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INTRODUCTION

In this paper we find basis for a specific vector space that we will introduce later on.

In chapter 1, we make a general review of some abstract algebra and topology. In chapter

2, we define the absolute value on a field in general and we introduce a new type of absolute

values called the p− adic absolute value. In chapter 3 we define the vector space V (χ1, χ2)

and we get a good understanding of its elements. Finally, in chapter four, we define the

subspace V (ρ, k) of the vector space V (χ1, χ2). The elements of the subspace V (ρ, k) are

called newforms and the least k such that the subspace V (ρ, k) is not trivial is called the

conductor of ρ. In chapter 4, we find the conductor and the newforms of the subspace

V (ρ, k).
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CHAPTER 1

REVIEW OF SOME NOTIONS OF TOPOLOGY AND ABSTRACT

ALGEBRA

1.1 SOME TOPOLOGY

In this section we shall introduce some topology background to understand what we

will do on the next chapter.

Definition. A topology on a set X is a collection τ of subsets of X such that

(1) X, φ ε τ ,

(2) The union of elements of any sub-collection of τ is back in τ,

(3) The intersection of the elements of any finite sub-collection of τ is back in τ .

If τ is a topology on a set X then we say that the pair (X, τ ) is a topological space.

Definition. Let X be a set with topology τ and let U be subset of X. Then U is said to

be open (with respect to the topology τ as of course we might have more than one topology

defined on the same set) if U is an element of τ .

Definition. Let X be a set with topology τ . Then a neighborhood of an element x ∈ X

is an open set U such that x ∈ U .

Remark. In general a set X might have more that one topology defined on it, and hence,

whenever we mention that a set is open we should clarify with respect to which topology

it is open. However, for most of the cases, we will be having only one topology τ on X,

and hence, open will mean τ -open (open with respect to the topology τ ).

Definition. Given a set X. The discrete topology on X is defined to be the collection of

all subsets of the set X, i.e., the discrete topology on X is defined by letting every subset of

X be open and X is a discrete topological space if it is equipped with its discrete topology.

On the other hand, X is a non-discrete topological space if it is equipped with a topology

that is not discrete.
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Definition. Let X be a set, a basis for a topology on X is a collection β of subsets of X

(called basis elements) such that:

(1) ∀x ε X ∃B ε β such thatx ε B,

(2) If x ε B1

⋂

B2 then∃B3 such thatx εB3 ⊆ B1

⋂

B2.

Remark. Given a basis β, we can define a topology τ on X as follows:

The subset U is open in X if ∀x ε U ∃B ε β such that x ε B ⊆ U (note that the basis

elements themselves are open, i.e., they are elements of τ ).

This topology is called the topology generated by β.

Lemma 1.1.1. Let X be any set, and let β be a basis for this topology. Then any open set

U in the topology generated by β can be written as union of some elements from β.

Proof. Let U be an open set in this topology, then, ∀x ε U ∃Bx such that x ε Bx ⊆ Uwhich

implies x ε
⋃

x ε U Bx , therefore U ⊆ ⋃

x ε U Bx. Now, since we have Bx ⊆ U for each x,

then

U =
⋃

x ε U

Bx.

Definition. Let X and Y be two topological spaces, then a function f : X → Y is said to

be continuous if ∀ open set V ⊆ Y we have f−1(V ) is open in X.

Lemma 1.1.2. Let X and Y be topological spaces, then the function f : X → Y is

continuous if and only if ∀x ε X and each neighborhood V of f(x)∃ a neighborhood U ofx

such that f(U) ⊆ V.

Proof. Let f : X → Y be continuous and let x be in X and let V be an open set containing

f(x) in Y , now since f is continuous f−1(V ) is open in X and we know from set theory

that f(f−1(V )) ⊆ V so let’s take our U to be the open set f−1(V ) and then we are done.

Now suppose that ∀x ε X and each neighborhood V of f(x)∃ a neighborhood U of x such
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that f(U) ⊆ V . We claim that if V is open then f−1(V ) is open as well. Let V be an

open set in Y then ∀x ε f−1(V )∃Ux open and containing x such that f(Ux) ⊆ V . This

implies that f−1(f(Ux)) ⊆ f−1(V ). But we know from set theory that Ux ⊆ f−1(f(Ux))

or Ux ⊆ f−1(V ) and this is true for each x, and it is obvious that f−1(V ) ⊆ ⋃

f(x) ε V Ux.

This implies that f−1(V ) =
⋃

f(x) ε V Ux where each of those Ux is open and so their union

and so f−1(V ).

Definition. A set G is a topological group if G is a group that is equipped with a topology

that makes the following functions continuous:

(1) f : G × G → G by f(a, b) = ab,

(2) g : G → G by g(a) = a−1.

It is not hard to see the following two remarks from the previous definition:

(1) Given a, b ε G and given V an open set that contains ab, then ∃U1 , U2 open such that

f (U1, U2) = U1U2 = {u1u2 | u1 ε U1 , u2 ε U2} ⊆ V ,

(2) If a ε G and if V is any open set containing a−1, then ∃U open containing a such that

g (U) = U−1 = {u−1 | u ε U} ⊆ V .

Definition. A metric d on a set is a function d : X ×X → R such that:

(1) d(x, y) ≥ 0 with equality if and only if x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) ≤ d(x, y) + d(y, z),

and that is ∀ x , y , z ∈ X.

Definition. The ε − ball centered at x with respect to the metric d is defined by:

Bd (x, ε) = {y ∈ X such that d(x, y) < ε}.

Now, we can define a topology τ on X by taking our basis to be the set of all ε−ball’s,

i.e.,

β = {Bd (x, ε) such that ε > 0 , x ∈ X}.
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Therefore, U ⊆ X is a τ -open set if and only if U can be written as a union of elements

in β. And since we are almost always dealing with the same metric on the set, there is no

need to mention d all the time, we can just refer to the ε− ball centered at x by B (x, ε) or

Bε (x) .

Definition. Suppose that τ and τ
′

are two topologies on a given set X. If τ ⊆ τ
′

, we

say that τ
′

is finer than τ ; if τ
′

contains τ properly, we say that τ
′

is strictly finer than

τ . We also say that τ is coarser that τ
′

, or strictly coarser that τ
′

, in these two respective

situations. We say that τ is comparable with τ
′

if τ ⊆ τ
′

or τ
′ ⊆ τ .

Definition. Let X be a topological space and let K ⊆ X. Then K is said to be compact

if every open cover containing K has a finite subcover that contains K. Explicitly, this

means that for every arbitrary collection:

{Uα}α∈A

of open subsets of X such that

K ⊆
⋃

α∈A

Uα,

there is a finite subset J of A such that

K ⊆
⋃

i∈J

Ui.

1.2 SOME ABSTRACT ALGEBRA

In this section we shall introduce some abstract algebra background to understand

what we will do on the next chapter. This material is from [2] and [4].

Definition. Let G be a group. A subgroup N of G is said to be normal if ∀g ∈ G, we have

g−1Ng ∈ N.
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Definition. An action of G on a set X is a mapping α : G × X → X that is compatible

with the group laws, in the sense that:

(1) α(gh, x) = α(g, α(h, x)),

(2) α(e, x) = x, for all g, h ∈ G and x ∈ X, where e is the identity element of G.

Definition. Let G be a group acting on a set X. Let x ∈ X be given, we define the

stabilizer of x in G by:

Gx = {g ∈ G | gx = x}.

Definition. Let G be a group acting on a set X, and suppose x ∈ X. Then, x is said to

be invariant by H ⊆ G if H ⊆ Gx, i.e., if

α(h, x) = x ∀ h ∈ H ⊆ G.

Definition. Let G be a group acting on a set X, then the set XG is defined to be:

XG = {x ∈ X | gx = x, ∀g ∈ G}.

Definition. Let H1, H2 be subgroups of a group G. For g ∈ G. Define the double coset

by:

H1gH2 = {h1gh2 | h1 ∈ H1 h2 ∈ H2}.

Lemma 1.2.1. Let H1, H2 be subgroups of a given group G. And let g, g
′ ∈ G, then

H1gH2 = H1g
′

H2 if and only if g ∈ H1g
′

H2.

Proof. As H1, H2 are subgroups, we have e ∈ H1 and e ∈ H2. Then, g = ege ∈ H1gH2 =

H1g
′

H2. Conversely, suppose that g ∈ H1g
′

H2. This implies g = h1g
′

h2 where h1 ∈

H1, h2 ∈ H2. Now, let x ∈ H1gH2, then x = h
′

1gh
′

2 where h
′

1 ∈ H1, h
′

2 ∈ H2. Hence,

x = h
′

1gh
′

2 = h
′

1h1g
′

h2h
′

2 where h
′

1h1 ∈ H1 and h2h
′

2 ∈ H2 (since H1 and H2 are subgroups).

Therefore, x ∈ H1g
′

H2. As x is arbitrary, we have

H1gH2 ⊆ H1g
′

H2.
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Now, the other inclusion is satisfied by symmetry. Hence

H1g
′

H2 ⊆ H1gH2,

so

H1gH2 = H1g
′

H2.

Definition. Let H1, H2 subgroups of a given group G, then the set of all double cosets is

defined to be the set

H1 \ G/H2 = {H1gH2 | g ∈ G}.

Lemma 1.2.2. Let H1, H2 subgroups of a given group G, and let g, g
′ ∈ G, then

H1gH2

⋂

H1g
′

H2 = ∅ or H1gH2 = H1g
′

H2.

Proof. Assume that H1gH2

⋂

H1g
′

H2 6= ∅, then ∃ x = h1gh2 = h
′

1g
′

h
′

2. Hence,

h−1
1 h

′

1g
′

h
′

2h
−1
2 = g ,i.e., g ∈ H1g

′

H2. Therefore, by lemma 1.2.1, we have H1gH2 =

H1g
′

H2.

One of the obvious results of this lemma is that the group G is equal to a disjoint

union of elements from H1 \ G/H2.
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CHAPTER 2

ABSOLUTE VALUE ON A FIELD AND P-ADIC NUMBERS

2.1 ABSOLUTE VALUES ON A FIELD

Definition. Let F be any field. Then an absolute value on F is a non-negative function | |

such that:

(1) |x| = 0 if and only if x = 0,

(2) |xy| = |x||y| , ∀x, y ε F,

(3) |x + y| ≤ |x|+ |y| , ∀x, y ε F.

Remark. If an absolute value satisfies the additional condition |x+y| ≤max(|x|, |y|), then

it is called a non-archimedean absolute value.

Definition. The trivial absolute value on any field F is defined by the following:

|x|trivial =



















1, x 6= 0,

0, x = 0.

Lemma 2.1.1. Let F be a field. Then |1| = 1.

Proof. |1| = |1.1| = |1|.|1|, and since 1 6= 0, |1| 6= 0. By dividing both of the sides by |1|

we have |1| = 1.

Lemma 2.1.2. Let F be a finite field, then if a 6= 0, a ε F, then an = 1 for some n ε N.

Proof. Let F be finite field, and let a 6= 0, a ε F then consider the sequence a, a2, a3, ..., ai, ...

we must have ai = aj for some i 6= j (without loss of generality say i > j) since otherwise

this sequence will be infinite. Now, we have ai = aj for some i > j and since any nonzero

element has an inverse, then we have ai−j = 1. Now, take n = i− j. Then we have an = 1

and we are done.
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Lemma 2.1.3. The only possible absolute value on a finite field F is the trivial one.

Proof. Let F be a finite field. Let || be an absolute value on F. We should prove that|| is

the trivial absolute value. First note that |0| = 0 since || is an absolute value. Let a 6= 0 be

in F. Then by the previous lemma, we have an = 1 for some n ε N. Now, by lemma 2.1.1,

we have |1| = 1. Therefore, we have 1 = |1| = |an| = |a.a....a|n− times = |a|n and hence

we have |a|n = 1. Since || is non-negative, then the only possible solution for |a|n = 1 is

|a| = 1. Because a is arbitrary, we have

|a|trivial =



















1, a 6= 0,

0, a = 0,

which is the trivial absolute value.

Definition. Let Q be the field of rational numbers, let x ε Q and define the infinity abso-

lute value by the following:

|x|∞ =



















x, x ≥ 0,

−x, x < 0.

Fix a prime p. We will introduce a new type of absolute value on Q which is called

the p absolute value and we denote it by ||p. Given a nonzero a ∈ Q, we can write a as

a = pk m
n

where m, n, k ∈ Z, n 6= 0 and p doesn’t divide mn. Then, |a|p = p−k and |0|p = 0.

Lemma 2.1.4. Fix a prime p. Then ||p on Q is an absolute value.

Proof. (1) We have |0| = 0 by definition. Conversely, 0 is the only element with |0| = 0

since if any other nonzero x ∈ Q satisfies |x|p = 0 then pi = 0 for some i ∈ Z which is not

possible.

(2) Let x, y be elements of Q, then x = pi m1

n1
and y = pj m2

n2
where m1, m2, n1, n2, i, j ∈ Q and
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p doesn’t divide m1m2n1n2. Then, xy = pi+j m1m2

n1n2
and hence |xy|p = p−(i+j) = p−i.p−j =

|x|p|y|p.

(3) Let x, y be elements of Q. Then, x = pi m1

n1
and y = pj m2

n2
where m1, m2, n1, n2, i, j ∈ Q

and p doesn’t divide m1m2n1n2. Now, if i = j then we have |x + y|p = |pi|p|| 1
n1n2

|p.|m1n2 +

n1m2|p. Now, m1n2 +n1m2 is an element of Z and so m1n2 +n1m2 = pkm where k ≥ 0 and

gcd(m, p) = 1, therefore, |m1n2 + n1m2|p = p−k and hence |x + y|p = |pi|p|| 1
n1n2

|p.|m1n2 +

n1m2|p = p−ip−k ≤ p−i = |x|p. Now, if i 6= j, then without loss of generality say i < j

(which is equivalent to saying |x|p > |y|p) and then |x+y|p = |pi|p|| 1
n1n2

|p.|m1n2+n1m2p
j−i|p

where |m1n2 + n1m2p
j−i|p = 1, since otherwise, we will have p divides m1n2 + n1m2p

j−i

and so p divides m1n2 which is not possible. Therefore, |x + y|p = |pi|p|| 1
n1n2

|p.|m1n2 +

n1m2p
j−i|p = p−i.1.1 = p−i = |x|p.

Remark. Part 3 proves that ||p is a non-archimedean absolute value as well. In particular,

it proves that if x, y ∈ Q such that |x|p > |y|p, then |x + y|p = |x|p. In other words, the

stronger wins.

Definition. The numbers 2,3,5,7,11,... are called finite primes and ∞ is called the infinite

prime.

Theorem 2.1.5. Let x ∈ Q be a nonzero element, then

∏

v

|x|v = 1,

where the product is taken over all the finite and the infinite primes.

Proof. Let x be a nonzero element in Q. If x is positive, then x = m
n

with gcd(m, n) = 1.

Then, from number theory we can write m = pα1
1 pα2

2 ...pαl

l and n = qβ1
1 qβ2

2 ...qβk

k where pi’s

and qi’s are finite primes and the α’s and the β’s are positive integers. Then, we have

x =
pα1

1 pα2
2 ...pαl

l

q1
β1qβ2

2 ...qβk

k

,

10



or

x = pα1
1 pα2

2 ...pαl

l q1
−β1q−β2

2 ...q−βk

k ,

and then |x|pi
= p−αi

i , |x|qi
= qβi

i and |x|p = 1 provided that p doesn’t divide mn. Since

x > 0, we have |x|∞ = x. Therefore,

∏

Allfinite primes p

|x|p = p−α1
1 p−α2

2 ...p−αl

l q1
β1qβ2

2 ...qβk

k =
1

x
,

and |x|∞ = x as x > 0. This implies that

∏

v such that v is prime

|x|v =
1

x
. x = 1.

