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CHAPTER 1 - INTRODUCTION

The concept of order is very important to mankind. Order
allows man to understand and better live in the world around him.
Imagine trying to find a name in a phone book if the names were
not in alphabetical order. Computer science is one area where
order is especially important. Much of computer science depends
on the concept of order. Many commercial and non-commercial
programming applications involve sorting items into ascending or
descending order, It is precisely the algorithms that perform
the task of sorting that we will concentrate on in this report.

All of the algorithms sort items in ascending order., There
are nine algorithms covered. Each algorithm was chosen based on
simplicity of design, speed, behavior, and interesting properties
brought out by analysis, The research concerning these
algorithms was broken up into four areas. The firzst area waz the
learning of the programming language C.

C is a very good language for this type of research because
it offers high-level programming structure with low-level
features. The second area involved the coding of each of the
algorithms in C. We coded each algorithm to see how difficult it
would be to convert the algorithm from a theoretical description
to actual working computer code. The naturalness of these
algorithms for computer applications is evident. Each of the
algorithms was coded as a C function and could be called from the
body of the main program. This brings us to the third area, the

timing experiment,



The afforementioned algorithmic functions were used to
perform the task of sorting integer numbers, The algorithms were
timed individually over a wide range and amount of input data in
order to obtain an initial insight into the behavior of each.
The entire timing program was executed nonstop over a period of
five days. All of the output was routed to a disk file and
subsequently printed. This timing data was analyzed and was
helpful in providing a basis for further understanding of the
nature of the algorithms,

The fourth and final phase involved a closer look at the
algorithms through the use of mathematical tools of analysis.
Each algorithm was mathematically analyzed and the results were
compared to the earlier insight provided by the timing data.
Conclusions and criticisms are then formulated and presented.
This type of research is wvital in maintaining a good
understanding of how algorithms work and how they may be

improved,



CHAPTER 2 - THE ALGORITHMS

Now that the method and reasoning behind the research is
clear, let’'s start with an introduction and explanation of each
of the nine sorting algorithms. The first sorting algorithm is
affectionately named the "bubble' sort. This sort is perhaps one
of the simplest sorts in terms of complexity., It makes use of a
sorting method known as the exchange method. This algorithm
compares pairs of adjacent elements and makes exchanges if
necessary. The name comes from the fact that each element
"bubbles' up to it’s own proper position. Here is how bubble

sort would sort the integer array 4 3 1 2:

pass 1 14 32
pass 2 1 243
pass 3 12 34

The code for bubble sort is on page 8 of the program listing,

The outer loop is performed n-1 times (n=nwnber of elements to be
sorted) to ensure that, in the worst case, every element is in
it’s proper position when the loop terminates. If no exchanges
take place after a pass, the algorithm terminates since the
elements must be in order., Previous research has labeled the
bubble sort as the worst sort ever, We shall test this statment

later.



The second sorting algorithm is a modified version of the
bubble sort known as the shaker sort or cocktail shaker sort.
This algorithm is designed so that subsequent passes over the
array reverse direction, This way, greatly out of place elements
will travel more quickly to their correct position. Notice that
this algorithm is essentially the same as the bubble sort except
for the reverse direction passes. Any out of place element is
exchanged during a pass. The number of passes is the same as for
bubble sort., The code for this algorithm is located on page 8 of
the program listing.

The third algorithm uses a different method of sorting
known as sorting by selection. This 'selection sort algorithm
picks the smallest element from the array and switches it with
the first element. It then picks the smallest element from the
rest of the array and switches it with the second element. This
process is repeated up to the last pair of elements., Here is how

it would sort 2 4 1 3:

pass 1 142 3
pass 2 124 3
pass 3 12 34

The code for this sort is on page 9 of the program listing.



The fourth algorithm uses the insertion method of sorting,
This algorithm first sorts the first two elements of the array.
It then inserts the third element in it’s proper place in
relation to the first 2 sorted elements. This process continues

until all of the remaining elements are inserted in their proper

position, Here is how it would sort 4 3 1 2:
pass 1 3412
pass 2 1342
pass 3 12 34

The code for this insertion sort algorithm is located on page 9
of the program listing.

The fifth algorithm, dubbed the shell sort after its’
inventor D.L. Shell, is derived from the insertion sort. The
shell sort is based on the idea of diminishing increments.
Suppose the array to be sorted-was 6 4 1 3 2 5, Here is how the

shell sort would work with increments 3 2 1:

pass 1 641 325
pass 2 321645
pass 3 12 345€¢6

Notice that in pass 1, elements 3 positions apart are sorted.
Then all elements 2 positions apart are sorted. Finally, all
adjacent elements are sorted. The increments can be changed, but
the last increment must be one, The choice of the set of
increments that make the algorithm most efficient had posed very
difficult mathematical problems that were solved only recently.
The increments 9 5 3 1 seem to work well, so I used them in the

experiment,



It has been suggested that the next algorithm is the best
gsorting algorithm available today. It is named quick sort due to
it’s speedy sort time. Quick sort is based on the exchange
method of sorting, as is bubble sort, but is also uses the idea
of partitioning. Quick sort chooses a median value from the
array and uses it to partition the array into two subarrays. The
left subarray contains all of the elements that are less than the
median value and the right subarray contains all of the elements
that are greater than the median wvalue. This process 1is
recursively repeated for each subarray until the array is sorted.
The median value can be chosen randomly, but I have coded the
algorithm to choose the element that is physically in the middle
of the array.

This brings up one nasty aspect of gquick sort. If the
median value chosen is always the smallest or largest element,
the algorithm slows down drastically. This usually will not
happen however, since most input data is in a random order and
the chance of always picking an extreme value is small., Note
that this algorithm is naturally recursive and I have coded it as
such. Here is how quick sort would sort 6 5 4 1 3 2:

pass 1 231456

pass 2 123 4 56
Note that after pass 1, the array is partitioned into 2 3 1 and 4
5 6. The process is then repeated for each of these. The code

for the quick sort 1s located on page 10 of the program listing.



