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Abstract: Water scarcity is becoming a more widespread issue due to human modification of local and 

global hydrologic cycles.  In developing countries, land degradation, soil erosion, and its impacts on 

water resources are significant issues due to ever increasing water resource demands attributable to 

growing human populations within these areas. Small, multiple-use reservoirs are an important source 

of water in rural Zimbabwe. It is imperative to develop further insights into, and an understanding of, 

the linkage between hydrology, land use, and water resource needs in order to develop resilient water 

supplies for populations living in these areas.  Here, a hydrologic and sediment budget was developed to 

inform the management of the 265,000 m3 (215 acre feet) Katoto Reservoir located near Mutoko, 

Zimbabwe (155 km northeast of Harare, Zimbabwe). Assuming present hydrologic and land use 

conditions remain the same, the entire reservoir may be completely infilled with sediment between 160 

and 940 years. However, taking into account a potential 10% decrease in precipitation totals, Katoto 

Reservoir could become unusable within 120-160 years. Considering other factors such as population 

growth resulting in increased extraction values, increased evaporation due to climate change, and 

higher sediment yield values due to shifting land use, the useful life of Katoto Reservoir could potentially 

be reduced to far below the estimated lifespan of 120-160 years.  

Key Words: Geographic Information Systems (GIS); Semi-Arid; Sediment Yield; Small Reservoir; Water 

Management; Zimbabwe 
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Introduction 

 Water scarcity is a growing issue that currently affects 1.2 billion people globally – 

approximately one-fifth of the world’s population – and another 500 million are approaching this 

situation. Water use has been growing more than twice the rate of population growth, and is both a 

natural and human-caused phenomenon (UNDESCA 2014).  In addition, Africa struggles with land 

degradation, soil erosion, and drought. This is accelerated by the land resettlement program (or 

Zimbabwean Agrarian Reform), which distributes land to Zimbabweans for agricultural purposes and 

trains locals how to manage the land in order to make a profit (Ministry of Lands and Rural Resettlement 

2014). According to the government of Zimbabwe, sedimentation of reservoirs is an extremely serious 

problem with dire future consequences (van der Wall 1986; Mambo et al 2007). The suspected high 

sedimentation rates in this area are of utmost concern, as reservoirs are the main water source for 

communities such as this (Dalu et al 2013). One of the most effective ways of addressing these 

interlinked problems is to establish hydrologic and sediment budgets, which quantifies the capacity and 

assesses the changes in reservoir storage. In this study we evaluate Katoto Reservoir which supplies 

water to the people of Mutoko and the surrounding area. The study employs field observation, 

geospatial modeling, hydrologic analyses, and sediment yield assessment to create hydrologic and 

sediment budgets for the reservoir. The methods and equations selected for this study are the 

reasonable procedures with which to estimate inflows of water and sediment into Katoto Reservoir, 

given the limited data available for this region of Zimbabwe.  

Study Area 

Katoto Reservoir is a small reservoir (~265,000 m3or 215 acre-feet) located within northeastern 

Zimbabwe (Figure 1).  Zimbabwe is a landlocked country bordered to the south by South Africa, to the 

east by Mozambique, to the west by Botswana and Namibia, and to the northwest by Zambia. In 

between these borders is an extensive inland plateau – Africa’s Great Plateau – dropping northwest 

toward the Zambezi River and south to the Limpopo River. The study area, Mutoko, lies 155 km 

northeast of the capital of Harare in the province of Mashonaland East (Helgren et al 1995; Figure 1). 

 

Figure 1 - An overview of Zimbabwe, and the location of Mutoko in relation to the capital of Harare 

(Veldhuis 2010)  
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The climate of Mutoko, Zimbabwe is semi-arid (615-755 mm/year rainfall) with high intensity 

rainfall generally occurring between November/December and February/March. Negligible amounts of 

rainfall occur between March and November and this time of year is considered the dry season.  As a 

result of these hydrologic conditions, most streams in the area are ephemeral, only flowing during the 

wet season, and are typically underlain by a thick layer of sand (Mansell et al 2005). The geology of 

Zimbabwe is centered on the Zimbabwe Craton, composed of granitoids, schists, and gneisses. This 

basement is overlain by Proterozoic and Phanerozoic sedimentary basins in the north, northwest, and 

east (Treloar 1998). 