If x < 0, then −x > 0. Now, for each prime p, the highest power of p that divided x

is the same as the highest power of p that divides −x (if x = −m1

n1
pj then −x = m1

n1
pj).

Hence, for any prime p, we have |x|p = | − x|p. Now, as −x ∈ N, we can write it as

−x = pα1
1 pα2

2 ...pαl

l q1
−β1q−β2

2 ...q−βk

k , where pi’s and qi’s are finite primes and the α’s and the

β’s are positive integers. Hence,

∏

Allfinite primes p

|x|p =
∏

Allfinite primes p

| − x|p = p−α1
1 p−α2

2 ...p−αl

l q1
β1qβ2

2 ...qβk

k =
1

−x
.

Now, as x < 0, then we have |x|∞ = −x. This implies that

∏

v such that v is prime

|x|v =
1

−x
. − x = 1.

Example 2.1.1. Finding a sequence that converges to zero in the 7-adic.

Take

xn = 7n,

then

|xn|7 = 7−n → 0.

11



Example 2.1.2. Finding a sequence that converges to 32 in the 7-adic.

We want |xn − 32|7 → 0. Hence, a smart choice of xn will do it. Choose xn = 32(7n + 1)

and then

|xn − 32|7 = |32.7n + 32 − 32|7 = |32.7n|7 = |32|7|7n|7 = 1.7−n → 0.

The previous two examples are taken from [2].

2.2 COMPLETION AND P-ADIC NUMBERS

Once one has an absolute value on a field F, one has a metric d(x, y) = |x − y|..

Hence, one may start thinking of convergence of sequences. Considering this, the notion of

a Cauchy sequence arise, these are the sequences were their terms are getting "closer and

closer" to each others with respect to a given absolute value. The process of extending the

field so that every Cauchy sequence converge is called completion of the field. The material

in the section is taken from [6].

Definition. Let F be a field, and let xn with n ∈ N be a sequence in F, then this sequence

is called Cauchy sequence provided that

∀ε > 0 ∃ k ∈ N such that∀m, n > k we have |xn − xm| < ε.

In other words, that means as n gets larger, the sequence terms get closer and closer to

each other with respect to the absolute value defined on that field.

Definition. The field F is called complete if every cauchy sequence converges to an element

in the field.

Lemma 2.2.1. The field of rational numbers with the p absolute value is not complete.

Proof. We know from number theory that for each i ∈ N, there is a natural number ni

such that 6 ≡ n2
i mod 5i. Now, define the sequence xi := ni and assume for the sake

12



of contradiction that xi → x ∈ Q in the 5-absolute value, and then we have |6 − x2|5 =

limi→∞ |6− n2
i |5. Since 5i divides 6 − n2

i for each i ∈ N, then |6− n2
i | ≤ 5−i → 0 for each i

in N. Hence, |6 − x2|5 = 0 or 6 = x2 a contradiction as x ∈ Q.

Definition. Let F be field with an absolute value | | defined on it. The following process

is defined to be the completion of the field F with respect to the given absolute value | |.

Let X be the set of all Cauchy sequences in the field F. Define a relation R on X by the

following:

xn R yn if and only if lim
n→∞

|xn − yn| = 0.

Now, let M denote the set of all these equivalence classes arising from the relation R where

the equivalence of a sequence xn ∈ F is denoted by [xn]. Then, M is the completion of

the field F and the original elements a ∈ F , can be realized in M as the equivalence class

represented by the constant sequence a, a, a, ... . In the new field M , addition, subtraction

and multiplication are defined as following

[xn] + [yn] = [xn + yn],

[xn] − [yn] = [xn − yn],

[xn].[yn] = [xn.yn],

for all Cauchy sequences xn, yn ∈ F. Now, let zn be a nonzero Cauchy sequence in F, then

division is defined as following

1/[zn] = [1/zn],

here we should be a little aware as even if the sequence zn is non-zero, some of its terms

might still be zeros, however, any non-zero Cauchy sequence is related (under the previous

relation) to some Cauchy sequence where none of its terms is zero, hence zn can be replaced

with a representative with no zero terms.

Remark. The completion of the field Q with respect to | |∞ is the field of real number R.
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Definition. The field Qp is defined to be the field resulted from completing the field Q

with respect to the p-absolute value | |p.

Definition. The set Zp is defined to be the set of all elements of the form:

Zp = {x ∈ Qp | |x|p ≤ 1}.

Remark. Note that the elements in Qp are represented by sequences, and then, when

we say that an element xn of Qp satisfies |xn|p ≤ 1 we mean by that ∃ k ∈ N such that

|xn|p ≤ 1 for all n ≥ k.

Lemma 2.2.2. The set Zp is actually an integral domain, and each element contains a

unique Cauchy sequence of the form:

∞
∑

i=0

aip
i = (

n
∑

i=0

aip
i)∞n=1,

where ai ∈ {0, 1, 2, ..., p − 1}. Each element of the field Qp contains a unique Cauchy

sequence of the form:
∞

∑

i=−k

aip
i = (

n
∑

i=−k

aip
i)∞n=1,

with k ∈ N, ai ∈ {0, 1, 2, ..., p − 1}.

Remark. From the previous lemma we can see that if x ∈ Qp such that x =
∑∞

i=−k aip
i

with k ∈ N, ai ∈ {0, 1, 2, ..., p − 1}, then the p-absolute value of this element is |x|p = p−d

where ad is the first nonzero term in the sum (d might be positive or negative). Hence, if

x ∈ Zp such that x =
∑∞

i=0 aip
i, with ai ∈ {0, 1, 2, ..., p − 1}, then |x|p = 1 if and only if

a0 6= 0.

Lemma 2.2.3. Define the set pZp by:

pZp = {px | x ∈ Zp}.

Then we have

pZp = {x ∈ Zp such that |x|p < 1}.
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Proof. Let x ∈ pZp. Then x = py, where y ∈ Zp which implies |x|p = |py|p = |p|p|y|p ≤
1
p
.1 < 1. Conversely, let x ∈ Zp such that |x|p < 1, then the possibilities for the absolute

value are 1
p
, 1

p2 , ... 1
pi ..., hence, x =

∑∞
i=0 aip

i with a0 = 0 (since otherwise |x|p = 1).

Now, let j be the first index where aj 6= 0, then x = ajp
j + ajp

j+1 + ..., where j ≥ 1.

Therefore, x = p(ajp
j−1 + aj+1p

j + ...), where |ajp
j−1 + aj+1p

j + ...|p = p1−j ≤ 1. Thus,

y := ajp
j−1 + aj+1p

j + ... ∈ Zp which implies x = py, where y ∈ Zp. We conclude that

x ∈ pZp.

Lemma 2.2.4. The units in Zp are

Z×
p = {x ∈ Zp | |x|p = 1}.

Proof. Let x ∈ Zp such that x−1 ∈ Zp, then 1 = |1|p = |xx−1|p = |x|p|x−1|p. Therefore,

|x−1|p = 1
|x|p

. Now, since both x and x−1 are in Zp, we have |x|p ≤ 1 and |x−1|p ≤ 1 or

|x|p ≤ 1 and 1
|x|p

≤ 1 and hence |x|p ≤ 1 and |x|p ≥ 1 which can’t be true unless |x|p = 1.

Conversely, let x ∈ Zp be such that |x|p = 1. Now, we have x ∈ Qp which is a field and

so ∃y ∈ Qp such that xy = 1. Then, 1 = |1|p = |xy|p = |x|p|y|p = 1.|y|p = |y|p and so

|y|p = 1 ≤ 1. This implies that y ∈ Zp, hence x is a unit in Zp.

Lemma 2.2.5. Any nonzero element x ∈ Zp can be written as x = pdy, where y ∈ Z×
p ,

and d is a non-negative integer.

Proof. Let x be a nonzero element of Zp. Then, x =
∑∞

i=0 aip
i, where ai ∈ {0, 1, 2, ..., p−1}.

Let d be the least non-negative integer such that ad 6= 0 ( such a number exists as x 6= 0

). Then, x = pd(ad + ad + 1p + ...). Now, as ad 6= 0, we have x ∈ Z×
p which completes the

proof.

Lemma 2.2.6. We have the inclusion

Zp ⊇ pZp ⊇ p2Zp.... .
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Proof. We have to show that pk1Zp ⊆ pk2Zp whenever k1 ≥ k2 are nonnegative integers. Let

x ∈ pk1Zp, then, x = pk1a where a ∈ Zp. Hence, x = pk2pk1−k2a, where pk1−k2a ∈ Zp(since

k1 ≥ k2 and a ∈ Zp) which completes the proof.

Lemma 2.2.7. Let I be an ideal of Zp. Then

I = pdZp,

where d is a nonnegative integer.

Proof. Let I be an ideal of Zp. By lemma 2.2.5, for each nonzero element x of I , x can be

written as x = pdy, where y ∈ Z×
p , and d is a non-negative integer. Let a = pdb, where b is

a unit, be an element of I with the minimum non-negative integer d. Now, as I is an ideal

and b is a unit, we have

I ⊇ aZp = pdbZp = pdZp,

Conversely, let y ∈ I , then, y = plc, where l ≥ d and c is a unit. Then, by previous lemma,

we have y = plc ∈ plZp ⊆ pdZp . Hence, y ∈ pdZp which completes the proof.

Corollary 2.2.8. The unique maximal ideal in Zp is π = p.Zp.

Proof. As any ideal I in Zp is of the form I = pdZp, and as we have the inclusion Zp ⊇

pZp ⊇ p2Zp... , one can easily see that the unique maximal ideal is π = p.Zp.

Remark. We have

Zp = Z×
p

⋃

pZp.

Example 2.2.1. Fix a prime p. Then 1
1−p

is an element of Zp. Note that

1

1 − p
= 1 + p + p2 + ... .

Hence, 1
1−p

, is an element of Zp.

Example 2.2.2. Fix a prime p. Then −1 is an element of Zp. Note that

−1 = (p − 1) + (p − 1)p + (p − 1)p2 + ... .

Therefore −1 is an element of Zp.
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2.3 TOPOLOGY OF QP

As a field with an absolute value forms a metric space, we can talk about the topology

of this field. Particularly, we have an absolute value on the field Qp, and then we can

consider the topological properties for Qp. In particular, the open balls in Qp are defined

to be:

Bε(a) = {x ∈ Qp : |x − a| < ε}.

Similarly, the closed balls are defined to be:

Bε(a) = {x ∈ Qp : |x − a| < ε}.

The material in this section is taken from [2].

Remark. As we have |x− y|p = pk provided x, y ∈ Qp, then, it is enough to consider these

balls of the form Bpk(a), where k ∈ Z, a ∈ Qp.

Lemma 2.3.1. Let Qp be the field of p-adic fractions, and let β = {BPk(x) : x ∈ Qp andk ∈

Z} be the collection of all balls in Qp then:

(1) If b ∈ Bpk(a) then Bpk(a) = Bpk(b),

(2) All the balls in β are open and closed at the same time,

(3) Two elements in the collection β intersect if and only if one of them contains the other.

Proof. (1) If b ∈ Bpk(a) then |a − b|p < pk. Let x ∈ Bpk(a), hence |x− a|p < pk. Now

|x − b|p = |x− a + a − b|p ≤ max(|x− a|p, |a − b|p) < pk,

therefore x ∈ Bpk(b). For the other inclusion, let x ∈ Bpk(b), hence |x − b|p < pk. Which

implies that

|x − a|p = |x− b + b − a|p ≤ max(|x − b|p, |b− a|p) < pk,

and so x ∈ Bpk(a).

(2) This actually comes from the fact that the absolute value on Qp takes discrete values,

in other words, if x ∈ Qp such that |x|p < pk, then |x|p ≤ pk−1. Now, Bpk(a) = {x ∈
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Qp such that |x− a|p < pk} = {x ∈ Qp such that |x − a|p ≤ pk−1}.

(3) Let Bpk1 (a)
⋂

Bpk2 (b) 6= ∅. In other words, ∃c ∈ Bpk1 (a)
⋂

Bpk2 (b). Without loss of

generality, assume that k1 ≥ k2, then by (1) we have

Bpk1 (a) = Bpk1 (c),

and

Bpk2 (b) = Bpk2 (c),

hence,

Bpk2 (a) = Bpk2 (c) ⊆ Bpk1 (c) = Bpk1 (b).

The other inclusion is obvious as if there is two non-empty set such that one of them

contains the other then they do intersect.

Now, lets consider the collection

β = {Bp−n(x) such that x ∈ Qp and n ∈ N},

we claim that this collection is a actually a basis for a topology on the field Qp, and that

is obvious, since

(1) ∀x ∈ Qp we have x ∈ Bp−n(x)∀n ∈ N,

(2) If x ∈ Bp−n1 (y)
⋂

Bp−n2 (z) then by previous lemma we have

Bp−n1 (y) = Bp−n1 (x)

and

Bp−n2 (z) = Bp−n2 (x).

Now, take n ≥ max(n1, n2), then

x ∈ Bp−n(x) ⊆ Bp−n1 (x)
⋂

Bp−n2 (x) = Bp−n1 (y)
⋂

Bp−n2 (z).
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The topology on Qp is the topology induced by this basis, and so the set U is open in Qp

if and only if U is equal to a union of some elements in β.

Lemma 2.3.2. Let a be an element of Qp and n ∈ N, then

Bp(1−n)(a) = a + pnZp.

Proof. x ∈ a + pnZp ⇐⇒ x − a ∈ pnZp

⇐⇒ |x − a|p ≤ p−n

⇐⇒ |x − a|p < p−n+1

⇐⇒ x ∈ Bp(−n+1)(a).

Hence,

Bp(1−n)(a) = a + pnZp.

Lemma 2.3.3. The ball Bp(1−n)(1) = 1 + pnZp is a subgroup of Zp.

Proof. Let’s first prove that 1 + pnZp is closed under multiplication. Let x, y ∈ 1 + pnZp,

which implies that x = 1 + pnm1 and y = 1 + pnm2, where m1, m2 ∈ Zp. Then,

xy = 1 + pn(m1 + m2) + pnpnm1m2

= 1 + pn(m1 + m2 + pnm1m2)

where m1 +m2 +pnm1m2 is in Zp (since each single term is, and Zp is an integral domain).

Now, let z = m1 + m2 + pnm1m2, then

xy = 1 + pnz,
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where z ∈ Zp. Therefore, xy ∈ 1 + pnZp. Now, w ∈ 1 + pnZp if and only if w = 1 + pnm,

where m ∈ Zp if and only if

1

w
=

1

1 + pnm

=
1 + pnm− pnm

1 + pnm

= 1 +
pn(−m)

1 + pnm
.

We want to show that −m
1+pnm

∈ Zp. We have | −m
1+pn |p = | − m|p| 1

1+pnm
|p, but | 1

1+pnm
|p = 1 as

|1 + pnm| = 1. Hence, | −m
1+pnm

|p = | − m|p = |m|p ≤ 1 as m ∈ Zp. Therefore, −m
1+pnm

∈ Zp

which implies that 1 + pn −m
1+pnm

∈ Zp. Thus, w−1 ∈ Zp.
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CHAPTER 3

ACTION OF GL(2, QP ) ON V (χ1, χ2)

3.1 CHARACTERS OF Q×
P

Definition. Let G be a topological group, then a quasi character is a continuous homo-

morphism from G to C×.

