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•	 CHAPTER 1 - INTRODUCTION 

The concept of order is very important to mankind. Order 

allows man to understand and better live 1n the world around him. 

Imagine trying to find a name in a phone book if the names were 

not in alphabetical order. Computer science is one area where 

order is especially important. Much of computer science depends 

on the concept of order. Many commercial and non-commercial 

programming applications involve sorting items into ascending or 

descending order. It is precisely the algorithms that perform 

the task of sorting that we will concentrate on in this report. 

All of the algorithms sort items in ascending order. There 

are nine algorithms covered. Each algorithm was chosen based on 

•	 simplicity of design, speed, behavior, and interesting properties 

brought out by analysis. The research concerning these 

algorithms was broken up into four areas. The first area was the 

learning of the programming language C. 

C is a very good language for this type of research because 

it offers high-level programming structure with low-level 

features. The second area involved the coding of each of the 

algorithms in C. We coded each algorithm to see how difficult it 

would be to convert the algorithm from a theoretical description 

to actual working computer code. The naturalness of these 

algorithms for computer applications is evident. Each of the 

algorithms was coded as a C function and could be called from the 

body of the main program. This brings us to the third area, the 

•	 timing experiment. 



4It The afforementioned algorithmic functions were used to 

perform the task of sorting integer numbers. The algorithms were 

timed individually over a wide range and amount of input data in 

order to obtain an initial insight into the behavior of each. 

The entire timing program was executed nonstop over a period of 

five days. All of the output was routed to a disk file and 

subsequently printed. This timing data was analyzed and was 

helpful in providing a basis for further understanding of the 

nature of the algorithms. 

The fourth and final phase involved a closer look at the 

algorithms through the use of mathematical tools of analysis. 

Each algorithm was mathematically analyzed and the results were 

compared to the earlier insight provided by the timing data. 

4It	 Conclusions and criticisms are then formulated and presented. 

This type of research is vital in maintaining a good 

understanding of how algorithms work and how they may be 

improved. 

4It
 



• CHAPTER 2 - THE ALGORITHMS 

Now that the method and reasoning behind the research is 

clear, let's start with an introduction and explanation of each 

of the nine sorting algorithms. The first sorting algorithm is 

affectionately named the "bubble" sort. This sort is perhaps one 

of the simplest sorts in terms of complexity. It makes use of a 

sorting method known as the exchange method. This algorithm 

compares pairs of adjacent elements and makes exchanges if 

necessary. The name comes from the fact that each element 

"bubbles" up to it's own proper position. Here is how bubble 

sort would sort the integer array 4 3 I 2, 

pass I I 4 3 2 

• pass 2 I 2 4 3 

pass 3 I 2 3 4 

The code for bubble sort is on page 8 of the program listing. 

The outer loop is performed n-l times (n=number of elements to be 

sorted) to ensure that, in the worst case, every element is in 

it's proper position when the loop terminates. If no exchanges 

take place after a pass, the algorithm terminates since the 

elements must be in order. Previous research has labeled the 

bubble sort as the worst sort ever. We shall test this statment 

later . 

•
 



4It The second sorting algorithm is a modified version of the 

bubble sort known as the shaker sort or cocktail shaker sort. 

This algorithm is designed so that subsequent passes over the 

array reverse direction. This way, greatly out of place elements 

will travel more quickly to their correct position. Notice that 

this algorithm is essentially the same as the bubble sort except 

for the reverse direction passes. Any out of place element is 

exchanged during a pass. The number of passes is the same as for 

bubble sort. The code for this algorithm is located on page 8 of 

the program listing. 

The third algorithm uses a different method of sorting 

known as sorting by selection. This 'selection sort algorithm 

picks the smallest element from the array and switches it with 

4It the first element. It then picks the smallest element from the 

rest of the array and switches it with the second element. This 

process is repeated up to the last pair of elements. Here is how 

it would sort 2 4 1 3: 

pass 1 1 4 2 3 

pass 2 124 3 

pass 3 1 2 3 4 

The code for this sort is on page 9 of the program listing. 

4It
 



tt The fourth algorithm uses the insertion method of sorting. 

This algorithm first sorts the first two elements of the array. 

It then inserts the third element in it's proper place in 

relation to the first 2 sorted elements. This process continues 

until all of the remaining elements are inserted in their proper 

position. Here is how it would sort 4 3 I 2: 

pass I 3 4 1 2 

pass 2 1 3 4 2 

pass 3 1 2 3 4 

The code for this insertion sort algorithm is located on page 9 

of the program listing. 

The fifth algorithm, dubbed the shell sort after its' 

inventor D.L. Shell, is derived from the insertion sort. The 

tt shell sort is based on the idea of diminishing increments. 

Suppose the array to be sorted'was 6 4 I 325. Here is how the 

shell sort would work with increments 3 2 1: 

pass 1 6 4 1 3 2 5 

pass 2 3 2 1 6 4 5 

pass 3 1 2 3 4 5 6 

Notice that in pass 1, elements 3 positions apart are sorted. 

Then all elements 2 positions apart are sorted. Finally, all 

adjacent elements are sorted. The increments can be changed, but 

the last increment must be one. The choice of the set of 

increments that make the algorithm most efficient had posed very 

difficult mathematical problems that were solved only recently. 

The increments 9 5 3 1 seem to work well, so I used them in the 

tt experiment. 



• It has been suggested that the next algorithm is the best 

sorting algorithm available today. It is named quick sort due to 

it's speedy sort time. Quick sort is based on the exchange 

method of sorting, as is bubble sort, but is also uses the idea 

of partitioning. Quick sort chooses a median value from the 

array and uses it to partition the array into two subarrays. The 

left subarray contains all of the elements that are less than the 

median value and the right subarray contains all of the elements 

that are greater than the median value. This process is 

recursively repeated for each subarray until the array is sorted. 

The median value can be chosen randomly, but I have coded the 

• 
algorithm to choose the element that is physically in the middle 

of the array . 

This brings up one nasty aspect of quick sort. If the 

median value chosen is always the smallest or largest element, 

the algorithm slows down drastically. This usually will not 

happen however, since most input data is in a random order and 

the chance of always picking an extreme value is small. Note 

that this algorithm is naturally recursive and I have coded it as 

such. Here is how quick sort would sort 6 5 4 1 3 2, 

pass I 2 3 I 4 5 6 

pass 2 1 2 3 4 5 6 

Note that after pass I , the array is partitioned into 2 3 I and 4 

5 6. The process 1S then repeated for each of these. The code 

for the quick sort is located on page 10 of the program listing . 

•
 



4It The seventh algorithm is known as heap sort. It makes use 

of a data structure known as a heap. A heap is a complete binary 

tree organized such that the value of the parent nodes are 

greater than their children's. With this type of structure, the 

largest element happens to be the root node. This property of a 

heap makes it ideal for a sorting algorithm. 

The heap sort algorithm first builds a heap with all of the 

elements. After heap creation, the largest element is located at 

the root. This root element is switched with the last element at 

the end of the array. Since the root, which is the largest 

element, is placed at the end of the array, this largest elememt 

is now in it's correct position. This position in the array is 

now off-limits to the algorithm and the rest of the heap is 

4It adjusted, starting at the new root, to ensure that all of the 

parent's values are greater that the values of their children. 

This switching and readjusting is performed repeatedly until 

all of the elements are in their proper position. Here is one 

pass ~f heap sort on 16 11 9 10 5 6 8 1 2 4: 

the'heap the switch the adjust 

4It
 

The code for heap sort is on page 11 of the program listing. 



• The next algorithm is an example of divide and conquer. It 

is called merge sort. Merge sort splits the array into two 

subarrays, each of almost equal size, and recursively sorts each. 

The two sorted subarrays are then merged together. The recurs i ve 

verslon is very simple and takes full advantage of the power of 

recursion. Here is an example of how merge sort would sort 5 2 3 

1 7, (the [ ] bars indicate a subarray) 

[5 2 3] [1 7] 

[5 2] [3] 

[5] [2] 

[2 5] 

[2 3 5] 

•
 
[1] [7]
 

[l 7]
 

[1 2 3 5 7] 

Notice how the subarrays are broken down until there is only one 

element left. Then, two subarrays with only one element each are 

merged. The merging continues until all left side sorted arrays 

are merged together. The right side is then broken down and 

merged. This is a very good example of how recursion can be used 

to simplify programs. The code for this sort is located on page 

12 of the program listing. 

The last sort is somewhat different from the other sorts. 

This sort operates using the internal structure of the elements. 

The elements used in the experiment were two-byte integers. This 

• sort depends on the binary form of these integers. It is for 

this reason that this algorithm is called radix sorting, since it 

uses radix 2 representations of the numbers. 



~ The algorithm starts at the most significant bit. It 

partitions the elements such that all elements with a 0 bit come 

before those elements with a 1 bit. The algorithm then shifts to 

the second bit and the process is repeated. This sort is similar 

to quick sort in that it uses partitioning and exchange methods. 

Note that the elements are partitioned into 2 subarrays for each 

pass. The algorithm then recursively processes each subarray. 

The code for this sort is on page 13 of the program listing. 

~ 

~
 



•	 CHAPTER 3 - THE EXPERIMENT 

Now that the algorithms have been discussed, let's look at 

the experiment. This experiment has been designed to generate 

timing data that will provide an insight as to the behavior of 

each of the algorithms. Each algorithm was executed and timed on 

3 different types and 6 different sizes of integer arrays. The 

value of the integer numbers ranged from 0 to 32767. The first 

type of array contained numbers already in order. The second 

type contained numbers in reverse order. The third contained 

numbers in random order as generated by a random number 

generator. The seed for the random number generator was changed 

constantly in order to ensure that the numbers were as random as 

•	 possible. 

