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 Digital breast tomosynthesis is a new technology that provides three-dimensional 

information of the breast and makes it possible to distinguish the cancer from overlying 

breast tissues. We are dedicated to optimizing image reconstruction and imaging 

configuration for a new multi-beam parallel digital breast tomosynthesis prototype 

system.  

 Several commonly used algorithms from the typical image reconstruction models 

which were used for iso-centric tomosynthesis systems were investigated for our multi-

beam parallel tomosynthesis imaging system. The representative algorithms, including 

back-projection (BP), filtered back-projection (FBP), matrix inversion tomosynthesis 

reconstruction (MITS), maximum likelihood expectation maximization (MLEM), ordered-

subset maximum likelihood expectation maximization (OS-MLEM), simultaneous 

algebraic reconstruction technique (SART), were implemented to fit our system design. 

An accelerated MLEM algorithm was proposed, which significantly reduced the running 

time but had the same image quality. Furthermore, two statistical variants of BP 

reconstruction were validated for our tomosynthesis prototype system. Experiments  

based on phantoms and computer simulations show that the prototype system 
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combined with our algorithms is capable of providing three-dimensional information of 

the objects with good image quality and has great potentials to improve digital breast 

tomosynthesis technology. 

 Four methodologies were employed to optimize the reconstruction algorithms 

and different imaging configurations for the prototype system. A linear tomosynthesis 

imaging analysis tool was used to investigate blurring-out reconstruction algorithms. 

Computer simulations of sphere and wire objects aimed at the performance of out-of-

plane artifact removal. A frequency-domain-based methodology, relative NEQ(f) 

analysis, was investigated to evaluate the overall system performance based on the 

propagation of signal and noise. Conclusions were made to determine the optimal 

image reconstruction algorithm and imaging configuration of this new multi-beam 

parallel digital breast tomosynthesis prototype system for better image quality and 

system performance.  
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ABBREVIATIONS 

CT:  Computed Tomography 

FEM:  Finite Elements Modelling  

ROI: Region Of Interest 

BP: Back Projection 

FBP: Filtered Back Projection 

PCA: Principal Component Analysis 

MITS: Matrix Inversion Tomosynthesis 

MLEM: Maximum Likelihood Expectation Maximization 

OS-MLEM: Ordered Subset – Maximum Likelihood Expectation Maximization 

SART: Simultaneous Algebraic Reconstruction Technique 

NP: Number of Projection Images 

VA: View Angle 

MTF: Modulation Transfer Function 

NPS: Noise Power Spectrum 

NEQ: Noise Equivalent Quantum 

CNR: Contrast to Noise Ratio 

SNR: Signal to Noise Ratio  
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CHAPTER 1 

INTRODUCTION 

Breast cancer is the most prevalent cancer and the second leading cause of 

cancer-related death in women in the United States (Kopans 1997). Early detection of 

breast cancer is viewed as the best hope to decrease breast cancer mortality (Kopans 

1997). It is universally accepted that mammography is the most effective tool for the 

early detection of breast cancer (Bassett et al 2005). However, the appearance of 

overlapping tissue on mammograms brings difficulties to interpret the images. It is 

particularly difficult for mammography to interpret dense breast tissues, which is 

common in young women (Holland et al 1982). When suspicious finding appears on the 

screening mammograms, the follow-up diagnostic mammography, ultrasonography, 

magnetic resonance imaging (MRI), or biopsy will be conducted to determinate the final 

diagnosis. This procedure causes anxiety and increases medical cost. 

Improving breast imaging technologies may permit breast cancer to be detected 

at a smaller size and earlier stage, thereby reducing the number of women who die 

from such cancer. Compared to the standard mammography technique, digital breast 

tomosynthesis (DBT) enhances the diagnosis by removing the ambiguities of 

overlapping tissues and providing the depth information. Therefore, it is promising to 

reduce recall rates, improve the biopsy selection of patients, and increase cancer 

detection accuracy (Park et al 2007).  

Extensive attention from academic communities and industrial vendors has been 

paid to this promising field. The typical breast tomosynthesis prototype systems acquire 

projection images with the X-ray tube moving along an arc path. This kind of 
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implementation can reutilize the traditional mammography design, decrease the cost 

and reduce the training procedure for the operators. However, the X-ray tube’s 

movement may introduce motion blur to tomosynthesis images as well as cause 

patients’ discomfort.  

A novel nanotechnology enabled X-ray source, Invented by Zhou et al, has been 

investigated for breast tomosynthesis applications (Yang et al 2008, Zhou et al 2010). 

The breast tomosynthesis system is built up with fixed multi-beam field-emission X-ray 

(MBFEX) sources based on unique properties of carbon nano-tube electron emitters. It 

shows great potentials to reduce patients’ discomfort and the motion blur associated 

with X-ray tube’s movement in typical digital breast tomosynthesis systems.  

In this chapter, we firstly introduce the clinical motivation and current 

technologies of breast cancer detection, and then discuss about the history and the 

state of arts in digital breast tomosynthesis development. At last, system design and 

image quality assessment of digital breast tomosynthesis systems are introduced. 

1.1. CLINICAL MOTIVATION 

Breast cancer accounts for 30 percent of all female cancers in USA and 

approximately 1 in 9 women in USA gets breast cancer during their lifetime (Kopans 

1997). Around one million women worldwide are affected by this cancer. The report 

from NIH/NCI (National Cancer Institute 2012) estimates that in United States in 2012, 

there will be 226,870 new female cases and 2,190 new male cases, and 39,510 women 

and 410 men will die from such cancer. 

The risk of developing breast cancer increases as the woman gets older. Table 1 

shows the trend of different ages.  
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Table 1. A woman’s chance of being diagnosed with breast cancer (Altekruse et al 

2010). 

Ages A woman’s chance of being diagnosed with breast cancer 

from age 30 through age 39 1 in 233 

from age 40 through age 49 1 in 69 

from age 50 through age 59 1 in 42 

from age 60 through age 69 1 in 29 

      

Early breast cancer usually does not cause symptoms. This is why regular breast 

exams are important. As the cancer grows, symptoms may appear, including lump, 

change in the size and shape, fluid coming from the nipple. The doctor will ask the 

patients about the symptoms and risk factors, and then perform a physical exam. If the 

doctor learns that the patient does have breast cancer, staging tests will be done to see 

if the cancer has spread.  

Breast cancer stages range from 0 to IV (BreastCancer.org 2012). How well the 

patient does after being treated for breast cancer depends on many factors. The more 

advanced the cancer, the poorer the outcome. For women with stage I, II, or III breast 

cancer, the main goal is to treat the cancer and prevent it from returning. For women 

with stage IV cancer, the goal is to improve symptoms and help them live longer. In 

most cases, stage IV breast cancer cannot be cured. 

The 5-year survival rate refers to the number of patients who live at least 5 years 

after their cancer is found. According to the report (American Cancer Society 2012a), 

the 5-year survival rates for persons with breast cancer who are appropriately treated 

are as follows: (1) 93% for Stage 0; (2) 88% for Stage I; (3) 81% for Stage IIA; (4) 74% 
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for Stage IIB; (5) 67% for Stage IIIA; (6) 41% for Stage IIIB; (7) 49% for Stage IIIC; (7) 

15% for Stage IV. Breast cancer is more easily treated and often curable if it is found 

early. 

1.2. CURRENT TECHNOLOGY OF BREAST CANCER DETECTION 

Mammography 

Mammography is an X-ray screening and diagnostic technique that is used to 

create detailed images of the breast. A mammogram can often show a lump before it 

can be felt. They also can reveal clusters of tiny specks of calcium. Due to the cost 

effectiveness and its ability to reduce breast cancer mortality, Mammography is the 

most widely used breast cancer screening tool (Pisano et al 2004).  

The breast is pulled away from the body, compressed, and held between two 

glass plates to ensure that the whole breast is viewed. The appearance of a female 

breast on a mammogram varies due to the differences in X-ray attenuation in the 

relative amounts of fat, connective and epithelial tissue (Kopans 1997). Fat appears 

radiolucent or dark on a mammogram while epithelial and connective tissues are 

radiographically dense and appear lighter or white in the developed image. Some 

relevant findings in a mammogram include (Highnam and Brady 1999): 

Soft-tissue lesions These are recognized as a mass or an architectural distortion. A 

mass is often defined as a region of increased density usually with a distinct edge, 

which makes it distinguishable from the surrounding breast tissue. Architectural 

distortions are irregular breast patterns caused by abnormal tissue. 



5 
 

Micro-calcifications These are seen as small calcium deposits in the breast tissue. 

They can typically build up in clusters. Depending on their number in a cluster and the 

overall shape of the cluster they may increase a possible risk of breast cancer. 

Mammograms are very good breast cancer detection technology, but they have 

some significant limitations (Park et al 2009): (1) The compression of the breast  

during mammography examination can be uncomfortable. (2) The overlapping of the 

breast tissues in 2D imaging brings difficulty to interpret the mammograms. A breast 

cancer can be hidden in the overlapping tissue and not show up on the mammogram.  

Digital Breast Tomosynthesis 

Digital breast tomosynthesis is an emerging technology for early breast cancer 

detection (Park et al 2007). It creates 3-dimensional slice images of the breast using X-

ray imaging and image reconstruction algorithms. Digital breast tomosynthesis acquires 

multiple x-ray projection images of each breast from limited angles. The breast is 

positioned the same way as it is in a conventional mammogram, but only much less 

pressure is applied. A few projection images are acquired during an examination and 

then sent to a computer, where they are assembled to produce focused 3-dimensional 

images throughout the breast. 

Tomosynthesis may allow doctors to detect smaller lesions or ones that would 

otherwise be hidden with standard mammograms. Researchers believe that this new 

breast imaging technique will make breast cancers easier to be diagnosed in dense 

breast tissue and make breast screening more comfortable (Park et al 2007). Results 

show digital tomosynthesis is promising to replace the current digital breast 
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mammography. A commercially available DBT system has been approved by USA FDA 

(Hologic 2012).  

Breast Ultrasound 

Ultrasound has become a valuable tool to use along with mammograms because 

it is widely available, non-invasive, and less expensive than other options. However, the 

effectiveness of an ultrasound test depends on the operator's level of skill and 

experience.  

Breast ultrasound is sometimes used to evaluate breast problems that are found 

during a screening or diagnostic mammogram or on physical exam (Radiological 

Society of North America 2012a). It is not routinely used for screening. Some studies 

have suggested that ultrasound may be a helpful addition to mammography when 

screening women with dense breast tissue, which is hard to evaluate with a 

mammogram.  

Biopsy 

The only definite method of determining the malignancy of the breast tissue is by 

a biopsy (American Cancer Society 2012b). The breast biopsy involves removing the 

tissue sample surgically or with a less-invasive needle core sampling procedure, to 

determine whether it is cancerous or benign. Most biopsy methods rely on image 

guidance to help the radiologist or breast surgeon precisely locate the lesion or 

abnormality within the breast.   

Magnetic Resonance Imaging (MRI) 

MRI is more expensive than mammography. Breast MRI (Radiological Society of 

North America 2012b) is not generally recommended as a screening tool by itself, 
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because although it is a sensitive test, it may still miss some cancers that 

mammograms would detect. MRI may also be used in other situations, such as to 

better examine suspicious areas found by a mammogram. MRI can also be used in 

women who have already been diagnosed with breast cancer to better determine the 

actual size of the cancer and to look for any other cancers in the breast. 

1.3. HISTORY OF TOMOSYNTHESIS  

Tomosynthesis and computed tomography (CT) belong to the technology of 

tomographic imaging, which demonstrates important features over conventional 

projection radiography (Dobbins et al 2003). The tomographic imaging technology 

enables three-dimensional reconstruction of objects with depth resolution. It improves 

conspicuity of structures by removing the ambiguities caused by overlapping tissues.  

The tomosynthesis technology can be traced back to the work of Radon (Radon 

1917), in which mathematic transform was provided to acquire the internal structure of 

an object from its projection data. Ziedses des Plantes in 1932 stated a method of 

forming tomography by summing up a set of different projections of the object (Ziedses 

1932). Ziedses des Plantes’s work started the practical reconstruction of an arbitrary 

number of slices based on a series of acquired projection images (Dobbins et al 2003). 

At least in theory, it was possible to generate many tomographic scans from a single, 

low-dose acquisition procedure. 