Definition. Let G be a topological group, then a character is a continuous homomorphism

from G to S1 = {z ∈ C such that |z|c = 1}.

Remark. Given z = a + bi ∈ C, then |z|c is defined by

|z|c :=
√

a2 + b2.

Theorem 3.1.1. Let µ : Q×
p → C be a quasi character, then ∃n ∈ N such that

µ (1 + pnZp) = 1.

Proof. First note that µ(1) 6= 0 since µ(1) ∈ C×. Now, we have µ(1) = µ(1.1) = µ(1)µ(1)

and so µ(1) = 1. Now, µ(1) = 1 and µ is continuous (since it is a quasi character). Let V

be a neighborhood of 1, then by the continuity of µ, there exists an open set U containing

1 such that µ (U) ⊆ V ⊆ C×. Now, since U is open, we have U =
⋃

i∈I Bp−ni (ai) for some

n′
is ∈ N and a′

is ∈ Q×
p , and as 1 ∈ U , then 1 ∈ Bp1−ni (ai) ⊆ U for some i ∈ I . By lemma

2.3.1 , we know that since 1 ∈ Bp1−ni (a), then

Bp1−ni (1) = Bp1−ni (a).

Now, we know by previous lemma that Bp1−ni (1) is a subgroup and we know that µ is a

homomorphism. Hence, µ
(

Bp1−ni (1)
)

⊆ V is a subgroup as well. Assume for the sake of

contradiction that there is some u ∈ µ
(

Bp1−ni (1)
)

such that u 6= 1. We can choose the open

set V to be very small from the beginning so that some powers of any nontrivial element
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in V will go out of V , which contradicts the fact that µ
(

Bp1−ni (1)
)

is a subgroup. Hence,

µ
(

Bp1−ni (1)
)

= 1. But

Bp(1−ni)(1) = 1 + pniZp,

and so

µ (1 + pniZp) = 1.

Remark. From lemma 2.2.6, we have

Zp ⊇ pZp ⊇ p2Zp.... ,

and hence

1 + Zp ⊇ 1 + pZp ⊇ 1 + p2Zp.... ,

so, it is reasonable to define the least integer n ∈ N such that

µ(1 + pnZp) = 1.

Let’s first note that 1+Zp = Zp. Then, if µ|(Zp−{0}) is trivial then µ(pn) = 1 for all positive

integers n. Now, if x ∈ Q×
p then |x|p = pk where k ∈ Z. Let m > |k|, then pm and y := pmx

are elements of Zp. Then we have 1 = µ(y) = µ(pmx) = µ(pm)µ(x) = 1.µ(x) = µ(x).

Hence, if µ|(Zp−{0}) = 1 then µ is trivial.

Definition. Let µ be a quasi character. Then the conductor of µ, denoted by cond(µ) is

defined to be zero if µ|
Z
×

p
is trivial. Otherwise, it is defined to be the least element n ∈ N

such that

µ(1 + pnZp) = 1.

Corollary 3.1.2. Let µ1, µ2 be quasi characters. Then there exists n ∈ N such that

µ1(1 + pnZp) = µ2(1 + pnZp) = 1.
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Proof. First, if µ1, µ2 are both trivial on Z×
p then ∀n ∈ N we have

µ1(1 + pnZp) = µ2(1 + pnZp) = 1.

Now assume that one of the quasi characters is non-trivial on Z×
p and the other is

trivial on Z×
p , say µ1|Z×

p
6= 1 but µ1|Z×

p
= 1. Let n1 ∈ N denote the conductor of µ1, then

µ1|1+pn1Zp = 1 and as 1 + pn1Zp ⊆ Z×
p then µ2|1+pn1Zp = 1. Hence Let µ1, µ2 be quasi

characters. Then there exists n ∈ N such that

µ1(1 + pn1Zp) = µ2(1 + pn1Zp) = 1.

Now assume that both of the quasi characters µ1, µ2 are non-trivial on Z×
p and let n1, n2

be the conductors of µ1, µ2 respectively. Then µ1(1 + pn1Zp) = 1 and µ2(1 + pn2Zp) = 1.

Choose n = max(n1, n2). Therefore, by lemma 2.2.6, we have

1 + pnZp ⊆ 1 + pn1Zp,

and

1 + pnZp ⊆ 1 + pn2Zp.

Hence µ1(1 + pnZp) = χ1(1 + pn1Zp)=1, and µ2(1 + pnZp) = µ2(1 + pn2Zp) = 1.

3.2 STUDY OF GL(2, QP ) AND ITS TOPOLOGY

As we have a topology on Qp, We can define a topology on the set GL(2, Qp) which

is the set of all invertible matrices over Qp. Indeed, the topology of GL(2, Qp) will be

very similar to the one of Qp, in other words, GL(2, Qp) will inherit the structure of the

topological group Qp. And then, most of the topological properties that we have in Qp,

will be satisfied on GL(2, Qp).

Definition. Let R be a commutative ring with unity, then we define

GL(2, R) to be the set of all elements A =









a b

c d









with a, b, c, d ∈ R, such that

there exists a 2 × 2 matrix B with entries from R satisfying AB = I .
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Definition. Let R be a commutative ring with unity and let A =









a b

c d









be a matrix

over R. Then, the determinant of A is defined to be

det(A) = ad − bc.

Lemma 3.2.1. Let R be a commutative ring with unity and let A, B be any 2×2 matrices

over a R, then

det(AB) = det(A)det(B).

Proof. Let A =









a b

c d









, B =









e f

g h









. Then, AB =









ae + bg af + bh

ce + dg cf + dh









. Hence,

det(AB) = (ae + bg)(cf + dh)− (ce + dg)(af + bh) = aecf + aedh + bgcf + bgdh− afce−

afdg − bhce− bhdg = ad(eh− fg)− cb(eh− fg) = (eh− fg)(ad− cb) = det(A)det(B).

Lemma 3.2.2. Let R be a commutative ring with unity, then

GL(2, R) =























a b

c d









with a, b, c, d ∈ R and ad − bc ∈ R×















.

Proof. Suppose that A ∈ GL(2, Qp), then by definition, ∃ a 2 × 2 matrix B over R such

that AB = I . Now, from the previous lemma we have det(A)det(B) = det(I) = 1. Hence,

det(A), det(B) are both units.

Conversely, let A ∈























a b

c d









with a, b, c, d ∈ R and ad − bc ∈ R×















. First we show that

a
ad−cb

, b
ad−cb

, c
ad−cb

, d
ad−cb

∈ R. Now, since ad − cb ∈ R×, we have 1
ad−cb

∈ R and since R

is a ring, each of a
ad−cb

, b
ad−cb

, c
ad−cb

, d
ad−cb

∈ R. Now, it is easy to check that the matrix

24



B =









d
ad−cb

− b
ad−cb

− c
ad−cb

a
ad−cb









satisfies AB = I . This implies that A ∈ GL(2, R). Hence,























a b

c d









with a, b, c, d ∈ R and ad − bc ∈ R×















⊆ GL(2, R).

Then, we conclude that

GL(2, R) =























a b

c d









with a, b, c, d ∈ R and ad − bc ∈ R×















.

Remark. In particular, we have

GL(2, Zp) =























a b

c d









such that a, b, c, d ∈ Zp and ad − cb ∈ Z×
p















,

and we have

GL(2, Qp) =























a b

c d









such that a, b, c, d ∈ Qp and ad − cb ∈ Q×
p or ad − cb 6= 0















.
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Lets now define some sets that are important for our work:

(1) B(Qp) =























a b

0 d









such that a, d ∈ Q×
p , b ∈ Qp















(2) K(pn) =























a b

c d









such that









a b

c d









≡ I mod(pn)















(3) B(Zp) =























a b

0 d









such that a, d ∈ Z×
p , b ∈ Zp















It is easy to check that all the previous subsets are actually subgroups of GL(2, Qp).

Now, we want to define a metric d on

GL(2, Qp) =























a b

c d









with a, b, c, d ∈ R and ad − bc ∈ R×















.

Define d : GL(2, Qp) × GL(2, Qp) → R by the following :

d

















a1 b1

c1 d1









,









a2 b2

c2 d2

















= max(|a1 − a2|p, |b1 − b2|p, |c1 − c2|p, |d1 − d2|p).
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Let x =









x1 x2

x3 x4









∈ GL(2, Qp), then

Bε

















x1 x2

x3 x4

















=























y1 y2

y3 y4









∈ GL(2, Qp) such that d(









x1 x2

x3 x4









,









y1 y2

y3 y4









) < ε















=























y1 y2

y3 y4









∈ GL(2, Qp) such that max1≤i≤4(|xi − yi|p) < ε















=























y1 y2

y3 y4









∈ GL(2, Qp) such that ∀ 1 ≤ i ≤ 4 |xi − yi|p < ε















=























y1 y2

y3 y4









∈ GL(2, Qp) such that ∀ 1 ≤ i ≤ 4 yi ∈ Bε(xi)















Now, since the only possible results from the absolute values are pk for some k ∈ Z. It is

enough to consider the balls Bpk

















x1 x2

x3 x4

















such that k ∈ Z. Furthermore, it is easy

to check that the collection

β =















Bp−n

















x1 x2

x3 x4

















such that n ∈ N and









x1 x2

x3 x4









∈ GL(2, Qp)















,

is a basis and then, the topology on GL(2, Qp) is the topology generated by these basis,

i.e., the set U ⊆ GL(2, Qp) is open if and only if it can be written as union of elements

from β.
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Lemma 3.2.3. Let n ∈ N, then

Bp1−n(I2) = K(pn).

Proof.

K(pn) =























a b

c d









∈ GL(2, Zp) such that









a b

c d









≡ I2 mod(pn)















=























a b

c d









∈ GL(2, Zp) such that
a − 1 = k1p

n , d − 1 = k2p
n, c = k4p

n,

b = k3p
n where ki ∈ Zp















=























a b

c d









∈ GL(2, Zp) such that |a − 1|p, |d − 1|p ≤ p−n, |b|p, |c|p ≤ p−n















=























a b

c d









∈ GL(2, Zp) such that |a − 1|p, |d − 1|p < p1−n, |b|p, |c|p < p1−n















=























a b

c d









∈ GL(2, Zp) such that a, d ∈ Bp1−n(1) b, c ∈ Bp1−n(0)















= Bp1−n(I2).

After this lemma, it is easy for us to see the relation between the sets K(pn)’s for

different n’s∈ N which is

K(p) ⊃ K(p2) ⊃ K(p3) ⊃ .... .

Remark. Notice that

Bp−n(I2) = Bp1−n(I2) = K(pn).
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Lemma 3.2.4. Let n ∈ N and let A, B be in GL(2, Qp) such that B ∈ Bp−n(A), then

Bp−n(B) = Bp−n(A).

Proof. Let A =









a1 a2

a3 a4









, B =









b1 b2

b3 b4









be two matrices in GL(2, Qp). Then, we have

Bp−n

















a1 a2

a3 a4

















=























y1 y2

y3 y4









∈ GL(2, Qp) such that yi ∈ Bp−n(ai) ∀ 1 ≤ i ≤ 4















.

Now, since









b1 b2

b3 b4









∈ Bp−n

















a1 a2

a3 a4

















, then we have bi ∈ Bp−n(ai) ∀1 ≤ i ≤ 4.

Now, by lemma 2.3.1, we conclude that

Bp−n(bi) = Bp−n(ai).

Therefore,

Bp−n

















a1 a2

a3 a4

















=























y1 y2

y3 y4









∈ GL(2, Qp) such that yi ∈ Bp−n(bi) ∀ 1 ≤ i ≤ 4















= Bp−n

















b1 b2

b3 b4

















.

Lemma 3.2.5. The set GL(2, Qp) is a topological group with respect to the topology τ
′

generated by the basis

β =















Bp−n(









x1 x2

x3 x4









) such that n ∈ N and









x1 x2

x3 x4









∈ GL(2, Qp)















.
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Proof. See some reference.

Lemma 3.2.6. For each open set U containing g ∈ GL(2, Qp), U contains gK(pn) for

some n ∈ N.

Proof. Since the set GL(2, Qp) is a topological group, then the function

f : GL(2, Qp) × GL(2, Qp) → GL(2, Qp),

by

f(g1, g2) = g1g2,

is continuous. Note that f(g, I) = g, and so if U is an open set containing g then ∃ U1, U2

open sets containing g, I respectively such that f(U1, U2) ⊆ U or equivalently U1U2 ⊆ U .

Now, U2 is a union of some balls of the form Bp−n(a) for some n′s ∈ N and a′s ∈ GL(2, Qp).

Since I ∈ U2 then I ∈ Bp−n(a) for some n ∈ N and a ∈ GL(2, Qp). Hence, by lemma 3.2.4,

we have

Bp−n(I) = Bp−n(a).

Now, we have Bp−n(I) ⊆ U2 and g ∈ U1, therefore gBp−n(I) ⊆ U1U2 = U . But by lemma

3.2.3, we know that

Bp−n(I) = Bp1−(n+1)(I) = K(pn+1),

therefore gK(pn+1) ⊆ U .

Lemma 3.2.7. The collection

β
′

= {g(Kpm) such that g ∈ GL(2, Qp) and m ∈ N},

is actually a basis.

Proof. (1) Suppose that g ∈ GL(2, Qp), then obviously, g is contained in gK(pm) ∀m ∈ N.

(2) Assume g ∈ g1K(pm)
⋂

g2K(pn). Without loss of generality, assume that m ≥ n, then,
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since K(pm) and K(pn) are subgroups, we have:

gK(pm) = g1K(pm),

and

gK(pn) = g2K(pn),

and hence

gK(pm) ⊂ gK(pm)
⋂

gK(pn) = g1K(pm)
⋂

g2K(pn).

We now have two different topologies on the topological group GL(2, Qp) the one

generated by

β
′

= {gK(pm) such that g ∈ GL(2, Qp) and m ∈ N},

and the one generated by

β =















Bp−n

















x1 x2

x3 x4

















such that n ∈ N and









x1 x2

x3 x4









∈ GL(2, Qp















.

Then it is rational to ask whether these two topologies comparable, and if yes, whether

either of them finer than the other or they are the same. The following lemma will actually

answer this question.

Lemma 3.2.8. The topology τ
′

generated by the basis β
′

= {gK(pm) such that g ∈

GL(2, Qp) and m ∈ N} and the topology τ generated by the basis β =














Bp−n

















x1 x2

x3 x4

















such that n ∈ N and









x1 x2

x3 x4









∈ GL(2, Qp















are actually the

same.

Proof. Let U ∈ τ , then U is a union of some balls of the form Bp−n(x) for some x′s ∈

GL(2, Qp) and some n′s ∈ N. But each of Bp−n(x) is a τ−open set. Now, according to

lemma 3.2.7, for each g ∈ Bp−n(x), Bp−n(x) contains gK(pmg ) for some mg ∈ N. Hence,
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Bp−n(x) =
⋃

g∈B
p−n(x) gK(pk) for some k′s ∈ N. Since this is true for all the balls where U

is written as union of, then U itself is a union of some elements of the form gK(pm) for all

g′s ∈ U and some m′s ∈ N. Therefore, U is a τ
′−open set, or, U ∈ τ

′

.

