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AN ABSTRACT OF THE RESEARCH PAPER OF

HAMDAN ALSULAIMANI, for the Master of Science in Mathematics, presented on

NOV 1 2012, at Southern Illinois University Carbondale.

TITLE: Diagonal (Triangular) Matrices

PROFESSOR: Dr. R. Fitzgerald

I present the Triangularization Lemma which says that let P be a set of properties,

each of which is inherited by quotients. If every collection of transformations on a space of

dimension greater than 1 that satisfies P is reducible, then every collection of transforma-

tions satisfying P is triangularizable. I also present Burnside’s Theorem which says that

the only irreducible algebra of linear transformations on the finite-dimensional vector space

V of dimension greater than 1 is the algebra of all linear transformations mapping V into V .

Moreover, I introduce McCoy’s Theorem which says that the pair {A,B} is triangularizable

if and only if p(A,B)(AB-BA) is nilpotent for every noncommutative polynomial p. And

then I show the relation between McCoy’s Theorem and Lie algebras.

iii



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Simultaneous Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Diagonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The Triangularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Triangularization And Reducibility . . . . . . . . . . . . . . . . . . . . . . 11

4 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Diagonal (Triangular) Matrices And Lie Algebra . . . . . . . . . . . . . . 24

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



INTRODUCTION

This paper shows important definitions and theorems for matrices. The main purpose

in writing this paper is to explain the concepts of simultaneous diagonalization (triangu-

larization) of matrices and how they are related to Lie algebra. Moreover, this paper may

help the students and the mathematical researchers in the area of matrices.

Chapter 1 reviews some basic concepts which help us to understand some definitions

and to prove some theorems in next chapters. Also it contains some examples as a review

for reader.

Chapter 2 presents some theorems which are related with the simultaneously diago-

nalizable matrices and it presents the proofs of these theorems. Also, it shows that two

matrices are simultaneously similar to diagonal matrices if and only if they commute and

each is similar to a diagonal matrix.

Chapter 3 introduces the triangularizablility of transformations. Also this chapter

shows some important theorems which are related with concepts of the triangularizablility

as Burnside’s Theorem which says that the only irreducible algebra of linear transforma-

tions on the finite-dimensional vector space V of dimension greater than 1 is the algebra

of all linear transformations mapping V into V and McCoy’s Theorem which says that

the pair {A,B} is triangularizable if and only if p(A,B)(AB-BA) is nilpotent for every

noncommutative polynomial p.

Chapter 4 presents the definition of a Lie algebra and how it is related with the

simultaneously diagonalization (triangularization) of matrices. For instance, this chapter

proves the theorem which says that the matrices A and B are simultaneously diagonal if

and only if [A,A]=0 where A is the lie algebra generated by A, B and the matrices A,

B are diagonalizable. Moreover, it shows that the matrices A and B are simultaneously

triangularizable if and only if the Lie algebra A is solvable.
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CHAPTER 1

BACKGROUND

1.1 REVIEW

This chapter reviews some basic concepts of linear algebra needed for the later chapters.

This material is adapted from [1]. Throughout V denotes a vector space over C.

Let V∗ be all linear tranformations T : V −→ C and let V∗∗ be all linear transformations

S : V∗ −→ C .

Definition. Consider the evaluation map is

e : V −→ V∗∗

e(v) = Sv Sv(T ) = T (v)

V is reflexive if e is 1-1 and onto. In this case, every linear S : V∗ −→ C. Looks like

S = Sv for some v ∈ V .

Theorem 1.1.1. If V is finite dimensional, then V is reflexive.

Theorem 1.1.2. ( Dimension Theorem )

Let V and W be a vector spaces, and let T : V −→ W be linear. If V is finite-dimensional,

then

nullity(T )+ rank(T ) = dim(V)

Definition. Let λ be an eigenvalue of A, then any non-zero vector X which satisfies the

relation

(λI − A)X = 0

(i.e AX = λX) is called the eigenvector of A, and it is said to be associated with the

eigenvalue λ.

2



Definition. Let T be a linear operator on a vector space V , and λ be an eigenvalue of T .

Define Eλ = {x ∈ V : T (x) = λx} = N(T − λI). The set Eλ is called the eigenspace of T

corresponding to the eigenvalue λ. Namely, the set of all eigenvectors is the eigenspace Eλ.