In 1972, Grant published evidence of a prototype 3D image projector, the first 

based upon circular image acquisition geometry (Grant 1972). Grant also proposed the 

term “tomosynthesis”, referring to the ability to retroactively create an infinite number of 

arbitrary tomograms.  



8 
 

In the late 1990s, tomosynthesis research was reignited as a result of several 

technological advancements (Dobbins et al 2003): the invention of digital flat-panel 

detectors which are capable of producing high-quality digital images with rapid readout 

rates; and the high-performance computation which enables tomosynthesis 

reconstruction and image processing. Digital tomosynthesis has been investigated and 

applied to various medical imaging clinical applications, including chest imaging, joint 

imaging, dental imaging, head imaging, breast imaging, etc (Dobbins 1990, 

Suryanarnyannan et al 1999, Warp et al. 2000, Badea et al 2001, Godfrey et al. 2003, 

Maidment et al 2006, Rakowski et al 2006, Bachar et al 2007, Mertelemeier et al 2007).        

1.4. CURRENT STATE OF DIGITAL BREAST TOMOSYNTHESIS 

The 2D mammography technology has limitations due to overlapping tissue in 

the breast that may hide lesions (cancers) or cause benign masses to appear 

suspicious. DBT may be utilized along with full-field digital mammography (FFDM) in 

screening for breast cancer and may also be used as a technique for the diagnosis of 

breast cancer in helping to clarify equivocal mammographic findings (Blue Cross Blue 

Shield of Rhode Island 2012).  

In evaluating DBT, studies must consider diagnosis accuracy (sensitivity and 

specificity) as well as recall rates (Siemens 2010). In addition, radiation exposure is 

also a very important consideration. The radiation dose of DBT is slightly higher than it 

would be with standard digital mammography (Park et al 2007).  

It was reported that tomosynthesis can be combined with standard 2D breast 

imaging to provide a more complete scan. Tomosynthesis is better at spotting masses, 

while standard 2D imaging is quicker at spotting calcifications (Hayes 2012).  
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The study on tumor boundaries was conducted by researchers at Lund 

University in Malmö, Sweden, in cooperation with Siemens Medical Systems (Hayes 

2012). It found that tomosynthesis and ultrasound could be used to find tumor volumes 

84% and 83% of the time, respectively, in a set of 76 breast cancers. Standard digital 

mammography could be used to determine cancer outlines just 51% of the time. Breast 

tomosynthesis had the fewest number of tumors that could not be measured and 

tended to spot those not visible by ultrasound (Hayes 2012). 

The researchers also looked at how the modalities compared on breast density 

and found that tomosynthesis was the best at showing tumor margins for all three 

categories (fatty, medium density, and high density). Digital mammography had a high 

percentage of measureable tumors for fatty breasts but lower levels for intermediate 

and high-density breasts. The opposite was true for ultrasound. (Hayes 2012) 

Overall conclusions is that breast tomosynthesis is superior to 2D mammography 

in the preoperative staging of tumors.  

1.5. SYSTEM DESIGN OF DIGITAL BREAST TOMOSYNTHESIS SYSTEMS 

Although digital breast tomosynthesis imaging is very similar to CT, it is a very 

different technique. In CT, the source and the detector make a complete 360
o
 rotation 

around the patient, obtaining a complete set of data from which images may be 

reconstructed. In digital tomosynthesis, only small rotation angles with a small number 

of discrete exposures are used. This incomplete set of data can be digitally processed 

to yield a series of slices at different depths and with different thicknesses which have 

with very good in-plane resolution but coarser Z-axis resolution (Wiki 2012). 
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In order to perform tomosynthesis, the detector has to be able to acquire high-

resolution images at a relatively high read-out speed, while maintaining good imaging 

performance at a low dose per image. The current digital breast tomosynthesis can be 

considered as an extension to mammography, where it may offer better detection rates 

with little extra increase in radiation exposure. 

Reconstruction algorithms for tomosynthesis are significantly different from those 

of conventional CT, because the conventional CT reconstruction requires complete 

sampling. Besides blurring-out reconstruction algorithms like BP and FBP, iterative 

algorithms are commonly used, but are extremely computationally intensive. 

A typical tomosynthesis imaging system can be decomposed into three parts: 

image acquisition, image reconstruction and image display. 

In image acquisition, the projection images are generated by the X-ray imaging 

systems. X-ray projection images are generated on the detector with high speed read-

out rate and sent to the computer station. Accordingly, X-ray emitter and detector are 

essential. 

Tomosynthesis reconstruction is implemented on a computer with high 

performance computation. The body component or volume is divided into small units 

(voxels), and each voxel represents one element with the unique homogeneous 

intensity. The intensity of every voxel is solved based on the reconstruction model. 

The reconstruction results are sent to display to be checked by the radiologists. 

Some functions, including image contrast enhancement and marking, may be provided.  

The efficacy of DBT depends on the image quality, for example high DQE 

detector, accurate reconstruction algorithm and high-definition image monitor.     
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1.5.1. CURRENT DBT PROTOTYPE SYSTEMS 

Many healthcare manufacturers are actively developing digital breast 

tomosynthesis devices. Most of current DBT prototype system designs re-utilize the 

conventional mammography design with associated mechanical, electrical and sensor 

techniques (Park et al 2007). The X-ray tube typically rotates along an arc path above 

the object to acquire projection images at specified positions with limited view angle. 

This kind of design is called as partial iso-centric, as shown in Figure 1. Figure 2 shows 

the related imaging geometry. In Figure 2, the breast object is located above the 

detector surface with compression. SID represents the source-to-imager distance. The 

X-ray tube moves above the breast object to acquire multiple projection images with 

limited view angle. The number of project images varies from 11 to 49 for different 

prototype systems. Tomosynthesis reconstruction algorithms will be applied to those 

acquired dataset of projection images to generate slice images passing through 

different portions of the object. In Figure 2, a representative reconstruction slice S is 

shown for illustration purpose.  

The design of iso-centric rotation can reutilize the traditional mammography 

design, decrease the cost and reduce the training procedure for the operators. 

However, the X-ray tube’s movement may introduce motion blur to tomosynthesis 

images and cause patients’ discomfort. (Chen et al 2009, Zhou et al 2010) 

A detailed report about the digital breast tomosynthesis imaging systems is listed 

in Table 2. 
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Figure 1. A typical partial iso-centric digital tomosynthesis system design. 
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Figure 2. Partial iso-centric tomosynthesis imaging geometry. 
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Table 2. DBT systems from manufacturers (Zhao et al 2011). 

Company VA NP Scanning time (s) 
Reconstruction 
algorithms 

Detector 

Hologic* ±7.5° 11 10 FBP 
a-Se, 70 um 
2x2 binning 

GE 

±20° 15 15-23 
MLEM 
SART CsI/a-Si 

100 um 
±30° 21 7 SART 

Siemens ±22° 25 12.5/20 bin/full FBP a-Se, 85 um 

Dexela ±12-20° 13 30 MLEM 
Fiber optic 
coupled CCD 

X-counter ±13° 48  FBP iterative 
Gas counting 
48 slit, 60 um 

Sectra ±5.5° 21 3-8  
Si counting, 21 
slit, 50 um 

* means commercially available 

 

In February 2011, the USA FDA approved Hologic, Inc. to market its Selenia 

Dimensions 2D Full Field Digital Mammography (FFDM) and Digital Breast 

Tomosynthesis (DBT) system (Figure 3) (Hologic 2012). This DBT system is the first 

commercially available mammography system that provides 3D images of the breast for 

breast cancer screening and diagnosis.  
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Figure 3. Hologic Selenia Dimensions 2D. Image source: American Roentgen Ray Society 
(http://www.ajronline.org/content/189/3/616.full). This is the only FDA-approved commercially 

available DBT system. 

1.5.2. A NOVEL MULTI-BEAM PARALLEL DIGITAL BREAST TOMOSYNTHESIS 

PROTOTYPE SYSTEM  

     The rotation of X-ray tube in the current commercial DBT systems may cause 

motion blur, which will influence the image quality. In additions, the rotation will increase 

the time of image acquisition. 

     Recently, a new digital breast tomosynthesis imaging design was developed. 

Figure 4 shows a picture of the prototype system. Fixed multi-beam field emission 

tomosynthesis imaging technique was invented with parallel imaging geometry (Lalush 

et al 2006, Yang et al 2008, Zhou et al 2010). The X-ray tubes were developed based 

on carbon nanotube techniques and fixed along a line that is parallel to the detector 

plane. This system design has great potentials to eliminate the motion blur and patients’ 

discomfort associated with partial iso-centric design of typical DBT prototype systems. It 
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is proposed that the imaging acquisition speed may also be faster compared with that 

of other designs. In our system setting with 15 projection images and 14
o
 view angle, it 

takes around 6 seconds in total for image acquisition. 

 

Figure 4. A multi-beam parallel digital breast tomosynthesis system. 

     Figure 5 illustrates this new parallel tomosynthesis imaging configuration. One can 

see that multiple X-ray sources are fixed along a line parallel to the detector. No X-ray 

tube’s motion exists. Control signals are triggered to activate each X-ray tube to make 

projection image one following another to acquire a whole dataset of tomosynthesis 

projections.  
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Figure 5. Multi-beam parallel imaging geometry. 
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1.6. IMAGE QUALITY ASSESSMENT   

Like in the variety of medical imaging modalities, the objective of creating 

tomosynthesis images is to diagnose abnormal conditions and guide therapeutic 

procedures (Sprawls 2012). This subsection will discuss image quality in both spatial 

domain and frequency domain. 

The major image quality issue is the visibility of objects (Sprawls 2012). The 

visibility of an object is essentially dependent on its physical contrast relative to its 

surrounding tissue. Image blur may reduce the contrast and visibility of small objects 

and detail. Image noise, representing a textured or grainy appearance, will influence 

boundary between visible and invisible objects and reduce object visibility. Artifacts 

create image features that do not represent a body structure or object and they may be 

mistakenly interpreted as anatomical features. A good medical image should also 

provide an accurate representation of the size, shape, and relative positions of tissue.  

In many situations, we cannot adjust each imaging variable to maximize object 

visibility. On one hand, the variables that affect object visibility also affect factors such 

as radiation exposure, image acquisition time and allocated storage. We hope to 

minimize the radiation dosage and reduce resource consumption. On the other hand, 

some image quality factors are adversely affected. If we improve one, the other factor 

may decrease. A good trade-off has to be carefully kept. A detailed guide about medical 

image quality can be referred to Sprawls 2012. 

Technically, we should have a handful of quantitative specifications to evaluate 

the image quality (Saunders and Samei 2003, Webb 2003, Saunders et al 2005, 
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Sprawls 2012). To evaluate the image quality of our new digital breast tomosynthesis 

prototype system, the main effort is put on the propagation of signal and noise.  

In spatial domain, to quantitatively compare image quality, SNR (signal to noise 

ratio), the spatial resolution and contrast to noise ratio (CNR) are often measured. SNR 

(Andrew 2002) is a direct measurement regarding the conspicuity of the object. CNR 

(Andrew 2002) is the measure of separation in terms of average intensity between two 

tissues of interest. A high value of each of these parameters means a better imaging 

system, but often compromises among the parameters have to be made.  

Compared to the traditional spatial domain analysis tools of image quality, the 

frequency domain analysis is universal and versatile. With the development of 

computational technologies, Fourier transform has been stochastically researched with 

fast computation (Nishikawa 2011). Signals of objects can be decomposed into the 

combination of sine waves with different amplitudes, frequencies and phases to be 

evaluated in the frequency domain (Nishikawa 2011). In frequency domain, modulation 

transfer function (MTF), noise power spectrum (NPS) and noise equivalent quanta 

NEQ(f) are important image quality factors and used frequently to characterize the 

performance of medical imaging systems and digital detectors. Physical measurements 

and computational analysis of MTF, NPS and NEQ are well published in literatures 

(Dobbins 2000, Samei et al 2006, Dobbins et al 2006, Chen 2007c).  

     For a typical digital breast tomosynthesis system, image acquisition (X-ray source, 

detector, etc.), image reconstruction algorithm, and image display constructs the main 

factors which influence the resulted image quality.  
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CHAPTER 2 

IMAGE RECONSTRUCTION ALGORITHMS FOR A MULTI-BEAM PARALLEL 

DIGITAL BREAST TOMOSYNTHESIS SYSTEM 

 Tomosynthesis reconstruction algorithms translate two-dimensional projection 

images into three-dimensional slice images. Many achievements from CT 

reconstruction inspire the advancement of tomosynthesis reconstruction. However, due 

to incomplete sampling and low-dosage radiation detection, tomosynthesis 

reconstruction has many unique properties. 