Conversely, let gK(pn) ∈ β
′

. Now, as g ∈ GL(2, Qp) ∃g−1 ∈ GL(2, Qp) such that g−1g = I .

Now, as K(pn) ∈ β
′

, then it is open. We know that I ∈ K(pn). As by lemma (3.2.5)

we have that GL(2, Qp) is a topological group with respect to the topology τ generated

by the basis β =















Bp−n

















x1 x2

x3 x4

















such that n ∈ N and









x1 x2

x3 x4









∈ GL(2, Qp















,

then the multiplication is continuous, and so there exists two τ−open sets U, V containing

g, g−1 respectively such that V U ∈ K(pn). Now, as g−1 ∈ V , we have g−1U ⊆ K(pn). This

implies that U ⊆ gK(pn). Now, as K(pn) is subgroup, then we have h ∈ gK(pn) if and

only if hK(pn) = gK(pn). Hence, for each h ∈ gK(pn), we have an open set W containing

h such that W ⊆ gK(pn). This implies that gK(pn) can be written as union of τ -open sets

(sets that are open in the topology τ ), hence gK(pn) is open in τ , i.e., gK(pn) ∈ τ . Now,

as every U
′ ∈ τ

′

is a union of elements of the form gK(pn), then we have U
′ ∈ τ .
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3.3 LOCALLY CONSTANT FUNCTIONS FROM GL(2, QP ) TO C

Definition. A function f : GL(2, Qp) → C is locally constant if ∀g ∈ GL(2, Qp) ∃ an open

set U containing g such that:

f(u) = f(g) ∀u ∈ U.

Lemma 3.3.1. A function f : GL(2, Qp) → C is locally constant if and only if ∀g ∈

GL(2, Qp) ∃n ∈ N such that f |gK(pn) is constant.

Proof. Suppose f : GL(2, Qp) → C is locally constant. Let g ∈ GL(2, Qp), then ∃ an open

set U such that g ∈ U and f(u) = f(g) ∀u ∈ U . Now, by lemma 3.2.6, we have that

∃ n ∈ N such that gK(pn) ⊆ U . Therefore, f is constant on gK(pn).

Conversely, suppose ∀g ∈ GL(2, Qp) ∃ n ∈ N such that f |gK(pn) is constant. Now, the

set gK(pn) is open itself. Therefore, take U := gK(pn), then f |U is constant and hence f

is locally constant.

Lemma 3.3.2. The subgroup K(pn) is normal in Zp.

Proof. Consider f : GL(2, Zp) → GL(2, Zp/p
nZp) defined by the following

f

















∑∞
i=0 aip

i
∑∞

i=0 bip
i

∑∞
i=0 cip

i
∑∞

i=0 dip
i

















=









∑n
i=0 aip

i
∑n

i=0 bip
i

∑n
i=0 cip

i
∑n

i=0 dip
i









.

Now, let g =









g1 g2

g3 g4









∈ GL(2, Zp), then f

















g1 g2

g3 g4

















=









1 0

0 1









if and only if

g1, g4 ≡ 1 mod(pn),

and

g2, g3 ≡ 0 mod(pn),
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if and only if

g =









g1 g2

g3 g4









∈ K(pn),

therefore

ker(f) = K(pn),

and so K(pn) is normal in GL(2, Zp).

Lemma 3.3.3. The group GL(2, Zp) is compact.

Proof. See [4].

Theorem 3.3.4. Let f : GL(2, Zp) → C be a locally constant function then ∃ n ∈ N such

that f |gK(pn) is constant for all g ∈ GL(2, Zp).

Proof. Suppose that f : GL(2, Zp) → C is a locally constant function, then by lemma 3.3.1,

∀ g ∈ GL(2, Zp) ∃ n ∈ N such that f |gK(pn) is constant. Now, as we have the inclusion

K(p) ⊇ K(p2) ⊇ K(p3)... ,

then the n we for each g is not unique ( for example if you get an m such that f |gK(pm) is

constant then ∀k ≥ m we have f |gK(pk) is constant). Hence, given g ∈ GL(2, Zp), let

m = min{n ∈ N such that f |gK(pn)is constant}.

Now, do the same thing for each g ∈ GL(2, Zp) and then consider the collection of sets

β = {gK(pm) such that g ∈ GL(2, Zp) and m is that minimum m such that

f |gK(pm)is constant}. Now, obviously, this collection is a cover of GL(2, Zp) and since

GL(2, Zp) is compact, there should be a finite sub-cover, say

g1K(pm1 ), g2K(pm2 ), ..., glK(pml).

Now, assume without loss of generality that

m1 = max{m1, m2, ..., ml},
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then for each i = 1, 2, ..., l the function f restricted on the coset giK(pm1) is equal to some

constant ci, hence

f |g1K(pm1) = c1,

f |g2K(pm1) = c2,

.

.

.

f |glK(pm1 ) = constant = cl,

but

GL(2, Zp) = g1K(pm1)
⋃

g2K(pm2)...
⋃

glK(pml).

Now, if g ∈ GL(2, Zp) then g ∈ giK(pmi) for some i ∈ {1, 2, ..., l} and since K(pm) is a

subgroup, we have gK(pmi ) = giK(pmi) and then

gK(pm1 ) ⊆ gK(pmi) = giK(pmi),

and so

f |gK(pm1) = ci.

3.4 IWASAWA’S THEOREM

Our main concern in this section is to understand and give a detailed proof of Iwa-

sawa’s theorem, which says that given an element g ∈ GL(2, Qp), then g can be decomposed

as, g = bk, such that b ∈ B(Qp) and k ∈ GL(2, Zp), where this decomposition is unique up

to certain conditions. Now, in order to prove this theorem, we have to prove some lemmas

first.
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Lemma 3.4.1. Given u, v ∈ Zp, then ∃ r, s ∈ Zp such that

g =









r s

u v









∈ GL(2, Zp),

if and only if at least one of u, v ∈ Zp.

Proof. Suppose that g =









r s

u v









∈ GL(2, Zp) which implies that rv − us ∈ Z×
p , or

equivalently |rv − us|p = 1. Now, 1 = |rv − us|p ≤ max(|rv|p, |us|p). Without loss of

generality, assume that max(|rv|p, |us|p) = |rv|p, then we have |rv|p ≥ 1 or |r|p|v|p ≥ 1.

But 1 ≥ |r|p since r ∈ Zp. This implies that |v|p = 1.|v|p ≥ |r|p|v|p ≥ 1. Since we know

that v ∈ Zp, we get |v|p ≤ 1, and so |v|p = 1, which is equivalent to saying that v ∈ Z×
p .

Conversely, suppose (without loss of generality) that v ∈ Z×
p and u ∈ Zp. We should show

that ∃r, s ∈ Zp such that









r s

u v









∈ GL(2, Zp).

As u, v ∈ Zp and v ∈ Z×
p , we have v−1 ∈ Z×

p ⊆ Zp. Choose

r := v−1 + u, and

s := v,

then

rv − us = (v−1 + u)v − uv

= 1 + uv − uv

= 1,

and hence

|rv − us|p = |1|p = 1,
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or

rv − us ∈ Z×
p ,

and so









r s

u v









∈ GL(2, Zp).

Lemma 3.4.2. If g =









g1 g2

g3 g4









∈ GL(2, Qp) then ∃ k ∈ GL(2, Zp) such that

g =









a b

0 d









k,

for some a, d ∈ Q×
p and b ∈ Qp if and only if ∃ k ∈ GL(2, Zp) such that the bottom row is

a scalar multiple of the bottom row of g.

Proof. Suppose that g =









g1 g2

g3 g4









∈ GL(2, Qp) and k ∈ GL(2, Zp) such that

g =









a b

0 d









k,

with a, d ∈ Q×
p and b ∈ Qp . Now, we have g =









a b

0 d

















k1 k2

k3 k4









=









∗ ∗

dk3 dk4









which implies that

(g3 g4) = (dk3 dk4) .

As d ∈ Q×
p , we conclude that

(k3 k4) =
(

d−1g3 d−1g4

)

.

37



Conversely, given k ∈ GL(2, Zp) and g ∈ GL(2, Qp) such that g =









g1 g2

g3 g4









∈

GL(2, Qp) and k =









k1 k2

αg3 αg4









∈ GL(2, Zp) where α ∈ Q×
p , then

k−1 =









g4

k1g4−g3k2

−k2

α(k1g4−k2g3)

−g3

k1g4−g3k2

k1

α(k1g4−k2g3)









,

which implies that









g1 g2

g3 g4









k−1 =









g1g4−g2g3

k1g4−k2g3
∗

0 k1g4−k2g3

α(k1g4−k2g3)









=









g1g4−g2g3

k1g4−k2g3
∗

0 α−1









.

Note that since k ∈ GL(2, Zp) and g ∈ GL(2, Qp), we have g1g4 − g2g3 ∈ Q×
p ,

α(k1g4 − k2g3) ∈ Z×
p , hence α 6= 0, k1g4 − k2g3 6= 0.

Now, we will state and prove Iwasawa’s theorem.

Theorem 3.4.3. Let g ∈ GL(2, Qp), then ∃ a, d ∈ Q×
p , b ∈ Qp andk ∈ GL(2, Zp) such that

g =









a b

0 d









k,

where this factorization is unique in the following sense if

g =









a1 b1

0 d1









k1 =









a2 b2

0 d2









k2,
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where a1, a2, d1, d2 ∈ Q×
p , b1, b2 ∈ Qp and k1, k2 ∈ GL(2, Zp), then

|a1|p = |a2|p and |d1|p = |d2|p.

Proof. Suppose that g =









g1 g2

g3 g4









∈ GL(2, Qp), hence

|g3|p = pn and |g4|p = pm,

where n, m ∈ Z. Assume without loss of generality that n ≥ m, then

|png3|p = p−npn

= 1 ⇒ png3 ∈ Z×
p ⊆ Zp.

|png4|p = p−npm

=
1

pn−m
⇒ png4 ∈ Zp.

By lemma 3.4.1, as we have png3 ∈ Z×
p and png4 ∈ Zp, then ∃ r, s ∈ Zp such that









r s

png3 png4









∈ GL(2, Zp).

Take

k :=









r s

png3 png4









∈ GL(2, Zp).

We have that the bottom row of k is a pn multiple of the bottom row of g which by the

previous lemma implies that

g =









a b

0 d









k,
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where a, d ∈ Q×
p and b ∈ Qp.

Now for the uniqueness part, assume that

g =









a1 b1

0 d1









k1 =









a2 b2

0 d2









k2,

where a1, a2, d1, d2 ∈ Q×
p , b1, b2 ∈ Qp and k1, k2 ∈ GL(2, Zp). We should prove that

|a1|p = |a2|p and |d1|p = |d2|p.

We have

g =









a1 b1

0 d1









k1 =









a2 b2

0 d2









k2.

This implies that

k1k
−1
2 =









a1 b1

0 d1









−1 







a2 b2

0 d2









=









d1

a1d1

−b1
a1d1

0 a1

a1d1

















a2 b2

0 d2









=









a−1
1 a2 ∗

0 d−1
1 d2









∈ GL(2, Zp).

Therefore, a−1
1 a2, d−1

1 d2 ∈ Zp, and a−1
1 a2d

−1
1 d2 ∈ Z×

p

=⇒ |a−1
1 a2|p ≤ 1, |d−1

1 d2|p ≤ 1, and |a−1
1 a2d

−1
1 d2|p = 1

=⇒ |a−1
1 a2|p = |d1d

−1
2 |p.

But since |d−1
1 d2|p ≤ 1, it follows that |d1d

−1
2 |p ≥ 1

=⇒ 1 ≥ |a−1
1 a2|p = |d1d

−1
2 |p ≥ 1

=⇒ |a−1
1 a2|p = |d1d

−1
2 |p = 1

=⇒ |a1|p = |a2|p and |d1|p = |d2|p.
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3.5 THE SPACE V (χ1, χ2)

Given two quasi characters χ1, χ2, the space V (χ1, χ2) is defined to be the space of all

locally functions f : GL(2, Qp) → C satisfying some certain condition. In this section, we

will introduce the space V (χ1, χ2) and see how its elements look like.

Definition. Fix s1, s2 ∈ C, then the space of functions Vp(s1, s2) is defined to be all the

functions f : GL(2, Qp) −→ C that satisfy

f

















a b

0 d









k









= |a|s1
p |d|s2

p f(k)

where a, d ∈ Q×
p , b ∈ Qp , k ∈ GL(2, Qp).

Lemma 3.5.1. The space Vp(s1, s2) is not empty.

Proof. We claim that f0 defined by

f0

















a b

0 d









k









= |a|s1
p |d|s2

p ,

where a, d ∈ Q×
p , b ∈ Qp , k ∈ GL(2, Zp), is a well defined function in Vp(s1, s2).

Assume

g =









a1 b1

0 d1









k1 =









a2 b2

0 d2









k2,

where a1, d1, a2, d2 ∈ Q×
p , b1, b2 ∈ Qp, k1, k2 ∈ GL(2, Zp). Then, by Iwasawa’s theorem, we

have

|a1|p = |a2|p and |d1|p = |d2|p.

Hence,

|a1|s1
p |d1|s2

p = |a2|s1
p |d2|s2

p ,
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therefore

f0

















a1 b1

0 d1









k1









= f0

















a2 b2

0 d2









k2









.

Let χ1 χ2 be two quasi characters. Now, we want to generalize the space of functions

V (s1, s2).

Definition. The space of function V (χ1, χ2) is defined to be all the locally constant func-

tions f : GL(2, Qp) → C satisfying

f

















a b

0 d









k









= χ1(a)χ2(d)f(k), where a, d ∈ Q×
p , b ∈ Qp , k ∈ GL(2, Qp).

Remark. One could try to generalize f0 above, however, f0 here is not well defined.

f0

















a b

0 d









k









= χ1(a)χ2(d),

where a, d ∈ Q×
p , b ∈ Qp , k ∈ GL(2, Qp)

f0 is not well defined. Note that f0 will be well defined if

χ1(a1) = χ1(a2),

and

χ2(a1) = χ2(a2),

whenever |a1|p = |a2|p. In other words, f0 will be well defined if χ1, χ2 send all elements

that have the same absolute value to the same element in C.

Lemma 3.5.2. Let f ∈ V (χ1, χ2), then ∃ m ∈ N such that f |gK(pm) is constant ∀g ∈

GL(2, Qp).
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Proof. Let f ∈ V (χ1, χ2). Then f : GL(2, Qp) → C is locally constant and

f

















a b

0 d









k









= χ1(a)χ2(d)f(k),

where a, d ∈ Q×
p , b ∈ Qp , k ∈ GL(2, Qp). Now, since f is locally constant, then by

lemma 3.3.4, there exists an m ∈ N such that f |gK(pm) is constant ∀g ∈ GL(2, Zp). Now,

from Iwasawa’s theorem, we have that for all g ∈ GL(2, Qp) g can be decomposed as

g =









a b

0 d









k, where a, d ∈ Q×
p , b ∈ Qp and k ∈ GL(2, Zp). Now, let k

′ ∈ K(pm) then

f(gk
′

) = f(









a b

0 d









kk
′

) = χ1(a)χ2(d)f(kk
′

) = χ1(a)χ2(d)f(k) = f(









a b

0 d









k) = f(g).

Hence, we conclude that

f |gK(pm)is constant ∀g ∈ GL(2, Qp).

