Southern Illinois University Carbondale OpenSIUC

Honors Theses

University Honors Program

5-2004

Effects of Sucrose Supplementation on Sexual Maturation and Reproductive Functions of Growth Hormone Receptor Knockout Mice

Besiana Liti

Follow this and additional works at: http://opensiuc.lib.siu.edu/uhp_theses

Recommended Citation

Liti, Besiana, "Effects of Sucrose Supplementation on Sexual Maturation and Reproductive Functions of Growth Hormone Receptor Knockout Mice" (2004). *Honors Theses.* Paper 337.

This Dissertation/Thesis is brought to you for free and open access by the University Honors Program at OpenSIUC. It has been accepted for inclusion in Honors Theses by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Effects of Sucrose Supplementation on Sexual Maturation and

Reproductive Functions of Growth Hormone Receptor

Knockout Mice

By Besiana Liti

Abstract

1 Growth hormone (GH) exerts its cell division-stimulating (mitogenic) effect not directly 2 on cells but indirectly through the mediation of a mitogen whose synthesis and release are 3 induced by growth hormone. This mitogen is called insulin-like growth factor I (IGF-I). 4 The secretion and activity of IGF-I can be influenced by the nutritional status of the 5 individual and by many hormones other than GH. GH resistance occurs in human Laron 6 type dwarfism due to mutations in the GH receptor (GHR) and a mammalian model for 7 GH resistance has been developed in mice through targeted disruption or "knockout" 8 (KO) of the GHR. In GHR-KO mice, GH resistance leads to quantitative deficits in 9 reproductive development and functions, but does not preclude fertility in either sex 10 (Bartke et al., 1999). Secondary consequences of GH resistance in mice include 11 hyperprolactinemia, hypoinsulinemia, IGF-I insufficiency, mild hypothyroidism, and 12 decreased core body temperature. Many of these phenotypic manifestations are consistent 13 with and suggestive of nutritional stress. Sexual maturation and adult reproductive 14 function are tightly linked to nutritional status. Delayed puberty onset and retarded 15 progression of sexual maturation in GHR-KO mice may be due, at least in part, to 16 nutritional stress exacerbated in rapidly growing young and adolescent individuals. 17 Dietary sucrose supplementation aimed at alleviating nutritional stress in the juvenile-to-18 adult transition period did not advance puberty onset in GHR-KO mice. The current study 19 attempts to examine the effects of sucrose supplementation on late stages of sexual 20 maturation in GHR-KO mice. Specifically, we tested the hypothesis that dietary sucrose 21 supplementation during the juvenile-to-adult transition would promote more rapid 22 progression of later stages of sexual maturation and advance maternal age at first

1 conception (MAFC) in female GHR-KO mice. At 65 days post-partum normal and GHR-2 KO female mice were randomly assigned to one of four treatment groups: normal 3 untreated (N-U, n=15), GHR-KO untreated (KO-U, n=15), normal sucrose-supplemented (N-SS, n=15) and GHR-KO sucrose-supplemented (KO-SS, n=15). Untreated control 4 5 mice received normal lab chow diets throughout the remainder of the study, while treated 6 females received standard lab chow supplemented with sucrose (2 parts chow: 1 part 7 sucrose). Five days later females were paired with normal adult males and subsequently 8 monitored daily for pregnancy and parturition. Litter size was recorded and pups were 9 removed on the day of delivery. Females were sacrificed 7 days post-partum and body, 10 uterine, and ovarian weights were recorded. Analysis of variance and Fischer PLSD post 11 hoc analysis were used to determine significant effects of genotype, treatment, and 12 genotype x treatment interaction between groups, with significance at p<0.05. MAFC 13 was significantly affected by genotype (p=0.003), treatment (p=0.034), and genotype x 14 treatment interaction (p=0.024). Regardless of treatment, normal mice conceived first litters roughly 20 days earlier than untreated GHR-KO females (N-U=83.7 +/- 2.3 days, 15 N-SS=84.2 +/- 3.4 days, KO-U=103.6 +/- 5.8 days). MAFC in sucrose supplemented. 16 17 GHR-KO females (KO-SS=87.0 +/- 2.9 days) did not differ significantly from that of N-18 SS (p=0.58) or from N-U (p=0.51) but was advanced significantly (p=0.008) compared to 19 KO-U. These results support our hypothesis and warrant further research that studies the 20 mechanism(s) by which sucrose affects the rate of progression of sexual maturation GH 21 resistant states.

Introduction

1 Growth hormone (GH), secreted by the anterior pituitary, has little or no effect on fetal 2. growth, but is the most important hormone for postnatal growth. Growth hormone exerts 3 its cell division-stimulating (mitogenic) effect not directly on cells but indirectly through 4 the mediation of a mitogen whose synthesis and release are induced by GH. This mitogen 5 is called insulin-like growth factor I (IGF-I). The importance of IGF-I in mediating the 6 major growth-promoting effect of growth hormone is illustrated by the fact that dwarfism 7 can be due not only to decreased secretion of growth hormone, but also to decreased 8 production of IGF-I or failure of the tissues to respond to IGF-I.