. The seventh algorithm is known as heap sort. It makes use
of a data structure known as a heap. A heap is a complete binary
tree organized such that the value of the parent nodes are
greater than their children’s. With this type of structure, the
largest element happens to be the root node. This property of a
heap makes it ideal for a sorting algorithm,

The heap sort algorithm first builds a heap with all of the
elements. After heap creation, the largest element iz located at
the root. This root element is switched with the last element at
the end of the array. Since the root, which is the largest
element, is placed at the end of the array, this largest elememt
is now in it’s correct position. This position in the array is
now off-limits to the algorithm and the rest of the heap is

. adjusted, starting at the new root, to ensure that all of the
parent’s values are greater that the values of their children.

This switching and readjusting is performed repeatedly until
all of the elements are in their proper position. Here is one

pass of heap sort on 16 11 9 10 S &6 81 2 4.

the' heap the switch the adjust

. ’ %

The code for heap sort is on page 11 of the program listing.



The next algorithm is an example of divide and conquer. It
is called merge sort. Merge sort splits the array into two
subarrays, each of almost equal size, and recursively sorts each.
The two sorted subarrays are then merged together. The recursive
version is very simple and takes full advantage of the power of
recursion. Here ig an example of how merge sort would sort 5 2 3
1 7: (the [] bars indicate a subarray)

(& 2 31 [1 7}
(5 21 (3]
{51 (2]
[2 5]
[2 3 5]
(11 [7]
(1 7]
(1 2 35 7]
Notice how the subarrays are broken down until there is only one
element left., Then, two subarrays with only one element each are
merged. The merging continues until all left side sorted arrays
are merged together. The right side is then broken down and
merged. This is a very good example of how recursion can be used
to simplify programs. The code for this sort is located on page
12 of the program listing.

The last sort is somewhat different from the other sorts,
This sort operates using the internal structure of the elements.
The elements used in the experiment were two-byte integers. This
sort depends on the binary form of these integers. It is for
this reason that this algorithm is called radix sorting, since it

uses radix 2 representations of the numbers,



The algorithm starts at the most significant bit, It
partitions the elements such that all elements with a 0O bit come
before those elements with a 1 bit. The algorithm then shifts to
the second bit and the process is repeated. This sort is similar
to quick sort in that it uses partitioning and exchange methods.
Note that the elements are partitioned into 2 subarrays for each
prass. The algorithm then recursively processes each subarray.

The code for this sort is on page 13 of the program listing.



CHAPTER 3 - THE EXPERIMENT

Now that the algorithms have been discussed, let’s look at
the experiment, This experiment has been designed to generate
timing data that will provide an insight as to the behavior of
each of the algorithms. Each algorithm was executed and timed on
3 different types and 6 different sizes of integer arrays. The
value of the integer numbers ranged from 0O to 32767. The first
type of array contained numbers already in order. The second
type contained numbers in reverse order. The third contained
numbers in random order as generated by a random number
generator. The seed for the random number generator was changed
constantly in order to ensure that the numbers were as random as
possible.

Each algorithm was executed and timed on varying sizes of
arrays. Note that each size of reverse order and inorder
(numbers already in order) arrays contained the same sequence
(i.e. 1 2 3 4 5) of numbers for each execution., Since this
method prevented any timing discrepancies from being introduced
into the experiment, I decided to execute and time the algorithms
only once for each size of inorder and reverse order array. In
order to obtain a fair representative time for the random order
arrays, it was necessary to execute and time each algorithm
more than once for each size of the random arrays since the
sequences of numbers would change. Figure 5 is a table that sums

up the exact parameters of the experiment.



Before beginning to analyze the data, we would like to
describe a few of the criterion used for judging an algorithm.
The behavior of an algorithm is one important criterion.
Behavior refers to how hard an algorithm works depending on how
ordered the array is initially. An algorithm exhibits natural
behavior when it works least on an array that is already sorted
and hardest on an array that is in inverse order. An algorithm
exhibits unnatural behavior when it works more on a list that is
already in order and less on a list that is in inverse order.
Depending on the application, natural behavior may or may not be
better than unnatural behavior. Natural behavior is usually
preferred, however.

Perhaps the most important aspect of a sorting algorithm is
how fast it can sort an random case array. Pure speed is
sometimes the only factor in choosing a sorting algorithm. Since
processing time is an expensive and sometimes limited resource,
being quick is a very important characteristic of a sorting
algorithm. We shall examine the random case timing data and
attempt to determine which sort is best. To aid us in our
examination of the data, we have included three graphs which
illustrate the relationships of the algorithms in terms of
performance, Figure 1 is a graph of the random timing data for
the slower sorts. Figure 2 is a graph of the random timing data
for the faster sorts. Figure 3 is a graph of all of the sorts,

We would like to note that all of the timing data is
summarized in a table in Figqure 4, The timing data as generated

by the program is included at the end of the program listing.



Let us begin our analysis with perhaps the slowest sort ever
conceived by man. The bubble sort is relatively very slow when
compared to some of the faster sorts. It took 2394 seconds to
sort the reverse array of size 10000 and 1646.5 seconds to sort
the random array. It ranks last among all of the other
eight sorts in terms of pure speed. Note that the bubble sort
seems to exhibit natural behavior since it took one second or
less in sorting the inorder case of size 10000 and 2394 secends
to sort the reverse order array. It works least when the list is
ordered and most when it is in reverse order. This would
indicate that bubble sort would be used where the list to be
sorted is almost in order.

An interesting property of the timing data for bubble sort
is the manner in which the timings grow in size. On graph 1 I
have included a scaled representation of an n squared curve where
the time rises exponentially as n increases., Looking at the
increase in size of the times and at the shape of the bubble sort
curve, it would appear that this sort runs in Order (n**2) or
O(n**2) time, Since the times rise quickly, this sort would be
very inappropriate for large amounts of data.