Each algorithm was executed and timed on varying sizes of 

arrays.	 Note that each size of reverse order and inorder 

(numbers already in order) arrays contained the same sequence 

(i.e. 1 2 3 4 5) of numbers for each execution. Since this 

method prevented any timing discrepancies from being introduced 

into the experiment, I decided to execute and time the algorithms 

only once for each size of inorder and reverse order array. In 

order to obtain a fair representative time for the random order 

arrays, it was necessary to execute and time each algorithm 

more than once for each size of the random arrays since the 

sequences of numbers would change. Figure 5 is a table that sums 

• 
up the exact parameters of the experiment . 



4It Before beginning to analyze the data, we would like to 

4It
 

4It
 

describe a few of the criterion used for judging an algorithm. 

The behavior of an algorithm is one important criterion. 

Behavior refers to how hard an algorithm works depending on how 

ordered the array is initially. An algorithm exhibits natural 

behavior when it works least on an array that is already sorted 

and hardest on an array that is 1n inverse order. An algorithm 

exhibits unnatural behavior when it works more on a list that is 

already in order and less on a list that is in inverse order. 

Depending on the application, natural behavior mayor may not be 

better than unnatural behavior. Natural behavior is usually 

preferred, however. 

Perhaps the most important aspect of a sorting algorithm is 

how fast it can sort an random case array. Pure speed is 

sometimes the only factor in choosing a sorting algorithm. Since 

processing time is an expensive and sometimes limited resource, 

being quick 1S a very important characteristic of a sorting 

algorithm. We shall examine the random case timing data and 

attempt to determine which sort is best. To aid us in our 

examination of the data, we have included three graphs which 

illustrate the relationships of the algorithms in terms of 

performance. Figure 1 is a graph of the random timing data for 

the slower sorts. Figure 2 is a graph of the random timing data 

for the faster sorts. Figure 3 is a graph of all of the sorts. 

We would like to note that all of the timing data is 

summarized in a table in Figure 4. The timing data as generated 

by the program is included at the end of the program listing. 



~ Let us begin our analysis with perhaps the slowest sort ever 

conceived by man. The bubble sort is relatively very slow when 

compared to some of the faster sorts. It took 2394 seconds to 

sort the reverse array of size 10000 and 1646.5 seconds to sort 

the random array. It ranks last among all of the other 

eight sorts in terms of pure speed. Note that the bubble sort 

seems to exhibit natural behavior since it took one second or 

less in sorting the inorder case of size 10000 and 2394 seconds 

to sort the reverse order array. It works least when the list is 

ordered and most when it is in reverse order. This would 

indicate that bubble sort would be used where the list to be 

sorted is almost in order. 

An interesting property of the timing data for bubble sort 

~	 is the manner in which the timings grow in size. On graph 1 I 

have included a scaled representation of an n squared curve where 

the time rises exponentially as n increases. Looking at the 

increase in size of the times and at the shape of the bubble sort 

curve, it would appear that this sort runs in Order(n**2) or 

0(n**2) time. Since the times rise quickly, this sort would be 

very inappropriate for large amounts of data. 

Let's move on to the shaker sort. It only beats bubble sort 

by 4 seconds in the reverse case of size 10000. It also takes 

less than 1 second to sort the in order case, indicating that it 

is also exhibiting natural behavior. The time for the random 

case of size 10000 only took 1646.5 seconds, 747.5 seconds faster 

than bubble sort. 

~ 



• 

It This would make it better than bubble sort for larger amounts of 

data. The shape of the curve for the shaker sort is also very 

close to the n squared curve. The timings also rise very 

quickly. This suggests that the shaker sort is O(n**2) also. 

Even though it is slightly faster than bubble sort, the shaker 

sort is still too slow to be used to sort a large amount of data. 

The time for select sort on a reverse order array of size 

10000 is 984 seconds while the time for an inorder case of the 

same size is 757 seconds. The time for a random case of size 

10000 is 758 seconds. Since the algorithm worked only 1 second 

more for an random case than for the reverse order case, the 

select sort algorithm is almost exhibiting unnatural behavior. 

Since there is a 603.5 second difference between the shaker sort 

and the select sort, the faster select sort algorithm would be 

ranked	 ahead of the shaker sort and the bubble sort for large 

amounts of data. Since the shape of the select sort curve is 

slightly flatter than the n**2 curve, it is difficult to say for 

certain that the select sort algorithm is running in O(n**2) 

time.	 However, the abrupt rise of the timing data seems to 

confirm this. 

The final slow sort that we will examine is the insert sort. 

The time for the reverse order case of size 10000 is 1339 

seconds, which is 581 seconds slower than select sort. Insert 

sort does, however, take under 1 second for the inorder case. 

Since the random case time is well below the reverse case, this 

algorithm is exhibiting natural behavior. The time for the 

It	 random case of size 10000 is 672.5, faster than any of the sorts 

discussed so far. 



4It The insert sort's low random case time and high reverse case 

time suggests that it might be good for a large number of 

elements that are almost already in order. 

We now move to the fast sorts. These sorts are so named 

because they are extremely fast in comparison with the sorts 

examined so far. In fact, the fastest of the fast sorts sorted 

an random case array of 20000 elements in 8.5 seconds, 79 times 

faster than the quickest of the slow sorts on an array half the 

size (l0000). 

Let's begin with the shell sort. This sort required 677 

seconds to sort a reverse order array of size 20000. It only 

took 5 seconds to sort the reverse order case of size 20000. 

Since the time for the random case is right in between the 

4It reverse order and inorder times, it is exhibiting very natural 

behavior. Note how the timings increase in Figure 4. 

It certainly is not rising in a linear fashion. It does not 

appear to be O(n**2) either, leaving us to conclude that the 

order of magnitude is in between these two. The shell curve in 

Figure 2 rises abruptly, interrupting the smooth flow of the 

curve. Perhaps a larger amount of timing data would complete the 

curve better. Nevertheless, the curve is sharper than the n log 

n curve that is plotted alongside. This affirms our suspicions 

of the upper and lower bounds. It is operation somewhere between 

n log nand n**2. 

We now come to the fastest sort of the bunch. This speedy 

algorithm, known as quick sort, is the fastest of all nine sorts 

4It in all three cases. It only took 6 seconds to sort the reverse 

case,S seconds for the inorder case, and 8.5 for the random 

case, all of size 20000. 



tt While this sort may not seem to exhibit natural behavior, it is 

certainly recommended when the number of elements to sort is 

large. Since it is also quick when n (number of elements) is 

small, it can also be used for small sorting jobs but some 

overhead is created by the recursive calls. Note that it closely 

resembles the n log n curve in Figure 2. Also note that it's 

curve is the flattest and lowest of any of the sorts. 

The next sort is the heap sort. This was the second slowest 

of the fast sorts for the random case. At 20 seconds, it was 

11.5 seconds slower than quick sort. The times for reverse and 

inorder cases of size 20000 were 18 and 35 seconds, respectively. 

This sort exhibits natural behavior. Note that the heap sort 

curve is also very similar to the n log n curve. 

tt The next sort generated an interesting set of timings. The 

merge sort took 15 seconds to do each of the three 20000 element 

cases. This is not natural behavior since the algorithm works 

the same no matter what order the elements are in. The merge 

curve is also similar to the n log n curve, but is flatter than 

the heap sort curve. 

The last sort is the radix sort. It is second only to quick 

sort in all of the three cases of size 20000. It took 9, 8, and 

10 seconds for the reverse order, inorder, and random cases, 

respectively. It does not exhibit natural behavior in this 

experiment since it took longer for the random case than for the 

reverse order case. It is, however, a very fast sort. It's 

curve is close to the quick sort curve in terms of shape and 

tt position. 

The best sort in terms of the experiment seems to be quick 

sort, but we will further investigate in the next chapter. 



• CHAPTER 4 - MATHEMATICAL ANALYSIS 

Now that we have a small insight into the performance and 

behavior of the algorithms, let's try to gain a more complete 

understanding by using mathematics. Please note that some of the 

algorithms present difficult mathematical problems and will be 

difficult to analyze. We will not go into a great deal of detail 

if this is the case. We will start with the bubble sort 

algorithm. To mathematically analyze this and the other 

algorithms, we will count the number of comparisons required by 

each algorithm. Although there is a count of the number of 

exchanges, we will gain sufficient insight with just the use of 

the comparison count. The magnitude of this count will give us a 

• clear picture of why the algorithms behave like they do. 

Now, let's look at the bubble sort algorithm. The inner 

loop of bubble sort will execute n/2 times (n=number of elements 

to sort) since every pass will bubble up an element into it's 

proper position and out of place elements are exchanged. Only 

n/2 comparisons are needed because the list will be ordered when 

at most half of the elements have been exchanged (worst case). 

In the random case, we assume that the outer loop will execute 

approximately n-l times. This ensures that all elements will be 

sorted. We then have n/2(n-l) or 1/2(n**2-n) comparisons. The 

number of comparisons for the best case is n-l, since the 

algorithm terminates when no exchanges have been made. The order 

• 
of magnitude of the number of comparisons is n**2, so the 

algorithm is said to operate in O(n**2) time. This algorithm is 

slow when n is large, even when ignoring the number of exchanges. 



• The shaker sort is simply a modified version of bubble sort 

where the order of magnitude of the number of comparisons 1S 

still O(n**2) and the number of exchanges is reduced only by a 

small amount. It is almost as slow as bubble sort, therefore, 

and is not recommended for large n. 

The selection sort also has an outer loop that executes n-l 

times and an inner loop that executes n/2 times. Again we have 

1/2(n**2-n) comparisons which makes selection sort an O(n**2) 

sort. This sort also is slow for large n. 

• 

The number of comparisons in the insertion sort algorithm 

depends on how the list is ordered before it is sorted. If the 

list is in reverse order, we have 1/2(n**2-n)+1 comparisions 

since the outer loop executes n-l times and the inner loop n/2+1 

times. The number of comparisons for the random case is better, 

but even though the number may be small, the number of moves can 

be a problem since the array is constantly being shifted. 