9 In humans, growth hormone insensitivity syndrome, Laron Dwarfism, is due to 10 genetic mutations that cause the growth hormone receptor to fail to respond to growth 11 hormone. The result is failure to produce IGF-I in response to growth hormone. Thus 12 female mice with GH resistance due to targeted disruption of the GH receptor/GH 13 binding protein gene (GHR-KO mice) have suppressed plasma IGF-I levels, reduced 14 growth, and the dwarf phenotype (Danilovich et al., 1999) suggesting that GHR-KO mice 15 mimic the human condition in many ways. The most notable similarities include growth 16 retardation, delayed sexual maturation, severely depressed serum IGF-I levels and a 17 complete inability to utilize GH (List et al., 2001).

In mice and humans GH resistance leads to quantitative deficits in reproductive
development and functions, but does not preclude fertility in either sex. (Bartke et al.,
1999) The secretion and activity of IGF-I can be influenced by the nutritional status of

21 the individual and by many hormones other than growth hormone. Estrogen also 22 stimulates the secretion of IGF-I by cells of the uterus and ovaries. Growth hormone 23 (GH), insulin-like growth factor (IGF-I), and prolactin (PRL) can influence various 24 aspects of reproductive functions in both females and males. Bartke et al. (1999) suspect 25 that PRL and the GH-IGF-I axis provide partially overlapping (redundant) regulatory 26 inputs to the hypothalamic-pituitary-gonadal (HPG) axis, and consequently, targeted 27 disruption of either signaling pathway has relatively mild consequences on many 28 functions related to reproduction. Growth hormone and the main mediator of its action, 29 IGF-I, can exert direct and indirect effects on gonadal function and these actions are 30 particularly evident during sexual maturation. The GHR/BP -/- (aka GHR-KO) mice do 31 not tend toward obesity, exhibit normal to low glucose levels, and have severely 32 decreased insulin levels when compared to normal (+/+) animals (List et al., 2001). GH 33 and IGF-I and their receptors are widely distributed throughout the HPG axis, along with 34 numerous binding proteins and proteases known to regulate GH/IGF bioavailability and 35 action (Zazcek et al., 2002). GH antigens are identified in pituitary cells containing FSH 36 and LH messenger RNAs and GnRH receptors, indicating that either GH cells are transitory gonadotrophs, or GH is present in these pituitary cells, possibly to control their 37 38 function (Chandrashekar et al., 1999). Furthermore, GH binding protein antigens were 39 identified in pituitary cells that contained LH and FSH, indicating a paracrine effect of GH on the function of the gonadotrophs (Chandrashekar et al., 1999). GH and IGF-I have 40 41 been implicated in the following aspects pertinent to female reproduction: 1) regulation 42 of the timing of puberty onset and the progression of sexual maturation, 2) regulation of 43 GnRH and gonadotropin release from the hypothalamus and pituitary, respectively, and,

Liti 6

3) modulation of ovarian follicular growth and development, steroidogenesis, and
apoptosis (Zazcek et al., 2002). In addition, GH and IGF-I influence numerous processes
related to pregnancy including oocyte maturation and fertilization, early embryo
development, implantation, fetal/placental growth and development, and litter size
(Zazcek et al., 2002).

49 Fulgeshu et al. (1997) evaluated the influence of insulin level on the ovarian 50 response to FSH when inducing ovulation in patients affected by polycystic ovarian 51 syndrome (PCOS) and found that while ovulation rate was similar in normoinsulinemic 52 and hyperinsulinemic subjects, the incidence of ovarian hyperstimulation was 53 significantly higher in the latter group. Yoshimura et al. (1996) conducted a study, which 54 provided proof that addition of IGF-I to the perfusate stimulated follicular growth and the 55 resumption of meiosis in follicular oocytes and increased estradiol production in cultured 56 rabbit ovaries in a dose dependent manner.

57 Type I diabetes is associated with abnormalities of the GH-IGF-I axis. Such 58 abnormalities include decreased circulating levels of IGF-I (Bartke et al., 1999). Type 1 59 diabetes has received particular attention because the relative portal insulin deficiency of 60 this condition is thought to be responsible for the reduced circulating levels of IGF-I 61 which in turn, through decreased negative feedback, leads to increased secretion of GH. 62 The metabolic profile of GHR-KO mice suggests these animals may experience some level of nutritional stress, but to date it has not been established how nutritional stress 63 64 effects sexual maturation and reproductive functions in GHR-KO mice.