Shift-and-add (SAA) reconstruction algorithm (Niklason et al 1997, Chen et al 

2007a) put an important role in the early stage of tomosynthesis imaging. In SAA, the 

average of the shifted projection images based on the shift amount of the center was 

calculated to acquire the reconstructed images. It generates limited image quality due 

to out-of-plane blurring. Back-projection improves the image quality by considering the 

shift amount of each pixel on the projection image (Chen et al 2007a).   

The out-of-plane blur of objects obscured detail in the plane of interest and 

limited the contrast enhancement of the slices (Dobbins 2003). Great efforts were made 

to reduce out-of-plane artifacts through the application of filters to back-projection 

tomosynthesis reconstructions. Currently, filtered back-projection is one of the most 

commonly used methods (Matsuo et al 1993, Lauritsch and Haerer 1998).  

Ghosh used a different method to remove out-of-plane blur (Ghosh Roy et al 

1985). The blurring functions were proposed to exactly solve the out-of-plane blur 

problem generated by the planes immediately adjacent to the plane of interest. Later, 

Dobbins extended it to the entire set of conventionally reconstructed planes, and 
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attempted to find the exact solution of in-plane structures from a complete set of 

tomosynthesized planes (Dobbins et al 1987, Dobbins 1990).  

Blurring-out reconstruction algorithms don't calculate the attenuation of X-ray 

penetration. If we divide the reconstructed object into a great number of small non-

overlapping regions (voxels) with constant attenuation coefficients, the other 

perspective can be proposed to explain the reconstructed images. Firstly, Beer-Lambert 

Law tells us 

e
ul

IT



                                                 (Eq. 1) 

where T  is the transmitted X-ray intensity, I  is the incident X-ray intensity, u is the 

attenuation coefficient, and l is the path length where the X-ray projection line passes 

through the voxel. The pixel value on the reconstruction image represents the 

attenuation coefficient for the tomosynthesis imaging process.  

 Lange and Carson (Lange and Carson 1984) introduced statistically iterative 

reconstruction methods to calculate the attenuation coefficients. The proposed 

maximum likelihood model maximizes the probability of acquiring the measured 

projections from the incident X-ray and the current imaging parameters. Lange and 

Fessler (Lange and Fessler, 1995) presented three methods to solve the ML equations. 

Wu et. al. (Wu et al 2003) investigated Lange and Fessler’s expectation maximization 

with an iso-centric digital breast tomosynthesis prototype system and further compared 

MLEM with BP and FBP in their paper (Wu et al 2004). They summarized that BP 

provided the best SDNR for low-contrast masses but the conspicuity of the feature 

details was limited by inter-plane artifacts; FBP provided the high edge sharpness for 

micro-calcifications but the image quality of masses was poor; the information of both 



20 
 

the masses and the micro-calcification were well restored with balanced quality by the 

MLEM algorithm. 

 Algebraic reconstruction methods make another way to calculate attenuation 

coefficients. Based on the exponential relationship between the incident and 

transmitted intensity, a series of linear equations are modeled. The difficulty of directly 

solving the large equations leads researchers to explore the iterative numeric methods. 

Andersen (Andersen and Kak, 1984; Andersen, 1989) proposed simultaneous algebraic 

reconstruction technique (SART) by fitting the previous solutions to every projection 

images. Zhang (Zhang et.al., 2006) proved its validity with an iso-centric digital breast 

tomosynthesis prototype system and further compared SART with BP and MLEM, 

concluding that the BP method provided very smooth reconstructed images with low 

background noise, while the SART and MLEM methods considerably enhanced the 

contrast and edges of the features but simultaneously amplified the image noise; BP 

method had blurring artifacts in the x-ray source motion direction that obscured the 

contrast-detail objects, while the other two methods could significantly improve object 

conspicuity.      

In summary, we categorize the reconstruction algorithms into four classes: (1) 

mathematical reconstruction algorithms, including SAA and BP; (2) filter-based 

reconstruction algorithms, including FBP and MITS; (3) statistical reconstruction 

algorithms, for example, MLEM; (4) algebraic reconstruction algorithms, for example, 

SART. This chapter will explain our implementation and improvement when applying 

them to our new multi-beam parallel digital breast tomosynthesis system. 
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2.1. BACK PROJECTION (BP) 

2.1.1. Point-by-point BP 

Back projection (Chen et al 2007a, Chen 2007c) is a common mathematic 

reconstruction algorithm. It is quite similar to Shift-And-Add (SAA) algorithm. During 

SAA reconstruction, in order to reconstruct 3D slices of the breast, each projection 

image should be shifted by an amount appropriate for the plane of reconstruction. The 

shift amount can be calculated based on projected positions from central points of each 

reconstruction plane. The shifted planes are added together to emphasize structures in 

the in-focus plane and blur out structures in other planes. In fact, because the different 

pixels on the reconstruction plane have their unique locations, the shift amounts in SAA 

should be different.  

In order to improve the reconstruction of the single pixel on a reconstruction 

plane at certain height above the detector, the shift amount should be calculated along 

both x and y directions for each pixel on the reconstruction plane. This idea is called 

point-by-point back projection.  

With the point-by-point BP, shift amounts for every pixel location on each 

reconstructed plane are computed, taking into account the two-dimensional projection 

of reconstructed objects in each plane. 

In Figure 6, ),,( zyx AAAA represents coordinate the of the object on the 

reconstruction plane R . ),,( zyx BBBB  represents projection coordinate of the 

point A  on the detector plane. ),,( zyx RRRR represents the coordinate of the X-ray 
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source R . One can find A 's pixel value by referring to its projected point B . The 

location relationship can be written as 
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Figure 6. BP reconstruction for a multi-beam parallel breast tomosynthesis system. 

 

The back projected pixels represent the estimation about the internal structure of 

the object. For each projection image, we can acquire a corresponding estimation. The 

actual structure can be approximated from all the estimations. An intuitive way to 

approximate is using the mean values, which is called standard BP for convenience. 

(Eq. 2) 
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The final pixel value of point A  in the standard BP reconstruction is calculated as 

followed 





N

i

iBI
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I(Bi)is the back projected pixel value based on Eq. 2 for the pixel A  and the thi  

projection image (X-ray source), and N  is the total number of projection images.  

2.1.2. Ray-tracing BP 

In the linear attenuation equation, the total intensity attenuation depends on both 

attenuation coefficients as well as path lengths.  

A ray-tracing back-projection was proposed based on this fact (Zhang et.al., 

2006). The general equation can be written as 
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                                           (Eq. 4) 

This equation takes into account of the proportion of different path lengths. i is 

the index of the i
th

 projection line, j is the index of j
th

 voxel. iL is the total path of the i
th

 

projection line. iy is the detected x-ray intensity.  

2.2. FILTERED BACK-PROJECTION (FBP) 

 Filtered back-projection (Stevens et al 2001, Mertelemeier et al 2006), is 

transplanted form CT imaging. It considers the projection and back projection based on 

Radon transform and Fourier slice theorem. Of many image reconstruction methods in 

X-ray imaging, FBP has been a classic one. 

(Eq. 3) 
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2.2.1. Radon transform, Fourier-slice theorem and 2D parallel-beam filtered back 

projection 

Radon transform 

 Radon transform (Radon 1917, Gonzalez and Woods, 2008) presents the 

integral relationship between the original object and its projection. It can be written as 

 







 dxdysyxyxfsg )sincos(),(),(   

where syx ,, and  are variables.  is impulse function. If we fix   and let S  

vary, this equation simply sums the pixels of ),( yxf along the line defined by the 

specified values of the two parameters x and y. Incrementing through all values of p  

required to span the images (with fixed) yield one projection. Changing  and 

repeating the foregoing procedure yields another projection, and so forth. ),( yxf  is the 

object function. ),( sg  is the projection.  

By summing up Radon projection along all angles passing the same pixel, the 

back projection can be written as  

 



0

~

),sincos(),( dyxgyxf  

),(
~

yxf  is an approximation to the image from which the projection was 

generated. 

The sampling rates have a profound influence on image reconstruction results. 

There are two sampling considerations: The first is the number of rays used, which 

determines the number of samples in each projection. The second is the number of 

rotation angle increments, which determines the number of projection images. Under-

(Eq. 5) 

(Eq. 6) 
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sampling may result in artifacts in the reconstruct image, such as streaks. Figure 7 

shows the image reconstruction results by inverse Radon transform. As view angle and 

number of projection images increase, the reconstructed images reveal the structures 

of object with shaper edges and less artifact.  

Fourier-slice theorem 

Fourier-slice theorem (Gonzalez and Woods, 2008) states that the Fourier 

transform of a projection is a slice of the 2D Fourier transform of the region from which 

the projection was obtained. As Figure 8 shows, the 1-D Fourier transform of an 

arbitrary projection is obtained by extracting the value of ),( vuF along a line oriented at 

the same angle as the angle used in generating the projection. 

2D parallel-beam filtered back projection 

The 2D inverse Fourier transform of ),( vuF is  

 








 dudvevuFyxf vyuxj )(2),(),( 

 

In polar coordinates, if let cosu  and sinv , the equation becomes 


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In the inner expression, || is a ramp filter. It is not integrable because its 

amplitude extends to infinite in both directions, so the inverse Fourier Transform is 

undefined. In practice, the method is to window the ramp so it becomes zeros outside 

of a defined frequency interval. (Gonzalez and Woods, 2008) 

 

 

 

(Eq. 7) 

(Eq. 8) 
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Figure 7. Image reconstruction by inverse Radon transform. 
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Unfortunately, the ramp filter causes noticeable ringing artifacts. A Han window 

is often used in this situation. Please refer to Gonzalez and Woods 2008 for more 

details.  

Accordingly, a complete back-projection image reconstruction algorithm with 

filters is obtained. Figure 9 compares the reconstructed results with different filtering 

settings. The blur artifact in Figure 9(a) is very serious; after we use ramp filter, as 

shown in Figure 9(b), the objects become much clearer, but there is ring artifact. Han 

filter contributes to the suppression of ring artifact as shown in Figure 9(c). 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

(c) 

Figure 9. Inverse Radon transform. (a) without any filter. (b) with ramp filter. (c) with ramp and 
Han filter. 
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2.2.2. Implementation of FBP for a multi-beam parallel digital breast tomosynthesis 

system 

 A filtering workflow in our FBP reconstruction algorithm is created. Figure 10 

shows the shapes of filters.  

Ramp filter 

Ramp filter reflects the sampling geometry of the scanning process. It was 

designed based on the sampling density. It can be written as: 

22),,( zxzyxRampH    

w is frequency bin.  

Han filter 

A Han filter is used to change the frequency response of ramp-filtered BP 

reconstruction. With realistic, noisy data, it can also smoothen the image. It can be 

written as ( N  is the total frequency bin number in X direction) : 

)cos(1(5.0
N

x
HamH






    

 

Gaussian filter 

 In order to control the high frequency noise amplification in FBP, a Gaussian 

filter is also applied: 

2

2

k

u

Gaussian eH


  

where u is the individual frequency bin and k is the kernel size. 30k  is set in our 

implementation.  

(Eq. 9) 

(Eq. 10) 

(Eq. 11) 
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(a) 

 

(b) 

 

(c) 

Figure 10. Filters in FBP. Here we suppose our frequency size is 4096. (a) Ramp filter. (b) Han 
filter. (c) Gaussian filter.  

2.3. MATRIX INVERSION TOMOSYNTHESIS ALGORITHM (MITS) 

     MITS (Chen et al 2004, Dobbins and Powell 1987, Dobbins 1990, Godfrey et al 

2001, Godfrey and Dobbins 2002, Godfrey et al 2003, Godfrey et al 2006, Warp et al 

2000) uses linear algebra to solve for the relative blur in each plane. Mathematically, if 

the structures in the 
thi  plane are defined as ip , then the tomosynthesized images 

is may be described as  
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where ijf is the blurring function for the structures in the plane j that appear in the 

tomosynthesized image of plane i . The convolutions of the above equations become 

simply multiplications in Fourier space. In matrix form, it will be   

PMS   

where M is the matrix of Fourier transforms of blurring functions.   

By multiplying each side of the equation by the inverse of the matrix M , the 

patient structure P in Frequency space can be acquired. Then by taking the inverse 

Fourier transform, we can get the patient structure. 