Example 1.1.1. Let

A =









1 1

−2 4









First, we have to find characteristic polynomial(det(tI − A)) to find eigenvalues. Now,

CP=det(tI−A)= t2 − 5t+ 6=(t-2)(t-3), then λ1 = 2 and λ2 = 3 . Thus λ1 and λ2 are the

eigenvalues of A. Second, we have to find null space of A − λI to find the eigenvectors of

A. When λ1 = 2 , then (A− 2I)x = 0 , so the eigenvector of A is









1

1









.When λ2 = 3 , then (A− 3I)x = 0 , so the eigenvector of A is









1/2

1









Theorem 1.1.3. Let T be a linear operator on a finite-dimensional vector space V, and

let λ be an eigenvalue of T having multiplicity m. Then 1 ≤ dim(Eλ) ≤ m

Definition. An eigenvalue of a matrix is regular if its multiplicity is equal to the dim(Eλ).

Theorem 1.1.4. A matrix is similar to a diagonal matrix if and only if all its eigenvalues

are regular.

This theorem states, in fact, that A is similar to a diagonal matrix if and only if

dimR(λI − A) = n−mλ(A) for every value of λ.

3



Theorem 1.1.5. Let V be a vector space with dimension n. Then every linearly independent

subset of V can be extend to a basis for V.

Definition. A matrix A ∈ Mn×n(C) is called nilpotent if, for some positive integer k,

Ak = 0, where 0 is the n× n zero matrix.

4



CHAPTER 2

SIMULTANEOUS DIAGONALIZATION

2.1 DIAGONAL MATRICES

In general, this chapter studies matrices which are simultaneously similar to diagonal

matrices. We show that two matrices are simultaneously similar to diagonal matrices if and

only if they commute and each is similar to a diagonal matrix. This material is adapted

from [4].

Definition. The matrices A,B,C, ... are simultaneously similar to diagonal (triangular)

matrices if there exists a matrix S such that S−1AS,S−1BS,S−1CS,...are all diagonal

(triangular) matrices.

Definition. A matrix of type (r1, ..., rk) is a matrix of order r1 + ...+ rk having the block

diagonal form dg(A1, ...,Ak) where A1, ...,Ak are of order r1, ..., rk respectively.

Example 2.1.1. The type of matrix is not defined uniquely. Thus the matrix
(

a11 a12 0
a21 a22 0
0 0 a33

)

may equally well be said to be of type (2,1) or of type (3).

Theorem 2.1.1. Let λ1, ..., λk be distinct numbers, and write r1 + ... + rk = n. Then an

n× n matrix commutes with

D=dg(λ1Ir1, ..., λkIrk
)

if and only if it is of type (r1, ..., rk).

Proof. (⇒) Let AD = DA and write A in the partitioned form

5



A =

























A(11) A(12) · · · A(1k)

A(21) A(22) · · · A(2k)

...
...

. . .
...

A(k1) A(k2) · · · A(kk)

























, and let D =

























λ1Ir1 0 · · · 0

0 λ2Ir2 · · ·
...

...
...

. . . 0

0 0 · · · λkIrk

























,

where A(ij)is an ri × rj matrix. Then

AD =

























A(11) A(12) · · · A(1k)

A(21) A(22) · · · A(2k)

...
...

. . .
...

A(k1) A(k2) · · · A(kk)

















































λ1Ir1 0 · · · 0

0 λ2Ir2 · · ·
...

...
...

. . . 0

0 0 · · · λkIrk

























,

Then

AD =

























λ1A
(11) λ2A

(12) · · · λkA
(1k)

λ1A
(21) λ2A

(22) · · · λkA
(2k)

...
...

. . .
...

λ1A
(k1) λ2A

(k2) · · · λkA
(kk)

























DA =

























λ1Ir1 0 · · · 0

0 λ2Ir2 · · ·
...

...
...

. . . 0

0 0 · · · λkIrk

















































A(11) A(12) · · · A(1k)

A(21) A(22) · · · A(2k)

...
...

. . .
...

A(k1) A(k2) · · · A(kk)

























,
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Then

DA =

























λ1A
(11) λ1A

(12) · · · λ1A
(1k)

λ2A
(21) λ2A

(22) · · · λ2A
(2k)

...
...

. . .
...

λkA
(k1) λkA

(k2) · · · λkA
(kk)

























,

and therefore λiA
(ij) = λjA

(ij) (i, j = 1, ..., k) . This implies that A(ij) = O when

i 6= j , then

A =

























A(11) 0 · · · 0

0 A(22) · · · 0

...
...

. . .
...

0 0 · · · A(kk)

























,

and thus A is of type (r1, ..., rk).

(⇐) Conversely, let A is of type (r1, ..., rk), then

A =

























A(11) 0 · · · 0

0 A(22) · · · 0

...
...

. . .
...

0 0 · · · A(kk)

























, and let D =

























λ1Ir1 0 · · · 0

0 λ2Ir2 · · ·
...

...
...

. . . 0

0 0 · · · λkIrk

























,

then we have

AD =

























A(11)λ1 0 · · · 0

0 A(22)λ2 · · · 0

...
...

. . .
...