 Katoto Reservoir is one of few surface water bodies located within the vicinity of Mutoko. Along 

with small man-made reservoirs, locals rely on groundwater resources and alluvial aquifers found 

beneath the local ephemeral streams. These sources provide water for agricultural (cattle included) and 

personal use.  

Methodology 

Data Sources: 

During the summer of 2013, an investigation into the water resources of Mutoko, Zimbabwe 

was undertaken. A bathymetric survey of the reservoir was conducted to measure the reservoir’s 

current volume. The bathymetric survey was completed by measuring the depth of the reservoir on a 5 

ft. by 5 ft. grid within a rowboat using a weighted tape.  The X-Y location and depth were recorded 

within each survey grid cell and any measurement anomalies or external issues were noted. Other 

geospatial data employed in this study included a 1-arc-second (30 m) digital elevation model (DEM) 

obtained from the USGS (2014) and aerial photograph through ERIS (2014).  The DEM was employed in 

the delineation of Mutoko Reservoir Watershed and was combined with the bathymetric data to 

generate a digital elevation of the reservoir.  

All hydrologic parameters (i.e. evaporation, soil moisture change, groundwater runoff, 

groundwater storage change, and precipitation) were compiled from the literature or government 

sources for Zimbabwe or climatologically similar locations.  The hydrologic parameters employed for the 

hydrologic analysis and sediment yield analysis are presented in Table 1.  

Table 1 - The hydrologic parameters used in the hydrologic budget for Katoto Reservoir and sediment 

yield analysis for the Mutoko Reservoir Basin. 

 

Values Used Source Author(s)/Year

Precipitation (P) 615-755 mm/year Mugabe, et al (2003)

Soil Moisture Change (ΔSM) 226.5 mm/year Mugabe, et al (2007)

Groundwater Runoff (GWR) 14.35 mm/year MacDonald, et al (2014)

Groundwater Storage Change (ΔGWS) -.009 106m3/year Love, et al (2011)

Evaporation 69.6 mm/year Mugabe, et al (2003)
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Drainage Basin Area Calculation: 

The Arc GIS “Fill tool” was applied to the 1-Arc-Second DEM to fill in gaps or smooth over any 

large errors in the DEM.  Filling any errors in the DEM enables the Arc-hydro tools to realistically model 

various hydrologic aspects of the landscape represented by the DEM. The Flow Direction tool was then 

used to give the water flow a specific direction. To create an outlet point in the reservoir, or pour point, 

a point feature class was created and digitized at the lowest point on the spillway. The DEM was used to 

identify the lowest point. Next, the Flow Accumulation tool was employed to compute the accumulated 

number of cells (or area) that was draining to any particular cell, creating a grid and network of streams. 

The Snap to Pour Point function was then used to delineate the sub-basin of interest and to calculate 

the geometry of this basin in order to find the area. Next, break values were used to create a raster that 

had stream cells corresponding to a threshold area of 5 km2. This created a calculation raster to define 

the location and approximate flow of streams. The Stream Link tool was then used to assign a unique 

number to each stream segment in the raster, and the Stream Order tool was used to create an order of 

flow between the stream segments as given by the numbers assigned using Stream Link. The Strahler 

Method was selected and using the Stream to Feature tool, the stream raster was converted to a 

polyline feature class. The Flow Length tool was used to compute the flow distance from each cell to the 

most downstream cell. Next, the Basin tool was used to identify which cells belonged to a specific basin, 

creating a drainage boundary for the basin. Finally, the Raster to Polygon tool was used to generate a 

polygon layer depicting the boundary of the basin and to calculate the geometry of the basin, producing 

the area of the watershed. 