SMP  1  

2.4. STATISTICAL ITERATIVE RECONSTRUCTION ALGORITHMS 

 In statistics, for a fixed set of data and underlying statistical model, the method of 

maximum likelihood selects values of the model parameters that produce a distribution 

that gives the observed data the greatest probability, i.e., parameters that maximize 

the likelihood function.  

(Eq. 12) 

(Eq. 14) 

(Eq. 13) 
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 In X-ray imaging physics, the relationship between the incident X-ray intensity, 

detected X-ray intensity and X-ray attenuation follows Poisson distribution ([Webb 

2003]). Only a fraction of the photons successfully travel from source to detector along 

a given path (projection line) during tomosynthesis imaging. Statistical reconstruction 

attempts to maximize the likelihood of getting the detected X-ray intensity from the 

incident intensity and X-ray attenuation model. 

 The likelihood function can be written as  


n

i

inn uxfuxxxfxxxuL )|()|,,()),...,,(|( 2121  

f is the probability density function, u is the free variable. nxx ,1 are observed 

values.  

 The statistical reconstruction model divides the object into small voxels with 

constant attenuation coefficient u . The detected x-ray intensity constitutes the 

observed data for statistical reconstruction.  

 The intensity attenuation can be written as 
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 The original ML function can be written as 
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(Eq. 15) 

(Eq. 16) 

(Eq. 17) 
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 i is the i
th

 X-ray projection line. The linear attenuation coefficients u  is defined 

for each pixel in the reconstruction volume. Since u  is the probability of photon 

capture per unit length of voxel j, one has the physical constraint 0u . The Poisson 

nature of X-ray generation implies that the various projections are independent.  

2.4.1. Maximum llikelihood eexpectation mmaximization (MLEM) 

(1)  Algorithm 

 Expectation maximization is a commonly used solution of maximum likelihood 

problem. Lange and Fessler also provided two other methods, including Gradient 

Algorithm and Convex Algorithm (Lange and Fessler 1995). This dissertation focuses 

on MLEM method.  

 Expectation maximization algorithm provides an easily implemented method for 

searching maximum likelihood solution. It has two steps: 

E-step: calculate )|( )(tuuL     using Y and )(tu  

M-step: find }|(max{arg )()1( tt uuLu 
 

 According to related literatures (Wu et al 2003, Wu et al 2004, Zhang et al 2006), 

the iterative procedure to acquire the attenuation coefficient u  is shown as below: 
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(Eq. 19) 



33 
 

where Ti is the transmitted X-ray intensity or detected pixel value on the detector for the 

X-ray projection line i. j is the individual voxel in the three-dimensional attenuation 

model. <l, u> i means the total attenuation of the X-ray projection line i. Ii is the incident 

X-ray intensity to pixel i. Usually, we can replace Ii with the flat image. lij is the path 

length of the intersection between the voxel j and the X-ray projection line from the x-

ray source to the pixel i on the detector.  

(2) Direct implementation 

 To solve Eq. 19, a direct workflow is presented as in Figure 11. For convenience 

we call it standard MLEM implementation.  

 It is not difficult to estimate that the most inner statement (Line 6) will run t*j*i*i 

times. The time complexity is O(t*j*i
2
). It will take much time to finish the computation. 

Accordingly, reducing loop complexity will contribute to the improvement of computation 

efficiency. 
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1 for each iteration t 

2  for each voxel j 

3   for each X-ray projection line i 

4    calculate the path length where x-ray i passes through voxels 

5    for each X-ray projection line i 

6                calculate the total intensity attenuation  

7    end 

8    calculate ju  

9   end 

10  end 

11    for each voxel j 

12       update ju  

13    end 

14 end 

Figure 11. Direct workflow of MLEM implementation. 
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(3) Acceleration 

A novel data structure based on sparse matrix ray-tracing method (Zhou, 2008) 

 Since the statement in Line 6 of Figure 11 is executed for many times, how to 

solve the path length lij and create the indices between each X-ray projection line and 

corresponding voxels is very important to enhance the efficiency of the procedure. We 

introduced a simplified and equivalent implementation with a novel data structure for 

ray-tracing method. 

 Ray tracing is a frequently used method to solve the length of the path where 

each X-ray projection line passes through each voxel (Chen 2007c). In fact, on every 

reconstruction plane, for each X-ray projection line i, only a few voxels are passed 

through. This results in the sparse matrix condition. The sparse condition is involved in 

the strategy of managing the relationship between the X-ray projection line i, the voxel j, 

and the path length lij. Here we adopted the combination of the array and linked lists. All 

voxels penetrated by the X-ray projection line i were simply organized into a linked list. 

The linked list was then mounted to the X-ray projection line array.  

       Figure 12 illustrates the data structure. It utilizes the feature of the sparse matrix 

to save allocated memory for path lij calculation. It is convenient to visit the voxels which 

are penetrated by the X-ray projection line i. This linked list based on sparse matrix 

serves as the foundation of loop order adjustment. 
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Figure 12. Combined data structure of managing the relationship between x-ray projection lines 
and voxels. 

Loop order adjustment 

 Since the length of the path lij is fixed during the total iteration, it can be extracted 

and calculated before the iteration. As illustrated before, Line 6 in Figure 11 runs many 

times. Line 6 can be put into the initial procedure.  

 Now we are able to prepare all parameters for the update of u. In Eq. 19, the 

update of u can be divided into two parts correspondingly, and the whole procedure can 

be adjusted as shown in Figure 13. 

 Because of the combination of array and linked lists, the statements of Line 5 

and Line 10 in Figure 13 will be speeded up significantly.  
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1 calculate lij by ray-tracing method 

2 for each iteration t 

3     for each X-ray projection line i 

4         for each voxel which is affiliated to i in Figure 12 

5             calculate the total intensity attenuation when passing through voxels 

6         end 

7     end 

8     for each X-ray projection line i 

9         for each voxel which is affiliated to i in Figure 2 

10           calculate the nominator and denominator of ∆uj 

11       end 

12   end 

13   for each voxel j 

14       update uj 

15   end 

16 end 

Figure 13. Accelerated MLEM implementation workflow. 
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(4) Time complexity and image quality 

 Two main factors should be taken into account to evaluate the time complexity of 

our accelerated implementation of MLEM algorithm: (1) computing the path length lij 

when the X-ray projection line passes through voxels; (2) iterating and updating the 

attenuation coefficient of each voxel. 

 We assume that the variable p represents the total number of reconstructed 

planes. As mentioned before, the X-ray projection line i denotes the X-ray projection 

line and j denotes the voxel on reconstruction object. For the calculation of path length 

lij, the required time complexity is O(i*p). For reconstruction iteration, the required time 

complexity is estimated as O(t*i*η) (t is the iteration number), where η is not greater 

than the maximum number of the voxels associated with X-ray i. The relationship is 

sparse and η<<j, therefore the time complexity decreases from O(t*j*i
2
) to O(t*i*η) for 

our accelerated MLEM algorithm. 

 Figure 14(a) and 14(b) show the in-focus impulse responses reconstructed by 

standard MLEM and our accelerated MLEM implementation respectively. Figure 14(c) 

shows the subtraction of impulse responses of Figure 14(a) and 14(b). One can see 

that both standard MLEM implementation and our accelerated one can reconstruct the 

impulse by showing sharp response on in-plane reconstruction. There is no difference 

between the impulse responses when comparing Figure 14(a) and 14(b) by subtraction 

as shown in figure 14(c). 
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(a) 

 

(b) 

 

(c) 

Figure 14.  Comparison of results reconstructed by standard MLEM and accelerated MLEM 
implementations. (a) Impulse response of standard MLEM (H=10mm). (b) Impulse response of 
accelerated MLEM. (c) Subtraction results. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 15. Comparison of results reconstructed by standard MLEM and accelerated MLEM 
implementations. (a) Impulse response of MLEM (Z=10mm). (b) Impulse response of 
accelerated MLEM. (c) Subtraction results. 

 Figure 15(a) and 15(b) show the in-focus reconstruction responses of simulated 

spherical object. Figure 15(c) shows the subtraction of Figure 15(a) and 15(b). Both 

standard MLEM implementation and accelerated one can reconstruct the three-

dimensional spherical object by showing response correctly on in-plane reconstructions. 

There is no difference between the performance of standard MLEM and accelerated 

MLEM when compared Figure 15(a) and 15(b) by subtraction as shown in Figure 15(c). 
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 Table 3 shows the running time required to reconstruct a single reconstruction 

plane. Image sizes of 256×256 pixels, 512×512 pixels and 1024×1024 pixels (full size) 

were investigated. Iteration numbers of 3, 8 and 20 were tested. A 2.4G HZ desktop 

computer with 3G memory was used to run our algorithms coded in Visual C++.  One 

can find that the typical computation time with 8 iterations was only 97 seconds with 

accelerated MLEM implementation to reconstruct a single slice of the size 1024x1024.  

Table 3. Running time (seconds) of accelerated MLEM implementation. 

          Image size                                                     

Iteration  
256×256 512×512 1024×1024 

3 2 10 52 

8 3 15 97 

20 6 33 210 

 

     In summary, a fast MLEM implementation for 3D image reconstruction in digital 

breast tomosynthesis was developed. Compared to the standard MLEM 

implementation, the accelerated MLEM implementation is capable of producing the 

same image quality with much faster running speed. 

2.4.2. Ordered-subset MLEM (OS-MLEM) 

     Ordered subset MLME (Erdogan et al 1999) algorithm has enjoyed considerable 

interest for tomosynthesis image reconstruction due to its acceleration of the MLEM 

algorithm. OS-MLEM has the following advantages (Erdogan et al 1999): 
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(1) OS-MLEM provides order-of-magnitude acceleration over MLEM. The MLEM 

converges very slowly because it greedily absorbs all the projection view information in 

each iteration. In OS-MLEM, only a subset of the projection image dataset is used for 

each iteration. 

(2) Good reconstruction images can be acquired. 

(3) OS-MLEM is easily implemented by slightly modifying the original MLEM algorithm. 

     However, because OS-MLEM uses part of the projection views when updating the 

attenuation coefficients, it is not stable when reaching the convergence. 

     Our implementation is very intuitive. We used a direct transform of MLEM and 

changed the original update into projection-by-projection view update. To improve the 

convergence, we designed a special update order to maximize the angle separation (Li 

et al 1993) between the successive absorbed projection views. 

2.5. ALGEBRAIC ITERATIVE RECONSTRUCTION ALGORITHMS  

In algebraic iterative reconstruction algorithms (Szepessy 2012), the procedure 

of estimating the attenuation coefficients, generating a new set of projection images 

from the estimate, comparing the simulated images to real projection data, then 

smearing the difference back to generate a new estimate is iteratively called. 

2.5.1. Linear attenuation equations 

     The Beer-Lambert Law in Eq. 1 can be re-written as  

i

J

j

jij Dul         Mi ,...,2,1  (Eq. 20) 
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where 
T
I

i

i
iD log  

M is the total number of projection lines, J is the total voxel number, and lij is the 

fractional area of the j
th

 voxel intercepted by the i
th

 projection line. 

    If M and J were small, we could use conventional matrix theory methods to invert 

the equations. However, in practice M and J may be huge (more than 10000). It is 

impossible to solve direct matrix inversion. 

    An iterative solution can be used. If we simplify Eq. 20 to an equation group 

including only two equations, the computational procedure for searching the solution 

consists of first starting with an initial guess, projecting this initial guess on the first 

equation, reprojecting the resulting point on the second equation, and then projecting 

back onto the first equation, and so forth. If a unique solution exists, the iterations will 

always converge to that solution (Szepessy 2012). 

2.5.2. Simultaneous algebraic reconstruction technique (SART) 

     In our SART implementation, the solution for the attenuation coefficients is 

expressed as (Zhang et al 2006) 
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     We developed an accelerated SART implementation with a novel data structure 

and corresponding loop adjustment like in accelerated MLEM.  

2.6. VALIDITY OF RAY-TRACING-BASED RECONSTRUCTION ALGORITHMS  

     The ray-tracing BP, MLEM, OS-MLEM and SART commonly use ray-tracing 

model to calculate X-ray intensity attenuation. A finite elements modelling (FEM) 

simulation was used to evaluate the validity of these four reconstruction algorithms.  