0 0 · · · A(kk)λk

























=

























λ1A
(11) 0 · · · 0

0 λ2A
(22) · · · 0

...
...

. . .
...

0 0 · · · λkA
(kk)

























= DA,

then A of type (r1, ..., rk) commutes with D.

7



Theorem 2.1.2. (Rank-multiplicity theorem)

For every n× n matrix A and every number w we have

dimR(wI −A) ≥ n−mw(A).

Proof. By (Dimension Theorem ) we have

n− dimR(wI − A) = dimN(wI − A), (2.1)

and by theorem(1.1.3) we have

dimN(wI − A) ≤ mw(A). (2.2)

Then, form (2.1) and (2.2) we have

dimR(wI −A) ≥ n−mw(A).

Theorem 2.1.3. If a matrix A of type (r1, ..., rk) is similar to a diagonal matrix, then

there exists a matrix S of type (r1, ..., rk) such that S−1AS is diagonal.

Proof. Write r1+ ...+rk = n and A = dg(A1, ...,Ak) where A1, ...,Ak are of order r1, ..., rk

respectively. If X is any p× p matrix and w any number, put

fw(X) = dimR(wIp − X) +mw(X) − p

By the rank-multiplicity theorem, we have, for all X and w,

fw(X) ≥ 0

Moreover, by theorem (1.1.4) ,

fw(X) = 0 (for all w)

8



if and only if X is similar to a diagonal matrix. Now clearly

fw(A) =

k
∑

i=1

fw(Ai),

and so

k
∑

i=1

fw(Ai) = 0

For all w by hypothesis. Hence fw(Ai) = 0 for i = 1, ..., k and all w. Each matrix Ai

is therefore similar to a diagonal matrix. For i = 1, ..., k let Si be a non-singular matrix and

Di a diagonal matrix , both of order ri, such that S−1
i AiSi = Di. writing S = dg(S1, ...,Sk),

we obtain at once

S−1AS = dg(D1, ...,Dk),

and the theorem therefore proved.

The following is the main theorem of this chapter.

Theorem 2.1.4. Two matrices are simultaneously similar to diagonal matrices if and only

if they commute and each is similar to a diagonal matrix.

Proof. (⇒) Let A, B be given matrices. If there exists a matrix S such that S−1AS ,

S−1BS are both diagonal, then these two matrices commute and therefore A and B are

commute. Let we explain this part of proof. Let D1 = S−1AS and let D2 = S−1BS. As we

know D1D2 = D2D1, then L.H.S=D1D2 = S−1ASS−1BS = S−1ABS and R.H.S=D2D1 =

S−1BSS−1AS = S−1BAS. Since D1D2 = D2D1, then S−1ABS = S−1BAS, so AB =

BA.

(⇐) Suppose, on the other hand, that AB = BA and that A and B are both similar to

9



diagonal matrices. Let λ1, ..., λk be the distinct eigenvalues of A and let their multiplicities

be r1, ..., rk respectively. There exists , then, a matrix P such that

P−1AP = D=dg(λ1Ir1, ..., λkIrk
)

Now, in view of our hypothesis, P−1AP commutes with P−1BP and hence, by Theo-

rem (2.1.1), P−1BP is of type (r1, ..., rk). Since B is similar to a diagonal matrix; therefore,

by Theorem (2.1.3) there exists a matrix Q, of type (r1, ..., rk) such that Q−1P−1BPQ is

a diagonal. Moreover, again by Theorem (2.1.1), Q commutes with P−1AP, and therefore

Q−1P−1APQ = D=dg(λ1Ir1, ..., λkIrk
)

Thus (PQ)−1A(PQ) and (PQ)−1B(PQ) are both diagonal, and the theorem is

proved.

10



CHAPTER 3

THE TRIANGULARIZATION

3.1 TRIANGULARIZATION AND REDUCIBILITY

There are many known sufficient conditions that a collection of linear transformations

be triangularizable. An important preliminary result is Burnside’s Theorem on existence

of invariant subspaces for algebras of linear transformation and Burnside’s Theorem says

that the only irreducible algebra of linear transformations on the finite-dimensional vector

space V of dimension greater than 1 is the algebra of all linear transformations mapping V

into V . This chapter is adapted from [5].

Throughout this chapter we restrict our attention to collection of linear transforma-

tions on a finite-dimensional vector space over C.

Definition. A subspace W is invariant for a collection C of linear transformations if

Ax ∈ W whenever x ∈ W and A ∈ C . A subspace is nontrivial if it is different from {0}

and from the entire space. A collection of linear transformations is reducible if it has a

nontrivial invariant subspace and is irreducible otherwise.

The central definition is the following.

Definition. A collection of linear transformations is triangularizable if there is a basis

for the vector space such that all transformations in the collection have upper triangular

matrix representations with respect to that basis.