Reservoir DEM Development and Volume Calculations: 

The volume of Katoto Reservoir was found first by digitizing the reservoir using the polygon tool 

to outline it and create a separate layer. Then, a grid was created and the bathymetric data (collected in 

Zimbabwe) was converted to data elevations (m) found using the DEM, and input. The reservoir was 

manually contoured every 0.5 m using the line tool, and the polygon tool was used to create a final basin 

based on localized streams that had not been digitally detected. The area of the reservoir was 

subtracted from this new layer, creating another separate layer. Next, the Topo to Raster tool was used 

to create a topographic map within this layer, and elevation points were added (Figure 2). The Surface 

Volume tool was then used to calculate the reservoir volume for each elevation (represented by the 

contour lines shown in Figure 2). The reservoir volume calculation was finalized at each reservoir water 

surface elevation (RWSE) using the Calculate Geometry function (Table 2). 
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Figure 2 - A topographic representation of Katoto Reservoir (light yellow/green areas in center), with 

bathymetric contour lines representing RWSEs, is shown. The surrounding area (dark 

green/yellow/red/white) represents the topography of the final basin, with elevation points added.  

Table 2 shows the reservoir volume calculated for each RWSE. 

 

 

Determination of Hydrologic Budget using the Water Balance Equation: 

  The water balance was used to determine the overland flow (OF) within Katoto Reservoir Basin 

(see Dunne et al 1978). 

𝑃 = 𝐴𝐸𝑇 + 𝑂𝐹 + ∆𝑆𝑀 + ∆𝐺𝑊𝑆 + 𝐺𝑊𝑅 + 𝐼     (Eqn. 1) 

Which implies that, 𝑂𝐹 = 𝑃 − 𝐴𝐸𝑇 − ∆𝑆𝑀 − ∆𝐺𝑊𝑆 − 𝐺𝑊𝑅   (Eqn. 2) 

Where P = precipitation, OF = overland flow, ΔSM = soil moisture change, ΔGWS = change in 

groundwater storage, GWR = ground water runoff, and I = interception. All parameters were calculated 

in mm/year, and I was presumed to be negligible due to land cover within the semi-arid Katoto 

Reservoir Basin. The change in groundwater storage (ΔGWS) of -.009 10⁶m³/year was also considered 

negligible (see Table 1). The parameters used in the water balance equation were compiled from 

literature which used remote sensing and/or field method techniques to determine the values for these 

parameters either from East Zimbabwe, or semi-arid climates and geographic settings similar to that 

 Reservoir Water Surface Elevation (m) Reservoir Volume (m3)

671.5 265000

671 151000

670.5 100000

670 61500

669.5 34600

669 14900

668.5 4780

668 170
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found in Katoto Reservoir Basin (Table 1). According to Shahin 2002, actual evapotranspiration (AET) 

values were found to be approximately equal to evaporation (E) values in semi-arid African 

environments. Due to a lack of available actual evapotranspiration data for East Zimbabwe, evaporation 

data was used, yielding the following equation:  

𝑂𝐹 = 𝑃 − ∆𝑆𝑀 − ∆𝐺𝑊𝑆 − 𝐺𝑊𝑅 − 𝐸   (Eqn. 3) 

Sediment Yield and Reservoir Storage Estimation Methods: 

 The number of years the reservoir would take to silt in at each Reservoir Water Surface 

Elevation (RWSE) was found by dividing the total reservoir volume by the average annual sediment 

volume, or sediment yield (Sy).  The RWSE refers to the contoured elevations within Katoto Reservoir 

Figure 2), along with the corresponding volume. A range of values was used for the sediment 

concentration, producing a high, low, and average Sy value (Eqn. 4; Tables 4-9). The Wallingford Method 

(Dalu et al 2013) was used to calculate sediment yield: 

𝑆𝑦 = 𝐶𝑠 ×
𝑂𝐹

1000
   (Eqn. 4) 

Where Sy = sediment yield (t/km²year), Cs = sediment concentration (g/L) and OF = overland flow 

(mm/year). A range of Cs values (22.5 to 115 g/L) was applied here to confine sediment yield estimates 

using likely upper and lower bounds of sediment concentrations for Katoto Reservoir Basin. The range of 

Cs values used was taken from a case study in Sedbou, Algeria (Bisantino et al 2011), which has a similar 

climate to the study area in Zimbabwe. 