1 Materials and Method

GHR-KO (-/-) and normal (N, +/+ or +/-) control mice were produced by mating +/- or -/-2 3 males to +/- females in our breeding colony, which was derived from our original 4 GHR/GHBP KO (Zhou et al., 1997b) crossed with animals derived from C57BL/6 x C3H 5 hybrids and thereafter bred in closed colony at the Southern Illinois University animal 6 facility. Mice were kept in the SIUC vivarium at strict light and temperature conditions, which included a 12L/12D photoperiod at 22+2⁰ C. Once ther animals reached weaning 7 8 age (21 days) they were segregated by sex but not by genotype and housed with up to 9 five other mice of the same sex per cage. Subsequently ad libitum access to tap water and 10 standard lab chow (Purina Formulab 5008 Rodent; El Mel Inc., Florissant MO) was 11 given. At 65 days post-partum normal and GHR-KO female mice were randomly 12 assigned to one of four treatment groups: normal untreated (N-U, n=15), GHR-KO 13 untreated (KO-U, n=15), normal sucrose-supplemented (N-SS, n=15) and GHR-KO 14 sucrose-supplemented (KO-SS, n=15). Untreated control normal and GHR-KO female 15 mice received normal lab chow diets throughout the remainder of the study, while 16 sucrose supplemented females were fed standard lab chow and sucrose on a ratio of 2 17 parts chow: 1 part sucrose. Five days after the sucrose supplemented females were started 18 on the new 2 parts chow: 1 part sucrose diet, they were paired with normal adult males 19 and subsequently monitored daily for vaginal plugs (between 0800 and 1030 am) and 20 parturition to determine effects of sucrose supplementation on latency to first mating. All 21 cages contained one GHR-KO female and one normal female to ensure that both GHR-KO and normal females would be similarly exposed to any male effects (e.g. delayed 22 23 puberty, male sub-fertility/infertility). The mean age of females at pairing did not differ

24 between groups. There is distinct size differences between normal males and GHR-KO 25 females at 65 days post-partum which, contribute to occasional injuries to the female 26 during mating and consequently a total of 5 GHR-KO females died in the course of the 27 study because of physical injuries caused by the normal males during mating. The date of 28 delivery and litter size was recorded and pups were removed on the day of delivery. 29 Females were sacrificed 7 days post-partum and body, uterine, and ovarian weights were 30 recorded. Analysis of variance and Fisher post hoc analyses were used to determine 31 significant effects of genotype, treatment, and genotype x treatment interaction between 32 groups with significance at p < 0.05. Experiments were approved by the University 33 Animal Care and Utilization Committee and were conducted in accordance with NIH 34 (national institute of health) animal care guideline.

Results

1 To determine the effect of sucrose supplementation on the rate at which sexual 2 maturation proceeds and fertility is achieved, we analyzed maternal age at first 3 conception (MAFC) in normal and GHR-KO mice maintained on standard lab chow 4 (untreated control) diets or sucrose supplemented diets during the juvenile-to-adult 5 transition period. MAFC was significantly affected by genotype (p=0.003), treatment 6 (p=0.034), and genotype x treatment interaction (p=0.024) (Fig.1). Regardless of 7 treatment, normal mice conceived first litters roughly 20 days earlier than untreated 8 GHR-KO females (N-U=83.7 +/- 2.3 days, N-SS=84.2+/- 3.4 days, KO-U=103.6 +/- 5.8 9 days). MAFC in sucrose supplemented GHR-KO females (KO-SS=87.0+/- 2.9 days) did 10 not differ significantly from that of N-SS (p=0.58) or from N-U (p=0.51) but was 11 advanced significantly (p=0.008) compared to MAFC in GHR-KO mice maintained on 12 the control diet. All normal females in the study conceived and delivered first litters. 13 Consistent with previous mating studies in GHR-KO mice, a subset (n=5) of GHR-KO 14 females died (2 KO-U and 3 KO-SS) due to mating related trauma and a subset (n=10) of 15 GHR-KO females (6 KO-U and 4 KO-SS) failed to conceive when housed continually 16 with males of proven fertility for 110 or more days (Table 1).

For those females that did conceive we used analysis of variance and Fisher post hoc comparisons to determine significant genotype, treatment, and/or genotype x treatment interaction effects on litter size between groups. Consistent with previous studies, litter size was significantly influenced by genotype (p=0.001), but no significant effects of treatment or genotype x treatment interaction was found (p=0.253 and p=0.572, respectively) (Fig. 2) Regardless of treatment, normal females had larger-sized litter, by roughly 2 pups per litter, compared to GHR-KO counterparts (N-U=6.1 +/- 0.4
pups/litter, N-SS=5.1 +/- 0.6 pups/litter, KO-U=3.7+/-0.9 pups per litter, and KO-SS=3.4
+/- 0.3 pups/litter).

26 Because sexual maturation and fertility are intimately tied to nutritional status, which is 27 reflected in fat stores and body weight, we used similar analyses to detect significant 28 differences in body weight [at sacrifice] between groups due to genotype, treatment, 29 and/or genotype x treatment interactions. Genotype, but not treatment or genotype x 30 treatment interaction, significantly affected body weight at sac (p<0.0001, p=0.58, and 31 p=0.32, respectively) (Fig. 3). Body weight at sacrifice was similar in normal females, 32 regardless of treatment (N-U=21.4 +/- 1.0g and N-SS=20.9 +/- 0.5g, p=0.69) and was 33 roughly 40% greater than that of untreated or sucrose supplemented GHR-KO females, 34 who did not differ from one another (KO-U=13.3 +/- 0.8g and KO-SS=14.9 +/- 1.4g, 35 p=0.35).

