ Z[x], where each entry is a

η-bit integer, and he computes p=det (Rot(u(x))should be an odd integer.

• He computes d(x) = gcd(u(x), fn(x)) over Rp[x], and he finds α the unique root of

d(x).

Then he finds a polynomial v(x) =
∑n−1

i=0 vix
i ∈ Z[x] such that u(x)× v(x) = p mod

fn(x)

Remark: Not all polynomial u(x) ∈ Z[x] will work. We required that u(x) should be

such that HNF (J) = Rot(u(x)) has the following form and moreover p should be a

prime:

HNF (J) =



p 0 0 ... 0

−α 1 0 ... 0

−α2 mod p 0 1 ... 0

... ... ...

−αn−1 mod p 0 0 ... 1


• He computes β = (v(x)mod(x)) mod (2p)

Now his public key is pk = (p, α), and the secret key is sk(pβ)

Now Bob is ready to encrypt his message and send it to Alice.

36



Encryption of the message

Bob chooses a small random polynomial (noise) and a message m ∈ {0, 1}, then he com-

putes c = (2r(α) + m) mod p (Notice: The encryption is done bit by bit.)

Decryption of the message

Bob decrypts the ciphertext by computing: m = (c− [c× β/p +
1

2
]) mod 2.

Alice can work on the encrypted values now, let define the addition and multiplication

Addition

Given the public key pk, and two ciphertexts c1 and c2 : c = c1 + c2 mod p

Multiplication

Given the public key pk, and two ciphertexts c1 and c2 : c = c1 × c2 mod p.

Let illustrate it by an example:

let n = 22 = 4, and u(x) = 2x3 + 4x2 + 8x + 159 and fn(x) = x4 + 1

Generation of the keys

p=det(Rot(u(x)) =



159 8 4 2

−2 −159 8 4

−4 −2 −159 8

−8 −4 −2 −159


=641407153

Now we want to find v(x) such that u(x) × v(x) = p mod f4(x) i.e u(x) × v(x) =

q(x)(x4 + 1) + p, we find v(x) = −40898x3 − 91520x2 − 204800x + 4027071

Now we compute d(x) = gcd(u(x) = 2x3 + 4x2 + 8x + 159, x4 + 1)and we find d(x) =

x− 26912186

and the we find α = p− 26912186 = 614494967 (recall α is the root of d(x) modulo p)

so the public key is (641407153,614494967)
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Fully homomorphic properties of the scheme

Let c1 and c2 be two ciphertexts such that c1 = (2r1(α) + m1) mod p and c2 = (2r2(α) +

m2) mod p, and let m = m1 + m2.

c = c1 + c2 mod p⇒ c = (2r1(α) + m1) mod p + (2r2(α) + m2) mod p

∃q, q′ ∈ Z such that c = pq + 2r1(α) + m1 + pq′ + 2r2(α) + m2,

then we have c = p(q + q′) + m1 + m2 + 2(r1(α) + 2r2(α)) ⇒ c = pq” + m1 + m2 + 2r(α)

with q”=q+q’ and r(α) = r1(α) + r2(α)

Decrypt(c) = (c − [c× β/p +
1

2
]) mod 2 = (pq” + m1 + m2 + 2r(α) − [(pq” + m1 + m2 +

2r(α))β/p) +
1

2
]) mod 2 = m1 + m2

Now let c′ = c1 × c2 mod p. and m = m1 ×m2

Similarly we get Decrypt(c) = m1 ×m2

3.1.6 Fully homomorphic encryption over integers

This encryption proposed by Van Djik and Gentry, is derived from the one suggested

by Gentry in 2009. It uses only elementary modular operations. The security of this scheme

relies on the difficulty to find approximate integer gcd, that is given a list of integers that

are near-multiples of a hidden integer, output that hidden integer.

Let define the following parameters:

γ is the bit-length of the integers in the public key

η is the bit length of the secret key which is the hidden approximate-gcd of all the public

key integers.

ρ is the bit length of the noise, that is the distance between the public key elements and

the nearest multiples of the secret key

τ is the number of integers in the public key

Description of the scheme

Step 1: Generation of the keys
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The secret key is an odd η bit integer , and p ∈ [2η−1, 2η)

Step 2:Encryption

Let m ∈ {0, 1}, then c = Encrypt(m, pk) = pq + 2r + m where r is a random integer 2r is

smaller than |1
2
|

Step 3: Decryption We recover the original message by doing Decrypt(c) = (c mod

p) mod 2.

In the next chapter we will present our implementation which is a combination of

these algorithms.
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CHAPTER 4

IMPLEMENTATION

In this chapter we will describe our implementation. Our algorithm are based on the

Smart-Vercauteren approach. We have used the Brenner’s code and made some modifica-

tions and also the Fast LIbrary For Number Theory.

Key generation

The private and public keys we are generating are all prime

Input

The irreducible monic fn(x) = xn +1 (irreducible in Z[x] for n=power of two). Practically,

the user enters the value of n.

We generate a random polynomial with the constant term odd with the requirement that

resultant (fn(x), g(x)) = p prime

The next step in finding the key is to apply the xgcd algorithm to (fn(x), g(x)) to find their

gcd and finally get its root.

Output

the pair (p, α) and the secret key q

Encryption

The encryption is done as described in Smart-Vercauteren scheme, that is c = (2r(α) +

m) mod p. In the encryption, we use the homomorphic properties of our scheme to

make our scheme more secure. Two bits with a same value would have two different

encryptions depending on the function we have chose, since Dec(Enc(1+0))=1+0=1 and

Dec(Enc(1.1))=1.1=1.

Decryption

The decryption is similar to the decryption of Smart- Vercauteren.

In this implementation we have reduced the size of the key to 512 bits, to make the

encryption runs in real time for visualization. It is not practical for real problems life.
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The next generation of FHE will allow multi-party computations. Our future work will

be to compare our implementation consumption of energy, since it is designed for smart

phones, it must be save energy efficiently.
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