Results  

Using the GIS analysis described above, the area of Katoto Reservoir Basin was estimated to be 7.6 km2. 

Next, the upper and lower bounds of average annual precipitation were used to confine the likely inflow 

of water (discharge) into Katoto Reservoir.  Using Equation 3 the lower bound for annual discharge into 

Katoto Reservoir was estimated as follows: 

The lower bound of annual runoff depth (or OF) for Katoto Reservoir Basin is:    

𝑂𝐹 = 615
𝑚𝑚

𝑦𝑒𝑎𝑟
− 69.6

𝑚𝑚

𝑦𝑒𝑎𝑟
− 226.5

𝑚𝑚

𝑦𝑒𝑎𝑟
− 0

𝑚𝑚

𝑦𝑒𝑎𝑟
− 14.35

𝑚𝑚

𝑦𝑒𝑎𝑟
= 305.6

𝑚𝑚

𝑦𝑒𝑎𝑟
 

The upper bound of annual runoff depth (or OF) for Katoto Reservoir Basin is:    

𝑂𝐹 = 755
𝑚𝑚

𝑦𝑒𝑎𝑟
− 69.6

𝑚𝑚

𝑦𝑒𝑎𝑟
− 226.5

𝑚𝑚

𝑦𝑒𝑎𝑟
− 0

𝑚𝑚

𝑦𝑒𝑎𝑟
− 14.35

𝑚𝑚

𝑦𝑒𝑎𝑟
= 444.6

𝑚𝑚

𝑦𝑒𝑎𝑟
 

 

The lower bound of the annual runoff volume for Katoto Reservoir Basin is:  

𝑂𝐹 = 7,600,000 𝑚2 × 0.31
𝑚

𝑦𝑒𝑎𝑟
= 2,356,000

𝑚3

𝑦𝑒𝑎𝑟
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The upper bound of the annual runoff volume for Katoto Reservoir Basin is: 

𝑂𝐹 = 7,600,000 𝑚2 × 0.45
𝑚

𝑦𝑒𝑎𝑟
= 3,420,000

𝑚3

𝑦𝑒𝑎𝑟
 

Table 3 – The overland flow (OF) and annual runoff volume values calculated, in relation to the lower 

and upper bounds of average precipitation used in this study. 

 

Sediment Yield Calculations: 

 Here the sediment yield (Sy) was calculated for likely upper and lower bounds of sediment 

concentration in Katoto Reservoir Basin using the Wallingford Method (Eqn. 4; see Dalu et al 2013). The 

range of Cs values used (22.5 to 115 g/L) was taken from a study of the Sedbou, Algeria area which has a 

similar climate to Katoto Reservoir Basin (Bisantino et al 2011).  

The sediment yield for the lower bound of annual precipitation and sediment concentration was 

estimated to be:  

𝑆𝑦 =   22.5
𝑔

𝐿
×  

305.6 𝑚𝑚/𝑦𝑒𝑎𝑟

1000
= 6.9 𝑡/𝑘𝑚2/𝑦𝑒𝑎𝑟 

The sediment yield for the upper bound of annual precipitation and sediment concentration was 

estimated to be:  

𝑆𝑦 =   115
𝑔

𝐿
× 

444.6 𝑚𝑚/𝑦𝑒𝑎𝑟

1000
= 53.1 𝑡/𝑘𝑚2/𝑦𝑒𝑎𝑟 

 

The lower bound for the volume of soil being delivered to Katoto Reservoir was calculated to be: 