Let’s move on to the shaker sort. It only beats bubble sort
by 4 seconds in the reverse case of size 10000, It also takes
less than 1 second to sort the inorder case, indicating that it
is also exhibiting natural behavior, The time for the random
case of size 10000 only took 1646.5 seconds, 747 .5 seconds faster

than bubble sort,



This would make it better than bubble sort for larger amounts of
data. The shape of the curve for the shaker sort is also very
close to the n squared curve, The timings also rise very
quickly. This suggests that the shaker sort is O(n**2) also,
Even though it is slightly faster than bubble sort, the shaker
sort 1s still too slow to be used to sort a large amount of data.

The time for select sort on a reverse order array of size
10000 is 984 seconds while the time for an inorder case of the
same size is 757 seconds. The time for a random case of size
10000 is 758 seconds. Since the algorithm worked only 1 second
more for an random case than for the reverse order case, the
select sort algorithm is almost exhibiting unnatural behavior.
Since there is a 603.5 second difference between the shaker sort
and the select sort, the faster select sort algorithm would be
ranked ahead of the shaker sort and the bubble sort for large
amounts of data. Since the shape of the select sort curve is
slightly flatter than the n¥*2 curve, it is difficult to say for
certain that the select sort algorithm is running in O(n**2)
time, However, the abrupt rise of the timing data seems to
éonfirm this.

The final slow sort that we will examine is the insert sort.
The time for the reverse order case of size 10000 is 1339
seconds, which is 58l seconds slower than select sort. Insert
sort does, however, take under 1 second for the inorder case,.
Since the random case time is well below the reverse case, this
algorithm is exhibiting natural behavior. The time for the
random case of size 10000 is 672.5, faster than any of the sorts

discussed so far.



The insert sort’s low random case time and high reverse case
time suggests that it might be good for a large number of
elements that are almost already in order.

We now move to the fast sorts. These sorts are so named
because they are extremely fast in comparison with the sorts
examined =so far, In fact, the fastest of the fast sorts sorted
an random case array of 20000 elements in 8.5 seconds, 79 times
faster than the quickest of the slow sorts on an array half the
size (10000) .

Let’s begin with the shell sort. This sort required 677
seconds to sort a reverse order array of size 20000, It only
took 5 seconds to sort the reverse order case of size 20000,
Since the time for the random case is right in between the
reversze order and inorder times, it is exhibiting very natural
behavior. Note how the timings increase in Figure 4.

It certainly is not rising in a linear fashion. It dges not
appear to be O(n*¥*2) either, leaving us to conclude that the
order of magnitude is in between these two. The shell curve in
Figure 2 rises abruptly, interrupting the smooth flow of the
curve. Perhaps a larger amount of timing data would complete the
curve better. Nevertheless, the curve is sharper than the n log
n curve that is plotted alongside. This affirms our suspicions
of the upper and lower bounds. It is operation somewhere between
n log n and n¥*2,

We now come to the fastest sort of the bunch. This speedy
algorithm, known as quick sort, is the fastest of all nine sorts
in all three cases. It only took 6 seconds to sort the reverse
case, 5 seconds for the inorder case, and 8.5 for the random

case, all of size 20000,



While this sort may not seem to exhibit natural behavior, it is
certainly recommended when the number of elements to sort is
large. Since it isg also guick when n (number of elements) is
small, it can also be used for small sorting jobs but some
overhead is created by the recursive calls. Note that it closely
resembles the n log n curve in Figure 2., Also note that it’s

curve is the flattest and lowest of any of the sorts,

The next sort is the heap sort. This was the second slowest
of the fast sorts for the random case. At 20 seconds, it was
11.5 seconds slower than quick sort. The times for reverse and

inorder cases of size 20000 were 18 and 35 seconds, respectively.
This sort exhibits natural behavior. Note that the heap sort
curve is also very similar to the n log n curve,

The next sort generated an interesting set of timings. The
merge sort took 15 seconds to do each of the three 20000 element
cases, This is not natural behavior since the algorithm works
the same no matter what order the elements are in. The merge
curve is also similar to the n log n curve, but is flatter than
the heap sort curve,

The last sort is the radix sort. It is second only to quick
sort in all of the three cases of size 20000, It took 9, 8, and
10 seconds for the reverse order, inorder, and random cases,
respectively. It does not exhibit natural behawvior in this
experiment since it took longer for the random case than for the
reverse order case. It is, however, a very fast sort. It’s
curve is close to the gquick sort curve in terms of shape and
position,.

The best sort in terms of the experiment seems to be quick

sort, but we will further investigate in the next chapter.



CHAPTER 4 - MATHEMATICAL ANALYSIS

Now that we have a small insight into the performance and

behavior of the algorithms, let's try to gain a more complete

understanding by using mathematics. Please note that some of the
algorithms present difficult mathematical problems and will be
difficult to analyze. We will not go into a great deal of detail
if this is the case, We will start with the bubble sort
algorithm. To mathematically analyze this and the other
algorithms, we will count the number of comparisons required by
each algorithm. Although there is a count of the number of
exchanges, we will gain sufficient insight with just the use of
the comparison count. The magnitude of this count will give us a
clear picture of why the algorithms behave like they do.

Now, let’s look at the bubble sort algorithm. The inner
loop of bubble sort will execute n/2 times (n=number of elements
to sort) since every pass will bubble up an element into it’s
proper position and out of place elements are exchanged. Only
n/2 comparisons are needed because the list will be ordered when
at most half of the elements have been exchanged (worst case),

In the random case, we assume that the outer loop will execute
approximately n—1 times. This ensures that all elements will be
sorted, We then have n/2(n-1) or 1/2(n**2-n) comparisons. The
number of comparisons for the best case is n-1, since the
algorithm terminates when no exchanges have been made. The order
of magnitude of the number of comparisons is n**2, so the
algorithm is said to operate in Q(n**2) time. This algorithm is

slow when n is large, even when ignoring the number of exchanges.



The shaker sort is simply a modified version of bubble sort
where the order of magnitude of the number of comparisons is
still O(n*¥*¥2) and the number of exchanges is reduced only by a
small amount., It is almost as slow as bubble sort, therefore, -
and is not recommended for large n.