     Two balls were simulated with the different attenuation coefficients of 0.2 and 

0.038 mm
-1

 to imitate the mass and micro-calcification. A FEM method was used to 

create the volume. Then the ray-tracing method was used to generate the projection 

images. The reconstruction algorithms of ray-tracing BP, MLEM, OS-MLEM and SART 

were used to reconstruct projection data. Then, attenuation error and mean square 

error were calculated. 

     The attenuation error is calculated based on the linear attenuation equation, i.e. 





i

ul

iI
ieITnErrorAttenuatio

,  

for all the X-ray projection lines. 

     The mean square error between the real finite elements volume and the 

reconstructed volume is defined as 

J

ju

MSError

J

j

j u
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
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^

 

(Eq. 22) 

(Eq. 23) 
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for all the voxels. 

In Figure 16, based on the curves of these two evaluation functions, we have 

these conclusions: 

(1) OS-MLEM and SART provide minimal reconstruction and attenuation error for the 

specified iteration number. This shows that they converge faster. 

(2) Ray-tracing BP can be a good initialization for iterative reconstruction algorithms. 

 

(a) 

 

(b) 

Figure 16. Comparison of ray-tracing-based reconstruction algorithms. (a) Attenuation error. (b) 

Mean square error. 

 

2.7. IMAGE RECONSTRUCTION WITH AN ACR TRAINING PHANTOM 

     To evaluate different reconstruction algorithms, an ACR training phantom was 

used. Figure 17 shows the embedded objects (Zhang et al 2006) and the low dose 

middle projection image. 
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                             (a)                                 (b) 

Figure 17. ACR phantom. (a) Embedded objects. (b) Low-dose middle projection image. 

 

     Figure 18 shows reconstructed planes with different heights by five algorithms 

including BP, FBP, MITS, MLEM, and SART respectively.  

In Figure 18, Z=61.0 is the focus plane. With the increase of plane height, the 

objects get blurred, and it greatly presents the three-dimensional information.  

     Accordingly, the investigated five algorithms are capable of providing the 

reconstruction of the phantom with three-dimensional localization, shape and edge 

information.  
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 Z=61.0 mm Z=66.0 mm Z=71.0 mm 

BP 

   

FBP 

   

MITS 

   

MLEM 

   

SART 

   

Figure 18. Reconstructed in-plane ROIs of ACR phantom. Z is the height of reconstructed 
ROIs. 
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2.8. IMAGE RECONSTRUCTION WITH A BREAST BIOPSY TRAINING PHANTOM 

A standard breast biopsy training phantom (CIRS company 2010) was used in 

the experiment to compare the system performance. Solid masses and micro-

calcification clusters were embedded into the phantom as the targets of the evaluation. 

Figure 19 (a) shows the picture of the phantom. Figure 19(b) shows the low-dosage 

middle projection image. Figure 20 shows the reconstructed slice images by BP, FBP, 

MITS, MLEM, OS-MLEM and SART.  

One mass and micro-calcification were individually selected as our evaluation 

targets. Figure 21 shows the ROIs containing the targets on the low dose middle 

projection image of the training phantom acquired by the tomosynthesis imaging 

system. The six representative algorithms including BP, FBP, MITS, MLEM, OS-MLEM 

and SART were investigated to generate reconstruction images and evaluate the image 

quality of the targets.  

       Figure 22 shows reconstructed ROIs from the six algorithms including BP, FBP, 

MITS, MLEM, OS-MLEM and SART respectively. In Figure 21, one can hardly identify 

the embedded objects (mass and micro-calcification) in the original middle projection 

image. The margin and shape of the micro-calcification is not visible. In Figure 22, with 

the six different tomosynthesis reconstructions, the visibility of the objects is much 

better than that in Figure 21. Margins and shapes are clearer. Figure 23 shows line 

profiles of reconstructed masses. Accordingly, again, the investigated algorithms are 

capable of providing the reconstruction of the phantom with three-dimensional 

localization, shape and edge information. 
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(a)  

(b) 

Figure 19. (a) CIRS biopsy training phantom. (b) Low dose middle projection image. 
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          (a) 

 

         (b) 

 

           (c) 

 

          (d) 

 

         (e) 

 

           (f) 

Figure 20. Reconstructed slice images. (a) BP. (b) FBP. (c) MITS. (d) MLEM. (e) OS-MLEM. 

(f) SART. 
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Mass Micro-calcification 

  

Figure 21. ROIs in central middle projection image 
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Figure 22. Reconstructed ROIs by different reconstruction algorithms. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 23. Line profiles of reconstructed mass ROIs. (a) BP. (b) FBP. (c) MITS. (d) MLEM. (e) 

OS-MLEM. (f) SART. 
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The main problem in tomosynthesis imaging is incomplete sampling. In the 

three-dimensional space, Z direction (depth) is less sampled than X-Y direction. 

However, in order to increase the accuracy of Z direction, i.e., show the object at its 

original plane meanwhile remove it in other planes, we hope to eliminate out-of-plane 

artifact as much as possible.  

Artifact spread function (ASF) reflects the ability of blurring out the out-of-plane 

objects. It has been used to describe the artifact suppression efficacy along the Z 

direction in breast tomosynthesis studies by Wu and Zhang (Wu et al 2004, Zhang et al 

2006)  

ASF is defined as the ratio of the CNR values between the off-focus plane and 

the in-focus plane: 

)(

)(
)(

0zCNR

zCNR
zASF   

where z0 is the slice location of the in-focus plane of the object and z is the 

location of the other plane. The CNR value (Zhang et.al., 2006) is defined by 

background

backgroundobject
CNR



 
  

where object
 
and background  are the average pixel intensity of the object and 

image background respectively, and background
 is the root-mean-square noise value of 

pixel intensity in the image background.  

The image background region for noise estimation is chosen as a 40*40 pixel 

region far from all objects and the boundaries in the slice images, and at the same slice 

as the object under consideration. The mean pixel intensity of a mass is calculated in a 

(Eq. 24) 

(Eq. 25) 
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40*40 pixel area enclosed within the relatively uniform central region of the mass. The 

selected masses were the same as in Figure 22. 

The ROI for analysis of mass and micro-calcification, and the image background 

are the same as those described above for the calculation of CNR. Different algorithms 

have their implicit or explicit design to remove out-of-plane artifacts. Figure 24 shows 

the ASF curves for BP, Ray-tracing BP, MLEM, OS-MLEM and SART. OS-MLEM and 

SART show bigger CNR drop-offs, so they can remove out-out-plane artifacts better. 

 

 

Figure 24. ASF curves of different image reconstruction algorithms with a biopsy training 
phantom. 
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CHAPTER 3 

STATISTICAL VARIANTS OF POINT-BY-POINT BACK-PROJECTION 

RECONSTRUCTION ALGORITHM 

In point-by-point BP reconstruction algorithm, for the point p in reconstructed 

volume, when considering each pair of X-ray tube and projection image, we have one 

pixel value s. Now after finishing back-projection, N pixel values are acquired (N is the 

number of projection images). Considering the statistical properties of those N values, 

some alternative techniques may be utilized to further improve the image quality. 

3.1. STATISTICAL VARIANTS OF POINT-BY-POINT BACK-PROJECTION 

ALGORITHM 

α-trimmed BP 

The α-trimmed BP is removing the "extremity" values in the back-projected 

pixels. Sort all the pixel values in the back-projection images, remove the d/2 lowest 

and the d/2 highest gray-level values, and then calculate the mean value. The equation 

can be written as 







2/

12/

)(
1 dN

di

iBI
dN

s

                                                                         

where the value of d can range from 0 to N-1. When d=0, the α-trimmed method 

regresses to standard BP. If we choose d=N-1, it becomes a median BP. This 

technique is often used to remove noise in digital image processing, and it is called α-

trimmed method (Gonzalez and Woods, 2008). It has advantages in noise removal and 

near-boundary anti-aliasing. 

(Eq. 26) 
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PCA-based BP 

Principle components analysis (PCA) (Gonzalez and Woods, 2008) inspires us in 

the other way. It is a transformation from n-dimensional coordinate system to another 

m-dimensional one (generally m<n). It is performed in such a way that a truncation of 

an input vector in the new coordinate system only causes a minimal square error, i.e. a 

minimal loss of information. PCA has served as a standard tool for a large diversity of 

data analysis and information visualization. Its feature of dimensional reduction 

provides a good way to generate a single reconstruction plane from multiple projection 

images while extracting the most important information. Naturally, in our task, we need 

to acquire one dimension from several projection images. 

In order to compare these different BP algorithms, we used phantom and 

computer simulation experiments. For convenience, the point-by-point back projection 

is called standard BP. In the investigated multi-beam parallel tomosynthesis imaging 

system, 15 x-ray sources, operated at a voltage of 30 kV, were linearly fixed along a 

parallel line above the detector. The detector has a pixel pitch of 140 um. The image 

size is 2048 × 1664. The distance from the X-ray tubes to the detector (SID) is about 

690 mm. The total view angle θ is equal to 15 . 

3.2. IMAGE RECONSTRUCTION WITH A BREAST BIOPSY TRAINING PHANTOM  

A standard breast biopsy training phantom (CIRS company, 2010) as shown in 

Section 2.8 was used in this preliminary experiment. Low dosage projection images 

were obtained and reconstructed by different algorithms, including standard BP and its 

variants. One mass and one micro-calcification were selected as our evaluation 

samples.  
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Figure 25 shows reconstructed planes by different algorithms. Figure 26 shows 

reconstructed ROIs from three algorithms including standard BP, α-trimmed BP, PCA-

based BP respectively. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 25. Reconstructed slice images. (a) Standard BP; (b) α-trimmed BP; (c) PCA-based 
BP. 
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Figure 26. Reconstructed ROIs. 
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All the three reconstruction algorithms are capable of providing reconstruction of 

the phantom with the location, shape and edge information. In the micro-calcification 

cluster, due to the compression, not all the micro-calcification points were at the same 

planes. Some of them were out-of-plane. This reveals the 3D localization ability of 

tomosynthesis reconstruction. 

3.3. SPHERE SIMULATION  

A spherical object with the radius of 0.4 mm, placed at the height of 20 mm 

above the detector, was simulated and embedded in a uniform background as the 

target to test reconstruction algorithms. The linear attenuation coefficient of the 

simulated spherical object was set to 0.038 /mm, which referred to the linear 

attenuation coefficient of carcinoma tissue for 30 KeV photon energy (Guimarães et al 

2009). Ray-tracing method was used to model the X-ray attenuation.  

Three groups of simulation were conducted to test the response of the 

algorithms. In our simulation of Group #1, a solid sphere was put in the center above 

the detector plane. The background was uniform and we didn’t add any noise to the 

simulated data. In our simulation of Group #2, mixed noise was added to each 

projection image of Group #1 to reveal the performance of noise removal with different 

reconstruction algorithms. In our simulation of Group #3, a solid sphere was placed 

near the boundary of reconstruction plane. Because of the limited size of the detector, 

the sphere may be projected out of the detector for some x-ray sources. This simulation 

can give us a demonstration for the situation when the object is near the boundary and 

some portions of the object may go beyond the detector when projected. 

http://www.springerlink.com/content/?Author=L.+T.+G.+Guimar%c3%a3es
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The above three BP algorithms were then applied to reconstruct the images 

acquired from simulated tomosynthesis datasets. A reconstruction plane spacing of 1 

mm was used. Normalized in-plane and out-of-plane pixel intensities in the spatial 

domain were analyzed for the evaluation. The line profiles through the center of the 

sphere along the horizontal axis were provided to compare the out-of-plane blur and in-

focus amplitude. 

Figure 27, 28 and 29 are the line profile results from standard BP, α-trimmed BP 

and PCA-based BP correspondingly. For each reconstruction algorithm, two line 

profiles of normalized pixel intensities on the defined reconstruction planes passing 

through the center of simulated spherical object (Z=20 mm and Z=23 mm away from 

the detector) were illustrated. Solid lines are the ones that pass through the center of 

the simulated sphere and are considered as in-plane line profiles. Dotted lines are the 

ones that are parallel to the in-plane lines but 3mm higher, and they are considered as 

out-of-plane line profiles. X-axis represents the pixel location on reconstructed plane 

and an 81-pixel region of interest was shown for clarity. Y-axis represents the pixel 

intensity on a reconstructed image. For each reconstruction algorithm, the pixel 

intensities were normalized based on the in-plane (Z=20 mm) reconstruction response. 
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Figure 28. Line profiles of reconstructed spheres in the simulation of Group #2. (a) Standard BP; (b) α-
trimmed BP; (c) PCA-based BP. 
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Figure 27. Line profiles of reconstructed spheres in the simulation of Group #1. (a) Standard BP; (b) α-
trimmed BP; (c) PCA-based BP. 
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Figure 29. Line profiles of reconstructed spheres in the near-border sphere simulation of Group #3. (a) 
Standard BP; (b) α-trimmed BP; (c) PCA-based BP. 
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As shown in Figure 27, results from α-trimmed and standard BP are quite similar. 