6.9 𝑡 / 𝑘𝑚2/𝑦𝑒𝑎𝑟 × 7.6 𝑘𝑚2 × 1.6 𝑡/𝑚3 = 83.9 𝑚3/𝑦𝑒𝑎𝑟 

The upper bound for the volume of soil being delivered to Katoto Reservoir was calculated to be: 

53.1 𝑡 / 𝑘𝑚2/𝑦𝑒𝑎𝑟 × 7.6 𝑘𝑚2 × 1.6 𝑡/𝑚3 = 645.7 𝑚3/𝑦𝑒𝑎𝑟 

Converting the calculated Sy values above to cubic meters per year results in a possible range of 

sediment yield values from a low value of 83.9 m³/year to a high value of 645.7 m³/year, averaging 

364.8 m³/year. Using these sediment yields and the volume of Katoto Reservoir, estimates for the rate 

of sedimentation were calculated. Tables 4 through 6 present the estimated rates on the infilling of 

Katoto Reservoir.   

Precipitation (mm/yr) Overland Flow (m/year) Annual Runoff Volume (m3)

615 (lower bound) 0.31 2356000

755  (upper bound) 0.45 3420000
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Table 4 - The number of years calculated for the reservoir to completely silt in for each RWSE and 

reservoir volume. The low bound for overland flow and sediment concentration were used.  

 

 

Table 5 - the number of years calculated for the reservoir to completely silt in for each RWSE and 

reservoir volume. The upper bound for overland flow and sediment concentration were used. 

 

Discussion 

 Sedimentation is a major concern for Mutoko specifically and Zimbabwe as a whole. The rate of 

sedimentation for Katoto Reservoir was calculated at half meter increments from the maximum water 

surface elevation to nearly the maximum depth of the reservoir. Using these values, water resource 

managers have an estimate of the future losses in Katoto Reservoir’s storage capacity.  This information 

will allow them to better allocate the water from this reservoir and assess the need to develop new 

water resources to offset future water storage losses.  A range of Sy values were applied here to provide 

managers an estimate, while accounting for possible error due to uncertainties in the amount of rainfall 

(mm), rainfall intensity, land use and antecedent conditions. The average values for the estimated 

lifespan of Katoto Reservoir reflect the annual variation in water elevation as a result of the semi-arid 

climate (Table 6). According to the local population, RWSE’s of 669 – 671.5 m are most common, and 

RWSE’s of 668-668.5 m do not yet occur during the dry season. In order to more accurately reflect actual 

water level variations in the reservoir, two average values were calculated – one including all RWSE 

values, and one excluding surface elevations of 668 m and 668.5 m. The second average will be used in 

evaluating the life-span of the reservoir unless otherwise noted. 

 

 Reservoir Water Surface Elevation (m) Reservoir Volume (m3) Sediment Yield (m3/year) Number of Years 

671.5 265000 83.9 3158.5

671 151000 83.9 1799.8

670.5 100000 83.9 1191.9

670 61500 83.9 733

669.5 34600 83.9 412.4

669 14900 83.9 177.6

668.5 4780 83.9 57

668 170 83.9 2

 Reservoir Water Surface Elevation (m) Reservoir Volume (m3) Sediment Yield (m3/year) Number of Years 

671.5 265000 645.7 410.4

671 151000 645.7 233.9

670.5 100000 645.7 154.9

670 61500 645.7 95.2

669.5 34600 645.7 53.6

669 14900 645.7 23.1

668.5 4780 645.7 7.4

668 170 645.7 0.3
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Table 6 shows each Sy value used, along with the average number of years of useful life for the 

reservoir. *Due to current water level variations, plane heights 668 m and 668.5 m were disregarded in 

the calculation depicted in the third column.  

 

 Based on current climate and land use conditions Katoto Reservoir will become completely 

infilled with sediment within the next 160 to 940 years (Tables 4-6).  As mentioned, the reservoir does 

not currently exhibit RWSE’s of 668 m and 668.5 m, giving validity to column three (Average Number of 

Years*) as an approximate low value. As the reservoir silts in, resulting in a reservoir volume and area 

decrease, column two (Average Number of Years) will become more valid (Table 6).  