The selection sort also has an outer loop that executes n-1
times and an inner loop that executes n/2 times. Again we have
1/2(n**2-n) comparisons which makes selection sort an O(n**2)
sort, This sort also is slow for large n.

The number of comparisons in the insertion sort algorithm
depends on how the list is ordered before it is sorted. If the
list is in reverse order, we have 1/2(n**Z-n)+1 comparisions
since the outer loop executes n-1 times and the inner loop n/2+1
times., The number of comparisons for the random case is better,
but even though the number may be small, the number of moves can
be 2 problem since the array is constantly being shifted,

Each one of the above sorts is basically too slow to use
since the execution time is directly affected by the number of
elements, The faster sorts are used more often since they are
not O(n**2) (very slow when n becomes large).

The shell sort is very difficult to analyze and we shall
suffice by noting that it has been shown mathematically that the
execution time is proportional to n**1.2, This affirms our
earlier suspicions about the upper and lower bounds on the

performance.



We now come to the fastest sort, gquick sort. In the worst
case when each of the median values is at an extreme, quick sort
is slowed to an O(n*¥*2) sort. Each level of recursion will
require that the partioning loops make O(k) comparisons where k
is the total number of elements recursively partitioned i.e. at
level one, r=n and at level two, r=n-1 etc. Therefore, the
number of comparisons is a sum on k where k varies from n or
O(n**2) . The random case, however, is of O(n log n).

It can be shown [1] that if Ca(n) denotes the average number
of comparisons to sort n elements, then the following recurrence

relation holds:

(_A(r\): n+ 1+ ‘?\LH%:SCA(K’ D+ Catn-e))
n+l is the number of comparisons needed for the partitioning
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We now will look at the heap sort algorithm. In order to
analyze heap sort, we will break the analysis into 2 parts,
First we will look at the creation of the heap. Then we will
examine the switching and adjusting of the heap. In the worst
case, each element inserted becomes the root. Since the heap is
a complete binary tree, there are 2*%¥*i-1 maximum nodes on any
level i where 1<=i<=rh31(n46} . The distance to the root for a

node on level 1 1s i-1 so we have the worst case time:

é (|'-l)2_"l< !—icgzwffﬂln‘:”(w: O (n )05 n)
121Ny, tnen)

What is amazing about the random case heap creation is that
the time needed is O(n). Since the proof of this is quite
complicated, we shall not try it here. Now let’s look at the
switching and adjusting loop. The loop that switches elements
and calls adjust must perform O(n) operations, Since adjust
possibly requires O{(log n) operations, we have a worst case time
of O(n log n).

Now let’s look at merge sort. It can be proved [1l] that if

T(n) is the execution time needed to sort n elements, the

following recurrence relation holds:
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CHAPTER 5 - CONCLUSION

Remember that any conclusions stated in this report are
based entirely on the research and analysis that was performed.
It is possible that some margin of error may be present. One
conclusion that can be reached by examining all of this research
is that quick sort is the best all-around sorting algorithm in
use today. One look at Figure 3, which is a graphing of all of
the sorting algorithms in terms of performance, suggests that
there are four sorts that are fast enough to be practical: heap
sort, merge sort, radix sort, and quick sort.

If one wishes to sort a large amount of data that is in
relatively random order, use quick sort. It is simply the
fastest general sorting algorithm available., If a small amount
of data is to be sorted, perhaps heap sort would be best since it
creates no overhead (no recursion used) that would slow it down.

The bubble, shaker, select, and insert sorts may be simple
and easy to understand and implement, but they are simply too
slow for real-~life practical applications. All of these O(n¥**2)
algorithms take too much time for large amounts of data. The
shell sort algorithm does present some very interesting
mathematical problems but when compared to the O(n log n) sorts,
it is also too slow. Remember that quick sort does slow down to
O(n*¥*2) time for the worst case. Perhaps merge or heap sort
would be better for this type of data since both merge and heap
gort remain O(n log n) for all types of data (worst, random,

best cases).



Still, the slowing of quick sort to O(n**2) happens rarely
and it is the fastest of all of the sorts for random case data.
Radix sort is almost as fast as quick sort for some data, but
it’s execution time depends greatly on the size of the number.
Since radix sort uses the internal structure of the element being
sorted, it is not good for sorting general elements., Quick sort
can be used to sort a variety of things, regardless of element
structure, and thus is more versatile than radix sort.

Therefore, according to the experimental data and
mathematical analysis, gquick sort is the best sort, Perhaps
advancements in the field of computer science will produce an
algorithm that is better than guick sort. Until then, however,

quick sort is the winner!



(1]

(2]

[3]

[4]
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FIG 4

TIMING DATA

Sort Array Size Case Time (in secs)

Bubble 100 reverse 1.0
500 " 6.0
1000 " 24.0
2000 " a5.0
5000 " 598.0
10000 v " 23%4.0
1006 inorder 0.0
500 " 0.0
10060 " 0.0
2000 " 0.0
S000 " 0.0
10000 " 1.0
100 random 0.142857
500 " a.0
1000 " 16.4
2000 " 65.75
5000 " 409.3
10000 " 1646.5

Shaker 100 reverse 1.0
500 " 6.0
1000 " 24.0
2000 " 96.0
5000 " 597.0
10000 " 2390.0
100 inorder 0.0
500 " 0.0
1000 " 0.0
2000 " 0.0
5000 " 0.0
10000 " c.0
100 random 0.142857
500 " 3.3
1000 " 13.4
2000 " 54.25
5000 " 340.0

10000 . 1361.5



TIMING DATA (cont’d)

Sort Array Size Case Time(in secs)

Select 100 reverse 0.0
500 " 3.0
1000 " 10.0
2000 " 39.0
5000 " 246.0
10000 " 984 .0
100 inorder 0.0
500 " 3.0
1060 " 10.0
2000 " 39.0
5000 " 246.0
10000 " 984 .0
100 random 0.0
500 " 2.0
1000 " 7.6
2000 " 30.25
5000 " 189.3
10000 " 758.0