It is clear that triangularizablility is equivalent to the existence of a chain of invariant

subspaces

{0} = W0 ⊂ W1 ⊂ W2 ⊂ ... ⊂ Wn = V ,

with dimension of Wj equal to j for each j and with V the entire vector space. Namely,

if the collection is triangularizable with respect to the basis {e1, e2, ..., en}. Let Wj be the

11



linear span of {e1, e2, ..., ej} for each j. Any such chain is called a triangularizing chain

for the collection.

Quotient spaces will play an important role in this study.

Definition. : Let V be a vector space and T a linear transformation

T : V −→ V .

Suppose N is a T -invariant subspace (i.e if n ∈ N then T (n) ∈ N ). The quotient space:

V/N = {v+N : v ∈ V}. Define T̂ : V/N −→ V/N by T̂ (v+N) = T (v)+N for all v ∈ V .

This is well defined : if v1 + N = v2 + N need to show T̂ (v1 + N) = T̂ (v2 + N). Let

v1 +N = v2+N , then v1−v2 ∈ N . Since N is a T-invariant subspace, then T (v1−v2) ∈ N .

And since T is a linear transformation, then T (v1)−T (v2) ∈ N , so T (v1)+N = T (v2)+N ,

then

T̂ (v1 +N) = T̂ (v2 +N)

is well defined.

Definition. : A property P is inherited by quotients if P is true for (T,V), then P is also

true for (T̂ , V̂).

Theorem 3.1.1. (The Triangularization Lemma) let P be a set of properties, each

of which is inherited by quotients. If every collection of transformations on a space of di-

mension greater than 1 that satisfies P is reducible, then every collection of transformations

satisfying P is triangularizable.

Proof. The proof is by induction on dimV . If dimV=1 then the chain {0} = V0 ⊂ V1 = V

satisfies condition for triangularizability. Namely, V0 and V1 are C-invariant and dimVi = i.

Suppose dimV > 1. Choose a maximal chain of C-invariant subspaces of V (since C is

a collection of T’s).

{0} = M0 ⊂ M1 ⊂ M2 ⊂ ... ⊂ Mn = V ,

12



We need to show dimMk/Mk−1 = 1 for all k ( since the dimMi = i). Suppose instead

that for some k, dimMk/Mk−1 > 1 . Each T ∈ C induces T0 : Mk −→ Mk and

T̂0 : Mk/Mk−1 −→ Mk/Mk−1 as Mk and Mk−1 are C-invariant. Let C0 be the collection

of T0’s and Ĉ0 the collection of T̂0’s). Now, P is true for (Ĉ0, Mk/Mk−1) by hypothesis. So

Mk/Mk−1 is reducible, by hypothesis. So there exists a non-trivial Ĉ0-invariant subspace

L = {x+Mk−1 : x ∈Mk}. Define L∗ = {x ∈Mk : x+Mk−1 ∈ L}.

Claim a: L∗ is T -invariant.

Pick x ∈ L∗ (we want to show that T (x) ∈ L∗). Now, x + Mk−1 ∈ L. Since Mk,

Mk−1 are T -invariant subspace and L is T̂0-invariant subspace, so T (x) ∈ Mk such that

T̂0(x + Mk−1) ∈ L, and T (x) ∈ Mk such that T (x) + Mk−1 ∈ L, then T (x) ∈ L∗, so L∗ is

T -invariant.

Claim b: Mk−1 ( L∗ ( Mk.

First, we want to prove claim 1, claim 2, claim 3, and claim 4 to prove Mk−1 ( L∗ ( Mk.

Claim 1: Mk−1 ⊂ L∗.

Let x ∈ Mk−1, then x+ Mk−1 = 0 + Mk−1 ∈ L, since L is subspace of Mk/Mk−1,

thus x ∈ L∗.

Claim 2: Mk−1 6= L∗.

We want to prove that there exists x ∈ L∗, but x /∈ Mk−1, Since L 6= 0, so there exists

x+ Mk−1 6= 0 + Mk−1, and x+ Mk−1 ∈ L. Then x /∈ Mk−1, and x ∈ L∗.

Claim 3: L∗ ⊂ Mk.

Let x ∈ L∗, then x ∈ Mk (by definition of L∗).

Claim 4: L∗ 6= Mk.

We want to prove that there exists y ∈ Mk, but y /∈ L∗. Since L is nontrivial invariant

subspace of Mk/Mk−1, so L 6= Mk/Mk−1. Then there exists y+Mk−1 ∈ Mk/Mk−1, and

y + Mk−1 /∈ L. Then y ∈ Mk, but y /∈ L∗.
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From claim 1, claim 2, claim 3, and claim 4, then we have claim b ( i.e Mk−1 ( L∗ (

Mk), but this contradicts with maximality of the chain {Mj}. So, dimMk/Mk−1 = 1 for

all k . Then

{0} = M0 ⊂ M1 ⊂ M2 ⊂ ... ⊂ Mn = V ,

satisfies condition for triangularizability.