36 Absolute ovarian weight at sacrifice was also significantly affected by genotype 37 (p<0.0001) but not by treatment (p=0.78) nor by genotype x treatment interactions 38 (p=0.34) (fig. 4). Absolute ovarian weights of normal mice were similar between 39 treatment groups (N-U=9.4 +/- 0.6g, N-SS=9.8 +/- 0.4g, p=0.55) and roughly double that 40 of ovary weights in GHR-KO females on standard or sucrose supplemented diets (KO-41 U=5.5 +/- 0.6g, KO-SS= 4.7 +/- 0.5g, p=0.46). However, relative ovarian weight (ROW= 42 ovary weight expressed as a percentage of total body weight) was significantly affected 43 by genotype (p=0.005) and genotype x treatment interactions (p=0.04). Sucrose supplementation differentially influenced ROW in normal and GHR-KO mice, producing 44 45 slight but not significant increases in ROW in normal mice (N-U=0.044 +/- 0.002% vs.

N-SS=0.047 +/- 0.002%, p=0.28). In contrast, sucrose supplementation resulted in slight
decreases in GHR-KO mice that tended toward significance (KO-U=0.041 +/- 0.004%
vs. KO-SS= 0.033 +/- 0.004%, p=0.09) and rendered KO-SS females significantly
different from N-U females (p=0.008) and N-SS females (p=0.006).

50 Analysis of variance revealed no significant effects of genotype (p=0.19), treatment 51 (p=0.14), nor genotype x treatment interaction (p=0.21) on absolute uterine weight at 52 sacrifice (fig. 5). However, mean absolute uterine weight at sacrifice in sucrose 53 supplemented GHR-KO mice was 71.4 +/- 5.2g, while in all other treatment groups mean absolute uterine weights were approximately 100g (N-U=105.4 +/- 14.1g, N-SS=102.5 54 55 +/- 5.3g, and KO-U=104.9 +/- 12.5g). In Fisher post hoc analysis, two-way comparisons 56 between groups revealed significant differences between KO-SS and N-U groups 57 (p=0.04), nearly significant differences between KO-SS and N-SS groups (p=0.06) and a 58 trend toward significant differences between KO-SS and KO-U groups (p=0.10). Relative 59 uterine weight (uterine weight expressed as a percentage of total body weight) was 60 significantly affected by genotype (p=0.009), treatment (p=0.020) and genotype x 61 treatment interaction (p=0.017). Sucrose supplementation did not affect RUW in normal 62 mice (N-U=0.49 +/- 0.05g, N-SS=0.49 +/- 0.03g, p=0.96). RUW was greater in untreated 63 GHR-KO mice (0.80 + / - 0.11g), with this treatment group being significantly different 64 from both untreated and sucrose-supplemented normal females (p=0.001 and p=0.001, 65 respectively). Sucrose supplementation reduced RUW in GHR-KO mice (0.51 +/- 0.6g) 66 such that KO-SS females were significantly different from untreated GHR-KO mice 67 (p=0.005) but did not differ from untreated or sucrose supplemented normal mice 68 (p=0.83 and p=0.86, respectively)

Genotype	Died	Didn't conceive	Conceived
KO-SS	3	4	8
KO-U	2	6	7
N-SS	0	0	15
N-U	0	0	15

Table summarizing the number of animals that died, conceived, and didn't conceive.

Figure 1: Effect of sucrose supplementation during the juvenile-to-adult transition period (beginning at 65 days post-partum) on the progression of sexual maturation, as assessed by maternal age at first conception, in normal and growth hormone receptor knockout (GHR-KO) mice. Treatment groups= normal untreated control (N-U), GHR-KO untreated control (KO-U), normal sucrose supplemented (N-SS), and GHR-KO sucrose supplemented (KO-SS) mice. Bars represent mean \pm SEM. Letter designations above bars indicate significant difference (at p<0.05) between groups with different letter designations.

Treatment groups		P value	Significance
ko-ss	ko-u	0.0082	S
ko-ss	n-ss	0.5821	
ko-ss	n-u	0.5128	
ko-u	n-ss	0.0007	S
ko-u	n-u	0.0005	S
n-ss	n-u	0.8998	

Figure 2: Effect of sucrose supplementation during the juvenile-to-adult transition period (beginning at 65 days post-partum) on litter size in normal and growth hormone receptor knockout (GHR-KO) mice. Treatment groups= normal untreated control (N-U), GHR-KO untreated control (KO-U), normal sucrose supplemented (N-SS), and GHR-KO sucrose supplemented (KO-SS) mice. Bars represent mean \pm SEM. Letter designations above bars indicate significant difference (at p ≤ 0.05) between groups with different letter designations.