. Insert 100 reverse 0.0

500 " 4.0
1000 " 13.0
2000 " 54.0
5000 " 335.0
10000 " 1339.0
100 inorder 0.0
500 " 0.0
10Q0 " 0.0
2000 " 0.0
5000 " 0.0
10000 " 0.0
100 random 0.142857
500 " 1.3
1000 " 6.8
2000 " 26.75
5000 " 166,67
10000 " 672.5

Shell 1000 reverse 2.0
2000 " 8.0
5000 b 43.0
8000 " 109.0
10000 " 170.0

. 20000 " 677.0



Quick

Heap

TIMING

Array Size

1000
2000
5000
8000
10000
20000

1000
2000
5000
8000
10000
20000

1000
2000
5060
8000
10000
20000

1600
2000
5000
8000
10000
20000

1000
2000
5000
8000
10000
20000

1000
2000
5000
8000
10000
20000

1000
2000
5000
8000
10000
20000

DATA(cont’d)

inorder
[R)
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random
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random
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TIMING

Array Size

DATA(cont’d)

Time(in secs)

Merge

Radix

1000
2000
5000
8000
10000
20000

1000
2000
5000
8000
10000
20000

1000
2000
S000
8000
10000
20000

1000
2000
5000
8000
10000
20000

1000
2000
5000
8000
10000
20000
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2000
5000
8000
10000
20000
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8000
10000
20000
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random
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FIG S

ENVIRONMENT FOR SIMULATION

Bubble, shaker, select, and insert sorts used:

Number of Timing Samples Size of Array to be Sorted
7 100
6 500
5 1000
4 2000
3 5000
2 100060

Shell, quick, heap, merge, and radix sorts used:

Number of Timing Samples Size of Array to be Sorted
7 1600
6 2000
5 5000
4 8000
3 10000

2 20000



PROGRAM  LI5T NG




3ONOROR 0K ROROR RO KRR ROK ROKOIOK ORI RO RO RO RO RO RO R R R KRR R RO R R R Rk

A AUTHOR = Terry David Fryar %/
/% SSN :  A4-62-3964 ¥/
% TITLE @ EXFERIMENTAL ANALYSIS OF VARIDUS SORTING ALLGORITHMS. X/
/% DESCRIFTIOM: This program performs the task of producing experimentalx/
g data on the performance and behavior of sorting X/
/R algorithms., The algorithms tested are: Bubblesort, ®/
£ % Shakersort, Selectsort, Insertsort, Shell sort, X7
/¥ Auicksort, Heapsort, Merge sort, and Radix sort. These %/
/% are coded in C and are erecuted on various sizes of ¥/
/% arrays of numbers in order, in reverse order, and in ®/
/X random order. The timing data produced is sent to a ¥/
/R file on disk. ¥/
Z %30k kol ook R0k ok okokokokokookokok ok ok 0ROk ok ok siokok SRk sk ok ok RORORIoIoR ORI R RSO ook ko /
Hinclude "time.h"
#include "stddef.h"
#include "stdio.h"®
#include "dos.h"
Hinclude "stdlib.h”
main )

int sortarraylZI0OOoo]s /% the array to be sorted %/

int countarrayldl; /¥ holds the number of elements to be sorted %/

int numpasseslbdl; /% holds how many times the sort 1s to be

performed on one size of sortarray to obtain
an average of timings %/

double timearrayl[81; /¥ holds the timing results %/

Lime_t start,end;g /¥ used for timings X/

FILE Xout+f; A% output file ¥/

int pnuimng
double totaltime; /% all times added together (for average) ¥/
imt index;

/¥ loop control var for number of passes %/

¥ this is an index used to correspond the
following experiment parameters:

Bubble, shaker, select, insert sorts use:

INDEX NUM OF FPASSES SIZE OF SORTARRAY
0 7 100
i b S00
n = 1000
) 4 2000
4 et =000
5 2 10000

Shell, quick, heap, merge, radix sorts use:

-

0 7 1000
& 2000
- = SG00
O 4 - 8000
4 = 10000
o e 20000

x/



countarraylOI=100; ¥ initialize count array with counts for ¥/
countarrayl11=500; /% slow sorts %/

countarraylZ2I1=1000;

countarrayl31=2000;

countarrayl[41=0000y

countarrayl3I=10000;

numpasseslol=7; /% initialize pass array with number of passes for the %/
numpassas{1l=b; /% slow sorts %/

numpasses[21=5;

numpasseslii=q4;

outf=fopen("biproj.out,"w"); /% open output file %/

A B0 RO 33k skl e K S ool o i ol OO sk iR o s sl ook oo ool sk
/% Here is the experimentation on the slower sorts (O(n¥%x2)): bubble, x/
/% shaker {an improved bubble sort), select, insert. ¥/
/703 RO 00NN S RORROK K SRR R ORONOR K S S ok R Ok Ok ok R sk oK ROk ko Rk R ok Rk ok b K/

/3% 3303030k BOKCS0R ORI OKOR KR Ok 3k 0K R 0K KKK KR sk Ok O ROIOR R SRR IO R R R OR OO R R OR X KRR R KR S
/K BUBBLE SORT */
A O3CRORONONORKCHOOR R S R 000K Skl ROk ORI RO ORISR0k JORSOKCROR R oIoDR IOk OOk Rk ok /

tor (index=0; index<=5; ++index) {
revaorder (sortarray,countarrayfindes ) s
gltart="time (0)j
bubble (sortarray,countarraylindexl) ;
end=time () ;
fprintt (outf, "Bubble sort on revorder case of sizel{id): %4+ \n'",
countarraylindex]l, difftimel(end,start}ly
>
for (index=0§ indexi=5S; ++index) |
inorder {(sortarray,countarraylindexd);
start=time(0) 3
bubble (sortarray,countarrayfindex 1) ;
end=time{0);
fprintt (outf, "Bubble sort on inorder case of sizel(Zd): “f \n",
countarraylindexl, difftime(end,start));

for (index=0; indew:i=3; ++index) {

totaltime=i;,

for (poum=0; pnuminumpassesfiindexly ++pnum) {
average {sortarray,countarraylindex1);
astart=timea(0);
bubble{(sortarray,countarraylindex 1)
gnd=timea{0)
timearrayipnuml=difftime(end, start) ;
totaltime=total timet+timearraylpnuml;

fprintf (outf, "Bubble sort on average cases of size({%d): \n",

countarraylindex )
tiletimes(timearray,numpasseslindexl, outf);
fprintt (outf, "Average time: “f Aniwn",totaltime/numpasseslindexd);