Theorem 3.1.2. Every commutative collection of linear transformations is triangulariz-

able.

Proof. Let C be a collection of commuting T . We check that commutativity is inherited

by quotient. Say W ⊂ V is a invariant subspace under all T ∈ C . By the definition of a

quotient space

T̂ : V/W −→ V/W

T̂ (v +W ) = T (v) +W for all v ∈ V

We want to prove that T̂1T̂2=T̂2T̂1

T̂1T̂2(v +W ) = T̂1(T2(v) +W )

= T1T2(v) +W

= T2T1(v) +W

= T̂2(T1(v) +W )

= T̂2T̂1(v +W )

Then T̂1T̂2=T̂2T̂1

Our main goal is proving that C is reducible, this means we want to prove that there

exists a non-trivial invariant subspace. First, we need to prove this if all T ’s are a multiple

of the identity. Second, if there exists T1 ∈ C , and T1 is not multiple of identity, then we

14



want to to prove that there exists W which is invariant under C .

Case 1: All T ’s are a multiple of the identity

Pick any W ⊂ V . If w ∈ W , then T (w) = λw ∈ W . Hence W is invariant, so every

subspace is invariant.

Case2: There exists T1 ∈ C , and T1 is not a multiple of identity.

Let λ be any eigenvalue of T1 and let W be corresponding eigenspace. If T2 ∈ C , and

x ∈W , then T1T2(x) = T2T1(x) = T2(λx) = λT2(x),

so T2(x) is an eigenvector for T1, and so T2(x) ∈W . Then W is invariant under C .

It is non-trivial for two reasons :

(a) λ is an eigenvalue so there is eigenvector and so W 6= 0.

(b) If W = V , Then T1λ = λv, for all v ∈W , So T1 is multiple of identity.

This is contradiction, then W 6= V .

From Case 1, Case 2, (a) and (b), we conclude that W is a nontrivial invariant subspace

under C , so C is reducible. Then by Theorem (3.1.1) C is triangularizable.

Definition. : A noncommutative polynomial in the linear transformations {A1, A2, ..., Ak}

is any linear combination of words in the transformations.

We use σ(A) to denote the spectrum ( which in the present, finite-dimensional, case is

simply the set of eigenvalues) of A.

Theorem 3.1.3. (Spectral Mapping Theorem)

Suppose {A1, ..., Ak} is a triangularizable collection of linear transformations, and if p is

any noncommutative polynomial in {A1, ..., Ak}, then

σ(p(A1, ..., Ak)) ⊂ p(σ(A1), ..., σ(Ak)),

where p(σ(A1), ..., σ(Ak))denotes the set of all p(λ1, ..., λk) such that λj ∈ σ(Aj) for all j.

Proof. . This follows immediately from the facts that

(i) the eigenvalues of triangular matrices are the entries on the main diagonal,
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(ii) each of the diagonal entries of a product of given matrices is a product of diagonal

entries, and

(iii) each of the diagonal entries of a sum of given matrices is a sum of diagonal entries of

the given matrices.

Example 3.1.1. Let

A =









1 2

0 3









, and B =









1 2

0 4









,

then

AB =









1 10

0 12









, and A +B =









2 4

0 7









,

then we have σ(AB) = {1, 12} ⊂ σ(A)σ(B) = {1, 3}.{1, 4} = {1, 3, 4, 12} and also we have

σ(A+B) = {2, 7} ⊂ σ(A) + σ(B) = {1, 3} + {1, 4} = {2, 4, 5, 7}.

Theorem 3.1.4. Every linear transformation on a finite-dimensional space is the sum of

transformations of rank 1.

Proof. Recall rank(T )=1 means dimR(T )=1. Also if linear

T : V −→ C

then the matrix of T is a row 1 × n matrix. Pick any linear

S : V −→ V

and pick basis B then [S]B: is a n× n matrix.

[S]B =

























r1 · · ·

0 · · ·

...
...

0 · · ·

























+

























0 · · ·

r2 · · ·

...
...

0 · · ·

























+ · · · +

























0 · · ·

0 · · ·

...
...

rn · · ·

























all rank 1
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where ri is the ith row of [S]B, so the sum of matrices is rank 1.

Definition. An algebra of linear transformations is a collection of linear transformations

that is closed under addition, multiplication, and multiplication by scalars. An algebra is

unital if it contains the identity transformation. In a unital algebra with identity I , we use

the notation λ is an abbreviation for λI . The notation B(V) is used to denote the algebra

of all linear transformations mapping V into V . ( The notation L(V) is also common.)