Each one of the above sorts is basically too slow to use 

since the execution time is directly affected by the number of 

elements. The faster sorts are used more often since they are 

not O(n**2) (very slow when n becomes large). 

The shell sort is very difficult to analyze and we shall 

suffice by noting that it has been shown mathematically that the 

execution time is proportional to n**1.2. This affirms our 

earlier suspicions about the upper and lower bounds on the 

performance . 

•
 



• We now come to the fastest sort, quick sort. In the worst 

case when each of the median values is at an extreme, quick sort 

is slowed to an O(n**2) sort. Each level of recursion will 

require that the partioning loops make O(k) comparisons where k 

is the total number of elements recursively partitioned i. e. at 

level one, r=n and at level two, r=n-1 etc. Therefore, the 

number of comparisons is a sum on k where k varies from n or 

O(n**2). The random case, however, is of O(n log n). 

It can be shown [1] that if Ca(n) denotes the average number 

of comparisons to sort n elements, then the following recurrence 

relation holds: 

• n+1 is the number of compar1sons needed for the partitioning 

loops on the first partition. This recurrence can be solved as 

follows: n(... (n) =n(n-+ 1)-1 2 (c.A,(O)'" CAU) ..... , ,+ ( ... «() -I)) 
(n-llCA(n- l ) ~ f1(n-l) -j.. 2 (C/,(6)+ + (A«(l-2.) ') 

nC ... ll'1)...(rl-IJ(A(Yl-I)=2n -l 2 ( «(1-1) 

CA(n)An~I)-:: CA(i1-1)/n zl(n 1-1)oj 

(.<l.(n) /( n-l I) :;- CPo (1'\ - 2.) I (Ill -I) -I 2/n -+- 2/ (Yl-J. j) 
" ) 2/ + 2/CVl-l 1)

-:: (A(I'1-s)/(n- Z ) + 2!eVl-1 + 11 

51 {ICe £!It<".( SM2

~ Jx c.... 1C5e(VH 2.)

• 3!K{ "I' '3 

« 2(YHI) IO'je(n~2J =. 0(1'1 lo~ VI) 



• We now will look at the heap sort algorithm. In order to 

analyze heap sort, we will break the analysis into 2 parts. 

First we will look at the creation of the heap. Then we will 

examine the switching and adjusting of the heap. In the worst 

case, each element inserted becomes the root. Since the heap is 

a complete binary tree, there are 2**i-l maximum nodes on any 

level i where l<=i<=flc'):2.(I')<I)1 The distance to the root for a 

node on level i is i-1 so we have the worst case time: 

{ (; -.1)2.i'~< rlc52.('1-1-1~~':JJ.(11"11-= 0 (1'1 )05 n) 
1~; ~n~z\nf.l) 

What is amazing about the random case heap creation 1S that 

the time needed is O(n). Since the proof of this is quite 

complicated, we shall not try it here. Now let's look at the 

switching and adjusting loop. The loop that switches elements

• and calls adjust must perform O(n) operations. Since adjust 

possibly requires O(log n) operations, we have a worst case time 

of O(n log n) . 

Now let's look at merge sort. It can be proved [1] that if 

T(n) is the execution time needed to sort n elements, the 

following recurrence relation holds: 

T(I".) ::: 0 n.:: I 

-: 2 T(I1J~) ~ c.' s C.o '" ~ 1-""1 t­Cr'I c... 
w\,en I"\> 2" w" t-,,,,ve: 1('1) -:: 2(2r(.YV4) ~ c(\I°2-).j. c..L'\ 

::: l\'- (n!'!) 1- 2 c. Y1 

_ y(zr(Y1/g) + cn/"';),j len 

r,(I) .,. kGh 

::. c, Vl .,. CIA ) C3 " 

• Tel')) ~ T (r+') 

I()5 10) 



• CHAPTER 5 - CONCLUSION 

Remember that any conclusions stated in this report are 

based entirely on the research and analysis that was performed. 

It is possible that some margin of error may be present. One 

conclusion that can be reached by examining all of this research 

is that quick sort is the best all-around sorting algorithm in 

use today. One look at Figure 3, which is a graphing of all of 

the sorting algorithms in terms of performance, suggests that 

there are four sorts that are fast enough to be practical: heap 

sort, merge sort, radix sort, and quick sort. 

• 
If one wishes to sort a large amount of data that is in 

relatively random order, use quick sort. It is simply the 

fastest general sorting algorithm available. If a small amount 

of data is to be sorted, perhaps heap sort would be best since it 

creates no overhead (no recursion used) that would slow it down. 

The bubble, shaker, select, and insert sorts may be simple 

and easy to understand and implement, but they are simply too 

slow for real-life practical applications. All of these O(n**2) 

algorithms take too much time for large amounts of data. The 

shell sort algorithm does present some very interesting 

mathematical problems but when compared to the O(n log n) sorts, 

it is also too slow. Remember that quick sort does slow down to 

O(n**2) time for the worst case. Perhaps merge or heap sort 

would be better for this type of data since both merge and heap 

• 
sort remain O(n log n) for all types of data (worst, random, 

best cas es) . 



tt Still, the slowing of quick sort to O(n**2) happens rarely 

and it is the fastest of all of the sorts for random case data. 

Radix sort is almost as fast as quick sort for some data, but 

it's execution time depends greatly on the size of the number. 

Since radix sort uses the internal structure of the element being 

sorted, it is not good for sorting general elements. Quick sort 

can be used to sort a variety of things, regardless of element 

structure, and thus is more versatile than radix sort. 

Therefore, according to the experimental data and 

mathematical analysis, quick sort is the best sort. Perhaps 

advancements in the field of computer science will produce an 

algorithm that is better than quick sort. Until then, however, 

quick sort is the winner! 

tt 

tt
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• FIG 4 

TIMING DATA 

Sort Array Size Case 

Bubble 100 reverse 
500 " 
1000 " 
2000 " 
5000 " 
10000 " 

100 inorder 
500 " 
1000 " 
2000 " 
5000 " 
10000 " 

• 
100 
500 
1000 
2000 
5000 

random 
" 
" 
" 
" 

10000 " 

Shaker 100 reverse 
500 " 
1000 " 
2000 " 
5000 " 
10000 " 

100 inorder 
500 " 
1000 " 
2000 " 
5000 " 
10000 " 

100 random 
500 " 
1000 " 
2000 " 
5000 " 

• 
10000 " 

Time (in secs) 

1.0 
6.0 
24.0 
95.0 
598.0 
2394.0 

0.0 
0.0 
0.0 
0.0 
0.0 
1.0 

0.142857 
4.0 
16.4 
65.75 
409.3 
1646.5 

1.0 
6.0 
24.0 
96.0 
597.0 
2390.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.142857 
3.3 
13.4 
54.25 
340.0 
1361.5 



• Sort Array 

TIMING 

Size 

DATA(cont'd) 

Case 

Select 100 reverse 
500 " 
1000 " 
2000 " 
5000 " 
10000 " 

100 in order 
500 " 
1000 " 
2000 " 
5000 " 
10000 " 

100 random 
500 " 
1000 " 
2000 " 
5000 " 
10000 " 

• Insert 100 reverse 
500 " 
1000 " 
2000 " 
5000 " 
10000 " 

100 inorder 
500 " 
1000 " 
2000 " 
5000 " 
10000 " 

100 random 
500 " 
1000 " 
2000 " 
5000 " 
10000 " 

Shell 1000 reverse 
2000 " 
5000 " 
8000 " 

• 
10000 
20000 

" 
" 

Time (in sees) 

0.0 
3.0 
10.0 
39.0 
246.0 
984.0 

0.0 
3.0 
10.0 
39.0 
246.0 
984.0 

0.0 
2.0 
7.6 
30.25 
189.3 
758.0 

0.0 
4.0 
13.0 
54.0 
335.0 
1339.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.142857 
1.3 
6.8 
26.75 
166.67 
672.5 

2.0 
8.0 
43.0 
109.0 
170.0 
677.0 



----------------------------------------------------------------•
 TIMING DATA(cont'd)
 

Sort Array Size Case Time(in sees)
 

Shell	 1000 
2000 
5000 
8000 
10000 
20000 

1000 
2000 
5000 
8000 
10000 
20000 

Quick	 1000 
2000 
5000 
8000 
10000 
20000 

•	 1000 
2000 
5000 
8000 
10000 
20000 

1000 
2000 
5000 
8000 
10000 
20000 

Heap	 1000 
2000 
5000 
8000 
10000 
20000 

1000 
2000 
5000 
8000 

inorder 1.0 
" 1.0 

1.0" 
2.0" 
3.0" 
5.0" 

random 1.428571 
4.3" 
23.4" 
58.5" 

" 90.67 
353.0" 

reverse 0.0 
0.0" 

" 1.0 
2.0" 

" 2.0 
" 6.0 

inorder 0.0 
" 1.0 

1.0" 
" 2.0 

2.0" 
" 5.0 

random 0.285714 
1.0" 
2.0" 

" 3.0 
4.0" 
8.5" 

reverse 1.0 
1.0" 
4.0" 
7.0" 
8.0" 
18.0" 

inorder 1.0 
2.0" 

" 8.0 
13.0" 

• 
10000 " 16.0 
20000 35.0" 



----------------------------------------------------------------•
 TIMING DATA(cont'd)
 

Sort Array Size Case Time(in sees)
 

Heap	 1000 
2000 
5000 
8000 
10000 
20000 

Merge	 1000 
2000 
5000 
8000 
10000 
20000 

1000 
2000 
5000 
8000 
10000 
20000 

1000• 2000 
5000 
8000 
10000 
20000 

Radix	 1000 
2000 
5000 
8000 
10000 
20000 

1000 
2000 
5000 
8000 
10000 
20000 

1000 
2000 
5000 
8000 

random 
" 
" 
" 
" 
" 

reverse 
" 
" 
" 
" 
" 

inorder 
" 
" 
" 
" 
" 

random 
" 
" 
" 
" 
" 

reverse 
" 
" 
" 
" 
" 

inorder 
" 
" 
" 
" 
" 

random 
" 
" 
" 