Lemma 3.5.3. Let f ∈ V (χ1, χ2), then f is completely determined by its restriction on

GL(2, Zp).

Proof. Let f1, f2 ∈ V (χ1, χ2) such that

f1|GL(2,Zp) = f2|GL(2,Zp).

We have to show that

f1(g) = f2(g),

∀g ∈ GL(2, Qp). Let g ∈ GL(2, Qp), then by Iwasawa’s theorem, we have g =









a b

0 d









k,

where a, d ∈ Q×
p , d ∈ Qp and k ∈ GL(2, Zp). Now, f1(g) = f1

















a b

0 d









k









=
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χ1(a)χ2(d)f1(k) = χ1(a)χ2(d)f2(k) = f2

















a b

0 d









k









= f2(g).

Lemma 3.5.4. Let χ1, χ2 be quasi characters and let n = max(cond(χ1), cond(χ2)). Then,

the formula f defined by

f

















a b

0 d









k









=















χ1(a)χ2(d) : k ∈ K(pn)

0 : k /∈ K(pn)

gives a well-defined element of V (χ1, χ2).

Proof. We should show that f is well defined. Assume

g =









a1 b1

0 d1









k1 =









a2 b2

0 d2









k2,

which implies that

k1k
−1
2 =









a1 b1

0 d1









−1 







a2 b2

0 d2









=









d1

a1d1

−b1
a1d1

0 a1

a1d1

















a2 b2

0 d2









=









a−1
1 a2 ∗

0 d−1
1 d2









∈ K(pn).

Hence, a1a
−1
2 ≡ 1mod(pn) and d1d

−1
2 ≡ 1mod(pn). This implies that a1a

−1
2 = 1 + k1p

n

and d1d
−1
2 = 1 + k2p

n, where k1, k2 ∈ Zp. Therefore, χ1(a1a
−1
2 ) = χ1(1 + k1p

n) = 1 and so

χ1(a1a
−1
2 ) = 1 and as χ1 is a homomorphism we have 1 = χ1(a1a

−1
2 ) = χ1(a1)χ1(a2)

−1 =

χ1(a1)
χ1(a2)

, we conclude that χ1(a1) = χ1(a2). Similarly, we get χ2(d1) = χ2(d2), which com-

pletes the proof.
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Now, let the group GL(2, Qp) act on the space V (χ1, χ2), by:

[ρ(g).f ](x) = f(xg).

Lets now check that it is an action:

(1) [ρ(I).f ](g) = f(gI) = f(g),

(2) [ρ(k1)[ρ(k2).f ]](g) = [ρ(k2)f ](gk1) = f(gk1k2)) = [ρ(k1k2).f ](g).

Remark.

Let m ∈ N. The space V (χ1, χ2)
K(pm) = {f ∈ V (χ1, χ2) such that [ρ(k).f ](g) =

f(gk) = f(g), ∀g ∈ GL(2, Qp)} = {f ∈ V (χ1, χ2) such that ρ(k).f = f}. Since we

have K(p) ⊃ K(p2) ⊃ K(p3) ⊃ ... , then it follows that

V (χ1, χ2)
K(p) ⊂ V (χ1, χ2)

K(p2) ⊂ ... .

Theorem 3.5.5. We have V (χ1, χ2) =
⋃∞

m=1 V (χ1, χ2)
K(pm) .

Proof. Let f ∈ ⋃∞
m=1 V (χ1, χ2)

K(pm), then f ∈ V (χ1, χ2)
K(pn) for some n ∈ N, and hence

f ∈ V (χ1, χ2) and so

V (χ1, χ2) ⊇
∞
⋃

m=1

V (χ1, χ2)
K(pm)

.

Let f ∈ V (χ1, χ2), then by lemma 3.5.2 ∃n ∈ N such that f(kg) = f(g) ∀g ∈

GL(2, Qp), ∀k ∈ K(pn). Therefore, f ∈ V (χ1, χ2)
K(pn) which implies f ∈

⋃∞
m=1 V (χ1, χ2)

K(pm). This implies that

V (χ1, χ2) ⊆
∞
⋃

m=1

V (χ1, χ2)
K(pm) ,

and hence

V (χ1, χ2) =

∞
⋃

m=1

V (χ1, χ2)
K(pm)

.
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Let ζ ∈ GL(2, Zp), and let n = max (cond(χ1), cond(χ2)). For all g ∈ GL(2, Qp), by

Iwasawa’s theorem g can be decomposed as g =









a b

0 d









k, where a, d ∈ Q×
p , c ∈ Qp, k ∈

GL(2, Zp). Then, define the mapping fζ : GL(2, Qp) → C by

fζ(g) =















χ1(a)χ2(d) g ∈ B(Qp)ζK(pn)

0 g /∈ B(Qp)ζK(pn)

.

Lemma 3.5.6. The function fζ defined as above is an element of V (χ1, χ2).

Proof. Let

g =









a1 b1

0 d1









ζk1 =









a2 b2

0 d2









ζk2,

then








a−1
2 ∗

0 d−1
2

















a1 b1

0 d1









= ζk2k
−1
1 ζ−1.

The element k2k
−1
1 ∈ K(pn) since K(pn) is subgroup, and the element ζ(k2k

−1
1 )ζ−1 is an

element of K(pn) as well (since K(pn) is normal subgroup in GL(2, Zp) by lemma 3.3.2).

Hence, we have

a1a
−1
2 , d1d

−1
2 ≡ 1 mod (pn),

thus

a1a
−1
2 , d1d

−1
2 ∈ 1 + pnZp.

Therefore, χ1(a1a
−1
2 ) = 1, and so χ1(a1) = χ1(a2) and χ2(d1d

−1
2 ) = 1, and so χ2(d1) =

χ2(d2), we conclude that f is well defined and therefore fζ is an element of V (χ1, χ2).

Remark. Consider the set of all double cosets B(Qp)\GL(2, Qp)/K(pm) = {B(Qp)ζK(pm)

such that ζ ∈ GL(2, Qp)}. Note that since we have

B(Qp)ζK(pn) = B(Qp)ξK(pn) or B(Qp)ζK(pn)
⋂

B(Qp)ξK(pn) = ∅,
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then it is enough to choose one representative ζ for each double coset. Furthermore, we

can choose this representative to be from GL(2, Zp) because for each g ∈ GL(2, Qp), by

Iwasawa’s theorem, g can be written as g = qr, where q ∈ B(Qp), r ∈ GL(2, Zp). Then, the

double coset B(Qp)gK(pn) = B(Qp)rK(pn). Hence, let = denote a set of representatives

for the set of double cosets B(Qp)\GL(2, Qp)/K(pm), where the elements of = are chosen

to be from GL(2, Zp).

Lemma 3.5.7. Let = be defined as in the previous remark and let n =

max (cond (χ1) , cond (χ2)), then

dim(V (χ1, χ2)
K(pm)) =















|=| : m ≥ n

0 : m < n

,

where |=| denotes the number of elements in the set =.

Proof. Let m ≥ n and let = be defined as in the previous remark, we will prove that the

set {fζ such that ζ ∈ =} is a basis for V (χ1, χ2)
K(pm) and then we are done.

Let f ∈ V (χ1, χ2)
K(pm). Define

h :=
∑

ζ∈=

f(ζ)fζ .

Let g ∈ GL(2, Qp), then as GL(2, Qp) =
⋃

ζ∈= B(Qp)ζK(pm) we have g ∈ B(Qp)ζK(pm)

for some ζ ∈ =. Therefore g =









a b

0 d









ζk where a, d ∈ Q×
p , b ∈ Qp and k ∈ K(pm).

Hence, f(g) = χ1(a)χ2(d)f(ζk) = χ1(a)χ2(d)f(ζ). On the other hand, we have h(g) =
∑

ξ∈= f(ξ)fξ(g). But by definition of fξ

fξ(g) =















χ1(a)χ2(d) : ξ = ζ

0 : ξ 6= ζ

.
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Now, all the terms in this sum are zeros, except for the term f(ζ)fζ(g) =

f(ζ)χ1(a)χ2(d). Hence, h(g) = f(ζ)χ1(a)χ2(d) = f(g), and as g is arbitrarily chosen

from GL(2, Qp), we have f = h. Now, since f is arbitrarily chosen from V (χ1, χ2)
K(pm)

,

that is also true for any f ∈ V (χ1, χ2)
K(pm), we conclude that the set {fζ such that ζ ∈ =}

is a spanning set for V (χ1, χ2)
K(pm). Now, we should prove that the set {fζ such that

ζ ∈ =} is linearly independent. Let

∑

ζ∈=

cζfζ = 0.

We should show that cζ = 0 ∀ζ ∈ =. Now, let ξ be given and let’s substitute this value

into the sum
∑

ζ∈= cζfζ = 0. Then fζ(ξ) = 0 if ζ 6= ξ. It follows that cξfξ(ξ) = 0. But we

have fξ(ξ) = fξ(IξI) = 1, we conclude that cξ = 0 and as ξ is arbitrarily chosen from the

set =, then we have cξ = 0 for each ξ ∈ =.

Now, to prove the case where m < n, I want to prove first that given m ∈ N and

f ∈ V (χ1, χ2)
K(pm), then f(kx) = f(x) for all k ∈ K(pm), x ∈ GL(2, Zp). Let

f ∈ V (χ1, χ2)
K(pm), then f(xk) = f(x) for all k ∈ K(pm), x ∈ GL(2, Qp). Now, let

x ∈ GL(2, Zp), k ∈ K(pm), then f(kx) = f(xx−1kx) = f(x(x−1kx)) = f(x) (since by

lemma 3.3.2 K(pm) is normal in GL(2, Zp) and hence x−1kx ∈ K(pm)). Now, suppose that

m < n, we want to show that V (χ1, χ2)
K(pm) = 0. I will split the proof into two cases:

Case(a): If max(n1, n2)=n1 then m < n1, and hence there is some a ∈ 1 + pmZp such that

χ1(a) 6= 1 and therefore note that









a 0

0 1









∈ K(pm). Therefore, given f ∈ V (χ1, χ2)
K(pm)

χ1(a)χ2(1)f(g) = f(









a 0

0 1









g) = f(g) for all g ∈ GL(2, Zp), thus χ1(a)f(g) = f(g) for

all g ∈ GL(2, Zp) and χ1(a) 6= 1, hence f(g) = 0 for all g ∈ GL(2, Zp), then for any

g
′ ∈ GL(2, Qp) by Iwasawa’s theorem, we can decompose g

′

as g
′

=









a b

0 d









g where
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a b

0 d









∈ B(Qp), g ∈ GL(2, Zp), and then f(g
′

) = f(









a b

0 d









g) = χ1(a)χ2(d)f(g) =

χ1(a)χ2(d).0 = 0. We conclude that f(g) = 0 for all g ∈ GL(2, Qp), and as f is chosen

arbitrarily from V (χ1, χ2)
K(pm), then V (χ1, χ2)

K(pm) = 0.

Case(b): If max(n1, n2) is n2 then m < n2. Hence, there is some a ∈ 1 + pmZp such that

χ2(a) 6= 1 and as a result note that









1 0

0 a









∈ K(pm), and so given f ∈ V (χ1, χ2)
K(pm)

χ1(1)χ2(a)f(g) = f(









1 0

0 a









g) = f(g) for all g ∈ GL(2, Zp). Therefore,

χ2(a)f(g) = f(g) for all g ∈ GL(2, Zp), where χ2(a) 6= 1. So, f(g) = 0 for all

g ∈ GL(2, Zp) and then for any g
′ ∈ GL(2, Qp) by Iwasawa’s theorem, we can de-

compose g
′

as g
′

=









a b

0 d









g where









a b

0 d









∈ B(Qp), g ∈ GL(2, Zp). Then,

f(g
′

) = f(









a b

0 d









g) = χ1(a)χ2(d)f(g) = χ1(a)χ2(d).0 = 0. We conclude that

f(g) = 0 for all g ∈ GL(2, Qp) and as f is chosen arbitrarily from V (χ1, χ2)
K(pm), we

have V (χ1, χ2)
K(pm) = 0.
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CHAPTER 4

NEWFORMS OF V (χ1, χ2)

Our main concern in this chapter is to find the newforms V (χ1, χ2). Indeed, casselman

tells us how to do that. We will follow his proof to find the newforms of V (χ1, χ2). The

material in this chapter is taken from [1] and [5].

Definition. If V is a vector space over the field F, the general linear group of V , written

GL(V ) or Aut(V ), is the group of all automorphisms of V, i.e., the set of all bijective linear

transformations V to V, together with functional composition as group operation. If V has

finite dimension n, then GL(V ) and GL(n, F) are isomorphic.

Definition. A representation of a group G on a vector space V over a field K is a group

homomorphism ρ from G to GL(V ). That is, a representation is a map:

ρ : G → GL(V ),

such that

ρ(g1g2) = ρ(g1)ρ(g2).

Here, V is called the representation space, and dimension of V is called the dimension of

the representation.

Remark. It is common to refer to V itself as the representation if the homomorphism ρ

is clear from the context.

Definition. Let (ρ, V ) be a representation of G. A subspace W ⊆ V is said to be stable

or G-invariant if ρ(g)(w) ∈ W ∀g ∈ G, ∀w ∈ W .

Remark. If we have W ⊂ V which is stable, then (ρ|w, W ) is a representation of G, or, a

sub-representation.
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Definition. A representation V 6= 0 of G is said to be irreducible if the only sub-

representations of it are 0 and V . In other words, if V and 0 are the only stable subspaces

of V .

Definition. The topological field is defined to be a field where the addition, the product

and the inverse functions are continuous.

Definition. Let X be a topological space and let U be an open set, then the closure of the

set U denoted by U
′

, is defined to be the intersection of all closed sets containing U .

Definition. A locally compact field F is a topological field where every element x ∈ F has

a neighborhood U whose closure U
′

is compact.

Definition. A local field is a locally compact topological field with respect to a non-discrete

topology.

Theorem 4.0.8. Suppose that F is a local field, then, we can construct an absolute value

on it such that this absolute value induces the topology on F.

Definition. There are two basic types of local field, those in which the absolute value is

archimedean and those in which it is not. In the first case, one calls the local field an

archimedean local field, in the second case, one calls it a non-archimedean local field.

Definition. Let k be a non-archimedean local field. Then a (complex) admissible repre-

sentation of GLn(k) is a complex vector space V equipped with an action of GL(n, K) (

which of course means a group homomorphism ρ : GL(n, k) → GL(V )) such that:

(1) If U ⊂ GL(n, k) is an open subgroup then

V U = {v ∈ V such that ρ(u)(v) = v, ∀u ∈ U},

is finite dimensional,

(2) If v ∈ V then
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stab(v) = {u ∈ GL(n, k) such that ρ(u)(v) = v},

is open subgroup in GL(n, k).

Remark. In the previous definition, there are two relevant fields, the field K where the

matrices are taken over, and the field C where the representation space V is over.

Definition. Let k be a local field with an absolute value | |. Then, we define the ring of

integers by

Ok = {x ∈ k such that |x| ≤ 1} .

Definition. Let k be locally compact non-archimedean field, a quasi character of k× is

defined to be a continuous homomorphism ε : k× → C.

Definition. Let k be a locally compact non-archimedean field and let Ok be its ring of

integers and for any ideal b define the the subgroup:

Γ0(b) =























a b

c d









∈ GL2(Ok)|c ≡ 0 (mod b)















.

Definition. A scalar matrix, is a diagonal matrix in which all the diagonal elements are

equal.