From 1933 to 1993, it has been shown that national mean minimum and maximum ambient 

temperatures have risen by approximately +0.8 degrees Celsius. Over the next 100 years, it is predicted 

that the mean temperature will rise 1 degree Celsius (Waylen and Henworth 1996). This temperature 

increase will result in increased evaporation rates. If increased evaporation rates are not matched by an 

increase in precipitation rate, portions of Zimbabwe could shift from semi-arid to arid, making water 

management more difficult. Climate change has also been modeled based on past and current variations 

due to the El-Niño Southern Oscillation, the cyclic warming and cooling of the ocean surface of the 

central and eastern Pacific (Waylen and Henworth 1996).  This modeling has indicated a potential 10% 

decrease in precipitation totals expected by 2090 (Unganai 1996).  

 Sediment yield is not simply used in the modeling of reservoir lifespans, but is also a useful 

indicator for assessing current land use changes, affecting current rates of erosion (Bisantino 2011). The 

variation in precipitation rates in semi-arid environments enhances the role of infrequent flood events 

(Soler et al 2007), which deposit the suspended sediment load on the banks of rivers. As a consequence, 

suspended sediment concentrations in semi-arid rivers remain high, resulting in problems for small 

reservoir water management efforts (Bisantino 2011).  

 Sediment yield is a useful indicator for assessing current land use changes (Bisantino 2011). 

Katoto Reservoir has been silting in due to its semi-arid environment, causing high suspended sediment 

concentrations in streams, as well as land degradation upstream from the point of deposition. Land 

degradation in Zimbabwe has been caused mainly by deforestation as the country continues to develop 

(van der Wall 1986; Mambo and Archer 2007), causing an increase in erosion rates and sedimentation in 

waterways throughout the nation. Land degradation and deforestation is the most widespread in 

communal areas, where large tracts of land are dedicated to agriculture and cattle grazing, causing soil 

infertility (Dalu et al 2013). Recently, due to the land resettlement program (or Zimbabwean Agrarian 

Reform) – in which land is distributed to Zimbabweans for agricultural purposes (Ministry of Lands and 

Rural Resettlement 2014) – deforestation in Zimbabwe has increased from 1.41% (1990-2000) to 16.4% 

(2000-2005). This increase in deforestation has resulted in enhanced soil erosion, rendering large tracts 

Sediment Yield (m3/year) Average Number of Years Average Number of Years *

83.9 941.5 1245.5

645.7 122.4 161.9
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of land virtually unusable. This threatens water capacity of reservoirs throughout the country (Mambo 

and Archer 2007).  

Due to a predicted decrease in precipitation yields, it is necessary to further evaluate Table 4, 

showing a sediment yield of 83.9 m³/year. This OF value was calculated using a low annual precipitation 

yield estimate and, therefore, more accurately showcases predicted future circumstances. To more 

accurately reflect the variation in RWSE, an emphasis was put on the average values calculated (Table 

6). Compared to values associated with an OF value of 645.7 m³/year, the average number of years until 

the reservoir becomes unusable is lower due to a decrease in precipitation and, consequently, a 

decrease in the reservoir’s maximum capacity. Here, “unusable” refers to the point in time at which 

Katoto Reservoir becomes an intermittent water source, rather than a perennial water source. The 

range of values then changes from 160-940 years to 120-160 years (Table 6). However, taking into 

account other factors such as population growth resulting in increased extraction values, predicted 

increases in evaporation (Unganai 1996), and higher sediment yield values due to land degradation 

(Dalu et al 2013), the lifespan of the reservoir could fall below the estimated 120-160 years.    