0.857143 
1.5 
4.4 
7.75 
9.0 
20.0 

1.0 
1.0 
4.0 
7.0 
8.0 
15.0 

1.0 
1.0 
3.0 
6.0 
9.0 
15.0 

0.857143 
1. 67 
4.2 
7.0 
9.0 
15. a 

0.0 
1.0 
2.0 
3.0 
4.0 
9.0 

0.0 
1.0 
2.0 
3.0 
4.0 
8.0 

0.285714 
0.83 
2.4 
4.0 

• 
10000	 5.0" 
20000	 10.0" 



• FIGS 

ENVIRONMENT FOR SIMULATION 

Bubble, shaker, select, and insert sorts used: 

Number of Timing Samples Size of Array to be Sorted 

• 

7 100 

6 500 

5 1000 

4 2000 

3 5000 

2 10000 

Shell, quick, heap, merge, and radix sorts used: 

Number of Timing Samples Size of Array to be Sorted 

7 1000 

6 2000 

5 5000 

4 8000 

3 10000 

2 20000 

•
 



---------PRoGRAM L IS"-r / J'J G
 



1*************************************************************************1
1* AUTHOR Terry David Fryar *1
1* SSN 344-62-3964 *I
1* TITLE EXPERIMENTAL ANALYSIS OF VARIOUS SORTING ALGORITHMS. *1
1* DESCRIPTION: This prDgram perfDrms the task Df prDducing experimental*1
1* data Dn the perfDrmance and behavior Df sDrting *1
1* algDrithms. The algorithms tested are: Bubblesort, *1
1* ShakersDrt, SelectsDrt, InsertsDrt, Shell sDrt, *1
1* QuicksDrt, Heapsort, Merge sDrt, and Radix sort. These *1
1* are coded in C and are executed on variDus sizes of *1
1* arrays of numbers in Drder, in reverse Drder, and in *1
1* randDm Drder. The timing data prDduced is sent tD a *1
1* ·fil.e Dn disk. *1 
1*************************************************************************1
 
#include Iitime.h'l 
*l:i IlC 1ude 11 stcldef . h II 

#include ll s tdio.h" 
#i nel uda IIdos.1l 11 

:J:1:include lI s t.dlib.h " 

mai n (),. 
" 

int sortarray[30000J; 1* the array tD be sorted *1 
int cDuntarray[6J; 1* hDlds the number Df elements tD be sDrted *1 
int numpasses[6J; 1* holds how many times the sort is to be 

performed on Dne size of sDrtarray to obtain 
an average Df timings *1 

dDuble timearray[BJ; 1* hDlds the timing results *1 
tIme t start,end~ 1* used for timings *1 
FILE *outf; II Dutput file *1 
int pnum; II IDop cDntrDI var for number of passes II 
double totaltime; II all. times added tDgether (for average) *1 
int indeN; /* this is an index used to correspond the 

following experiment parameters: 

Bubble, shaker, select, insert sorts use~ 

INDEX NUM OF PASSES SIZE OF SORTARRAY 

0 7 100 
1 6 500 
2 5 1000 
~5 4 2000 
4 3 5000 
5 2 10000 

Shell, quick, heap, merge, radix sorts use: 

0 7 1000 
1 6 2000 
" 5000.<. 

~ 

'"' 7 
'-' 4 BOOO 
4 3 10000 
~ 
,J '" ~::. 20000 

*1 



countarray CO]'~ 100; I' lnitialize cDunt array with cDunts fDr .1
 
countarray[lJ=500; I' slDw sDrts .1
 
cDuntarrayC2]=1000;
 
countarray[3J=2000;
 
countarray[4J=5000;
 
countarray[5J=10000;
 

numpasses[0]=7; I' initialize pass array with number Df passes fDr the .1 
numpasses[1]=6; I' slDw sDrts .1 
numpasses[2J=5; 
numpasses[3]=4;
 
numpasses[4]=3;
 
numpasses[5J=2; 

Dutf==:fopen ( lI b:proj. out ,1lW Il ); I' Dpen Dutput file .1II 

1••••••••••••••***•••••••••••**.*••• ****••*••••** ••••••*••••** ••••••••••*.1
 
I' Here is the experimentatiDn Dn the slDwer sDrts COCn ••2»: bubble, .1
1* shaker Can imprDved bubble SDrt), select, insert. *1 
1*••*•••••***.***••*•••*•••*••*.**•••••***•••••***.** ••• **********.*****•• 1 
1.*••••*•••*.*•••••• ** •••*********.***.***************************.**•• ***1
 
I' BUBBLE SORT *I 
1•• ** •• ** ••**.***••••****.**.*•••**.*****************************.* ••****.1
 

for (inde>~=O; inde}:<==5; ++inde~·:) { 
revDrderCsDrtarray,cDuntarray[index]); 
sta'.... t:::::time(O) ; 
bubbleCsDrtarray,cDuntarray[index]);
 
end=timeCO) ;
 
fprintfCDutf,"Bubble sDrt Dn revDrder case Df sizeC%d): %f \n",
 

cDuntarray[index], difftimeCend,start»; 
)­

for (indeH=O; incleN<:=5; ++:i.nde:·() { 
inDrderCsDrtarray,cDuntarray[index]);
 
start='time CO);
 
bubbleCsDrtarray,cDuntarrayCindex]);
 
end=ti me CO) ;
 
fprintfIDutf,"Bubble sDrt Dn inDrder case Df sizel%d): %f \n",
 

cDuntarray[index], difftimelend,start»; 
} 

for (inde){=O; ind€'2H<=5; ++inde~·{) -[
 
tDtaltime=O;
 
fDr Ipnum=O; pnum(numpasses[index]; ++pnum) {
 

averageCsDrtarray,cDuntarray[index]);
 
stal'-t=ti me CO) ;
 
bubbleCsDrtarray,cDuntarray[index]);
 
E\nd=time(O) ; 
timearray[pnum]=difftimeCend,start);
 
tDtaltime=tDtaltime+timearray[pnum];
 

)­

fprintf IDutf, "Bubble sDrt Dn average cases Df sizeC%d): \n", 
cDuntarray[index]); 

filetimesCtimearray,numpasses[index],Dutf); 
·fpl"i.ntf CDutf, "Avel"age time: %f \n\n",tDtaltime/numpasses[inde:.,]); 

)­

1**********************.****************.*.**********.****************••**1
1* SHAKER SORT *1 
1*************************************************************************1
 

'for (inds}:=O; inde:·~<=5; ++inde}:) -[ 
revDrderCsDrtarray,cDuntarrayCindex]);
 
start=time CO);
 
shakerCsDrtarray,cDuntarrayCindex]);
 
end=timeCO) :
 



fprlntt (outf, "Shaker sort on revorder case o'f size(%d): %f \n':, 
countarrayCindex], difftimelend,startll; 

} 

for (index=O; index<=5; ++index) { 
inorderCsortarray,countarrayCindex]l;
 
start=timeCO);
 
shakerlsortarray,countarrayCindex]l;
 
end=timeIOI;
 
fprintfCoutf,"Shaker sort on inorder case of sizeC%d): %f \n",
 

countarrayCindex], difftimelend,start»; 
} 

for (inde){=O; inde>:(=5; ++inde:·~) { 
totaltime=O; 
for Cpnum=O; pnum(numpassesCindex]; ++pnuml (
 

averageCsortarray,countarrayCindex]l;
 
start=timeIO);
 
shaker Csortarray,countarrayCindex]) I
 
end=timeCO) ;
 
timearrayCpnum]=difftimeCend,start);
 
totaltime=totaltime+timearrayCpnum];
 

} 

fprintf Coutf, "Shake,- sor't on average cases of sizeC%dl: \n", 
countarrayCindexJ); 

filetimesCtimearray,numpassesCindex],outfl; 
fprintfCoutf,"Average time: %f \n\n",totaltime/numpassesCindex]l; 

} 

1***"*****"*******,*"",**"*",,,,,,**,,*******,*********,*****,""'*1
I' 'I
SELECT SORT
1"""*""*""""""""",*",*,*,,,*,**,,***,,***,*"*",*,,,""'*1
 

for (i ndeN =0; i nde:·: <=5; ++i nde:·:) { 
revorderlsortarray,countarrayCindex]l; 
star"t::::t:, i me (0) ;; 

selectCsortarray,countarrayCindex]);
 
end=time CO);
 
fprintfloutf,"Select sort on revorder case of sizeC%d): %f \n",
 

countarrayCindex], difftimelend,startl); 
} 

for (index=O; index<=5; ++index) { 
inorderCsortarray,countarrayCindex]l;
 
start=timeCO) ;
 
selectCsortarray,countarrayCindex]l;
 
end=timeIOI;
 
f~>r'intf lout'f, "Select sort on inorder case of sizeC%d): %f \n",
 

countarrayCindex], difftimelend,start»; 

"
" 

for (index=O; index<=5; ++index) { 
totaltime=O; 
for (pnum=O; pnum(numpasses[index]; ++pnum) -[ 

average(sortarray~countarray[indexJ); 

start=time(O) ; 
selectCsortarray,countarrayCindex]);
 
end=timeCO) ;
 
timearrayCpnum]=difftimeCend,start);
 
totaltime=totaltime+timearrayCpnumJ;
 

} 

fprintf(oLltf, lI Se l ec t sort pn average cases of size(l..d): \n ll , 

countarrayCindex]); 
filetimesltimearray,numpassesCindex],outf); 
fprint'f Coutf, "Average time: %f \n\n",totaltime/numpassesCindex]l; 