Now, we will state Casselman’s theorem.

Theorem 4.0.9. Let k be a non-archimedean local field and let ρ be irreducible admissible

infinite dimensional representation of GL(2, k) and let W be the representation space. De-

fine ε to be the quasi character of k× such that ρ = ε on the scalar matrices. Let c(ρ) be

the largest ideal of Ok such that the space of vectors:

V (ρ, c(ρ)) =















ρ(









a b

c d









)(v) = ε(a)v ∀









a b

c d









∈ Γ0(c(ρ))















,

is not trivial. Then this space has dimension one.
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Definition. The ideal c(ρ) in the previous theorem is called the conductor of ρ.

Definition. The elements of the space V (ρ, c(ρ)), are called newforms.

In this paper, we are interested in the special case where we have, k = Qp, Ok = Zp,

and the representation space is W = V (χ1, χ2), with the representation map ρ is

ρ : GL2(Qp) → GL(V (χ1, χ2))

by

ρ(g)(f(x)) = f(xg).

Note that from lemma 2.2.7, as c(ρ) is an ideal in Zp, then we have we c(ρ) = pkZp for

some k ∈ Z.

Remark. Now, since we have the inclusion Zp ⊃ pZp ⊃ p2Zp ⊃ ... then saying that the

conductor c(ρ) = pkZp is the largest ideal such that V (ρ, pkZp) 6= 0 is equivalent to saying

that k is the smallest integer where the space V (ρ, pkZp) 6= 0, and so from now and on,

I will be denoting the space V (ρ, c(ρ)) = V (ρ, pkZp) simply by V (ρ, k). In general, given

k ∈ N, I will denote Γ0(p
kZp) simply by Γ0(k).

Remark. Let V be a vector space over C. Then, a non-zero element z ∈ C can be thought

of as a 1-1 onto function from V to V (we consider the mapping z : V → V by z(v) = zv

which is just a scalar multiplication by z).

Lemma 4.0.10. In the special case where k = Qp, Ok = Zp, the representation space W =

V (χ1, χ2), and the representation map is ρ : GL(2, Qp) → GL(V (χ1, χ2)) by ρ(g)(f(x)) =

f(xg), we have the space V (ρ, k) is the set of all elements of the form

V (ρ, k) =














f ∈ V (χ1, χ2) |f(x









a b

c d









) = χ1χ2(a)f(x) where x ∈ GL(2, Qp),









a b

c d









∈ Γ0(k)















.
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Proof. Since the vector space W in this case is V (χ1, χ2), and the representation map is

ρ : GL(2, Qp) → GL(V (χ1, χ2)) by ρ(g)(f(x)) = f(xg), then the space we are seeking to

determine is actually

V (ρ, k) =














f ∈ V (χ1, χ2) |f(x









a b

c d









) = ε(a)f(x) where x ∈ GL(2, Qp),









a b

c d









∈ Γ0(k)















.

We have that ε = ρ on the scaler matrix, which implies that ∀a ∈ Q×
p the following

functions are equal, i.e., we have

ρ(









a 0

0 a









) = ε(a),

(where ε(a) is considered as function from V (χ1, χ2) to V (χ1, χ2), like I have mentioned

in the previous remark). As these two functions are equal, they should be equal on each

single element f ∈ V (χ1, χ2). Hence

ρ









a 0

0 a









(f(x)) = ε(a)f(x),

but ρ









a 0

0 a









(f(x)) = f(x









a 0

0 a









) = f(









a 0

0 a









x) = χ1(a)χ2(a)f(x). Therefore,

ε(a)f(x) = χ1(a)χ2(a)f(x),

where this equation is true for all f ∈ V (χ1, χ2). By what we have done in the previous

chapter, we know that the space V (χ1, χ2) 6= 0. We can pick a nonzero f ∈ V (χ1, χ2), and

then pick an element x, where f(x) 6= 0. Then, we can cancel f(x) from the two sides to

have

ε(a) = χ1(a)χ2(a).

We conclude that
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V (ρ, k) =














f ∈ V (χ1, χ2) |f(x









a b

c d









) = χ1χ2(a)f(x) where x ∈ GL(2, Qp),









a b

c d









∈ Γ0(k)















.

Definition. Let µ1, µ2 be two quasi characters, the space B(µ1, µ2) is defined to be the

space of all locally functions f : GL(2, Qp) → C satisfying

f

















a x

0 b









g









= µ1(a)µ2(b)|
a

b
|1/2f(g).

where









a x

0 b









∈ B(Qp), g ∈ GL(2, Qp).

Definition. Let µ1, µ2 be two quasi characters, the space B(µ1, µ2) is defined to be the

space of all locally functions f : GL(2, Qp) → C satisfying

f

















a x

0 b









g









= µ1(a)µ2(b)|
a

b
|1/2f(g).

where









a x

0 b









∈ B(Qp), g ∈ GL(2, Qp).

Remark. Given the quasi characters χ1, χ2. Define µ1(x) := |x|−1/2χ1(x), µ2(x) :=

χ2(x)|x|1/2, then it is easy to see that B(µ1, µ2) = V (χ1, χ2).

Definition. Let µ1, µ2 be two quasi characters, the space C(µ1, µ2) is defined to be the

space of all locally functions F : GL(2, Zp) → C satisfying

F

















a x

0 b









g









= µ1(a)µ2(b)F (g),

55



where









a x

0 b









∈ B(Zp), g ∈ GL(2, Zp).

Lemma 4.0.11. The restriction map Res : B(µ1, µ2) → C(µ2, µ2) defined by

Res(f) = f |GL(2,Zp),

is a 1-1 linear onto function.

Proof. (1) Res(f) lands at C(µ2, µ2) :

Let f ∈ B(µ1, µ2), then f

















a x

0 b









g









= µ1(a)µ2(b)|ab |1/2f(g), where









a x

0 b









∈

B(Qp), g ∈ GL(2, Qp), and then Res(f) = f |GL(2,Zp) satisfies Res(f) =

f |GL(2,Zp)

















a x

0 b









g









= µ1(a)µ2(b)|ab |1/2f(g), where









a x

0 b









∈ B(Zp), g ∈

GL(2, Zp). Now, since









a x

0 b









∈ B(Zp), then a, b ∈ Z×
p and so |a| = |b| = 1. Now,

since f is locally constant on GL(2, Qp), then it is locally constant on GL(2, Zp). From

here, we can conclude the function f |GL(2,Zp) is an element of C(µ1, µ2).

(2) Res(f) is a linear function:

(a) Res(αf) = (αf)|GL(2,Zp) = αf |GL(2,Zp) = αRes(f). Here, given a complex valued func-

tion f and α ∈ C, the function αf is defined by (αf)(x) = αf(x) for all x in the domain

of f .

(b)Res(f + g) = (f + g)|GL(2,Zp) = f |GL(2,Zp) + g|GL(2,Zp) = Res(f) + Res(g), as for any

two complex valued functions having the same domain, the function f + g is defined by

(f + g)(x) = f(x) + g(x) for all x in the domain of f and g.

(3) Res(f) is injective:

Assume we have Res(f) = f |GL(2,Zp) = g|GL(2,Zp) = Res(g), then we have to show that
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f(y) = g(y) ∀y ∈ GL(2, Qp). Let y ∈ GL(2, Qp), then by Iwasawa’s theorem there ex-

ists









a x

0 b









∈ B(Qp), k ∈ GL(2, Zp) such that y =









a x

0 b









k, and then f(y) =

f(









a x

0 b









k) = µ1(a)µ2(b)|ab |1/2f(k) = µ1(a)µ2(b)|ab |1/2g(k) = g(









a x

0 b









k) = g(y).

(4) To show that Res is surjective: Let F ∈ C(µ1, µ1). I claim that Res(F )−1 = f ∈

B(µ1, µ1) such that f(









a x

0 b









k) = µ1(a)µ2(b)|ab |1/2F (k) for all









a x

0 b









∈ B(Qp),

k ∈ GL(2, Zp). Now, we have to prove two things which are that f is a well-defined element

of B(µ1, µ2) and Res(f) = F .

(a) To show that f is a well-defined element of B(µ1, µ2):

Assume we have

g =









a1 x1

0 b1









k1 =









a2 x2

0 b2









k2,

where









a1 x1

0 b1









,









a2 x2

0 b2









∈ B(Qp), k1, k2 ∈ GL(2, Zp), then we have









a1a
−1
2 ∗

0 b1b
−1
2









k1 = k2,

and hence F (k2) = µ1(a1)µ1(a
−1
2 )µ2(b1)µ2(b

−1
2 )F (k1), and so f(









a2 x2

0 b2









k2) =

µ1(a2)µ2(b2)F (k2) = µ1(a2)µ2(b2)µ1(a1)µ1(a
−1
2 )µ2(b1)µ2(b

−1
2 )F (k1) = µ1(a1)µ2(b1)F (k1) =

f(









a1 x1

0 b1









k1), we conclude that f is a well-defined function in B(µ1, µ2).

(b) Lets now prove that Res(f) = F :
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We know that Res(f) = f |GL(2,Zp), and so we have to show

f(k) = F (k),

for all k ∈ GL(2, Zp). Let k ∈ GL(2, Zp), then f(k) = f(Ik) = µ1(1)µ2(1)F (k) = F (k).

This completes the proof of lemma 4.0.11 .

Remark. From now and on, for simplicity, I will denote the restriction function Res by R

instead,i.e., R := Res and therefore R : B(µ1, µ2) → C(µ1, µ2) is an isomorphism.

Remark. The space of functions C(µ1, µ2) is a representation of GL(2, Zp), where the

representation homomorphism is

r : GL(2, Zp) → GL(C(µ1, µ2)),

and hence given k ∈ GL(2, Zp) we have

r(k) : C(µ1, µ2) → C(µ1, µ2),

by r(k)(F (y)) = F (yk) for each y ∈ GL(2, Zp) is a 1-1 onto linear function.

Definition. Let V, W be vector spaces, let H and G be groups such that H ⊆ G, and let

φ : V → W be an isomorphism. Let

ρ : G → GL(V ),

r : H → GL(W ),

be two representations of the groups G, H on V, W respectively. Then, we say that φ is an

H- isomorphism if for each h ∈ H, v ∈ V we have

r(h)(φ(v)) = φ(ρ(h)(v)).

Lemma 4.0.12. Considering the vector spaces B(µ1, µ2), C(B(µ1, µ2), the groups

GL(2, Zp), GL(2, Qp), the representations ρ and r defined as in this chapter, then the

isomorphism R is a GL(2, Zp) isomorphism.
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Proof. Let f ∈ B(µ1, µ2), k ∈ GL(2, Zp) and let g := ρ(k)(f) which is an element of

B(µ1, µ2) such that g(x) = f(xk). We have to show that r(k)(R(f)) = R(ρ(k)(f)). As both

sides of the equation are functions, we have to show that they are equal at each single ele-

ment x ∈ GL(2, Zp). Now, [r(k)(R(f))](x) = [r(k)(f |GL(2,Zp))](x) = f |GL(2,Zp)(xk) = f(xk)

since x, k ∈ GL(2, Zp). On the other hand, R(ρ(k)(f))(x) = R(g)(x) = g|GL(2,Zp)(x) =

g(x) = f(xk) which completes the proof.

Corollary 4.0.13. The space V (ρ, k) is isomorphic to the space R(V (ρ, k)), i.e.,

V (ρ, k) ∼= R(V (ρ, k)).

Proof. The restriction function restricted on V (ρ, k)

R|V (ρ,k) : V (ρ, k) → R(V (ρ, k)),

is a 1-1 onto linear function. It is 1-1 linear function as R is and it is onto as its range it

defined to be R(V (ρ, k)).

Definition. The space C(µ1, µ2, k) is defined to be the space of all functions F ∈ C(µ1, µ2)

satisfying

F (x









a b

c d









) = µ1(a)µ2(a)F (x),

for all









a b

c d









∈ Γ0(k), x ∈ GL(2, Zp).

Lemma 4.0.14. Let R denote the restriction function defined as before, then

C(µ1, µ2, k) = R(V (ρ, k)).

Proof. The space R(V (ρ, k)) is equal to the space of all elements F ∈ C(µ1, µ2) such that

F = R(f), where f ∈ V (ρ, k) or it is all the functions F ∈ C(µ1, µ2) such that F = R(f),
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where f ∈ B(µ1, µ2) and f satisfies

f(x









a b

c d









) = µ1(a)µ2(a)f(x),

for all









a b

c d









∈ Γ0(k), x ∈ GL(2, Qp). Hence, F = R(f) = f |GL(2,Zp) satisfies

F (x









a b

c d









) = µ1(a)µ2(a)F (x),

for all









a b

c d









∈ Γ0(k), x ∈ GL(2, Zp). Therefore, the set R(V (ρ, k)) is the set of all

F ∈ C(µ1, µ2) such that

F (x









a b

c d









) = µ1(a)µ2(a)F (x),

for all









a b

c d









∈ Γ0(k), x ∈ GL(2, Zp) which is the space C(µ1, µ2, k) by definition.

Lemma 4.0.15. The space C(µ1, µ2, k) is equal to the space of all functions F ∈ C(µ1, µ2)

satisfying

F (









a x

0 b









g









a
′

b
′

c
′

d
′









) = µ1(a)µ2(b)µ1µ2(a
′

)F (g),

∀ g ∈ GL(2, Zp), and









a x

0 b









∈ B(Zp),









a
′

b
′

c
′

d
′









∈ Γ0(k).
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Proof. Let F ∈ C(µ1, µ2, k). Then F ∈ C(µ1, µ2) and F (g









a
′

b
′

c
′

d
′









) =

µ1µ2(a
′

)F (g) ∀ g ∈ GL(2, Zp),









a
′

b
′

c
′

d
′









∈ Γ0(k). Now, since F ∈ C(µ1, µ2)

we have F (









a x

0 b









g
′

) = µ1(a)µ2(b)F (g
′

) for all









a x

0 b









∈ B(Zp), g
′ ∈

GL(2, Zp). Choose g
′

= g









a
′

b
′

c
′

d
′









, then we have F (









a x

0 b









g









a
′

b
′

c
′

d
′









) =

µ1(a)µ2(b)F (g









a
′

b
′

c
′

d
′









= µ1(a)µ2(b)µ1µ2(a
′

)F (g). And hence C(µ1, µ2, k) ⊆
{

F ∈

C(µ1, µ2)| F (









a x

0 b









g









a
′

b
′

c
′

d
′









) = µ1(a)µ2(b)µ1µ2(a
′

)F (g)

∀ g ∈ GL(2, Zp),









a x

0 b









∈ B(Zp),









a
′

b
′

c
′

d
′









∈ Γ0(k)
}

. For the other inclusion, take

an element in
{

F ∈ C(µ1, µ2)| F (









a x

0 b









g









a
′

b
′

c
′

d
′









) = µ1(a)µ2(b)µ1µ2(a
′

)F (g)

∀ g ∈ GL(2, Zp),









a x

0 b









∈ B(Zp),









a
′

b
′

c
′

d
′









∈ Γ0(k)
}

and choose









a x

0 b









to be the identity matrix I , and then we can easily see that
{

F ∈ C(µ1, µ2)|

F (









a x

0 b









g









a
′

b
′

c
′

d
′









) = µ1(a)µ2(b)µ1µ2(a
′

)F (g)

61



∀ g ∈ GL(2, Zp),









a x

0 b









∈ B(Zp),









a
′

b
′

c
′

d
′









∈ Γ0(k)
}

⊆ C(µ1, µ2, k) which completes

the proof.