The result of PCA-based BP has a little higher out-of-plane blur. In Figure 28, when the 

noise is present, the in-plane line profile of α-trimmed BP is much smoother than the 

ones of standard BP and PCA-based BP. Figure 29 shows that α-trimmed BP may 

reserve the shape of near-boundary object, while standard BP and PCA-based BP fail 

to reveal ambiguities when viewing the objects near the boundary of the reconstruction 

plane. 

3.4. NPS MEASUREMENT 

To measure the noise propagation in different BP variants as a function of spatial 

frequency, NPS(f) was tested by acquiring the projection images of a breast tissue 

equivalent phantom with the DBT prototype system. A standard phantom with the 

equivalent distribution of attenuation and scatter radiation in breast tissues was placed 

on the surface of the detector. The projection images were acquired by the multi-beam 

prototype system and reconstructed by the above three reconstruction algorithms. 

In this section, The NPS(f) investigation about different algorithms used a 1D 

NPS line profile method (Zhang et al 2006). It cut the ROIs with 1024×1024 pixels from 

the reconstructed planes with the same height above the detector. Each ROI was 

evenly divided into 63 strips with a size of 1024×32 pixels. The adjacent strips were 

overlapped. For each strip, a line curve fitting was used to obtain an approximation to 

the true NPS. Finally, we extracted the frequency components from each strip and 

formed the smoothened NPS curves. 

The reconstructed plane containing the ROI for NPS(f) estimation was 45 mm 

above the detector. The measurement of the 1D NPS was repeated on ten experiments 
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of the phantom at the same plane and the average of the repeated measurement was 

compared. 

The average 1D NPS in the same selected area are shown in Figure 30 for the 

three reconstruction methods. The standard BP and a-trimmed BP methods produced 

the essentially indistinguishable NPS(f) level in the reconstructed slice. PCA-based BP 

has higher spatial frequency response since it intends to maximize the information 

retrieval.  

 

Figure 30. NPS curves of three BP variants. 

 

3.5. MTF MEASUREMENT 

To characterize signal propagation in different BP variants, MTF(f) was tested. 

We used an impulse response simulation method (Chen 2007c). In our measurement, 

an impulse, located at the center of the plane which is 45.0 mm above the detector, 

was computer simulated with the imaging configuration of the prototype system and 

then reconstructed by the above three algorithms. In MTF(f) calculation, the 
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reconstructed slices 45.0 mm above the detector were selected. FFT transform of the 

slices was calculated to extract frequency components and form the MTF curves.  

In Figure 31, α-trimmed BP has the maximal MTF(f) for all the frequencies. The 

10% MTF(f) drop-off is 0.99 for traditional BP, 2.08 for α-trimmed BP, and 1.34 for 

PCA-based BP. It shows that α-trimmed BP can improve the sharpness of in-plane 

objects. 

 

Figure 31. MTF curves of three BP variants. 

 

3.6. SUMMARY 

All the BP variants can provide clear reconstruction images and therefore 

provide solutions to breast tomosynthesis imaging. As a direct transformation method, 

standard BP works well in providing the three-dimensional reconstructed slice images. 

Standard BP intuitively calculates the mean values, α-trimmed BP removes the 

extremity values, and PCA minimizes the information loss.  

The α-trimmed BP improves image quality based on signal and noise 

propagation analysis. It has the similar NPS(f) curve with standard BP but presents the 
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best MTF(f) response compared to standard BP and PCA-based BP. When the object 

in the reconstructed volume is projected beyond the detector, α-trimmed BP may 

remove the ambiguity. However, it is important that the threshold of the α-trimmed 

method should be carefully selected. 

Zhao and Zhao (Zhao and Zhao 2008) investigated the signal and noise 

propagation of different FBP steps and suggested that BP had important influence on 

image quality. It is promising that image quality may be improved if we combine our BP 

variants with the deblurring filters. 
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CHAPTER 4 

OPTIMIZATION OF IMAGE RECONSTRUCTION AND IMAGING CONFIGURATION 

FOR A MULTI-BEAM PARALLEL DIGITAL BREAST TOMOSYNTHESIS SYSTEM 
1
 

Breast tomosynthesis has caught a lot of attentions from both academia and 

industries due to its three-dimensional feature localization. With the advancement of 

tomosynthesis research by the academic communities, many medical imaging 

manufacturers are actively engaged in designing digital tomosynthesis prototype 

systems to prepare for the commercial usage and public sale. In order to pursue state-

of-the-art technology in this field, new challenges emerge. Manufactures are eager to 

optimize their designs to produce decent imaging results to improve their competences. 

Doctors and patients are willing to determine which device and imaging methods are 

superior. Although the conventional physical measurement techniques of image quality 

metrics can be applied to the tomosynthesis imaging characterizations, it is urgent and 

essential to develop appropriate strategies to compare and evaluate tomosynthesis 

systems and image reconstruction algorithms (Dobbins 2000, Dobbins and Godfrey 

2003, Dobbins et al 2006, Chen 2007b). 

 Currently, both partial iso-centric and parallel tomosynthesis imaging 

configurations exist in breast tomosynthesis image acquisition field. In other 

tomosynthesis imaging fields, scientists are developing various designs as well, such as 

parallel imaging configuration for chest tomosynthesis design and C-arm tomosynthesis 

for head imaging applications. With specific tomosynthesis application and image 

1
 Part of this chapter is from the book chapter by Chen et al 2011. 
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reconstruction algorithms are very important to provide optimal system performance 

and image resolution. Especially, for imaging configuration optimization, the imaging 

configurations typically include a few configurable parameters of number of projection 

images (NP) and view angle (VA). Combinations of those configurable parameters vary 

with different systems and should be compared and optimized for system design. In 

order to compare those different imaging configurations for each tomosynthesis system, 

one needs to select a methodology to optimize the imaging configuration design to 

provide better resolution. This becomes an important optimization objective for 

researchers in digital tomosynthesis imaging field.  

Another key objective in digital tomosynthesis imaging is the optimization and 

comparison of various tomosynthesis reconstruction algorithms. Tomosynthesis 

reconstruction algorithms take significant roles in transforming two-dimensional 

projection information into three-dimensional reconstructed object. Arbitrary number of 

reconstruction images can be generated with appropriate reconstruction algorithms. 

The main difficulty in developing an ideal tomosynthesis reconstruction algorithm comes 

from its incomplete sampling of tomosynthesis imaging. With tomosynthesis imaging, 

only a few limited-angle projection images are available as the foundation to generate 

reconstructed three-dimensional information. Therefore, in order to improve the solution 

of this problem of incomplete sampling, dedications to the optimization of reconstruction 

algorithms never stop.  

The options which are considered to optimize our multi-beam parallel digital 

breast tomosynthesis prototype system include view angle (VA), number of projection 

images (NP) and reconstruction algorithms. However, several factors play essential 
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roles in the optimization tasks and some of them are associated together to some 

extent. The non-linearity property of digital tomosynthesis system brings difficulties to 

the image quality evaluation to optimize the reconstruction algorithms and imaging 

configurations. Therefore, it turns to be essential to find an effective methodology to 

enable scientists to optimize tomosynthesis imaging configurations and reconstruction 

in breast tomosynthesis imaging field. We will provide clear explanation of our 

methodologies in this chapter. Firstly, a linear imaging system analysis is applied to 

estimate MTF. Computer simulations of sphere and wire are then applied to compare 

the signal propagation, especially out-of-plane artifact removal. In next chapter, a 

systematic NEQ(f) analysis methodology will be presented to evaluate the system 

performance in frequency domain.           

4.1. LINEAR TOMOSYNTHESIS IMAGING ANALYSIS 

In digital tomosynthesis image acquisition, digital detectors are used to record 

images as discrete arrays with limited intensity range. Spatial and temporal integral of 

the image irradiance are recorded. A detailed theory about image formation can be 

found in Barrett et al 2004. 

In tomosynthesis reconstruction, reconstruction slices passing through an object 

are reconstructed based on a tomosynthesis dataset of X-ray projection images. Digital 

computers are usually used to compute the reconstruction. It is necessary to represent 

the actual continuous object as discrete set of numbers. A common way for the 

representation of the discrete small elements is pixels or voxels (Barrett et al 2004).  
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If ignoring the statistical nature of the imaging process, the mapping from the 

object o to a single projection image p can be written as (Barrett et al 2004):  

ohp                                              

The mapping operator h can be either linear or nonlinear. The property of 

homogeneity in linear systems makes it easier to analyze than nonlinear ones. Here we 

begin with the assumption of linearity. In Fourier frequency domain, one can use  

OHP   

to denote the imaging mapping. H is the Fourier transform of h and it represents the 

transfer function. p and o are the Fourier representation of the projection image p and 

the object o respectively.  

To simplify the imaging configuration consideration, we extract a parallel pinhole 

tomosynthesis imaging system as shown in Figure 32. The central point o is located on 

the reconstructed plane s . Here one can consider it as a pinhole aperture. We have the 

projection image on the detector P. Under this assumption, S is a radiopaque plane 

with a small pinhole o. This input produces a replica of the X-ray source geometry on 

the detector with a Z-depth dependent scaling factor (Grant 1972). 

 

(Eq. 27) 

 

(Eq. 28) 
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Figure 32. Impulse response imaging in tomosynthesis. 

 

The line length of the replica of impulse-response on the detector is 

                                     

Where r is the magnification and  is the half of the total view angle. With the Fourier 

transform of the impulse-response function, the transfer function in Eq. 28 becomes 

(Grant 1972):  

                                

It illustrates below properties (Grant 1972): (1) The blurring from undesirable 

planes is basically a linear filtering process; (2) The system’s impulse response is a 

scaled replica of the scan configuration; (3) The position of the impulse response on the 

detector is Z-depth dependent.  

(Eq. 29) 

 

(Eq. 30) 
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For a linear tomosynthesis imaging configuration with N evenly distributed X-ray 

sources of parallel imaging configurations, the impulse response is simply a series of N 

infinitesimal points. The corresponding transfer function is extended into (Grant 1972): 

                                    

The transfer function becomes a series of peaks occurring at harmonics of the 

sampling frequency.  

The transfer function is a direct quantitative measure of the system’s ability to 

blur undesirable planes and provides a valid method of comparing imaging 

configurations. It also provides a means of evaluating the effectiveness of particular 

imaging configuration before setting up the actual measurement (Godfreq et al 2006). 

Grant’s theory provides a good linear analysis tool to model the signal 

propagation in blurring-out reconstruction method. Typically, SAA, BP, FBP and MITS 

can get practical information from this method. Godfrey et al (Godfrey et al 2006) 

applied Grant’s results and presented the MTF analysis results by varying the view 

angle and plane separation for the optimization of a chest tomosynthesis system. 

According to Godfrey's analysis, the blurring out algorithms suppress out-of-plan signal 

by increasing the in-plane signal, so an ideal blurring out algorithm should work like an 

extreme low-pass filter which keeps only DC frequency components. He demonstrated 

that out-of-plane artifacts can be suppressed with increased number of projection 

images.  

(Eq. 31) 
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We applied pin-hole linear tomosynthesis imaging theory to analyze our multi-

beam digital breast tomosynthesis system. Figure 33 shows the MTF with 28
o
 view 

angle and different numbers of projection images. Figure 34 shows the MTF with 14
o
 

view angle and different numbers of projection images. In Figure 33 , with the increase 

of number of projection images, contours located off the main MTF peak get 

suppressed and the middle and high frequencies decrease. In Figure 34, because of 

very small view angle, the phenomenon is not as obvious as in Figure 33. The results 

suggest that out-of-plane objects will be better suppressed as number of projection 

images increase. On the other hand, as shown in the figures, for the same number of 

projection images, if view angle increases, denser contours appear. These results are 

coincident with later results of simulation experiments. 