If A is an algebra of linear transformations and x is any given vector, then {Ax : A ∈ A}

is easily seen to be an invariant subspace for A. However, for some A and x, {Ax : A ∈ A}

is the entire space (in which case x is said to be a cycle vector for A).

Theorem 3.1.5. (Burnside’s Theorem)The only irreducible algebra of linear transfor-

mations on the finite-dimensional vector space V of dimension greater than 1 is the algebra

of all linear transformations mapping V into V .

Proof. Let A be an irreducible algebra. We first show that A contains a transformation of

rank 1. For this, let T0 be a transformation in A with minimal nonzero rank. We must

show that this rank is 1. If rank (T0) >1, then dimR(T0)>1. So, there would be vectors x1

and x2 such that {T0x1, T0x2} is linearly independent set.

claim: {AT0(x1) : A ∈ A} = V

Set W = {AT0(x1) : A ∈ A}. We want to check that W is invariant under A. Pick

AT0(x1) ∈ W, and pick Â ∈ A, then Â(AT0(x1)) = ÂAT0(x1) = (ÂA)T0(x1),

since A is an algebra, then ÂA ∈ A, so (ÂA)T0(x1) ∈ W. Moreover, W 6= 0 because x1 6= 0.

And as we know that A is irreducible, then only invariant subspace is 0 or V . Therefore,

W = V which proves the claim. Since {AT0(x1) : A ∈ A} = V , then there is A0 ∈ A such

that A0T0x1 = x2. Then {T0A0T0x1, T0x1} is linearly independent and T0A0T0 − λT0 6= 0
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for all scalars λ ( since if T0A0T0 − λT0 = 0 then multiplying by x1 would give T0A0T0x1

and T0x1 dependent). Let we take the restriction

T0A0|T0(v) : T0(V) −→ T0(V)

Then T0A0(T0v) = T0(A0T0v) ∈ T0(V)

let λ0 be an eigenvalue of T0A0|T0(v), then there exists 0 6= z ∈ T0(V) such that T0A0(z) =

λ0z, and (T0A0|T0(v) − λ0I)(z) = 0. Moreover, T0A0|T0(v) − λ0I is not invertible. We want

to explain this part of proof briefly

V
T0−→ T0(V)

T0A0|T0(v)−λ0I
−−−−−−−−−→
is not invertible

T0(V)

Then we have R(T0A0|T0(V) − λ0I) ( T0(V), so R((T0A0 − λ0I)T0) ( T0(V). Thus

rank((T0A0 − λ0I)T0) < rankT0 .This contradicts the minimality of the rank of T0, then

we conclude that T0 has rank 1 (i.e dim(T0) = 1).

Pick a nonzero vector y0 ∈ R(T0). Since R(T0) = {αy0 : α ∈ C}, For any x ∈ V and

T0(x) ∈ R(T0) we have

T0(x) = αy0 for some α ∈ C

Define

φ0 : V −→ C

by

φ0(x) = α, α ∈ C

18



We want to prove that φ0 is linear. Now, φ0(x+ y) satisfies

T0(x+ y) = φ0(x+ y)y0

L.H.S = T0(x) + T0(y)

= φ0(x)y0 + φ0(y)y0

= [φ0(x) + φ0(y)]y0

= φ0(x+ y)y0 = R.H.S

⇒ φ0 is linear. so

T0(x) = φ0(x)y0 (3.1)

Since every linear transformation of rank 1 has the form x → φ(x)y for a vector y

in V and linear functional φ, and by Theorem (3.1.4) every linear transformation on a

finite-dimensional space is the sum of transformations of rank 1, it suffices to show that A

contains every T of the form T (x) = φ(x)y.

Let F = {φ ∈ V∗ : if S(x) = φ(x)y0 then S ∈ A} ⊂ V∗. We want to prove that

F = V∗. Suppose F 6= V∗. Pick ψ ∈ V∗, ψ /∈ F , and pick a basis of F : ψ2, ..., ψs.

Now, we have ψ /∈ F and F = span{ψ2, ..., ψs} , then by theorem (1.1.5) ψ, ψ2, ..., ψs are

independent and extend this to a basis of V∗: ψ, ψ2, ..., ψs, ψs+1, ..., ψn

Define

S : V∗ −→ C

by

S(aψ + a2ψ2 + ...+ anψn) = a

Since V is reflexive by Theorem (1.1.1), then S = Sx0 for some x0. Let φ ∈ F , then

φ = a2ψ2 + ... + asψs and we get S(φ) = S(a2ψ2 + ... + asψs) = 0. Since Sx0(φ) = φ(x0),

and S(ψ) = 1, and S(ψ) = ψ(x0) , then we get x0 6= 0 with φ(x0) = 0 for all φ ∈ F .
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We want to summarize what we got from previous paragraph. We assumed F 6= V∗