 In addition to the data collected in this investigation, other figures used in these calculations 

were taken from multiple sources which represent the scale of Katoto Reservoir and its surrounding 

climate. This potential source of error adds to the uncertainty of the calculated estimates concerning the 

projected useful life of the reservoir. It is also important to note that current evapotranspiration rates 

were not accounted for in the methods selected. Future trends, such as an increase in temperature and 

evaporation rate (Waylen and Henworth 1996), population growth resulting in increased extraction 

values, and higher sediment yield values (Dalu et al 2013), were also not considered. These will have a 

significant effect on the useful lifespan of the reservoir. As future investigations are conducted and 

additional hydrologic measurements in and around the reservoir are collected, less reliance on general 

information sources will occur and the reliability of future calculations will improve.  

 Katoto Reservoir is considered a multiple-use small reservoir, and is currently used for laundry, 

bathing, drinking water (for residents and cattle), agricultural irrigation, and the watering of small local 

gardens. Other sources of water in the area include local streams during the rainy season, wells, and 

alluvial aquifers during the dry season. Of the few wells that are available, one is briny and, therefore, 

unusable. These limited water sources are a buffer during the dry season. Though the community is 

vaguely aware of the reservoir’s limitations, management efforts are hindered by inadequate knowledge 

of actual water consumption from the reservoir; future rainfall, temperature, and evaporation 

predictions; and the effect of an increasing population, on the volume of the reservoir throughout the 

year. As a short-term solution, raising the height of the spillway could increase the capacity of the 

reservoir. In the future, the harvesting of rainwater during the rainy season should be evaluated as a 

viable supplemental water source, as well as the more communal use of alluvial aquifers of non-

perennial rivers (Hamer et al 2008).  

 Future studies in this area should include an investigation of the factors controlling groundwater 

flow in the sandy beds of ephemeral streams, as well as further analysis regarding the intake and 

outflow of the reservoir. Additionally, rather than only focusing on hydrologic factors, Mutoko’s 
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reservoir extraction outtake should also be studied and adjusted according to positive population trends 

(therefore increasing the community’s outtake). The relatively small size of this reservoir increases the 

impact that these non-hydrologic factors have on the volume of water present at any given time and, 

therefore, on the lifespan of the reservoir.  

Conclusions 

The human modification of local and global hydrologic cycles continues to expand the serious 

issue of water scarcity.  Increases in the human populations of developing countries, land degradation, 

and soil erosion result in ever increasing demands on the water resources in these areas. Due to the 

reliance on small, multiple-use reservoirs as a primary water source by residents in rural Zimbabwe, it is 

imperative to develop further insights into, and a greater understanding of the linkage between 

hydrology, land use, and water resource needs in order to develop resilient water supplies in these 

areas. Here, a hydrologic and sediment budget was developed to inform the management of the 

265,000 m3 (215 acre feet) Katoto Reservoir located near Mutoko, Zimbabwe (155 km northeast of 

Harare, Zimbabwe).    

Assuming present hydrologic and land use conditions remain the same, the entire reservoir may 

be completely infilled with sediment within 160-940 years (Table 6). However, taking into account a 

potential 10% decrease in precipitation totals expected by 2090 (Unganai 1996), Katoto Reservoir could 

become unusable within 120-160 years (Table 6). Considering other factors such as population growth 

resulting in increased extraction values, increased evaporation due to climate change (Unganai 1996), 

and higher sediment yield values due to shifting land use (Dalu et al 2013), the lifespan of Katoto 

Reservoir could potentially be reduced to far below the estimated lifespan of 120-160 years.  

 Although this is a simplistic estimation, it may be used as a baseline for future water 

management efforts in the area. With a potential lifespan of less than 120 years, Katoto Reservoir must 

be managed in order to be able to sustain the livelihoods of the thousands of residents who use it. 

Raising the height of the spillway, taking advantage of alluvial aquifers, and developing methods of 

harvesting rainwater during the rainy season are a few actions that may be taken to lengthen the 

lifespan of the area’s main water resource. More research must be completed in order to determine the 

reservoir’s absolute lifespan, and design a water management plan accordingly. Additionally, an increase 

in the education of local villagers concerning the monitoring and tracking of real time data (e.g. 

precipitation totals, population growth, etc.) would improve the accuracy of information needed for 

future studies.   
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