Treatment groups		P value	Significance
ko-ss	ko-u	0.7219	
ko-ss	n-ss	0.0408	S
ko-ss	n-u	0.0017	S
ko-u	n-ss	0.1139	
ko-u	n-u	0.0076	S
n-ss	n-u	0.1420	

Figure 3: Effect of sucrose supplementation during the juvenile-to-adult transition period (beginning at 65 days post-partum) on body weight in normal and growth hormone receptor knockout (GHR-KO) mice. Treatment groups= normal untreated control (N-U), GHR-KO untreated control (KO-U), normal sucrose supplemented (N-SS), and GHR-KO sucrose supplemented (KO-SS) mice. Bars represent mean \pm SEM. Letter designations above bars indicate significant difference (at p<0.05) between groups with different letter designations.

Treatment groups		P value	Significance
ko-ss	ko-u	0.3525	
ko-ss	n-ss	<0.0001	S
ko-ss	n-u	<0.0001	S
ko-u	n-ss	<0.0001	S
ko-u	n-u	<0.0001	S
n-ss	n-u	0.6894	

Figure 4: Effect of sucrose supplementation during the juvenile-to-adult transition period (beginning at 65 days post-partum) on absolute ovary weight in normal and growth hormone receptor knockout (GHR-KO) mice. Treatment groups= normal untreated control (N-U), GHR-KO untreated control (KO-U), normal sucrose supplemented (N-SS), and GHR-KO sucrose supplemented (KO-SS) mice. Bars represent mean \pm SEM. Letter designations above bars indicate significant difference (at p<0.05) between groups with different letter designations.

Treatment groups		P value	Significance
ko-ss	ko-u	0.4556	
ko-ss	n-ss	<0.0001	S
ko-ss	n-u	< 0.0001	S
ko-u	n-ss	< 0.0001	S
ko-u	n-u	0.0002	S
n-ss	n-u	0.5513	

Figure 5: Effect of sucrose supplementation during the juvenile-to-adult transition period (beginning at 65 days post-partum) on relative ovary weight (ROW= ovary weight expressed as a percentage of total body weight) in normal and growth hormone receptor knockout (GHR-KO) mice. Treatment groups= normal untreated control (N-U), GHR-KO untreated control (KO-U), normal sucrose supplemented (N-SS), and GHR-KO sucrose supplemented (KO-SS) mice. Bars represent mean \pm SEM. Letter designations above bars indicate significant difference (at p<0.05) between groups with different letter designations.

Treatment groups		P value	Significance
ko-ss	ko-u	0.0866	
ko-ss	n-ss	0.0006	S
ko-ss	n-u	0.0076	S
ko-u	n-ss	0.1636	
ko-u	n-u	0.5617	
n-ss	n-u	0.2766	

Liti 18

Figure 6: Effect of sucrose supplementation during the juvenile-to-adult transition period (beginning at 65 days post-partum) on absolute uterine weight in normal and growth hormone receptor knockout (GHR-KO) mice. Treatment groups= normal untreated control (N-U), GHR-KO untreated control (KO-U), normal sucrose supplemented (N-SS), and GHR-KO sucrose supplemented (KO-SS) mice. Bars represent mean \pm SEM. Letter designations above bars indicate significant difference (at p<0.05) between groups with different letter designations.

Treatment groups		P value	Significance	
ko-ss	ko-u	0.0986		
ko-ss	n-ss	0.0598		
ko-ss	n-u	0.0402	S	
ko-u	n-ss	0.8934		
ko-u	n-u	0.9754		
n-ss	n-u	0.8273		

Liti 19

Figure 7: Effect of sucrose supplementation during the juvenile-to-adult transition period (beginning at 65 days post-partum) on relative uterine weight (RUW= uterine weight expressed as a percentage of total body weight) in normal and growth hormone receptor knockout (GHR-KO) mice. Treatment groups= normal untreated control (N-U), GHR-KO untreated control (KO-U), normal sucrose supplemented (N-SS), and GHR-KO sucrose supplemented (KO-SS) mice. Bars represent mean \pm SEM. Letter designations above bars indicate significant difference (at p<0.05) between groups with different letter designations.

Treatment groups		P value	Significance
ko-ss	ko-u	0.0050	S
ko-ss	n-ss	0.8631	
ko-ss	n-u	0.8274	
ko-u	n-ss	0.0012	S
ko-u	n-u	0.0011	S
n-ss	n-u	0.9563	

Discussion and conclusion

1 Growth hormone, secreted by the anterior pituitary, has little or no effect on fetal 2 growth, but is the most important hormone for postnatal growth. Growth hormone 3 induces the release of IGF-I, which in turn exerts its mitogenic effects on cells, GHR-KO 4 female mice have delayed sexual maturation, which has a negative influence on their 5 reproductive functions. To summarize GH and IGF-I have been implicated in the 6 following aspects pertinent to female reproduction; 1) regulation of the timing of puberty 7 onset and the progression of sexual maturation, 2) regulation of GnRH and gonadotropin 8 release from the hypothalamus and pituitary, respectively, and, 3) modulation of ovarian 9 follicular growth and development, steroidogenesis, and apoptosis. (Zazcek et al., 2002) 10 The present study was undertaken in order to examine the effects of diet sucrose 11 supplementation on sexual maturation in GHR-KO mice.