(in a proof by contradiction), and we got x0 6= 0, φ(x0) = 0 all φ ∈ F . F contains

φ(x) = φ0(Ax) and all A ∈ A. Now, we want to explain why F contains φ(x) = φ0(Ax)

and all A ∈ A. So, we need to show that if S(x) = φ(x)y0 then S ∈ A. Let we say that

S(x) = φ(x)y0 , then we have S(x) = φ0(Ax)y0 and we know that T0(x) = φ0(x)y0 and

T0 ∈ A by equation (3.1). And let A is algebra and A ∈ A, then we have T0A ∈ A,

so S(x) = φ0(Ax)y0 = T0(Ax) = (T0A)x. Thus S = T0A ∈ A. Then we concluded

φ0(Ax0) = 0 and all A ∈ A.

Since T0(x3) is non-zero for some x3 ∈ V and T0(x3) = φ0(x3)y, so φ0(x3) is non-zero

for some x3 ∈ V . Since {Ax0 : A ∈ A} = V by claim, and x3 = Ax0 for some A ∈ A, then

0 6= φ0(x3) = φ0(Ax0). This contradicts with φ0(Ax0) = 0 all A ∈ A. Hence F = V∗. Now,

we have

(1) y0 6= 0 [ because 0 6= T0x1 = φ0(x1)y0]

(2) Claim: Z = {Ay0 : A ∈ A} is invariant subspace. We want to prove Â(Ay0) ∈ Z. let

we pick Ay0 ∈ Z, and pick Â ∈ A

Â(Ay0) = (ÂA)y0 ∈ Z. Since ÂA ∈ A, Z 6= 0 by (1), and V is irreducible. So Z = V

(3)

AT : V −→ C

So AT ∈ V∗

From the previous paragraph, V∗ = F . Now, our object is proving that A contains all rank-

one transformations. Let we pick T a rank-one transformation, then there exists y1 6= 0,

and φ ∈ V∗ with T (x) = φ(x)y1. We want to prove T ∈ A. We have F = {φ ∈ V∗: if

S(x) = φ(x)y0 then S ∈ A}, and we have F = V∗ from previous paragraph. Let y1 = Ay0

by (2) for some A ∈ A, then T (x) = φ(x)Ay0.

Define

T̂ = φ(x)y0

AT̂ (x) = Aφ(x)y0 = φ(x)Ay0 = φ(x)y1.
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Then AT̂ = T , and we have φ ∈ V∗ = F , so T̂ ∈ A and A ∈ A, and T = AT̂ ∈ A. Then

A contains all rank-one transformations. Thus A contains all transformations by Theorem

(3.1.4).

Theorem 3.1.6. (McCoy’s Theorem)

The pair {A,B} is triangularizable if and only if p(A,B)(AB-BA) is nilpotent for every

noncommutative polynomial p.

Proof. (⇒)

If {A,B} is triangularizable, then σ(p(A,B)(AB−BA)) ⊂ p(σ(A), σ(B))(σ(AB)−σ(BA))

by the Spectral Mapping Theorem. Let λ1, λ2, ..., λn are eigenvalues of A, and let

µ1, µ2, ..., µn are eigenvalues of B.

























λ1 ∗ · · · ∗

0 λ2 ∗
...

...
...

. . .
...

0 0 · · · λn

















































µ1 ∗ · · · ∗

0 µ2 ∗
...

...
...

. . .
...

0 0 · · · µn

























−

























µ1 ∗ · · · ∗

0 µ2 ∗
...

...
...

. . .
...

0 0 · · · µn

















































λ1 ∗ · · · ∗

0 λ2 ∗
...

...
...

. . .
...

0 0 · · · λn

























=

























λ1µ1 ∗ · · · ∗

0 λ2µ2 ∗
...

...
...

. . .
...

0 0 · · · λnµn

























−

























µ1λ1 ∗ · · · ∗

0 µ2λ2 ∗
...

...
...

. . .
...

0 0 · · · µnλn

























=

























0 ∗ · · · ∗

0 0 ∗
...

...
...

. . .
...

0 0 · · · 0

























,

we have σ(p(A,B)(AB − BA)) ⊂ {0}, then we have σ(p(A,B)(AB − BA)) = {0}. So

p(A,B)(AB −BA) is nilpotent.
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(⇐) If (AB − BA)v = 0 for all v, then AB − BA = 0, and AB = BA, so the

algebra A generated by A and B is triangularizable by Theorem (3.1.2). Suppose for some

v such that (AB − BA)v 6= 0, call it w = (AB − BA)v, there exists C such that Cw = v.