Lemma 4.0.16. Given two quasi characters µ1, µ2 : Q×
p → C×, then their product

µ1µ2 : Q×
p → C×,

is a quasi character.

Proof. It is easy to check that the product is a well defined function, a homomorphism and

continuous, as we know what the topologies of C and Qp are.

Lemma 4.0.17. Let n0, n1, n2 denotes the conductors of µ1µ2, µ1, µ2 respectively then n0 ≤

max(n1, n2).

Proof. I claim that n0 is actually equals to max(n1, n2) provided that n1 6= n2 and n0 might

be less than max(n1, n2) if n1 = n2, so I will separate my proof into two cases:

Case (1): If n1 6= n2 then without loss of generality assume n2 > n1, I will split this

into two cases:

Case (a): If n1 = 0 ( µ1 is trivial on Z×
p ) and n2 = 1 then µ1µ2|1+pZp = 1. Hence, the

conductor in this case is either zero or 1. Note that µ1µ2|Z×

p
= µ2|Z×

p
6= 1. Therefore µ1µ2

is not trivial on Z×
p , we conclude that cond(µ1µ2) = 1 =max(n1, n2).

Case (b): If n1 is a non-negative integer and n2 is greater than 1. Now, as n1 < n2 we have

n1 <max(n1, n2) = n2, therefore n2 ≥ n1 + 1 and n2 ≥ 2. Now, since n2 is the conductor

of µ2, then we have

µ2|1+pn2Zp = 1.

If n ≥ n2 then µ1µ2|1+pnZp = 1.1 = 1. Now, I should prove that n2 is the least where

µ1µ2|1+pn2Zp = 1.
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For that, it is enough to show that µ1µ2|1+pn2−1Zp
6= 1. Now, as we have n2 ≥ n1 + 1 and

n2 ≥ 2, then n2 − 1 ≥ n1 and n2 − 1 ≥ 1, and so µ1|1+pn2−1Zp
= 1, but µ2|1+pn2−1Zp

6= 1

(since n2 = conductor of µ2) then µ1µ2|1+pn2−1Zp
6= 1.

Case (2): If n = n1 = n2 then we have µ1µ2|1+pnZp = 1, and then the conductor is this

specific n or some non-negative integer less than n, for more details, I will split this case

into two cases:

Case(a): If µ1(a) = 1
µ2(a)

∀a ∈ 1 + Zp = Zp, where a 6= 0, then we have µ1µ2(a) = 1 for all

a ∈ Z×
p . Hence, the conductor n0 = 0 by definition.

Case(b): If there is some non-zero a ∈ 1 + Zp = Zp such that µ1(a) 6= 1
µ2(a)

then consider

the chain

Zp = 1 + Zp ⊃ 1 + pZp ⊃ ... ⊃ 1 + pn−2Zp ⊃ 1 + pn−1Zp,

and then let i be the least positive integer in {1, 2, 3, 4, ..., n} such that ∃ a ∈ 1 + pn−iZp,

where µ1(a) 6= 1
µ2(a)

, where such an i exists by assumption, then the conductor n0 =

n − i + 1.

Lemma 4.0.18. If k < n0 then C(µ1, µ2, k) = 0.

Proof. Suppose k < n0, then µ1µ2|1+pkZp
6= 1, then ∃ a ∈ Zp such that µ1µ2(1 + pka) 6= 1.

Consider the matrix









1 a

0 1









. Let F ∈ C(µ1, µ2, k), then we have to show that F (g) = 0

for all g ∈ GL(2, Zp). Let g ∈ GL(2, Zp), then consider F (g









1 a

0 1

















1 0

pk 1









) =

F (g









1 + apk a

pk 1









= µ1µ2(1 + apk)F (g). On the other hand, let g
′

= g









1 a

0 1









then F (g









1 a

0 1

















1 0

pk 1









) = F (g
′









1 0

pk 1









) = F (g
′

) = F (g









1 a

0 1









= F (g).

Therefore, we have F (g) = µ1µ2(1 + pka)F (g), where µ1µ2(1 + pka) 6= 1, we conclude that
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F (g) = 0, and since g is arbitrarily chosen from GL(2, Zp), then F = 0. Now, as F is

arbitrarily chosen from C(µ1, µ2, k), then C(µ1, µ2, k) = 0.

Now, from the previous lemma, we can conclude that if C(µ1, µ2, k) 6= 0 then we have

k ≥ n0 = conductor of µ1µ2. The following theorem actually says more, it says that if

C(µ1, µ2, k) 6= 0 then k ≥ max(n1, n2)≥ n0, but first, we will state and prove some lemmas.

Lemma 4.0.19. If k ≥ n0 then C(µ1, µ2, k) ⊂ R(B(µ1, µ2)
K(pk)).

Proof. First note that the space R(B(µ1, µ2)
K(pk)) is the space of all functions F such

that F = R(f), where f ∈ B(µ1, µ2) satisfying f(xk
′

) = f(x) for each x ∈ GL(2, Qp),

k
′ ∈ K(pk), or equivalently, it is the space of all functions F such that F (xk

′

) = F (x)

for each x ∈ GL(2, Zp), k
′ ∈ K(pk). Now, let G ∈ C(µ1, µ2, k), then by definition of

C(µ1, µ2, k) we have

G(x









a b

c d









) = µ1(a)µ2(a)G(x),

for all









a b

c d









∈ Γ0(k), x ∈ GL(2, Zp). Now, as K(pk) ⊆ Γ0(k), then

G(x









a b

c d









) = µ1(a)µ2(a)G(x),

for all









a b

c d









∈ K(pk), x ∈ GL(2, Zp). Now, if k
′

=









a b

c d









∈ K(pk) then by

definition of K(pk) we have a ≡ 1 mod(pk), and as k ≥ n0, we conclude that µ1µ2(a) = 1.

Hence, G(xk
′

) = µ1µ2(a)G(x) = 1.G(x) = G(x). Therefore, G ∈ R(B(µ1, µ2)
K(pk)) which

completes the proof.

Lemma 4.0.20. let n0, n1, n2 denote the conductors of µ1µ2, µ1, µ2 respectively, then

C(µ1, µ2, k) 6= 0 ⇒ k ≥ max(n1, n2) ≥ n0.
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Proof. let n0, n1, n2 denote the conductors of µ1µ2, µ1, µ2 respectively and assume that

C(µ1, µ2, k) 6= 0. Now, in lemma 4.0.17 we proved that max(n1, n2) ≥ n0. Further, if we

have max(n1, n2) = n0 then we are done by lemma 4.0.18. By lemma 3.5.7, we have that

if k <max(n1, n2) then V (χ1, χ2)
K(pk) = 0, and as we have B(µ1, µ2) = V (χ1, χ2), then we

have B(µ1, µ2)
K(pk) = 0. This implies that R(B(µ1, µ2)

K(pk)) = 0. But we proved in the

previous lemma that if k ≥ n0 then C(µ1, µ2, k) ⊂ R(B(µ1, µ2)
K(pk)) = 0, which completes

the proof.

Therefore, we have proved that if V (ρ, k) is nontrivial then k ≥max(n1, n2).

Remark. Suppose that we have the groups W , G and H is a subgroup of G. Further-

more, suppose that φ : G → W is a homomorphism. We want to determine under which

restrictions we can define a homomorphism φ
′

: G/H → W by

φ
′

(aH) = φ(a).

For the previous function to be well-defined we must have φ
′

(aH) = φ
′

(bH) provided that

aH = bH or b−1a ∈ H. Note that a homomorphism φ
′

satisfies φ
′

(aH) = φ
′

(bH) if and

only if φ(b−1aH) = eW ( where = eW denotes the identity element in the group W ) and as

b−1a ∈ H this is equivalent to saying that φ
′

(H) = eW or φ(h) = eW for all h ∈ H. Hence,

for φ
′

to be well-defined, all the elements in the subgroup H must map to the identity

in W . In particular, we have the homomorphisms µ1, µ2, µ1µ2 restricted on Z×
p . Then, if

k ≥ max(cond(µ1), cond(µ2)) we have µ1, µ2, µ1µ2|1+pkZp
= 1. Hence, we can define a new

µ1, µ2, µ1µ2 : Z×
p /1 + pkZp → C× by µ1(a(1 + pkZp)) = µ1(a), µ2(a(1 + pkZp)) = µ2(a) and

µ1µ2(a(1 + pkZp)) = µ1µ2(a). Now, as we have Z×
p /1 + pkZp

∼= (Zp/p
kZp)

×, then we can

define µ1, µ2, µ1µ2 on (Zp/p
kZp)

× instead.

Definition. The set D(µ1, µ2, k) is defined to be the set of all functions
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φ : GL(2, Zp/p
kZp) → C satisfying

φ(









a x

0 b









g









a
′

b
′

0 d
′









) = µ1(a)µ2(b)µ1µ2(a
′

)φ(g),

∀ g ∈ GL(2, Zp/p
kZp),









a x

0 b









∈ B(Zp/p
kZp),









a
′

b
′

0 d
′









∈ B(Zp/p
kZp).

Lemma 4.0.21. We have

C(µ1, µ2, k) ∼= D(µ1, µ2, k).

Proof. I claim that the following function T is an isomorphism

T : C(µ1, µ2, k) → D(µ1, µ2, k),

defined by

[T (F )](x) = F (x),

where F ∈ C(µ1, µ2, k), x ∈ GL(2, Zp), x ∈ GL(2, Zp/p
kZp) and x is the image of x

mod(pk). Lets first prove that T is well defined.

(1) To show that T is well defined

Let x1, x2 ∈ GL(2, Zp) such that x1 = x2 = x ∈ GL(2, Zp/p
kZp). We should show

that F (x1) = F (x2). Now, as x1 = x2, then x−1
1 x2 = I , and hence x−1

1 x2 = I + pkm,

where m is a matrix with entries from Zp. Therefore, x−1
1 x2 ∈ K(pk), then by lemma

4.0.19 we have F (g(x−1
1 x2)) = F (g), for all g in GL(2, Zp). Choose g = x1, then we get

F (x2) = F (Ix2) = F (x1), we conclude that T is well defined.

(2) Lets show that T is linear:

(a) T [(F + G)](x)) = (F + G)(x) = F (x) + G(x) = [T (F )](x) + [T (G)](x)], where

x ∈ GL(2, Zp) and x ∈ GL(2, Zp/p
kZP ) where x = x mod(pk).
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(b) [T (αF )](x) = (αF )(x) = αF (x) = α[T (F )](x), where x ∈ GL(2, Zp) and x ∈

GL(2, Zp/p
kZP ), where x = x mod(pk).

(3) Lets now show that it is 1-1:

Lets assume we have two functions F, G ∈ C(µ1, µ2, k) such that [T (F )](x)) = [T (G)](x) at

each x ∈ GL(2, Zp/p
kZp), then we have F (x) = [T (F )](x) = [T (G)](x) = G(x), and that

is for all x ∈ GL(2, Zp), hence F = G and so T is 1-1.

(4) T is onto:

Let φ ∈ D(µ1, µ2, k), then

φ(









a x

0 b









g









a
′

b
′

0 d
′









) = µ1(a)µ2(b)µ1µ2(a
′

)φ(g),

for all









a x

0 b









,









a
′

b
′

0 d
′









∈ B(Zp/p
kZp), g ∈ GL(2, Zp/p

kZp). Define

F : GL(2, Zp) → C,

by

F (g) = φ(g),

where g ∈ GL(2, Zp). We have to show that F ∈ C(µ1, µ2, k) and T (F ) = φ.

Let’s first show that F ∈ C(µ1, µ2, k). Let









a x

0 b









,









a
′

b
′

c
′

d
′









∈ B(Zp), Γ0(k) re-

spectively, and let g ∈ GL(2, Zp). Then, consider that F (









a x

0 b









g









a
′

b
′

c
′

d
′









) =

φ(









a x

0 b









g









a′ b′

0 d′









) = µ1(a)µ2(b)µ1µ2(a
′)φ(g). Now, as a = a mod(pk), b = b

mod(pk), a′ = a
′

mod(pk), a, b ∈ Z×
p and a

′ ∈ Z×
p , then µ1(a) = µ1(a), µ2(b) = µ2(b)
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and µ1µ2(a
′) = µ1µ2(a

′

). But by definition of function F , we have F (g) = φ(g), hence

F (









a x

0 b









g









a
′

b
′

c
′

d
′









) = φ(









a x

0 b









g









a′ b′

0 d′









) = µ1(a)µ2(b)µ1µ2(a
′)φ(g) =

µ1(a)µ2(b)µ1µ2(a
′

)F (g). Therefore, F ∈ C(µ1, µ2, k). Now, let’s show that T (F ) = φ.

Note that for each g ∈ GL(2, Zp/p
kZp) we have [T (F )](g) = F (g) = φ(g) which completes

the proof.

Remark. According to what we have showed until now, it is enough for us to study

the space D(µ1, µ2, k) consisting of all functions φ : GL(2, Zp/p
kZp) → C satisfying

φ(









a x

0 b









g









a
′

b
′

0 d
′









) = µ1(a)µ2(b)µ1µ2(a
′

)φ(g), ∀ g ∈

GL(2, Zp/p
kZp),









a x

0 b









∈ B(Zp/p
kZp),









a
′

b
′

0 d
′









∈ B(Zp/p
kZp). Indeed, as we have

Zp/p
kZp

∼= Z/pkZ, then we can consider these functions φ on GL(2, Z/pkZ) instead. Now,

for the following lemmas, let’s note that an element a ∈ Zp/p
kZp is a unit if and only if

gcd(a, p) = 1, or, in other words, if and only if p does not divide a. Let’s also remember

that for an element









a b

c d









to be in GL(2, R), where R is any given commutative ring

with unity, then we must have ad − cb ∈ R× ,i.e., ad − cb should be a unit in R.

Lemma 4.0.22. Every element a in Z/pkZ can be written as

a = bpi,

where b is a unit and i is a unique element in {0, 1, 2, ..., k}.

Proof. Let a ∈ Z/pkZ.

If a itself is unit then a = ap0. Therefore, i = 0 in this case. Hence, assume a is not

unit. Now, if a is not unit, we consider two cases:
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(1) If a = 0 then a = 1.pk, hence, i = k in this case and then we are done.

(2) If a 6= 0, then p|a. Let i be the largest positive integers such that pi|a, in other words,

let i be the positive integer such that pi|a but pi+1 - a then we have a = bpi, where p - b

(as if p|b then pi+1|a). Hence, b is a unit. Here, as a 6= 0 then the possible values for i are

{1, 2, ..., k − 1}.

For uniqueness, suppose api = bpj with a, b are units and i, j ∈ {1, 2, ..., k − 1} such that

i ≥ j (without loss of generality). Now, multiply both sides by pk−i, then you get zero in the

left hand side and bpk−i+j in the right hand side. Because the two sides are equal, we should

have zero in the left hand side as well. Hence pk−i+j = pk = 0, and as i, j ∈ {1, 2, ..., k− 1}

we must have i = j.

Lemma 4.0.23. Let g be an element of GL(2, Z/pkZ), then g can be decomposed as

g =









a1 b1

0 d1

















x 0

y z

















a2 b2

0 d2









,

where









a1 b1

0 d1









,









a2 b2

0 d2









∈ B(Z/pkZ),









x 0

y z









∈ GL(2, Z/pkZ).