.
)

A 3R ROORROK SR CKCHOR0OK0ROR0RORCROIOROK KRR K KOROCROROROOR KR O OROR RO R OO HOR KROR RO R ROk Kk
/X SHAKER SORT b 4
AR R R OO OR RO OR KOR BOK KR OOR O R R K R RO R RO KRR R MR RR/

for (index=0; index<=%5; ++index) {
revorder (sartarray, countarraylindex ) ;
start=time(0);
shaker (sortarray, countarraylindex 1) ;
ernd=time{Q):



fprintt (outf, "Shaker sort on revorder case ot sizelidd): “Zf \n",
countarraylindex], difftime(end,start));
b
faor (indeux=0; index<=3; ++index) {
inorder(sortarray,countarraylindex i)
start=time (0);
shaker {sortarray,countarray{index);
end=time{Q);
fprintf (outf, "Shaker sort on inorder case of size(¥d): %t \n",
countarraylindenl, diffttimel{end,start));

¥
for lindex=0;5; index<=%; ++index) {
totaltime=0;
for (prum=0; pnuminumpasseslindexls ++pnum) {
avarage (sortarray,countarraylindex1);
start=time (0)j
shaker (sortarray,countarraylindex 1)
end=time{0);
timearraylpnuml=difftime(end,start);
totaltime=totaltime+timearraylprnuml;
fprintt (outf, "Shaker sort on average cases of size(dd): \n",
countarraylindex )
tiletimes (timearray,numpassesfindex], outf);
fprintf {(outf, "Average time: ¥%f \n\n",totaltime/numpasseslindex]);

4
5

A MORORO ORISR ORI R OR R RO R SO IOIOR O OOR R R R R ROk ok R R ook R ook R ek Rk R Rk

/¥ SELECT SORT

X/

A NOHRROR R0 RSO RO OIOK KO R OO O RO R OR SOK R AKX AR KR ROR R R KOO RO O R K KRR S

r

for {(index=0; index<=3; ++index) I
revorder (sortarray, countarraylindex ) s
start=time (O}
select (sortarray,countarraylindexl);
end=time{0);
fprintf {out+, "Select sort on revorder case of sizel(id): %“f \n",
countarraylindexl, difftimel{end,start));

for {index=0; indexd=h; ++index) {
inorder (sortarray,countarraylindexd) s
start=time(0);
s@lect (sortarray,countarraylindex]);
end=time{);
fprintf (ouwtf, "Select sort on inorder case of sizelid): %4UF \n",
countarraylindexl, difftimel{end.start));
5
for (index=0j; index«<=5; ++index) {
totaltime=03
for (prnum=0; pnuminumpassesiindexl; ++pnum) {
average{sartarray,countarrayblindex 1)
start=time(0);
salect (sortarray,countarraylindex]);
end=time () ;
timearraylpnuml=dif+time (end,start);
totaltime=totaltime+timearraylpnumlsy
tprintf (outf, "Select sort on average cases of size(dd): \n",
countarraylfindex]);
filetimes{timearray,numpasseslindexl, outf);
fprintf (outf, "Average time: %f \n\n",totaltime/numpassesliindexl);

232 EHEFFFIEI ST FS ST ITEISI LTSRS TS ETIEEESEETIETSE TS S E8-5-33-5 3 94
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for (1ndex=0; index<=5; ++index) {

revorder {sortarray,countarraylindex])

start=time (O}

insert (sortarray,countarraylindex )

end=time ()

fprintf {outf, "Insert sort on revorder case of size(id): Lf \n",
countarraylindexl, difftime(end,start})y

F
for (index=03 index<=5; ++index) <
inorder (sortarray,countarraylindex 1)
start=time(0);
ingert (sortarray,countarraylinde:1)j
end=time (0}
fprintf (out+, "Insert sort on inorder case of size(Zd): %+ \n",
countarraylindexl, difftime(end,start));

¥
for (index=03 index{=5; ++inden) {
totaltime=0;
for (prum=0i pnuminumpassestindexl; ++pnum) £
averane (sortarray,countarraylindex 1)y
start=time ()
insert(sortarray,countarraylfindexld);
end=time (0);
timearraylpnuml=difftime(end,start);
totaltime=totaltime+timearraylpnuml;j
x
fprintf (outf,"Insert sort aon average cases of size(Xd): \n",
countarrayflindex 1) ;
filetimes{timearray,numpasseslindaxl, out+);
fprintf (outf, "Average time: %f Z\nin",totaltime/numpasseslindea:x]);

a,
E

£ 3R R OROKOROOROROIOR K RO OROR R KK SRR KRR R KK K HCROR OOk R EOR SO0k ROk kR ok kR R KRR Kk Rk /
/% Initialize experiment parameters for the ftaster sorts, X/
A KCRROHCKOROR R RO R RO RO SOROKOR R ORI R R RO K ORI R R KRR R KRR R KRR XX R/

countarraylQl=1000; /% initialize count array with counts for %/
countarrayLll1=2000; /X fast sorts %/
countarrayl21=3000;

couwntarray [ Z1=8000;
countarrayl41=10000;
cauntarraylSl=20000;

/% initialize pass array with number of passes for the ¥/
/% fast sorts %/

nunpassesl0l=7
numpassesl11=56
MumpassesldIl=5
numpasses 3 1=4

-

numpassasl 4 1=7
numpasseslhl=

(LTI PR T T

SRR OO R R ORI K 0 K O R ORI OROOR R KRR RO OISR R R RO R R R R R KRR R RN/
/¥ SHELL S0ORT ¥/
A0 SOROROK 0K KR MOKOK B 0k R 0O SRR KR KKK K SR HCRORROK K ROKOR K O0OR RKROR ROOR R O

for (index=0; index<=5; ++index) {
revorder (sortarray,countarraylindenx 1)
start=time (J);
shell (sortarray,countarraylinde:x i)
end=time{0)
fprintf (ontf, "8hell sorc on revorder case of size(Wd): ZF \n",
countarraylandexl, difftimel(end,startl):