12 From the results presented previously one generalization can be made in 13 particular: sucrose supplementation speeds up final sexual maturation in GHR-KO female 14 mice. There was no significant difference in MAFC in sucrose supplemented GHR-KO 15 females compared to N-SS (p=0.58) or to N-U (p=0.51) but it was advanced significantly 16 (p=0.008) compared to MAFC in GHR-KO mice maintained on the control diet. 17 Treatment group also significantly affected ROW and RUW. There was a significant 18 difference in ROW between KO-SS compared to N-SS (p=0.0006) and to N-C 19 (p=0.0076) furthermore there was no significant difference between KO-C compared to 20 N-SS (p=0.1636) and N-C (p=0.5617) but ROW was not significantly different between KO-SS and KO-C (p=0.0866). There was no significant difference in RUW for KO-SS 21

compared to N-SS (p=0.8631) or to N-U (p=0.8274) but it RUW was significantly lower
in KO-SS compared to KO-U (p=0.005).

24 It is known that in women a drastic reduction in the size of the adipose reserve, as happens in overtrained athletes or in pathological situations is associated with 25 26 amenorrhea and infertility, and this association persists until the body mass index returns 27 to normal values (Casabiell, 2001). Menstrual dysfunction is common in active women, 28 especially competitive athletes who participate in lean-build sports. Although the 29 mechanism for this menstrual dysfunction has not yet been identified, it is now clear that 30 negative energy balance, due to high-energy expenditure and inadequate energy intake, is 31 a major contributing factor (Manore, 2000). For some athletes, negative energy balance is 32 due to purposeful energy restriction to either maintain or achieve a low bodyweight. Both 33 the restrictive energy intake and the exercise-induced menstrual deficiency in active 34 women that may result can have serious health consequence (Manore, 2002). Eating 35 disorders during pregnancy are associated with miscarriage, low birth weight, obstetrics 36 complications and post-partum depression furthermore amenorrhea due to starvation is a 37 diagnostic criterion for anorexia (James, 2001). Menstrual irregularities are common in 38 women with bulimia. Inadequate body fat results in inadequate estrogen levels because 39 estrogen is stored in body fat (James, 2001). Lowered estrogen levels may lead to 40 infertility in these women with eating disorders. Although anovulation is common, long-41 term infertility is not. Seventeen percent body fat is required to begin or resume normal menses (James, 2001). In Type II diabetes, tissues of the body such as muscle, liver and 42 43 fat are resistant to the action of insulin (known as insulin resistance) while the pancreas 44 produces some, but not enough, insulin to overcome this resistance. As a result, blood

45 sugar (glucose) backs up in the bloodstream. Insulin receptors and insulin signaling proteins throughout the central nervous system play an integral role in regulating 46 47 metabolism, as well as appetite and fertility (Morris F., 2005). In another study Morris et 48 al. (2005) concluded that when considered with previous studies, this study demonstrates 49 that genetically determined insulin resistance in classical insulin target tissues, such as 50 muscle and fat, may combine with insulin resistance in non-classical target tissues, such 51 as the brain and beta cell. This interaction may occur synergistically, resulting in obesity, 52 insulin resistance, glucose intolerance, and high blood fat levels, leading to the complex 53 metabolic syndrome associated with type II diabetes (Morris F., 2005). Women with 54 insulin-dependent diabetes mellitus (Type I Diabetes) who had been diagnosed prior to 55 menarche had a higher probability of delayed menarche, and were at higher risk for 56 development of menstrual disturbances, including amenorrhea with subsequent fertility 57 disorders (Yeshaya A., 1995).

58 The mechanism by which dietary sucrose normalizes final sexual maturation time 59 in knockout gene mice is not yet understood. GHR-KO mice are very sensitive to insulin 60 which is due to the low amount of insulin that they produce and to the up-regulation of 61 the insulin receptors in their liver (Kimura et al., 2004). Increased levels of glucose in the 62 blood lead to an increase in levels of insulin, which through some negative feedback mechanism decreases the amount of prolactin (Kimura et al., 2004). In the present study 63 64 while body weights did not differ significantly in those GHR-KO females maintained on 65 control or sucrose-supplemented diets, the mean body weight of sucrose supplemented 66 females was numerically higher, by about 10%, than the mean weight of non-67 supplemented GHR-KO mice. Leptin is a 16kDa protein that is secreted almost

68 exclusively by the adipocytes. Therefore increased body fat would in turn increase leptin 69 secretion. The main action of leptin is to decrease appetite and increase energy 70 expenditure (Messinis, 1999). Mutations in the ob gene (ob/ob) in mice that lead to leptin 71 deficiency result in hyperphagia and profound obesity as well as diabetes, insulin 72 resistance and infertility (Messinis, 1999). Evidence has been provided since the early 73 1970s that fat mass may directly affect ovulation and fertility. In particular, anorectic 74 women demonstrate a decreased response of luteinizing hormone (LH) to gonadotrophin-75 releasing hormone (GnRH) and, as in pre-pubertal women; follicle stimulating hormone 76 (FSH) response is greater than that of LH (Messinis, 1999). Furthermore a critical body 77 weight is required for a girl at menarche. All of these observations together with the 78 recent isolation of leptin, support the hypothesis that leptin is probably the missing link 79 between body fat and reproduction (Messinis, 1999). Since insulin is known to increase 80 leptin mRNA in adipocytes, it is possible that insulin may stimulate the secretion of 81 leptin, and, therefore, leptin may participate in certain cases of PCOS (Messinis, 1999). 82 While we did not measure leptin levels in our female mice, this would be an important 83 parameter to assess in subsequent studies.