)-

I'*D'**II"""""'*"""'."" ••"""""""."" ."" ••••""."".'1
I' .1
INSERT SORT 
I ••••• , •• , •••••••••••••••• , •••••** ••' ••a•••"' ••••••••••••••••• , •••••••••• 1 



for- (lnde>:=O; inde;·:<=5; ++indeH) { 
revorderlsortarray,countarray[index]);
 
start=timel(l) ;
 
insertlsortarray,countarray[index]l;
 
end=timelOI;
 
fprintfloutf,"Insert sort on revorder case of sizell.d): I.f \n",
 

countarray[index], difftimelend,start)l; 
} 

for- (inde:-:=O; inde:·:<=5; ++inde:·() { 
inorderlsortarray,countarray[index]l;
 
start=timelOI;
 
insertlsortarray,countarray[index]l;
 
end'=time (0);
 
fprintfloutf,"Insert sort on inorder case of sizell.dl: I.f \n",
 

countarray[index], difftimelend,startl); 
} 

for- (inde:-:=O; inde>:<=5; ++inde:-:) { 
totaltime=O; 
for Ipnum=O; pnum(numpasses[index]; ++pnuml {
 

averagelsortarray,countarray[index]);
 
start=time (0);
 
insertlsortarray,countarray[index]l;
 
end=timelOI;
 
timearray[pnum]=difftimelend,start);
 
totaltime=totaltime+timearray[pnum];
 

} 

fprintf loutf, "Insert sort on average cases of sizell.dl: \n", 
countarray[index]); 

filetimesltimearray,numpasses[index],outfl; 
fprintf lout'f, "Average time: I.f \n\n",totaltime/numpassesCinde,·:]); 

} 

1**********************************************************************1
1* Initialize experiment parameters for the faster sorts. *1 
1**********************************************************************1 
countarray[0]=1000; 1* initialize count array with counts for *1 
countarray[lJ=2000; 1* fast sorts *1 
countarr-ayC2J=5000; 
countarrayE3J=8000; 
countarray[4]=10000; 
countarray[5J=20000; 

numpasses[0]=7; 1* initialize pass array with number of passes for the *1 
numpasses[1]=6; 1* fast sorts *1 
l'1umpasses[2J=5; 
nurnpasses[3]=4;
 
numpasses[4]=3;
 
numpc\sses [5] =2; 

1*************************************************************************1
 
I * SHELL SORT *I 

1***************************************************** **********.vuar: ',,;: 
for (inde:-:=O; inde;·~<=5; ++inde:·:) { 

revorderlsortarray,countarray[index]);
 
start=timelOI;
 
shell lsortarray,countarray[index~)
 

end=timelOI;
 
fp,-intf loutf, "Shell sor'" on revordf1r case of sizell.dl: I.·f \n",
 

countarray[lndex], difftlmelend,startl I; 
} 

for (inde:-::;;:(l: Incle;«:::::=i;i ++lnde;.~) {
 
Inorder(sortarray,countarray[lndex]);
 
st(:;II.... ~.:.:.=t.lme(O) ~ 



shell (so~ta~~ay,countar~ayLlndeXJ);
 

enc!=time(O) ;i
 
fpr-intf (outf, "Shell SDr-t Dn inor-der- case o-f size(%d), %f \n", 

countar-r-ay[indexJ, difftime(end,star-t)); 
,--;
fo~ (index=O; inde}~<=5; ++inde}:) {
 

total t·ime;:;;:(l;
 
for Cpnum=O;i pnum<numpassesCindexJ; ++pnum)
 

aver-age(sor-tar-r-ay,countar-r-ay[index]); 
start=time(O); !
 
shel.l (sortarray,cDuntarray[indexJ);
 
end=time (0);
 
timear-r-ay[pnum]=difftime(end,star-t); 
totaltime=totaltime+timear-r-ay[pnumJ;
 

;.
 
fpr-int.f(outf,"Shell sor-t on aver-age cases of size(%d): \n",
 

count.ar-r-ay[index]); 
filetimes(timear-r-aY,numpasses[index],outf); 
fpr-int.f (outf, "Aver-age time: %f \n\n",totaltime/numpasses[inde,-,]); 

} 

1*""""""""""""""""""""""""""""""""""""1
I' QUICKSORT .1 
I"""""""""""""""""""""""""'""'**""""*"'*'*1
 

·f or (i nde:< =0; i nde}: <=5; ++i nde;.:) { 
revorder(sorta~ray,countarrayCindex]); 

start=timeCO) ; 
quick (sor-tar-r-ay,countar-r-ay[indexJ)I 
end=time(O); 
fpr--:lntf (out-f, "Quick sor-t on r-evor-der- case of size,(%c1): %f \n", 

countar-r-ay[indexJ, difftime(end,star-t); 
} 

for· (i nde:-: =0; i nde:·: <: =5; ++i nde:·~) {
 
inorder(sortarray,countarray[index]);
 
starMt==ti me (0) ; 

quick(sor-tar-r-ay,countar-r-ay[index]); 
encl=time(O) ; 
fpr-intf (out.f, "Quick sor-t on inor-c1er- case Df sizeCI.c1): %-f \n", 

cDuntar-r-ay[index], difftime(end,star-t); 
} 

for (inde:·~=O; inde}:<:=5; ++inde}~) -[
 
total t i rTit?=O;
 
fo~ (pnum=O; pnum<numpassesCindexJ; ++pnum) {
 

average(sortarraY,countarray[indexJ);
 
S"ltC.U-t=t i me (0) ;
 
quick (sor-tar-r-ay,cDuntar-r-ay[inclex]) ; 
end==timeCO) ; 
timear-r-ay[pnumJ=c1ifftime(encl,star-t) ;
 
totaltime=totaltime+timear-r-ay[pnumJ;
 

} 

fpr-intf (Dutf, "Quick SDr-t on aver-age cases Df size(%d): \n", 
cDuntar-r-ay[indexJ); 

filetimes(timear-r-ay,numpasses[inclex],Dutf); 
fpr-int-f (out-f, "Aver-age time: %f \n\n",totaltime/numpasses[inde,-,]); 

-,,­

1'*"""""""""""""""""""""""".'*,*""***",,,"""1
I' HEAF'SORT 'I
1""*'"-,,-*,--*-,---*,-,-,---,*---,,-,---,,,"-'-"*,,****--••*.*_*" __ 1
 

•·for M (index=O; index<=5; ++inde:{) { 
revorder(sortarray,countarrayCindex]); 
stal·-t=tim(·?(O) ; 
heapsort(sortarray,countarray[indexJ); 
r::'ncl=t i. m€~ (0) = 



fprintfloutf,"Heap sort on revorder case of sizel%d): %1' \n", 
countarray[inde>:], difftimelend,start»; 

} 

for (lnde):=O~ inde:·:<=5; ++inde:·:) { 
inorderlsortarray,countarray[index]);
 
start=timelO);
 
heapsortlsortarray,countarray[index]);
 
end=timelO) ;
 
fprintfloutf,"Heap sort on inorder case of sizel%d): %1' \n",
 

countarray[index], difftimelend,start»; 
} 

for (index=O; index<=5; ++index) { 
totaltime=O; 
for (pnum=O; pnum(numpasses[index]; ++pnum) { 

averagelsortarray,countarray[index]);
 
start=timelO);
 
heapsortlsortarray,countarray[index]);
 
end=:time (0);
 
timearray[pnum]=difftimelend,start);
 
totaltime=totaltime+timearray[pnum];
 

} 

fprintfloutf,"Heap sort on average cases of sizel%d): \n", 
countarray[index]); 

filetimesltimearray,numpasses[index],outf); 
'fpr-in'tf loutf, "Average time: %f \n\n",totaltime/numpasses[inde",]); 

} 

1*************************************************************************1
 
I * MERGE SORT *I 

1*************************************************************************1
 
for (inde:·~=O; inde:·:<=5; ++inde:·{) -( 

revorderlsortarray,countarray[index]);
 
start=timelO) ;
 
mergesort(sortarray,countarrayCindex]); 
end=timelO) ; 
fprintfloutf,"Merge sort on revorder case of sizel%d): %f \n", 

countarray[index], difftime(end,start»; 
} 

for (index=O; index<=5; ++index) {
 
inorderlsortarray,countarray[index]);
 
star-t,c'ti me (0) ;
 
mergesortlsortarray,countarray[inde>:]);
 
end=timelO) ;
 
'/:pr'int'f loutf, "Merge sort on inorder case of size(%d): %f \n",
 

countarray[index], difftimelend,start»; 
} 

for (inde:·~=O; inde:·{<=5; ++inde:·:) { 
totaltime=O; 
for lpnum=O; pnum(numpasses[index]; ++pnum) {
 

averagelsortarray,countarray[index]);
 
star-t=time (0);
 
mergesortlsortarray,countarray[index]);
 
end=time (0);
 
timearray[pnum]=difftimelend,start);
 
totaltime=totaltime+timearray[pnum];
 

} 

fprintfloutf,"Merge sort on average cases of sizel%d), \n", 
countarray[index]); 

filetimesltimearray,numpasses[index],outf); 
fprintfloutf,"Average time: %f \n\n",totaltime/numpasses[index]); 

} 

1*************************************************************************1
 
1* RADIX Sor~T *1 
1*************************************************************************1 



for- (inde~·(==O; inde:«=5; ++inde}() { 
revorderlsortarray,countarrayCindex]);
 
s·tart=time (0);
 

radsortlsortarray,countarrayCindex]);
 
end=timelO);
 
fprintf loutf, "Radi>o( sort on revorder case of sizel%d): %1' \n",
 

countarrayCindex], difftimelend,start)); 
} 

for (index=O; index<=5; ++index) { 
inorderlsortarray,countarrayCindex]);
 
sta,-t='timelO) ;
 
radsortlsortarray,countarrayCindex]);
 
enc!=time(O) ; 
fpl~intf loutf, "Radi>o( sort on inorder case of size(%d): %·f \n", 

countarray[index], difftimelend,start»); 
} 

-few' (inde:-(=O; inde:-{<=5; +·+incle;.{) -[ 
totaltime=O; 
fo~ (pnum=O; pnum<numpasses[index]; ++pnum) .',.
 

average(50rtarray~countar~ay[indexJ);
 

s1:.:ar·t==ti {"lie (0) ;:
 
radsort(sortarraY,cDuntarrayCindexJ);
 
encl=time (0); 
timearrayCpnum]=difftimelend,start) ; 
totaltime=totaltime+timearrayCpnumJ; 

} 

fpl'~intf (outf, "Racli:·: sort on avel'-age Ccises of size(%d): \n ll , 

countarrayCindex]); 
filetimes(timear~ay,numpasses[index],outf);
 

fpr'intf (out'f, "~)vel'-age time: %1' \n\n",totaltime/numpassesCinde,,,]);
 
} 

fclosf2loutf) :: 1* close output file and flush stream *1
 
soundalarm(); 1* sound off when experiment completed *1
 

} 

1*************************************************************************1
1* function soundalarm: This sounds off when the program is done. *1 
1*************************************************************************1 
soundal ar-m () 

{ 

char ch; 

while l I lkbhit()) pC'intf l"\a"):
 
ch="getch l) ;
 

} 

1***************************************************** ********************;
1* function kbhit: Returns 0 if no key hit, true otherwise. *1 
;*************************************************************************;
 
,.
"­

retu~n( (char) bdos(OxB,O,O»; 
.',. 