Proof. Let g =









a b

c d









∈ GL(2, Z/pkZ). I will split this prove into two cases:

Case(1): If d is a unit then









1 −bd−1

0 1

















a b

c d









=









a − cbd−1 0

c d









, where a−cbd−1

is unit as if p|a− cbd−1 then p|d(a− cbd−1) = da− cb which can’t occur as da− cb is a unit.

Therefore, we must have g =









a b

c d









=









1 bd−1

0 1

















a − cbd−1 0

c d

















1 0

0 1









which completes the proof of case(1).
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Case(2): If d is not a unit. First note that if d is not a unit then p|d, so c must be a unit, as

if c is not a unit then p divides both d and c, hence p|ad− bc, so c is a unit. Now, c+ d is a

unit, as if p|c + d then p divides c. Now, note that









a b

c d

















1 1

0 1









=









a a + b

c c + d









.

Now, as c + d is a unit we can apply case(1) on









a a + b

c c + d









and then we have









a a + b

c c + d









= x









∗ 0

∗ ∗









y, where x, y ∈ B(Z/pkZ), and









∗ 0

∗ ∗









∈ GL(2, Z/pkZ).

Hence,









a b

c d

















1 1

0 1









= x









∗ 0

∗ ∗









y, therefore









a b

c d









= x









∗ 0

∗ ∗









y









1 −1

0 1









,

and as both y,









1 −1

0 1









∈ B(Z/pkZ), then y
′

= y









1 −1

0 1









∈ B(Z/pkZ). Hence,









a b

c d









= x









∗ 0

∗ ∗









y
′

,

where x, y
′ ∈ B(Z/pkZ),









∗ 0

∗ ∗









∈ GL(2, Z/pkZ).

Lemma 4.0.24. For all

g =









a b

c d









∈ GL(2, Z/pkZ),
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there is a unique i ∈ {0, 1, 2, ..., k} such that

g =









a1 b1

0 d1

















1 0

pi 1

















a2 b2

0 d2









,

for some









a1 b1

0 d1









,









a2 b2

0 d2









∈ B(Z/pkZ).

Proof. Let g =









a b

c d









∈ GL(2, Z/pkZ), then by previous lemma we can decom-

pose g as g =









a
′

1 b
′

1

0 d
′

1

















x 0

y z

















a
′

2 b
′

2

0 d
′

2









where









a
′

1 b
′

1

0 d
′

1

















a
′

2 b
′

2

0 d
′

2









∈

B(Z/pkZ),









x 0

y z









∈ GL(2, Z/pkZ). Now, consider the matrix









x 0

y z









, as this

matrix is in GL(2, Z/pkZ), then x and z both must be units, and hence we have








1 0

0 z−1

















x−1 0

0 1

















x 0

y z









=









1 0

z−1y 1









. Because z−1y ∈ Z/pkZ, then

by lemma 4.0.22, we can write z−1y as z−1y = bpi, and hence









1 0

z−1y 1









=









1 0

bpi 1









. Now, note that we have









b 0

0 1

















1 0

bpi 1

















b−1 0

0 1









=









1 0

pi 1









,

hence









b 0

0 1









−1 







1 0

pi 1

















b−1 0

0 1









−1

=









1 0

bpi 1









=









1 0

z−1y 1









=









1 0

0 z−1

















x−1 0

0 1

















x 0

y z









, therefore









x 0

y z









=









x−1 0

0 1









−1
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1 0

0 z−1









−1







b 0

0 1









−1 







1 0

pi 1

















b−1 0

0 1









−1

. As B(Z/pkZ) is subgroup, then we

can these matrices together where the result is an upper triangular matrix as well. Thus,

we can say that









x 0

y z









=









g1 g2

0 g3

















1 0

pi 1

















1 0

0 b−1









, where









g1 g2

0 g3









∈ B(Z/pkZ), therefore

g =









a
′

1 b
′

1

0 d
′

1

















x 0

y z

















a
′

2 b
′

2

0 d
′

2









=









a
′

1 b
′

1

0 d
′

1

















g1 g2

0 g3

















1 0

pi 1

















1 0

0 b−1

















a
′

2 b
′

2

0 d
′

2









and as B(Z/pkZ) is subgroup, we can multiply

terms and still get elements in B(Z/pkZ). Now, for uniqueness, assume that we have

g =









a1 b1

0 d1

















1 0

pi 1

















a2 b2

0 d2









=









a
′

1 b
′

1

0 d
′

1

















1 0

pj 1

















a
′

2 b
′

2

0 d
′

2









, then









a1a
′

1

−1 ∗

0 d1d
′

2

−1

















1 0

pi 1









=









1 0

pj 1

















a−1
2 a

′

2 ∗

0 d−1
2 d

′

2









. Hence, x = pja−1
2 a

′

2 =

pid1d
′

2

−1 ∈ Z/pkZ where a−1
2 a

′

2, d1d
′

2

−1
are units in Z/pkZ, then by lemma 4.0.22 we have

i = j which completes the proof.

Corollary 4.0.25. We have

GL(2, Z/pkZ) =
⋃

0≤i≤k

B(Z/pkZ)









1 0

pi 1









B(Z/pkZ),

where these double cosets are distinct.

Proof. The proof follows immediately from the previous lemma.
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Remark. By the previous lemma, and by definition of the space D(µ1, µ2, k), a function

φ ∈ D(µ1, µ2, k) is completely determined on its values on the matrices









1 0

pi 1









, where

i ∈ {0, 1, 2, ..., k}. Now, what I am going to do next is to show that not all of these

k + 1 values are free. Some of them have to be zero. Furthermore, we will prove that if

D(µ1, µ2, k) is not trivial then k ≥ cond(µ1) + cond(µ2).

Lemma 4.0.26. Given a, a
′

, b, b
′ ∈ Z/pkZ, there exists x, x

′ ∈ Z/pkZ such that








a x

0 b

















1 0

pi 1









=









1 0

pi 1

















a
′

x
′

0 b
′









if and only if

b ≡ b
′

mod(pi),

a ≡ a
′

mod(pi),

a
′ ≡ b mod(pk−i),

b − b
′

= a
′ − a.

Proof. (⇒) Given a, a
′

, b, b
′ ∈ Z/pkZ, then by assumption there exists x, x

′ ∈ Z/pkZ such

that








a x

0 b

















1 0

pi 1









=









1 0

pi 1

















a
′

x
′

0 b
′









, hence we have:

(1) a + xpi = a
′

,

(2)x = x
′

,

(3) bpi = a
′

pi,

(4) b = b
′

+ x
′

pi,

where all these equalities are mod(pk). Now, from (1) and (4) we can directly conclude

that

b ≡ b
′

mod(pi),

a ≡ a
′

mod(pi).
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For (3), as I have mentioned, all these equalities are mod(pk), hence what (3) actually says

is that: bpi = a
′

pi + k1p
k for some k1 ∈ Z/pkZ or b = a

′

+ k1p
k−i, therefore we have b ≡ a

′

mod(pk−i). For (2), as x = x
′

, then pix = pix
′

, then by (1) and (4) we have b− b
′

= a
′ − a

which completes the proof in this direction.

(⇐) Given a, a
′

, b, b
′ ∈ Z/pkZ such that

b ≡ b
′

mod(pi),

a ≡ a
′

mod(pi),

a
′ ≡ b mod(pk−i),

b − b
′

= a
′ − a,

then we have (all mod(pk)):

(1) b = b
′

+ k1p
i,

(2) a
′

= a + k2p
i,

(3) a
′

= b + k3p
k−i,

(4) b−b
′

= a
′−a ⇒ k1p

i = k2p
i, where k1, k2, k3 ∈ Z/pkZ. As from (4) we have k1p

i = k2p
i,

then we can rewrite the first equation as b = b
′

+ k2p
i. Now, let x

′

:= k2 and x := k2, then

these four equations are (all mod(pk)):

(1) b = b
′

+ x
′

pi,

(2) a
′

= a + xpi,

(3) a
′

pi = bpi,

and by our choice of x
′

, x we have x
′

= x.

We conclude that the equation








a x

0 b

















1 0

pi 1









=









1 0

pi 1

















a
′

x
′

0 b
′









,

is satisfied.
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Lemma 4.0.27. If i < n1 then ∀φ ∈ D(µ1, µ2, k), we have φ(









1 0

pi 1









) = 0.

Proof. Suppose i < n1 =cond(µ1), then the there exists a, a ∈ (Zp/p
kZp)

× such that a ≡ a

mod(pi), but µ1(a) 6= µ1(a), hence a = a+xpi where x ∈ Zp/p
kZp and µ1(a) 6= µ1(a). Then,

note that









a x

0 a

















1 0

pi 1









=









1 0

pi 1

















a x

0 a









, but µ1(a)µ2(a)φ(









1 0

pi 1









) =

φ(









a x

0 a

















1 0

pi 1









) = φ(









1 0

pi 1

















a x

0 a









) = µ1(a)µ2(a)φ(









1 0

pi 1









) and

hence φ(









1 0

pi 1









) = 0.

Lemma 4.0.28. If i > k − n2 then ∀φ ∈ D(µ1, µ2, k) we have φ(









1 0

pi 1









) = 0.

Proof. Suppose i > k − n2, then k − i < n2, hence there exists b, a
′ ∈ (Zp/p

kZp)
× such

that b ≡ a
′

mod(pk−i), but µ2(b) 6= µ2(a
′

), so a
′

= b + xpk−i where x ∈ Zp/p
kZp and

µ2(b) 6= µ2(a
′

). Now, as we have a
′

= b + xpk−i, then we get pia
′

= pib (as all is mod (pk)).

Now, note that









a
′

0

0 b

















1 0

pi 1









=









1 0

pi 1

















a
′

0

0 b









, hence µ1(a
′

)µ2(b)

φ(









1 0

pi 1









) = φ(









a
′

0

0 b

















1 0

pi 1









) = φ(









1 0

pi 1

















a
′

0

0 b









)

= µ1(a
′

)µ2(a
′

)φ(









1 0

pi 1









) and so φ(









1 0

pi 1









) = 0.

Remark. Note that from the previous two lemmas, in order to define a non-zero elements

of D(µ1, µ2, k), we should have i ≥ n1 and k − i ≥ n2. As a result, we should have
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k ≥ n1 + n2. Given k ≥ n1 + n2, then the functions φ can have a non-zero only on those

double cosets B(Zp/p
kZp)









1 0

pi 1









B(Zp/p
kZp) where n1 ≤ i ≤ k−n2. I will states these

results as corrollaries.

Corollary 4.0.29. If φ ∈ D(µ1, µ2, k), then φ can be nonzero only on those double cosets

where i ≥ n1 and k − i ≥ n2.

Corollary 4.0.30. If k < n1 + n2, then D(µ1, µ2, k) = 0.

Remark. Note that the previous lemma does not tell us that we are guaranteed to have

functions φ with a nonzero values on the cosets where n1 ≤ i ≤ k − n2. And that is what

the next theorem is for.

Theorem 4.0.31. Let k ≥ n1 + n2 and let i be such that n1 ≤ i ≤ k − n2. Then if

g =









a x

0 b

















1 0

pj 1

















a x

0 b









∈ GL(Zp/p
kZp) where 0 ≤ j ≤ k, we have

φi(g) =















µ1(a)µ2(b)µ1µ2(a) : j = i

0 : j 6= i

is a well-defined function of D(µ1, µ2, k).

Proof. Let

g =









a1 x1

0 b1

















1 0

pi 1

















a
′

1 x
′

1

0 b
′

1









=









a2 x2

0 b2

















1 0

pi 1

















a
′

2 x
′

2

0 b
′

2









.

Then we have








a1a
−1
2 ∗

0 b1b
−1
2

















1 0

pi 1









=









1 0

pi 1

















a
′

2a
′

1

−1 ∗

0 b
′

2b
′

1

−1









.
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Hence, by lemma 4.0.26, we have a1a
−1
2 = a

′

2a
′

1

−1
mod(pi), and b1b

−1
2 = a

′

2a
′

1

−1
mod(pk−i).

Then, as we have i ≥ n1 then µ1(a1a
−1
2 ) = µ1(a

′

2a
′

1

−1
), and as k − i ≥ n2, then we have

µ2(b1b
−1
2 ) = µ2(a

′

2a
′

1

−1
), therefore

µ1(a1)µ1(a
′

1) = µ1(a
′

2)µ1(a2), µ2(b1)µ2(a
′

1) = µ2(a
′

2)µ2(b2),

and then multiply the last two equations by each others left side by left side and right side

by right side to get

µ1(a1)µ2(b1)µ1µ2(a
′

1) = µ1(a2)µ2(b2)µ1µ2(a
′

2) = φi(g).

We conclude that φi is well defined.

Theorem 4.0.32. Let k ≥ n1 + n2, then the set {φi where n1 ≤ i ≤ k − n2} is basis for

the space D(µ1, µ2, k), and hence dim(D(µ1, µ2, k))= k − n2 − n1 + 1.

Proof. Lets first show that the set {φi where n1 ≤ i ≤ k − n2} is actually a spanning set

for D(µ1, µ2, k). Let φ 6= 0 ∈ D(µ1, µ2, k). Define h :=
∑k−n2

i=n1
φ(









1 0

pi 1









)φi.

I claim that h(g) = φ(g) for all g ∈ GL(2, Z/pkZ). Let g ∈ GL(2, Z/pkZ), then

g =









a1 a2

0 a3

















1 0

pi 1

















b1 b2

0 b3









. Now, if i 6∈ {n1, n1 + 1, ..., k − n2 − 1, k − n2},

then by corrolary 4.0.29 and definition of φi we have φ(g) = 0 and φi(g) = 0, hence h(g) =

φ(









1 0

pn1 1









)φn1(g) + φ(









1 0

pn1+1 1









)φn1+1(g) + ... + φ(









1 0

pk−n2 1









)φk−n2(g) =

0 + 0 + ... + 0 = 0. Now, if i ∈ {n1, n1 + 1, ..., k − n2 − 1, k − n2}, then φ(g) =

µ1(a1)µ2(a3)µ1µ2(b1)φ(









1 0

pi 1









) = φi(g)φ(









1 0

pi 1









) = φ(









1 0

pi 1









)φi(g) = 0 + 0 +

... + φ(









1 0

pi 1









)φi(g) + 0 + ... + 0 =
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∑k−n2

j=n1
φ(









1 0

pj 1









)φj(g) = h(g), and since g is arbitrary, then φ = h. Hence, the set {φi

where n1 ≤ i ≤ k − n2} is a spanning set for D(µ1, µ2, k).

Now, to show that this set is linearly independent, suppose that

k−n2
∑

i=n1

ciφi = 0.

We should show that ci = 0 for all i ∈ Z with ∈ n1 ≤ i ≤ k − n2. Let i ∈ Z with

n1 ≤ i ≤ k − n2, then evaluate the given sum at the matrix









1 0

pi 1









to get

0 + 0 + ... + ciφi(I









1 0

pi 1









I) + 0 + 0 + ... + 0 = 0, hence ciµ1(1)µ2(1)µ1µ2(1) = 0, thus

ci = 0. Since, i is chosen arbitrarily from {n1, n1 +1, ..., k−n2−1, k−n2}, then that is true

for all i in this set. Therefore, the set {φi where n1 ≤ i ≤ k − n2} is linearly independent.

We conclude that the set {φi where n1 ≤ i ≤ k − n2} is a basis for D(µ1µ2, k). Thus,

dim(D(µ1µ2, k)) = k − n2 − n1 + 1.
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