Insulin, a pancreatic peptide hormone produced in the ß-cells of the islets of Langerhans, plays a major role in the regulation of carbohydrate, fat, and protein metabolism. The classical target organs for insulin action are muscle, adipose tissue, and liver. While the pituitary ovarian regulators, LH and FSH, are of paramount importance to ovarian function, the insulin-related ovarian regulatory system likewise participates in normal follicle development. Its alterations may be important in the ovarian dysfunctions observed in a number of disorders, including diabetes mellitus, obesity, polycystic ovary

91 syndrome (PCOS), and syndromes of extreme insulin resistance (Poretsky et al., 1999). In 92 vitro, insulin stimulates ovarian steroidogenesis by both granulosa and thecal cells, 93 increasing production of androgens, estrogens, and progesterone (Poretsky et al., 1999). 94 Another group of studies has examined the effects of food intake or oral or intravenous 95 administration of glucose on circulating androgen concentrations. In normal women, 96 Parra et al. (1995) found an increase in free testosterone and no change in androstendione 97 after breakfast, but a decline of free testosterone after an oral glucose load. The role of 98 insulin in the ovary may be summarized as follows: 1) insulin receptors are widely 99 distributed throughout all ovarian compartments, 2) at this time there is no convincing 100 direct in vivo evidence that hyperinsulinemia acutely stimulates ovarian steroid 101 production, but there is direct in vitro evidence and indirect in vivo evidence for a 102 stimulatory effect of insulin on ovarian steroidogenesis, 3) the effects of insulin on 103 ovulation and the ovary are complex (Poretsky et al., 1999). A threshold level of insulin 104 is likely to be required for the normal function of the hypothalamic-pituitary-ovarian axis. 105 either because of the direct stimulatory effects of insulin on this axis or because of the 106 stimulatory effects of insulin on leptin secretion (both direct, with insulin stimulating 107 adipocyte production of leptin, and indirect, because of insulin-stimulated lipogenesis 108 (Poretsky et. al, 1999). On the other hand, excessive circulating insulin, particularly in the 109 setting of insulin resistance, may enhance ovarian androgen production and thus may 110 contribute to the development of anovulation (Poretsky et al., 1999). Insulin may amplify its own effects, the effects of IGFs, and those of gonadotropins by up-regulating type I 111 112 IGF receptors and gonadotropin receptors, as well as by inhibiting production of IGFBP-113 1, both in the liver and ovary (Poretsky et al., 1999). In the setting of insulin resistance

and hyperinsulinemia, therefore, a cycle of events that leads to a self-perpetuating amplification of the ovarian effects of insulin and IGFs can develop (Poretsky et al., 1999). While we did not measure plasma insulin in our animals in this study, presumably, sucrose consumption would at least transiently elevate endogenous insulin levels, and sucrose supplementation may increase the rate at which sexual maturation proceeds due to changes in plasma insulin levels that affect any or all of the aforementioned sites in the hypothalamic-pituitary-gonadal axis.

121 Actions of PRL on luteal function depend on species and the stage of the estrous 122 cycle. In rodents, prolactin can either be luteotrophic after mating or luteolytic in the 123 absence of a mating stimulus (Freeman, 2000). Ameral et al. (2003) studied the effect of 124 prolactin on the insulin signaling pathway in neonatal rat pancreatic islets and they found 125 that PRL significantly potentiates glucose-induced insulin secretion in islets cultured for 126 7 days moreover, decreased levels of PRL in turn increase levels of Activin A. The study 127 by Tamura et al. (2000) demonstrated that Activin A stimulated basal GH secretion and 128 inhibited basal PRL secretion in GH3 cells via modulation of the transcription of the GH 129 and PRL genes. Therefore maybe PRL and Activin A inhibit each other thus when 130 prolactin levels are low, Activin A levels would be high. Increased Activin levels 131 stimulate secretion of FSH or increase the number of cells secreting FSH (Miyamoto et 132 al., 2003). Miyamoto et al. (2003) results suggest that (1) Activin A has effects on female 133 rat pituitary cells that increase not only the amount of FSH secretion per cell, but also the 134 number of FSH-secreting cells, and (2) Activin A also decreases both the amount of PRL secretion per cell and the number of PRL-secreting cells. Since FSH is important in 135 136 follicle stimulation, increased amounts of FSH increases stimulation of ovarian follicles

thus leading to faster cycling and ovulation, which could be how sucrose supplementation induces earlier final sexual maturation in GHR-KO female mice. Future studies that measure plasma prolactin and prolactin receptor levels in the hypothalamus, pituitary gland, ovaries and uterus would elucidate further the role of prolactin in reproduction.