1***************************************************** ********************;
1* function bubble' This is the bubble sort function. *1 
1*************************************************************************1 
bubble(sarray,countl 
i nt *~:ial"'r~i::\Y;i 

int: r'nlll'11-~ 



-[ 

register int a,b; 
~egiste~ int temp; 
int e:·:ch; 

a:::; 1 ; 
e,",ch=l; 
whi Ie (e~{ch g~8~ (a<cDunt» {
 

e~< ch=O;
 
fo~ (b=count-l; b:>=a; --b) -[
 

if (sa~~ay[b-1J:>sa~~ay[b]) -[ 
temp=sa~~ay[b-l]; 

sa~~ay[b-l]=sa~~ay[b]; 

sa~~ay[ti]=temp; 

e,",ch=l ; 
} 

} 

a++; 
} 

} 

!*************************************************************************1
1* function shake~: This is an imp~oved ve~sion of the bubble so~t. *1 
1*************************************************************************1 
shake~(sa~~ay,count) 

int *sar-r-ay; 
int count; 

-[ 

register- int a, b, c, d; 
int temp; 

c::::::l ; 
b=count-l ;
 
d=count-l ;
 
do { 

for (a=d; a>=c; --a) { 
if (sa~~ay[a-1J :> sa~,.-ay[a]) -[ 

temp = sa~~ay[a-l]; 

sa,.-,.-ay[a-l]=sa,.-~ay[a]; 

sarr-ayCaJ=temp; 
b=a; 

} 

} 

c=b+l ; 
for (a=c; a<d+l; ++a) { 

i·f (sa,.-,.-ay[a--l] :>sa,.-,.-ay[a]) 
temp=sa~~ay[a-l]; 

sa,.-,.-ay[a-l]=sa,.-,.-ay[a];
 
sa,.-,.-ay[a]=temp;
 
b=a; 

} 

} 

d=b-l ;
 
} while (c (= d);
 

} 

1*************************************************************************1
1* function select: This is the selection so,.-t algo,.-ithm. *1 
1*************************************************************************1
 
select(sarray,count) 
i nt *:~ar"ray; 

'i nt rnl llit ~ 



"
 register int a, b, c; 
int temp; 

for (a=O; a{count-l; ++a) {
 
c=a;
 
temp=sarray[aJ;
 
for (b=a+l; b<count; ++b) "
 

if (sarray[bJ<temp) "
 
c=b; 
temp=sarray[bJ; 

} 

} 

sarray[cJ=sarray[aJ; 
sarray[aJ=temp; 

} 

} 

/*************************************************************************/
/* function insert: This is tile insert sort algorithm. */
/*************************************************************************/
 
insert (sarray,count) 
int *sarr-ay; 
int count; 

.',. 
register int a, b; 
int temp; 

for (a=l; a<count; ++a) { 
temp=sarray[aJ; 
b:::::C\_R 1 ; 
while (b)=O && temp<sarrayCbJI "
 

sarray[b+1J=sarrayCbJ;
 
b=b-l ;
 

} 

sarray[b+1J=temp; 
} 

} 

/*************************************************************************/

/* function shell: This function is the shell sort. */ 

/*************************************************************************/
 
shell (sarray,countl 
i nt *sc\l"·ri-:-\Y; 
int count; 

register int i, j, k, 5, w;
 
int H, a[SJ;
 

a[OJ=9;
 
a[ 1 ]=5;
 
a[2J=3;
 
a[3]=2;
 
a[4J=1; 
for (w=O; w<5; W++) { 

k=a[wJ; 
s:::::-k;
 
for- (i:;;:;k; i<coLlnt~ ++i) {
 

,., = sarray[iJ; 
j=i-k; 
~.£ I /~" .r 



5:=-k;
 
5==5+1 ;
 
sar-r-ay[sJ=;·, ; 

} 

while Cx(sarray[jJ && j}=O && j(==count) { 
sar-r-ay[j+kJ=sar-r-ay[jJ; 
j==j-k; 

} 

sar-r-ay[j+kJ=;", ; 
} 

} 

} 

I*****'~*******************************************************************11* function quick: This is the quicksor-t algor-ithm. *1 
1***********************.****.***.****************************************1 
quick (sar-r-ay, count) 
int :«sar-r-ay; 
int count; 

{ 

qsCsarray,O,cQunt-l); 
} 

qs(sar-r-ay,left,r-ight) 
int .sar-r-ay; 
int left, r-ight; 

{ 

register- int i, j;
 
int :.:, y;
 

i=left;
 
j=r-ight;
 
x=sar-,,-ay[(left+r-ight)/2J;
 
do -:: 

while(sar-r-ay[iJ{x && i{r-ight) i++;
 
while(x{sar-r-ay[jJ && j)left) j--;
 
if Ci<=j) -[ 

y=sar-r- ay [i J ;
 
sar-r-ay[iJ=sar-r-ay[jJ;
 
sancay[j J=y;
 
i=i+l ;
 
j=j-l ;
 

} 

} while Ci(:::::j); 
if <left{j) qs(sar-r-ay, left,j); 
if (i{r-ightl qs(sar-r-ay,i,r-ightl; 

} 

1*****.*****.***.****••••*********.**••*•••****.***.****.*.*••** ••*••*.*.*1

I. function heapsor-t: This is the heapsor-t algor-ithm.
1••**.*****•• *** •••••••••••••••*.*•••••••••••••••••••••••••••••••••••••••• 1
 
heapsortCsarray,CQunt) 
int *sarray; 
int cQunt; 

{ 

int t",mp; 
r-egister int nextposition; 

cr-eate_heap(sar-r-ay,count);
 
for- (nextposition=count-l; nextposition)=2; nextposition--) {
 

i-~m,.,=c::.""'II"'II"'_~"rr"n,,+- ............ e:; +;,....,., 1­

.1 



sarray[nextpositionJ=sarray[lJ; 
sarray[lJ=temp; 
adjust (sarray,nextposition-ll; 

} 

} 

/*************************************************************************/
/* function adjust: This function, when necessary, switches parents and */ 
/* children to assure that the heap is correct. */ 
/*************************************************************************/ 

adjustlsarray,kl 
int *sarTay; 
int k; 

-[ 

int parent, child, temp; 

parent=l ; 
child=2; 
if «k>=3) &~< (sarray[3J>sarray[2J» child=3; 
,.hile (Ichild<=k) ~<~< (sarray[childJ>sarray[parentJ» -[ 

temp=sarray[childJ; 
sarray[childJ=sarray[parentJ; 
sarray[parentJ=temp; 
parent=child; 
child=2*parent; 
if (child+1<=k) if (sarray[child+1J>sarray[childJ) child++; 

} 

} 

/***************************************************** ********************1 
/* function create_heap: This function creates a heap within an array. *1 
1***************************************************** ********************/ 

create__heap (sarray, count) 
i nt *E;arr~ay; 

int count; 

-[ 

int node, parent, temp;
 
register int nextnode;
 

for (nextnode=2; nextnode<count; nextnode++) {
 
node=::ne~·: tnode;
 
par-ent==node/2;
 
while «node != 1) && (sarray[parentJ<sarray[nodeJ» ·c 

,.
 

temp=sarray[parentJ;
 
sarray[parentJ=sarray[node];
 
sarray[node]=temp;
 
node=parent;
 
parent=node/2;
 

} 

} 

} 

/***************************************************** ********************1 
/* function mergesort: This function is the merge sort algorithm. */ 
/*************************************************************************/ 

mergesort(sarray,count) 
i nt >;(sarray; 
int count; 

-[ 

i nt 1 ow=1.; 
~ ........ I-~,...,~._.
 



high=count-l ; 
msort(sarray,low,high); 

} 

msort(sarray,low,highl
 
int *sarray;
 
int low;
 
int high;
 

{ 

int mid; 

if (low <: hi 9 hI {
 
mid=lllow+highl/21;
 
msort(sarray,low,mid); 
msortlsarray,mid+l,high); 
merge(sarray,low,mid,high); 

} 

.',. 