Namely, pick bases w1, w2, · · · , wn of W and pick bases v1, v2, · · · , vn of V . Define T by

T (
∑

aiwi) =
∑

aivi. Let C be a matrix for T . If A is irreducible, then by Burnside’s

Theorem, C ∈ A, C = p(A,B) for some p. Let D = C(AB − BA), and we have

Dv = v 6= 0

D2v = D(Dv) = Dv = v

D3v = D(D2v) = Dv = v

...

Dkv = v,

so no Dk = 0 ,then D is not nilpotent. So A is reducible and by The Triangularization

Lemma then A is triangularizble. Hence the pair {A,B} is triangularizable.

Example 3.1.2. Let

A =









−11 6

−28 15









, and B =









−14 9

−40 24









,

A and B are triangularizble since they have common eigenvector
(

1
2

)

and let p(A,B) =

A2 + 2AB + 3BA + 4B2

then we have

AB − BA =









12 −6

24 −12









, and p(A,B) =









−1169 627

−2824 1497









,

p(A,B)(AB −BA) =









1020 −510

2040 −1020









, and (p(A,B)(AB − BA))2 =









0 0

0 0









,
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⇒ (p(A,B)(AB-BA)) is nilpotent with k = 2.
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CHAPTER 4

LIE ALGEBRAS

4.1 DIAGONAL (TRIANGULAR) MATRICES AND LIE ALGEBRA

There are a strong relation between Lie algebras and simultaneous diagonalization and

triangularization of matrices. This chapter shows the relation between Lie algebras and the

matrices which are simultaneously similar to diagonal (triangular) matrices. The material

on Lie algebras is from [2]. And the material which is connected with McCoy’s theorem is

already in McCoy’s paper [3].

Definition. Let V be a vector space with product V × V −→ V . The product is called

bilinear on V if

(1)[αa+b,c]=α[a,c]+[b,c]

(2)[a,αb+c]=α[a,b]+[a,c],

for all a, b, c ∈ V and α ∈ C.

Definition. A Lie algebra is vector space V with product V × V −→ V , written as [a,b],

such that

(1)The product is bilinear

(2)[b,a]=-[a,b]

(3)[[a,b],c]+[[b,c],a]+[[c,a],b]= 0,

for all a, b, c ∈ V .

Example 4.1.1. V=R3: [a,b]= a × b (cross product)

Example 4.1.2. If A is an algebra of matrices then [A,B]= AB - BA. Then from definition

(2) is [B,A]= BA - AB = -( AB - BA ) = -[A,B] and (3) is [[A,B],C]+[[B,C],A]+[[C,A],B]

= (AB-BA)C - C(AB-BA) + (BC-CB)A - A(BC-CB) + (CA-AC)B - B(CA-AC) = ABC

- BAC - CAB + CBA + BCA - CBA - ABC + ACB + CAB - ACB - BCA + BAC = 0
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Theorem 4.1.1. The matrices A and B are simultaneously diagonal if and only if [A,A]=0

where A is the lie algebra generated by A, B and the matrices A, B are diagonalizable.

Proof. (⇒) Let A, B are simultaneously diagonal, then by theorem (2.1.4) we have AB =

BA. So, [A,B]= AB - BA = 0. Thus [A,A]=0.

(⇐)If A, B ∈ A, then we have [A,B]= AB - BA. Since [A,A]= 0. So, [A,B]= AB - BA =

0. Thus AB = BA. By hypothesis, we have A and B are diagonalizable, then by Theorem

(2.1.4), then we have that A and B are simultaneously diagonal.

Definition. A Lie algebra L is nilpotent if Lk=0 for some positive integer k.

L is algebra of linear transformation and L
′

=[L,L] is a commutator subalgebra.

Definition. Let L be a Lie algebra. Define

L
′

= [L,L]

L
′′

= [L
′

,L
′

]

...

L(k) = [Lk−1,Lk−1],

then L is solvable if L(k)=0 for some positive integer k.

Theorem 4.1.2. ( Engel’s Theorem )

A Lie algebra L is nilpotent if and only if every matrix in L is nilpotent.

Theorem 4.1.3. (Lie’s theorem) If L is a solvable Lie algebra of a linear transformations

in a finite-dimensional vector space V over C, then the matrices of L can be taken in

simultaneously triangular form.
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Theorem 4.1.4. Let L be the Lie algebra generated by A and B. Then the following state-

ments are equivalent:

1) the matrices A and B are simultaneously triangularizable,

2) for any polynomial p(x,y) in the non commuting variables x and y, the matrix

p(A,B)(AB-BA) is nilpotent,

3) the Lie algebra L is a solvable.

Proof. 1)⇒ 2) is proved by McCoy’s Theorem. 2) ⇒ 3) is proved by Engel’s Theorem,

L
′

= [L,L] is nilpotent, so L is solvable. 3) ⇒ 1) is proved by Lie’s Theorem.
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