The change of DC components can also be observed from the line profile 

figures. Figure 35 shows the line profiles for the imaging configuration of projection 

image number 15 and view angle 14
o
. The DC decreases with the increase of the 

sampling frequency in slice thickness. It means that if we decrease the slice thickness, 

the out-of-plane artifacts will be better reduced. The same conclusion can be drawn 

from Figure 36. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 33. MTFs of different imaging configurations with the same view angle 28
o
. (a) NP = 15; (b) NP = 

43;  (c) NP = 71; (d) NP= 99. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 34.  MTFs of different imaging configurations with the same view angle 14
o
. (a) NP = 15; (b) NP 

= 43;  (c) NP = 71; (d) NP= 99. 
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Figure 35. Line profiles of MTF with different slice thickness in the imaging configuration (NP = 
15, VA = 14

o
). 

 

 

Figure 36. Line profiles of MTF with different slice thickness in the imaging configuration ( NP = 

15, VA = 28
o
). 
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In the paper (Zhao et al, 2008), a three-dimensional cascaded linear system 

model of digital breast tomosynthesis was proposed.  A flow chart about the 

propagation of signal and noise was drawn in the paper. Although the DBT system is 

not strictly linear, the linear system analysis including image acquisition and FBP image 

reconstruction was employed to estimate the propagation of signal and noise. The 

characterization analysis based on spatial frequency dependent 3D pre-sampling MTF, 

NPS and DQE was used to optimize the system design.  

Linear analysis of tomosynthesis imaging configuration provides us a practical 

tool to optimize the system performance. However, we must point out that it also has 

some limitations. Many detectors are non-linear or approximately linear over a restricted 

range of inputs (Dobbins 2000). Meanwhile, some reconstruction algorithms are 

inherently non-linear, for example, MLEM reconstruction algorithm (Wu et al 2003). 

Nonlinearities may be either global or local. It may appear and influence tomosynthesis 

design in many aspects. Future investigations are necessary to enhance our 

development when we utilize these linear system analysis tools (Godfrey et al 2006; 

Zhou et al 2008; Hu et al 2008).  

4.2. SPHERE SIMULATION 

This simulation was dedicated to evaluating the removal of out-of-plane artifacts 

with different imaging configurations and reconstruction algorithms. A spherical object 

with the radius of 400 um, placed at the center of a plane with the height of 20 mm 

above the detector, was simulated and embedded in non-uniform background as the 

target to evaluate the imaging configuration and reconstruction algorithms. Ray-tracing 
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method was used to calculate the X-ray attenuation. The imaging geometry follows 

Figure 37. The X-ray tubes were placed horizontally, and the horizontal blur dominates 

the blur of the reconstructed planes, so the line profile through the center of the sphere 

along the horizontal axis was provided to compare the out-of-plane blur and in-focus 

peak sharpness.  

 

Figure 37. Sphere simulation 

 

The linear attenuation coefficient of the simulated spherical object was 0.38 /cm, 

which referred to the linear attenuation coefficient of carcinoma tissue for 30 KeV 

photon energy (Guimarães et al 2009). Different parallel imaging configurations were 

independently simulated. 
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http://www.springerlink.com/content/?Author=L.+T.+G.+Guimar%c3%a3es
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The five representative algorithms (BP, FBP, MITS, MLEM and SART) were then 

applied to simulated tomosynthesis datasets to reconstruct images. A reconstruction 

plane spacing of 1 mm was used. Normalized in-plane and out-of-plane pixel intensities 

in the spatial domain were analysed for the evaluation. 

Figure 38, 39, 40, 41 and 42 are the line profile results from BP, FBP, MITS, 

MLEM and SART correspondingly. For each reconstruction algorithm, two line profiles 

of normalized pixel intensities on the defined reconstruction planes passing through the 

center of simulated spherical object (z=20 mm and z=23 mm away from the detector 

plane) were illustrated. Solid lines are the ones that pass through the center of 

simulated spherical object and they are considered as in-plane line profiles. Dotted 

lines are the ones that are correspondingly parallel to the in-plane lines but 3mm higher, 

and are considered as out-of-plane line profiles.  

X axis represents the pixel location on reconstructed plane and a 101-pixel 

region of interest was shown for clarity. Y axis represents the pixel intensity on 

reconstructed image. For each reconstruction algorithm, the pixel intensities were 

normalized based on the in-plane (z=20 mm) reconstruction response accordingly. 
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Figure 38. Line profiles of BP reconstructed spheres. Solid lines were extracted from the 
plane 20 mm above the detector. Dotted lines were extracted from the plane 23 mm above 
the detector. 
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Figure 39. Line profiles at FBP reconstructed spheres. Solid lines were extracted from the 
plane 20 mm above the detector. Dotted lines were extracted from the plane 23 mm above 
the detector. 
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Figure 40. Line profiles of MITS reconstructed spheres. Solid lines were extracted from the 
plane 20 mm above the detector. Dotted lines were extracted from the plane 23 mm above 
the detector. 
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Figure 41. Line profiles of MLEM reconstructed spheres. Solid lines were extracted from the 
plane 20 mm above the detector. Dotted lines were extracted from the plane 23 mm above 
the detector. 



81 
 

 

 VA=25
o
 VA=50

o
 

N=11 

 

1 51 101
-0.5

0

0.5

1

 
1 51 101

-0.5

0

0.5

1

 

N=25 

 

1 51 101
-0.5

0

0.5

1

 
1 51 101

-0.5

0

0.5

1

 

N=51 

1 51 101
-0.5

0

0.5

1

 
1 51 101

-0.5

0

0.5

1

 

Figure 42. Line profiles of SART reconstructed spheres. Solid lines were extracted from the 
plane 20 mm above the detector. Dotted lines were extracted from the plane 23 mm above 
the detector. 
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As shown in the figures, all five representative algorithms were able to 

reconstruct three-dimensional information of the simulated object. For in-plane 

performance with solid lines, FBP, MITS and SART algorithms show edge 

enhancement phenomena. The edge enhancement also exists for the partial iso-centric 

tomosynthesis imaging configuration, which is common for the current breast 

tomosynthesis commercial prototype systems. 

For out-of-plane performance with dotted lines, big view angle contributes to 

suppress the out-of-plane blur. 

4.3. WIRE SIMULATION 

Wire simulation (Balla et al 2010) was done to see how the above reconstruction 

algorithms and imaging configurations differ from each other based on the impulse 

response characterization. The experiment referred to the method of optimizing chest 

tomosynthesis system by Godfrey et. al. (Godfrey et al 2006). To evaluate the effects of 

variation in VA and NP, 11, 25 and 51 projection images of a very thin wire running 

vertically through the image space, whose depth varied from z=30 mm to z= 60 mm 

from the bottom to top were simulated. Imaging geometry of Figure 43 was used. Each 

point on the simulated wire was considered an impulse. Simulated acquisition allowed 

the generation of the noise-free projection images that contained only a single impulse 

for each column in the image.  
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The above five reconstruction algorithms were used to reconstruct 30 evenly 

spacing planes from 30 mm to 59 mm above the simulated detector. On the 

reconstructed slices, we selected the position of the impulse response of the middle 

plane 45 mm high as the in-plane response. The impulse responses along the selected 

rows on all the reconstructed planes were displayed and evaluated.  

Figure 44-48 shows the performance with different imaging configurations and 

reconstruction algorithms. Numbers of projection images are 11, 25 and 51. View 

angles are 25
o
 and 50

o
. 

 

 

Figure 43. Wire simulation. 
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Figure 44. Impulse responses of wire simulation with BP reconstruction. 
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Figure 45. Impulse responses of wire simulation with FBP reconstruction. 
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Figure 46. Impulse responses of wire simulation with MITS reconstruction. 
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Figure 47. Impulse responses of wire simulation with MLEM reconstruction. 
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Figure 48. Impulse responses of wire simulation with SART reconstruction. 
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Normalized pixel intensities in the spatial domain are displayed as the three-

dimensional impulse response plots. The x axis represents the sequential numbers of 

the reconstruction planes that are parallel to the detector surface plate as described in 

Figure 43. The y axis represents the pixel locations of the column containing simulated 

wire on the reconstruction plane that is located at the center of the simulated wire 

space (the wire spreads from z=30 mm through z=59 mm. The center is 45 mm away 

from the detector face plate). The z axis represents normalized pixel’s intensities.  

One can see that with smaller number of projection images, out-of-plane artifacts 

are obvious in all NP=11 images by showing tails along x axis. With a bigger number of 

projection images, the out-of-plane artifacts are suppressed to a much lower level and 

sharper in-plane peaks occurs. In the results of Figure 45(e) and 48(e), because of the 

very big projection number and narrow view angle, the slight oscillation occurs which 

should be avoided. With wider angle of VA=50°, the out-of-plane artifacts spread to 

wider range correspondingly. View angle and projection image number can benefit each 

other but it may bring more artifacts with wide view angle and small projection view 

number.  

In summary, when number of projection images increases, algorithms performed 

better by showing sharper in-plane performance. MLEM shows better performance in 

removing the out-of-plane blur.  
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CHAPTER 5 

RELATIVE NEQ(F) ANALYSIS OF A MULTI-BEAM PARALLEL DIGITAL BREAST 

TOMOSYNTHESIS PROTOTYPE SYSTEM 

The noise-equivalent quanta NEQ(f) describes the minimum number of X-ray 

quanta required to produce a specified signal to noise ratio (SNR). It has an important 

physical meaning as it describes how well a low-contrast structure can be detected in a 

uniform noise-limited image by the ideal observer which is an indication of what can be 

visualized by a human observer under specified conditions (Wiki 2011). NEQ(f) has 

been accepted as measurement metrics of medical imaging systems. It is dependent 

on the overall system performance, including radiation dosage, imaging configuration, 

pulse width, detector and image reconstruction algorithm. 

In frequency domain, the MTF describes the signal response of a system at a 

given frequency and the NPS describes the amplitude variance at a given frequency. 

The ratio of these factors presents information about the maximum available SNR as a 

function of frequency.  

A set of optimization experiments based NEQ(f) analysis were used to evaluate 

our multi-beam parallel digital breast tomosynthesis system and find the optimal system 

design including reconstruction algorithms and imaging configurations. In our current 

digital breast tomosynthesis system, it has 29 X-ray beam sources. A digital flat-panel 

detector with the pixel pitch of 140 um was integrated into the prototype system. The 

image size is 2048×1664. Two imaging configuration modes were used: (1) View angle 

=14
o
, number of projection images = 15 (Mode code: VA14NP15); (2) View angle =28

o
, 

number of projection images =15 (Mode code: VA28NP15).   
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5.1. MTF 

The Modulation Transfer Function (MTF) is used to analyze the resolution of 

imaging system in frequency domain. Technically, the “resolution” of a system is the 

minimum distance that two objects can be distinguished. In practice, an impulse 

function can be simulated to evaluate the response of the system or algorithm to be 

investigated. (Dobbins 2000). 

The MTF is a handy descriptor of system spatial response because the stages of 

system response can be considered as “filters” as described in our linear system 

analysis in Section 4.1. Furthermore, the composite MTF of a tomosynthesis imaging 

system is the product of the MTFs coming from all individual stages including both 

image acquisition and image reconstruction (Chen, 2007c). In this section, we call the 

MTF from image acquisition as projection MTF MTFproj(f) and the MTF from image 

reconstruction as reconstruction MTF MTFrecon(f). 

 

Figure 49. Projection MTF of our multi-beam parallel digital breast tomosynthesis system. 
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5.1.1. Projection MTF(f) 

Let’s discuss projection MTF as our first step. Two methods, slit method and 

edge method, are recommended (Dobbins 2000). The projection MTF of our breast 

tomosynthesis prototype system was tested with a slit method (Fujita 1992). Figure 50 

shows the Projection MTF curve (Qian et al 2012). 
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Figure 50.  Impulse simulation based on ray-tracing method. 
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5.1.2. Reconstruction MTF 

Reconstruction MTF presents the spatial frequency response with respect to 

different imaging configurations and reconstruction algorithms. A point spread function 

method with simulated impulse function as a standard signal input was used to test the 

reconstruction MTF(Chen, 2007c). The delta function (impulse) at location P was 

projected onto the detector at location Q when the X-ray source is located at the 

specific position. 

Figure 50 shows the impulse simulation based on ray-tracing method. 

Tomosynthesis dataset of projection images of a single delta function at defined height 

of H above the detector was computer simulated.  