/*************************************************************************/
/* f0nction merge: This function merges the two subarrays together. */ 
/*************************************************************************/
 
merge(sarray,low,mid,highl 
i nt. *~~;array; 

i nt. low; 
int mid; 
int high; 

{ 

register int h,i,j,k; 

/* HERE IS THE TEMPORARY ARRAY */ 

int temparray[30000J; 

h=low:; 
i::::1Clw;
 
j::::rnicl+l ;:
 
",hi I '" I I h<:=mi d I 8,8, U<:=hi gh» {
 

if (sarrayCh J<:=sar-rayCj J I {
 
temparrayCiJ=sarrayChJ;
 
h++; 

} 

c--?15e {
 
temparray[iJ=sarray[jJ;
 
j++; 

} 

i ++; 
} 

if (h>midl for (k='j; k<:=high; k++l {
 
temparrayCiJ=sarray[kJ;
 
i ++; 

} 

else for (k=h; k<:=mid; k++l {
 
temparray[iJ=sarray[kJ;
 
i ++;
 

}
 

} 

/*************************************************************************/
/* function radsort, This is the radix exchange method of sorting. */ 
I*WW*W*WWWwwww*w*w*******w~******ww*w*************w*** ********************/ 



radsort(sarray,count) 
int *sarraYI 
int count; 

{ 

int bitnuml
 
int bitarray[16J;
 
bitarray[OJ=Oxl;
 
bitarray[lJ=Ox2;
 
bitarray[2J=Ox4;
 
bitarray[3J=OxS;
 
bitarray[4J=Oxl0;
 
bita~~ay[5]=Ox20; 

bitarray[6J=Ox40;
 
bitarray[7J=OxSO;
 
bitarray[SJ=Oxl00;
 
bitarray[9J=Ox2001
 
bitarray[10J=Ox400;
 
bitarray[llJ=OxSOOI
 
bitarray[12J=Oxl000;
 
bitarray[13J=Ox2000; 
bitarray[14J=Ox4000; 
bitarray[15J=OxSOOOI 
bitnum=15; 

rs<sarray,O,count-l,bitnum,bitarray); 
} 

11*111*********************************1**********************************1
II function rs, This is the recursive algorithm. *1 
11*************************1**********************************************1 
rs(sarray,left,right,bitnum,bitarray) 
int *5at'~ray; 

int left; 
i nt ri ght; 
int bitnum; 
int *bitarraYI 

{ 

register int i,j; 
int tempI 

if (bitnum>=O){
 
i=left.;
 
j=right;
 
do { 

while( I (sarray[i J 8< bitarray[bitnumJ) 8<8< i<right) i++;
 
while«sarray[jJ & bitarray[bitnumJ) && j>left) j--;
 
if (i<=j) -[
 

temp=sarray [i J; 
sarray[iJ=sarray[jJ; 
sarray[jJ=temp; 
i =i + 1 ;
 
j:::=j-1;
 

} 

} while li<=j); 
bitnum--; 
if «j<left) :: (i>right» rs(sarray,left,right,bitnum,bitarray); 
else { 

if (left<j) rs(sa,-ray,left,j,bitnum,bitarray); 
if li<right) rs(sarray,i,right,bitnum,bitarraY)1 

} 

} 



, ••••••• 0•••••••• 0.0 ••••• 0.001 •••••••••••• 01.10••••••••••••••••••• 0••••••• , 
I. function ino~de~: This function gene~ates the ino~de~ case a~~ay. • 
I
 
I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,
 

ino~de~(~nda~~ay,count) 

int .~nda~~ay; 

int count; 
{ 

int ind:·:;
 
fo~ (indx=O;indx<count;indx++1 ~nda~~ay[indx]=indx;
 

} 

I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
" function ~evo~de~: This function gene~ates the ~evo~de~ case a~~ay. • 
I
 
I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,
 

revo~de~(~nda~~ay,countl 

i nt 'r'nda~~ay; 

int count; 
{ 

int ind~-{; 

int val; 

Hval :::: count -l; 
fo~ (ind:·:=O; ind:·:<count; ind:<++l 

{ 

~nda~~ay[indx]=val; 

val = val-I; 
} 

} 

I •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1•••••••••• , 
" function ave~age: This function gene~ates the ave~age case a~~ay. ., 
I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

ave~age(~nda~~ay,countl 

i nt 'r'nda~~ay; 

int count; 
{ 

int ind:.:;
 
int stime;
 
long ltime;
 

Itime=time(NULL);
 
stime=(unsigned intI Itime/2;
 
sr-and (stime);
 
fo~ (indx=O;indx<count;indx++1 ~nda~~ay[indx]=~and();
 

} 

I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 
I' function displaya~~ay:This function displays the a~~ay. .1 
1 ••*••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••1 

displaya~~ay(sa~~ay,count) 

int 'sa~~ay; 

int count; 

int ind:q
 
int lcount=O;
 

fnr (inclw=O: ind~·!·{count.: ind}~++) -[ 



printf ("%d ",sarray[ind,·,]); 
lcount=lcount+l; 
if (lcount>5) { 

lcount=O; 
printf ("\n ll ); 

} 

} 

} 

1*************************************************************************1
1* function filetimes: This function moves the timing results to disk. *1 
1*************************************************************************1 
filetimeslresults,high,outf) 
double *results; 
int high; 
FILE *outf; 

{ 

i nt i nden·q 

fprintf (outf, Il\n ll ); 
for (index=O; index<high; 
fprintf (outf, ll\n ll ); 

++indexl fprintfloutf," %f ",results[index]l; 

} 



Bubble SOI~t on r-evorder case of si2Oe(100) , 1.000000 
Bubble so,,-t on revol""der case o·f si ze (500) : 6.000000 
Bubble so,,-t on revor-der case of si2Oe(1000) : 24.000000 
Bubble sort on revor-der case of size(2000): 95.000000 
Bubble so,,-t on revorder- case of size(5000): 598 .. 000000 
Bubble sor-t on revor-der case of s i z e ( 100(0) : 2:394· .. 000000 
Bubble so,,-t on inor-der case of si2Oe(100), 0.000000 
Bubble SOI.-t on i norderM case of size (500): 0.000000 
Bubble sort on inor-der- case of si ze (1000) , 0.000000 
Bubble SOI.... t on i norder~ case of sizeC2(00) , 0.000000 
Bubble so,,-t on inorder- case of size(SOOO) : 0.000000 
Bubble !50rt on inor-der case of si ze (10000) , 1.000000 
Bi.... bbl e so,,-t on aver-age cases of si2Oe(100) , 
0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 

Average time, 0.142857 

Bubble sort on average cases of size(SOO): 

4.000000 4.000000 4.000000 4.000000 4 .. 000000 4 .. 000000 
Average time: 4.000000 

Bubble sort on average cases of si2Oe(1000), 

16 .. 000000 17.000000 16.000000 16.000000 17.000000 
Average time, 16.400000 

Bubble sort on average cases of size(2000): 

66.000000 66.000000 65.000000 66.000000 
Average time: 65.750000 

Bubble sort on average cases of SiZ8(5000): 

410.000000 408.000000 410.000000 
Average time, 409.333333 

Bubble sort on average cases of si2e(10000): 

1655.000000 1.638.000000 
Average time, 1646.500000 

Shaker SOl'"'t on r'evor'der case of si2O'" (100) , 1.000000 
Shaker so,,-t on ,,-evo,,-der case of size(500) , 6.000000 
Shaker- sort on revof"(jer case of 5 i z <? ( 1000 ) , 24.000000 
Shake,,- sor't on revor'der- case of 51ze(2000) , 96.000000 
Shaker' SOI~t on revorder ea.S8 of si Z€,? (5000) , 597.000000 
Shake,,- sort on ,,-evo,,-der· case of size (10000) , 2390.000000 
Shaker· SOI,..t Oil inorder case of si ze (100) , 0.000000 
Shak('2~- SOt-t on i nor~der- case of 5ize(500) , 0.000000 
Shaker' sort. on i nor'der CaE'IB 0+ si ze (1000) , 0.000000 
Shaker·· sort on inorder- case of 51ze(2000) , 0.000000 
Shaker· <.:-3or t. on i nor·del.... case D+ 5ize(5000) , 0.000000 
Shaker- sort on i nor-de,,- case D+ si ze (10000) , 0.000000 
Shaker· sort on aver'age cases o·f si 20e (100) , 

0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

size(SOO): 

Average time, 0.142857 

Shaker sort on averAoe cases of 



3.000000 3.000000 4.000000 3.000000 4.000000 3.000000 
Ave~age time: 3.333333 

Shaker sort on average cases of size(1000): 

13.000000 13.000000 14.000000 13.000000 14.000000 
Average time, 13.400000 

Shaker sort on average cases of size(2000): 

54.000000 55.000000 55.000000 53.000000 
Average time: 54.250000 

Shaker sort on average cases of size(5000): 

345.000000 336.000000 339.000000 
Average time, 340.000000 

Shaker sort on average cases of sizell0000), 

1353.000000 1370.000000 
Average time: 1361.500000 

Select sort on revorder case of sizell00), 0.000000 
Select sort on revorder case of size(500), 3.000000 
Select sort on revorder case of size(1000) , 10.000000 
Select sort on revorder case of size(2000): 39.000000 
Select sort on revorder case of 5ize(5000) : 246.000000 
Select sort on revorder case of size(10000): 984.000000 
Select sort on inorder Case of si2e(100) , 0.000000 
Select sort on inorder case of si2e(500): 2.000000 
Select sort on inorder case of size(1000) : 8.000000 
Select sort on inorder case of size(2000) : 30.000000 
Select sort on inorder case of 5i2e(5000) : 190.000000 
Select sort on inorde~ case of sizell0000), 757.000000 
Select sort on average cases of sizell00) : 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
Average time: 0.000000 

Select sort on ave~age cases of 5ize(500): 

2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 
Average time: 2.000000 

Select sort on average cases of sizell000): 

7.000000 8.000000 8.000000 8.000000 7.000000 
Average time: 7.600000
 

Select sort on average cases of size(2000),
 

30.000000 31.000000 30.000000 30.000000 
Average time: 30.250000 

Select sort on average cases of size(5000): 

189.000000 189.000000 190.000000 
Average time: 189.333333 

Select sort on average cases of size(10000): 