141 Studies that examine the connection between sucrose nutritional supplementation of 142 GHR-KO mice and sexual maturation and reproduction are really important because 143 these findings can help develop new ways of counteracting the negative effects that 144 diseases such as Type I Diabetes have on the reproductive functions of the people 145 affected by the disease. Future research that studies the mechanism by which sucrose 146 affects sexual maturation is warranted.

References

1. Amaral et al. Prolactin-Signal Transduction in Neonatal Rat Pancreatic Islets and Interaction with the Insulin-Signaling Pathway. Horm Metab Res 2003; 282-289.

2. Bartke A. et al. Effects of Growth Hormone Overexpression and Growth Hormone Resistance on Neuroendocrine and Reproductive Functions in Transgenic and Knock-Out Mice. Society of Experimental Biology and Medicine 1999; 222: 113-123

3. Bartke A. Role of growth hormone and prolactin in the control of reproduction: What are we learning from transgenic and knock-out animals? Elsevier Science Inc. 1999; 64 (9): 598-604

3. Casabiell X. et al. Leptin, Reproduction and Sex Steroids. Pituitary, 2001, 4: 93-99.

19. James D., Eating Disorders, Fertility and Pregnancy: Relationships and Complications. J Perinat Neonat Nurs, 2001, 15(2): 36-48.

4. Chandrashekar V., Bartke A., Coschigano K., and Kopchick J. Pituitary and Testicular Function in Growth Hormone Receptor Gene Knockout Mice. Endocrinology 1999; 140(3): 1082-1088

5. Danilovich N., Wernsing D., Coschigano T., Kopchick J. J., and Bartke A. Deficits in Female Reproductive Function in GHR-KO Mice; Role of IGF-I. Endocrinology 1999; 140(6): 2637-2640.

6. Freeman M. E., Prolactin: Structure, Function, and Regulation of Secretion. Physiol.Rev. 2000, 80: 1523-1631.

7. Fulgeshu et al. The Impact of Insulin Secretion on the Ovarian Response to Exogenous Gonadotropins in Polycystic Ovary Syndrome. Clinical Endocrinology and Metabolism 1997; 82 (2): 644-648. Kimura et al. The Influence of Estradiol and Diet on Small Intestinal Glucose
 Transport in Ovariectomized Rats. Society of Experimental Biology and Medicine 2004;
 229: 227-234

 9. List E., Coschigano K., and Kopchick J. Growth Hormone Receptor/ Binding Protein (GHR/BP) Knockout Mice: A 3 Year Update. Molecular Genetics and Metabolism 2001;
 73: 1-10

10. Manore M. Dietary Recommendations and Athletic Menstrual Dysfunction. Sports Med 2002; 32 (14): 887-901

Messinis I., Milingos S., Leptin in Human Reproduction. Hum Reprod Update, 1999,
 5(1): 52-63

12. Miyamoto et al. Effects of activin on hormone secretion by single female rat pituitary cells: analysis by cell immunoblot assay. Department of Obstetrics and Gynecology, School of Medicine, University of Tokushima, Tokushima, Japan 2003; 770–8503

13. Morris F. Scientists Link Role of Insulin Receptors in Brain to Type 2 Diabetes, Appetite Control, Obesity and Infertility. Joslin Diabetes Center of Joslin and the Howard Hughes Medical Institute, 2005.

14. Parra A, Godoy H, Ayala J, Ramirez A, Coria I, Espinosa de los Monteros A Opposite effects of breakfast vs. oral glucose on circulating androgen levels in healthy women. Arch Med Res, 1995, 26:379–383

15. Poretsky L. et al. The Insulin-Related Ovarian Regulatory System in Health and Disease. Endocrine Reviews, 1999, 20 (4): 535-582

16. Tamura et al. Effect of activin on production and secretion of prolactin and growth hormone in cultured rat GH3 cells. European Journal of Endocrinology 2000; 146: 506-511

17. Yeshaya A, Orvieto R, Dicker D, Karp M, Ben-Rafael Z. Menstrual characteristics of women suffering from insulin-dependent diabetes mellitus. Int J Fertil Menopausal Stud. 1995Sep-Oct; 40(5):269-73.

18. Yoshimura et al. Interactions between Insulin-like Growth Factor-I (IGF-I) and the Renin-Angiotensin System in Follicular Growth and Ovulation. Journal Clinical Investigation 1996; 98 (2): 308-316

19. Zazcek et al. Impact of Growth Hormone Resistance on Female Reproductive Function: New Insights from Growth Hormone Receptor Knockout Mice. Biology of Reproduction 2002; 67: 1115-1124

20. Zhou et al. A Mammalian Model for Larone Syndrome Produced by Targeted Disruption of the Mouse Growth Hormone Receptor/ Binding Protein Gene (The Larone Mouse). National Academy of Science 1997; 94: 13215-13220