.
J
r

for {(index=0:; 1ndex<=9; -++indexd {
inarder {(sortarray, countarraylindexl) s
staert=L1ma{d)»



shel L tsortarray, countarraylindenr 1) g
gnd=time {0}y
fprintd (out+, "Shell sort on inorder case of sizel(¥Wd): % An',
countarraylindexl, difftime{end,startl);
3
for lindex=0; index<=D; ++indews) J
total time=0; f
for {pnom=0% pruminumpasseslindexl; ++pnumd
average (sortarray,countarraylindexl);
start=time (0); S
shell (sortarray,countarraylindex 1)
end=t ime (O}
timearrayipnuml=difftime{end,start);
totaltime=totaltime+timearraylprnumls;
o+
fprints(outt, "Shell sort on average cases of size(dd): \n",
countarraybindexl);
filetimes (Limearray, numnpasseslindexd, outfly
fprintf (outf, "Average time: %+ A\nin'",totaltime/numpassesiindexl);

A
4

AR AORR ORI R AR R RO RO R KR EOR KRR R K KO KRR RO R AOR R OR RO KR AR KKK R/
7% BUICKSORT X/
23K ROK KK 0K 3K KR K OK KOK KK K K K K R OKOK 0K KR K 30K KK OKOKHOKOK R K K RO OO BOORK R KRR R OR R RO/

for {index=03; index<=3; ++index) <
revarder (sortarray, countarraylindex
gtart=time{0)}
guick (sortarray, countarrayvbindex 1)
end=time (0);
fprintd (outf, "Buick sort on revorder case of size(Zd): “f \n",
countarraylindexl, di¥fftime(end,starti)
3
tor (index=03; index<=35; ++index) {
inorder (sortarray, countarraylinde:x 1) g
atart=timea(0);
quick (sortarray,,countarraylindexl);
end=tima () ;
fprintd (putf, "Buick sort on inorder case of size(dd): %Uf An",
countarraylindexl, difftimsl{end.start));
o
for (index=03; index<=%; ++index) £
totaltime=0;
for (prum=0; pnuminumpasseslindexd; ++pnamy {
average (sortarray, countarraylindex 1)
starf=timg{0;
guick (sortarray,countarraylindexd) ;
and=timst10) 3
timearraylpnumI=cifftime (end,start);
totaltime=totaltime+timearraylprnumly
fprintf (outt, "Ouick sort on average cases of sire(dd): \n",
countarraybindexd):
filetimes (Limgarray,numpasseslindexl, out$);
fprintf (outf, "Average time: %f A\nin®,totaltime/numpasseslindexl);

,
N

7% ROR OO SOROR 0RO R kK ORI KRR ROROK KRR R R R R R R R R R KRR KR KK/
A HEAFSORT R/
AR ROR R RR R R BOKEOR RO ROR RO AOIOROR OROR ROR OK K ROR B OKOK OR R R Ok R K SR SR SRR R ok sk R oKk /

++index) {

for (Anden=0; indexd=5H;:
countarraylindexl);

revorder (sortarray,
atart=timeld);
heapsort {sortarray, countarraylinded);
arel=t i me (O) 2



¥

for lindex=0j; index<=8; ++index)

.)-
+

fprintf (outf, "Heap sort on revorder case of size(dd): %+ \n",
countarraylindexd, difftime(end,start));

IS

inorder (sortarray, countarrayfinde:x 1)

start=tima(0);

heapsort {(sortarray,countarraylindex);

end=time (0);

fprintt (cutf, "Heap sort on inorder case of size(xd): %4 \n",
countarraylindexl, difftime(end,start});

for {index=0; i1ndex<=5; ++index) {

1-
¥

totaltime=0;

for (pnum=0j; prnuminumpasseslindexl; ++pnum)
average (sortarray,countarraylindexl);
start=time (0);
heapsort (sortarray,countarraylindex 1)
end=time(0)y
timearraylpnuml=difftime(end,start);
totaltime=totaltime+timearraylpnumls;

==

.

fprints (outf, "Heap sort on average cases of size(id): \n",
countarraylindex1);
filetimes (timeparray,numpasseslindex ], outt);

fprintf (outsf, "Average time: “f A\n\n",totaltime/numpasseslinde} 1)y

ISP EEETEETIEIIIEETEETELEFSELETELISSEORISSFTIISEIIR 2223228028020

/%

MERGE SORT

x/

A% ORI ORHOR RO R OOKOR K IOOOR RO OOR R RO R ok ok 30k ROk R R R KR AR R R KRR RO/

for {index=0; index<=53 ++index) <

H

for lindex=03; indexd=%5; ++index) <

"

T

-

revorderisortarray,countarraylindexl) s
start=time(0);

mergesort (sortarray, countarraylindex]);
end=time(Q);

fprintf (outf, "Merge sort on revorder case of size(dd): %+t \n",

countarraylindex 1, difftimel(end,start));

iy

inarder {sortarray,countarraylindexl);
start=time(0)}]

mergesort (sortarray,countarraylinden]);
end=time (0);

forintf (outf, "Merge sort on inorder case of size(Zd): %+ An',

countarraylindexl, difftimel(end,start));

for (index=; index<=5; ++tindex) <

s
o+

totaltime=0;

for {(ppum=03 pnuminumpasseslindexl; ++pnum) {
average (saortarray,countarraylindex )
start=time () ;
mergesort (sortarray, countarraylindex1)
end=time{d);
timearraylpnuml=difftime (end,start);
totaltime=totaltimet+timearraylpnuml;