758.000000 758.000000 
Average time: 758.000000 



Inser'': 
Insert 
Insert 
Insert 
Insert 
Insert 
Insert 
Insert 
Insert 
Insert 
Insert 
Insert 
Insert 

sort 
SOI"t 
sort 
sort 
sort 
sort 
sort 
sort 
sort 
sort 
sort 
sort 
sort 

on 
on 
on 
on 
on 
on 
on 
on 
on 
on 
on 
on 
on 

revor-der case of slze(10l) : 0.000000 
revor-der case of size(500): 4.000000 
r-evor-der case of size(1000): 13.000000 
revor-der case of size(ZOOO}: 54.000000 
revor-der case of size(5000): 335.000000 
revor-der case of size(10000) : 1339.000000 
inorder case of size(100) : 0.000000 
inorder case of size(500) : 0.000000 
inorder case of si ze (1000) : 0.000000 
inorder case of size(ZOOO) : 0.000000 
inorder case of size(5000) : 0.000000 
inor-der case of size(10000) : 0.000000 
average cases of si z e ( 100) : 

1.000000 0.000000 0.000000 
Average time: 0.142857 

0.000000 0.000000 0.000000 0.000000 

Insert sort on average cases of size(500): 

2.000000 1.000000 1.000000 
Average time: 1.333333 

2.000000 1.000000 1.000000 

Insert sort on average cases of size(1000): 

7.000000 7.000000 7.000000 
Average time: 6.800000 

7.000000 6.000000 

Insert sort on average cases of size(2000): 

27.000000 27.000000 27.000000 
Average time: 26.750000 

26.000000 

Insert .sort on average cases of size(SOOO): 

168.000000 
AVEI"'e\QE} ti rne~ 

164.000000 
166.666667 

168.000000 

Insert sort on average cases of size(10000): 

673.000000 672.000000 
Average time: 672.500000 

Shell 
Shell 
Shell 
Shell 
Shell 
Shell 
Shell 
Shell 
Shell 
Shell 
Shell 
Shell 
Shell 

sort 
~.501'~t 

sort 
sort 
sort 
~:;;Ol,..t 

sort 
sort 
sort 
sort 
sort 
sort 
sort 

on 
on 
on 
on 
on 
all 

on 
on 
Dn 
on 
on 
on 
on 

revorder case of size(1000): 2.000000 
revol'"derM case of size(2000) : 8.000000 
revorder case of size(5000) : 43.000000 
I'""evorder case of size(SOOO): 109.000000 
revorder case of size(10000): 170.000000 
I'"evol'"del'" case 0·[­ size(20000): 6"77.000000 
i.norder case of si ze (1000) : 1.000000 
inorder case of size(2000): 1.000000 
inorder case of si ze (5000) : 1.000000 
inorder case of size(8000) : 2.000000 
inor-der case of size(10000) : 3.000000 
inorder case of si ze (20000) : 5.000000 
average cases of si ze (1000) : 

2.000000 1.000000 1.000000 
Average time: 1.428571 

2.000000 1.000000 1.000000 2.000000 

Shell SOl'"t on avel'""age cases of size(2000): 

4.000000 4.000000 5.000000 
Average time: 4.333333 

4.000000 5.000000 4.000000 

Shell sort on average cases of size(5000): 



24.000000 24.000000 23.000000 23.000000 23.000000­
Average time: 23.400000 

Shell sort on average cases of size(8000): 

59.000000 58.000000 59.000000 58.000000 
Average time: 58.500000 

Shell sort on average cases of size(10000): 

90.000000 91.000000 91.000000 
Average time: 90.666666 

Shell sort on average cases of size(20000): 

356.000000 350.000000 
Average time: 353.000000 

Quick sort on revorMder case of size(1000): 0.000000 
Quick sort on revorder case of size(2000): 0.000000 
Quick sort on revor-der- case of size(5000): 1.000000 
Quick sort on revorder case of size(8000) : 2.000000 
Quick sort on revor~der case 0+ si ze (10000) : 2.000000 
Qui ck sor-t on r-evor-del'"" case of size (20000): 6.000000 
Quick sort on inorder case of size(1000) : 0.000000 
Quick sort Oil i Ilol'""del''' case of si 2e (2000): 1.000000 
Qui ck sort on inordelc case of size(5000) : 1.000000 
Quick sort on inorder case of size (8000): 2.000000 
Quick sort 011 inorder case of si ze (10000) : 2.000000 
Quick !301'""t on inor-der case of size(20000) : 5.000000 
Qui ck sort all average cases of si ze (1000) : 

1.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 
Average time: 0.285714 

Quick sort on average cases of size(2000): 

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
Average time: 1.000000 

Quick sort on average cases of size(5000): 

2.000000 2.000000 2.000000 2.000000 2.000000 
Aver-age time: 2.000000 

Quick sort on average cases of size(8000): 

3.000000 3.000000 3.000000 3.000000 
Average time: 3.000000 

Quick sort on average cases of size(10000): 

4.000000 4.000000 4.000000 
Average time: 4.000000 

Quick sort on average cases of size(20000): 

8.000000 9.000000 
Ave~age time: 8.500000 

Heap sort on revor-der case of si ze (1000) : 1.000000 
Heap sort on revorder case of size (2000): 1.000000 
Heap scwt on revo~der c~·;\se of size(5000) : 4.000000 
He"p sDrt on t-0"?vorder case of size (8000): 7.000000 
Heap sort on r-evorder- case of si ze (10000) : 8.000000 
l_J r"''' ..... ..... I""\!"""t- ~~ U-""".I,",,"-~r':""'" ...M" ..... r-. ~ .. ..... .; -y 1.7'\ (..., I~HfiH-Hfi; , . '<:> nnn{lnn 



Heap 
Heap 
Heap 
Heap 
Heap 
Heap 
Heap 

sort 
sort 
sort 
sort 
sort 
sort 
sort 

on 
on 
on 
on 
on 
on 
on 

Inorder 
inorder 
inorder 
inorder 
inorder 
inorder 
average 

case of size(1000): 1.000000 
case of 5ize(2000): 2.000000 
case of 5i2e(5000): 8.000000 
case of size(8000): 13.000000 
case of size(10000) : 16.000000 
case of size(20000): 35.000000 
cases of 5ize(1000): 

1.000000 1.000000 1.000000 
Average time: 0.857143 

0.000000 1.000000 1.000000 1.000000 

Heap sort on average cases of size(2000): 

1.000000 IbOOOOOO 2.000000 
Average time: 1.500000 

2.000000 1.000000 2.000000 

Heap sort on average cases of size(5000): 

4.000000 5.000000 4.000000 
Average time: 4.400000 

4.000000 5.000000 

Heap sort on average cases of size(8000): 

7.000000 8.000000 8.000000 
'Average time: 7.750000 

8.000000 

Heap sort on average cases of size(10000): 

9.000000 9.000000 9.000000 
Average time: 9.000000 

Heap sort on average cases of size(20000): 

20.000000 20.000000 
Average time: 20.000000 

Merge 
Merge 
Merge 
Merge 
Merge 
Merge 
Merge 
Merge 
Merge 
Merge 
Merge 
Merge 
Merge 

sort 
sort 
sort 
sort 
sort 
sort 
sort 
sort 
sort 
sort 
sort 
sort 
sort 

on 
on 
on 
on 
on 
on 
on 
on 
on 
on 
on 
on 
on 

revorder case of size(1000): 1.000000 
revorder case of size(2000): 1.000000 
revorder case of size(5000): 4.000000 
revorder case of size(8000): 7.000000 
revorder case of size(10000): 8.000000 
revorder case of size(20000): 15.000000 
inorder case of size(1000): 1.000000 
inorder case of size(2000): 1.000000 
inorder case of size(SOOO): 3.000000 
inorder case of 5ize(8000): 6.000000 
inorder case of size(10000): 9.000000 
inorder case of size(20000); 15.000000 
average cases of 5ize(1000): 

0.000000 1.000000 1.000000 
Average time: 0.857143 

1.000000 1.000000 1.000000 1.000000 

Merge sort on average cases of sizs(2000): 

2.000000 1.000000 1.000000 
Average time: 1.666667 

2.000000 2.000000 2.000000 

Merge sort on average cases of size(5000): 

5.000000 4.000000 4.000000 
Average time: 4.200000 

4.000000 4.000000 

Merge sort on average cases of 5ize(8000): 



Average time: 7.000000 

Merge sort on average cases of size(10000): 

9.000000 9.000000 9.000000 
Average time: 9.000000 

Merge sort on average cases of size(20000): 

15.000000 15.000000 
Average time, 15.000000 

Radix sort on revorder case of size(1000): 0.000000 
Radix sort on ~evorder case of size(2000): 1.000000 
Radix sort on revorder case of size(SOOO): 2.000000 
Radix sort on revorder case of size(8000): 3.000000 
Radix sort on revorder case of size(10000): 4.000000 
Radix sort on revorder case of size(20000): 9.000000 
Radix sort on inorder case of size(1000) : 0.000000 
Radix sort on inorder case of size(2000): 1.000000 
Radix sort on inorder case of size(5000) : 2.000000 
Radix sort on inorder case of size(8000): 3.000000 
Radix sort on inorder case of size(10000): 4.000000 
Radix sort on inorder case of size(20000): 8.000000 
Radix sort on average cases of size(1000): 

0.000000 0.000000 0.000000 1.000000 0.000000 1.000000 0.000000 
Average time: 0.285714 

Radix sort on average cases of size(2000): 

l~OOOOOO 1.000000 0.000000 1.000000 1.000000 1.000000 
Average time, 0.833333 

Radix sort on average cases of size(5000): 

3.000000 3.000000 2.000000 2.000000 2.000000 
Average time: 2.400000 

Radix sort on average cases of size(8000): 

4.000000 4.000000 4.000000 4.000000 
Average time: 4.000000 

Radix sort on average cases of size(10000), 

5.000000 5.000000 5.000000 
Average time: 5.000000 

Radix sort on average cases of si2e(20000): 

10.000000 10.000000 
Average time: 10.000000 
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