The reconstruction MTF can be calculated as the Fourier Transform of the 

impulse response along the tube’s alignment direction. It varies with the location of the 

simulated impulse. In our experiments, two areas were computer simulated with the 

imaging configuration of the prototype system. The first area “away-from-chest-wall” 

was used to mimic the object away from the chest wall. The second area “near-chest-

wall” was used to mimic the object near chest wall. In each area, 25 impulses were 

evenly placed inside the pixel. Ray-tracing method was used to generate the projection 

images. The images were then reconstructed. In MTFrecon(f) calculation, the slice 

images, 45 mm above the detector, which was also the in-focus plane of the impulses, 

were selected. FFT transform of the images were used to extract frequency 

components and form the MTF curves. 

Here we illustrate the experiments with the imaging configuration VA=14
o
, 

NP=15. Figure 51 shows the area locations on the reconstructed plane. Figure 52 



94 
 

shows the impulse locations inside the pixels. Figure 53 shows the MTFrecon(f) curves of 

BP reconstruction algorithm for the simulations with different impulse locations. Blue 

curves are the MTFrecon(f) results for different impulse locations. Red curves are the 

average MTFrecon(f) for the corresponding areas. Further comparisons will be conducted 

in the subsection “Relative NEQ analysis”. 

 

 

 

 

 

 

 

Figure 51. Area locations of simulated impulses for reconstruction MTF(f). 

 

 

 

 

 

 

 

 

Figure 52. Impulse locations inside one pixel for two different area modes. 
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(a)away-from-chest-wall. 

 

(b) near-chest-wall 

Figure 53. Reconstruction MTF curves of BP in different experiments with different impulse 
locations. Blue curves are from different impulses. Red curves are the average. 

 

5.2. NPS 

The NPS is one of the most common metrics characterizing the noise property of 

imaging systems. The frequency-dependent NPS(f) is defined as the variance per 

frequency bin of a stochastic signal in the spatial frequency domain (Dobbins 2000). It 

can be directly computed from the squared Fourier amplitude of 2D imaging data by 

(Dobbins 2000): 

 
(Eq. 32) 

 



96 
 

 where, ),( ii yxI is the image intensity at the pixel location ),( ii yx . is the global 

mean intensity. xw  and yw are the spatial frequencies conjugate to x and y axes. 

M and N are the numbers of pixels in the x and y directions of the digital image. 

X and Y are the pixel spacings in the x and y directions. And K is the number of 

ROIs used for analysis.  

According to this equation, it is easy to implement a mean-subtracted NPS(f) 

measurement method. It has formed a methodology to assess the noise response of 

the system. In this methodology, noise propagation was evaluated by investigating the 

reconstructed slice images of a breast tissue equivalent phantom with the prototype 

system. In our experiments, a phantom, 40 mm thick, was placed on the surface of the 

detector. For each reconstruction algorithm, all the slice images with 1 mm slice 

thickness were reconstructed to cover the entire breast phantom.  

In NPS calculation, regions of interest (ROIs) with the size of 1024*1024 pixels 

were cut from the reconstructed planes with the same height above the detector. Each 

ROI was evenly divided into 8 blocks with a size of 128×128 pixels. For each block, a 

line curve fitting through the ensemble-averaged NPS estimate was used to obtain an 

approximation to the greatest slope of the true NPS. Finally, we extracted the frequency 

components from each block and formed the smoothened NPS curves. Figure 54 

illustrates the NPS curves of BP reconstruction algorithm by ten experiments. Blue 

curves are from the ten experiments. Red curve is the average. Further comparisons 

will be conducted in the subsection “Relative NEQ analysis”. 
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Figure 54. NPS curves of BP reconstruction with the imaging configuration VA14NP15. v is the 
direction of X-ray tube alignment. 

 

5.3. RELATIVE NEQ ANALYSIS  

A relative NEQ(f) measurement method is used in our experiments. The relative 

NEQ(f) combines the modulation transfer function (MTF) of signal performance and the 

noise power spectrum (NPS) of noise characteristics. The relative NEQ(f) can be 

expressed as 

)(
)(

22

fNPS

MTFMTF
fNEQ

reconproj 
  

The MTFrecon (f) is the relative MTF with the specific image reconstruction 

algorithm and imaging configuration parameters. The MTFproj (f) is the measured MTF 

of the imaging system. The NPS (f) is the mean subtracted NPS on the same 

reconstruction plane.      

(Eq. 33) 
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A complete analysis about different reconstruction algorithms and imaging 

configurations were conducted to form a systematic optimization methodology. 

5.3.1 Relative NEQ(f) analysis for different reconstruction algorithms 

Reconstruction MTF(f) 

Figures 55(a) illustrate normalized reconstruction MTFs of BP, Ray-tracing BP, 

MLEM, OS-MLEM and SART with the imaging configuration of VA14NP15 for 

simulating impulses. Based on the normalized MTFRecon (f) analysis, point-by-point BP 

has the least high-frequency response. OS-MLEM has the maximal high frequency. The 

difference between iterative reconstruction algorithms is very small. According to the 

figure, OS-MLEM shows better high-frequency response. It may produce sharper edges 

in the imaging application.  

Figure 55(b) shows reconstruction MTF curves of two FBP versions, FBP and 

FBP_nogaussian. The difference is that there is no Gaussian filter in FBP_nogaussian.. 

We can find high-frequency response was greatly compressed after we used Gaussian 

low-pass filter. 
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(a) 

 

(b) 

Figure 55. Reconstruction MTF (f) of different reconstruction algorithms. (a) BP, Ray-tracing 
BP, MLEM, OS-MLEM and SART. (b) FBP and FBP_nogaussian. 
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NPS(f) 

In Figure 56, the normalized mean-subtracted NPS(f) curves for all the 

reconstruction algorithms are presented. We can observe some interesting facts: 

(1) FBP has high dynamic range. It has the highest low-frequency noise, but least high-

frequency noise. An assumption is that in our FBP implementation, one high-pass filter 

and two low-pass filters are applied, including ramp filter (a high-pass filter), Ham filter 

(a low-pass filter) and Gaussian filter (a low-pass filter). The two low-pass filters greatly 

suppress high-frequency noise. 

(2) Both OS-MLEM and SART have the similar high-frequency noise. Their noise levels 

are higher than MLEM. Their iteration behavior of projection-by-projection update in 

OS-MLEM and SART greatly speed up the convergence. Iterative procedure has the 

effect of high-pass filter, so it increased the high-frequency noise. 

(3) Ray-tracing BP and point-by-point BP have quite similar noise responses. Ray-

tracing BP has a little lower NPS response. 

(4) MITS has its unique noise propagation property. In low frequency, it has smaller 

noise response than iterative algorithms but has a little bigger noise response than 

MLEM. 
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Figure 56. Curves of mean-subtracted NPS(f) analysis for different reconstruction algorithms. 
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Relative NEQ(f) 

Figure 57(a) shows the relative NEQ(f) curves of ray-tracing-based 

reconstruction algorithms, including ray-tracing BP, MLEM, OS-MLEM and SART with 

the same imaging configuration VA14NP15. It suggests that MLEM has better high-

frequency efficiency. OS-MLEM provides a little better NEQ(f) response than SART. It 

deserves to apply OS-MLEM considering that it greatly saves running time. 

Figure 57(b) compare the NEQ(f) of two FBP versions of FBP and 

FBP_nogaussian. Based on the curves, Gaussian filter decreases the high-frequency 

efficiency of incident X-ray.   

5.3.2 Relative NEQ(f) analysis for different imaging configurations 

Two groups of imaging configurations were tested for our relative NEQ(f) 

analysis. For each imaging configuration, ten datasets of NPS phantom experiments 

were acuqired. The dose was approximately 96 mAs for each set of data. The tube 

potential was 30 kVp. Figures 58 through 61 shows the ReconMTF(f), NPS(f) and 

NEQ(f) results of BP, FBP, OS-MLEM and SART reconstruction algorithm respectively. 

Two imaging configurations were tested: VA14NP15 and VA28NP15. 

For reconstruction MTF(f), two reconstruction MTF(f) curves of BP for different 

imaging configurations are almost merged while the difference for other algorithms is 

bigger. Especially, in Figure 61, with the increase of view angle, frequency response is 

bigger so in FBP big view angle will contribute to the conspicuity of objects. 

The NEQ(f) curves of two imaging configurations in BP and FBP are intertwisted. 

There is no obvious trend. However, in both OS-MLEM and SART, big view angle 

benefits the low-frequency NEQ(f) response.   
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(a) 

 

(b) 

Figure 57. NEQ (f) of different reconstruction algorithms. (a) MLEM, OS-MLEM and SART. (b) 
FBP and FBP_nogaussian. 
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(a)   (b)  

                          (c) 

 

(d)  

  

(e) 

Figure 58. Relative NEQ(f) of BP reconstruction with different imaging configurations. (a) 
Reconstruction MTF of the mode away-from-chest-wall.  (b) Reconstruction MTF of the 
mode near-chest-wall. (c) NPS. (d) NEQ of the mode away-from-chest-wall. (e) NEQ of the 
mode near-chest-wall. 



105 
 

 (a)  (b)  

                          (c) 

 

(d)  

 

(e) 

Figure 59. Relative NEQ(f) of FBP reconstruction with different imaging configurations. (a) 
Reconstruction MTF of the mode away-from-chest-wall.  (b) Reconstruction MTF of the 
mode near-chest-wall. (c) NPS. (d) NEQ of the mode away-from-chest-wall. (e) NEQ of the 
mode near-chest-wall. 



106 
 

 (a)   (b)  

                          (c) 

(d)  (e) 

Figure 60. Relative NEQ(f) of OS-MLEM reconstruction with different imaging configurations. 
(a) Reconstruction MTF of the mode away-from-chest-wall.  (b) Reconstruction MTF of the 
mode near-chest-wall. (c) NPS. (d) NEQ of the mode away-from-chest-wall. (e) NEQ of the 
mode near-chest-wall. 
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(a) (b) 

                        

 

 

 

 

                                    (c) 

(d) (e) 

Figure 61. Relative NEQ(f) of SART reconstruction with different imaging configurations. (a) 
Reconstruction MTF of the mode away-from-chest-wall.  (b) Reconstruction MTF of the 
mode near-chest-wall. (c) NPS. (d) NEQ of the mode away-from-chest-wall. (e) NEQ of the 
mode near-chest-wall. 
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CHAPTER 6 

CONCLUSIONS 

Most of breast tomosynthesis prototype systems are built upon the current digital 

mammography system design. The X-ray tube typically moves along an arc path above 

the detector. With a new nanotechnology enabled fast-speed multi-beam parallel breast 

tomosynthesis prototype system, it may potentially reduce the motion blur associated 

with X-ray tube’s movement of typical prototype systems. We anticipate that this 

optimization project will be greatly helpful to improve digital breast tomosynthesis 

technology for early breast cancer detection. We were dedicated to working on image 

reconstruction and image configurations to optimize the new digital breast 

tomosynthesis prototype system. 

Representative image reconstruction algorithms, including mathematical 

reconstruction methods, filter-based reconstruction methods, statistical reconstruction 

methods and algebraic reconstruction methods, were reviewed and some of them were 

improved in our design. A fast MLEM reconstruction algorithm was put forward. It can 

provide good image quality with less running time. Besides, two statistical 

reconstruction variants of BP were used to improve the performance of standard point-

by-point BP reconstruction.  

Combined with our multi-beam parallel prototype systems, the reconstruction 

algorithms were capable of providing three-dimensional information of the objects. 

Furthermore, the performance of the prototype system with different reconstruction 

algorithms and imaging configurations was measured by image quality. Contrast to 
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noise ratio (CNR) and artifact spread function (ASF) were used to evaluate image 

quality.  

Four optimization methodologies were proposed to improve the system design. A 

linear analysis method modelling the signal propagation was used to evaluate 

frequency characterization of blurring-out reconstruction algorithms. Computer 

simulations of sphere and wire were used to compare reconstruction algorithms and 

imaging configurations. In frequency domain, noise equivalent quanta (NEQ(f)), 

composed of noise power spectrum (NPS(f)) and modulation transfer function (MTF(f)), 

was investigated. 

The optimization experiments suggest that  

(1) Statistical reconstruction algorithms have better out-of-plane blurring removal; 

(2) Out-of-plane blurring can be reduced with the increase of view angle; 

(3) In-plane sharpness of objects will increase with the increase of number of 

projection images. 

This is a continuing project which is expected to provide a new promising 

marketable breast imaging device. Effort is being put on the clinical experiments to 

evaluate with real human subjects.  
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