¥

fprintf {outf, "Merge sort on average cases of sizelid): \n',

countarraylindenl);
filetimes (timearray,.numpasseslinden,outf);

fprintf (outf,"Average time: “f \n\n",totaltime/numpasseslindexl);

Z %R R OR OK SRR OKROOK OIS RO OR K OR SO ROR JOOROR R ROR SR R OK R R RO O OO R R ok R

/XK

RADIX SORT

%/

S N N R K K K M K K K N K M O N N N R K N R A A A R R KN E RN/



++indexd £

for {index=03 indexi=%H;
countarraylindexd)

revorder (sortarray,

start=time (0i;

radsort{sprtarray,countarraylindexl) s

end=time (0}

fprintt (outf., "Radix sort on revorder case of size{id): “¥f \n",
countarraylindexl, difftimelend,start));

1-
1

I

for {(index=0y indexdi=3; ++inden) <
inorder (sortarrayy, countarraylindex g
gtart=time (0);
radsort{(sortarray,countarraylindexl);
ercl=timea ()3
fprintf (outf, "Radis sort on inorder case of size(id): %f wn",
countarraylindexl, difftimel{end,start));

.
4

tor (index=0; index<=5; ++index) {

total bime=0;

for (pnums=d; pnuminumpassesiindexdy ++pnum) {
average (sortarray,countarraylindexl);
start=time (0}
radeort (sortarray, countarraylindex 1) ;
erd=timea (0);
timearraylpnumi=difftime{end,,start);
totaltime=total time+timearraylpnuml;

3

fprintt (outt, "Radix sort on average cases of sized(Zdl: \n",

countarraylindex1) g
filetimes (Limearray, numpasseslindexd, out+)y
fprimtf touvtf, "Average time: AF \nhvn',totaltime/numpassestiindexd)

"
o

trlose{outs)y /% close output file and flush stream ¥/
soundal arm{y:; /% sound off when experiment completed X/

.
J

30K SR KR SRR 30K R Ol ROk OOk 0K 3R s 0K Rk R OO Ok o o R R R R R R K/
A% function soundalarm:  This sounds off when the program is done. X/
ABOHR R SRR O R KR SRR ok RO R KR OHCR ORI OR O HR  ROR OO KR RO R RS

soundalarmi)

s
K

char chy

while (! {(kbhit{3}) printf{"\a");
ch=getch();

.
&

IES IS 2SS TSI ELSSEELTTESTEEESELELEIITNS 0228220220222 025223 04
J¥ function kbhit: Returns O if no key hit., true octherwise. ¥/
30BN RO ORI OROR R SR K ORI R RO R SOR RO OROR R R OR R R OR KRR R R R X R RO Rk R/

kEbhit ()

raturn {(char) bdos(OxBE, 0,001

-".
E)

f#$$****#**%ﬁ*****K*##***##****%%***#********#*%**$*****###*#*#********#**/
A% function bubbles This is the bubble sort function. %/
IS E ST TSI TLESSESTTT ST ESESEFTFTEFSTCSTIIETFEES SIS FESTEEST IS S04 8 ¥

bubble tsarray, count
int ¥Xsarravs
imt crontoe



[l

register int a,b;
register int temp;
int axehs

a=1j
exuch=13
while {exch %& (a<count)) |
exch=0;
for (b=count—1y bi=a; --b) &
it (sarraylb-ilisarraylbl) {
temp=sarraylb—-11;
sarraylb—1l=sarraylbl;
sarraylbl=temp;
exch=1;

[9¥]

a++g

L

n,
&

AR N SRR JOROK ORSCSKOR R ROK R KOROKOK K ORI OIOR KRR SO R O KRR OO 0O OO ORIk KR Rk k
/% function shaker: This is an improved version of the bubble sort. %/
/3 0RO RO s sk ok R o ook R ok ok s KOO KRR K RORORICROICR R OO O O IO R R R R R R/

shaker (sarray,count)
int ¥sarrays
int count;

ragister int a, b, c, ¢;
int temps;

c=13;
b=count-—13j
c=count—13;
do <
for (a=d; ai=g; ——a) i
it (sarrayla—-17 » sarrayfal) {
temp = sarrayfa—-11;
sarrayla-1Ji=sarraylal;
sarraylal=tamp;
b=ag
c=h+11y
for (a=cy; avd+l; ++a) {
it {sarrayla-llrsarraykbal) {
temp=sartrayla—1];
sarrayla-1ll=sarrayfal;
sarraylal=temp:
b=aj;

[N

B SRS S S0 03353F0S38 2 E 5 838 3385352033033 38338 8830850030008 8383 0888 W3
/¥ function select: This is the selection sort algorithm. X/
IS+ RSS20 0550323030808 03 3¢ttt it sis ot nessess iy

select (sarray, count)
int ¥sarravys
tHht et e



(]

register int a, b, Cj

int temp;

for {(a=03; atcount-1ji ++a) &

C=aj

tamp=sarraylal;

for {(b=a+il; bicount; ++b) (£

it (sarrayl(bl<temp) £

c=bg
temp=sarraylbl;

gsarraylcl=sarraylaly

sarraylal=temp;

2
S

a2,
4

AR AOR 0% SO 00RO K ORI RO RO R IR 0K R 0 OROR R OO OROROROMOK SOKOROR Ok ROk o ok R/
ZE function insert: This is the insert sort algorithm. %/
A% 000K R 0K 30 R % 0OR OK HO KOR R R R AR R R O O ROk R RO Sk ko ko R ook R ook ok Rk s/

insert (sarray,count)
int ¥sarravyj;
int count;

&
N

register int a, bj
int temp;

for (a=l; alcount; ++a) o
temp=garraylal;
b=am14
while (bhr=0 &% templasarraylbl) {
sarraylb+ll=sarrayiibl:
b=b-13

sartaylb+ll=temp;

(o]

ﬁ‘
4

A K RO T R R R RO RO K R A ORI O R R R OO K R R ROk R R R RO R R AR Rk
7% funetion shell: Thigs function is the shell sort. ¥/
IS S 303 ST FSS S LSS SIS FF SIS EIOES SIS EEESTESES S-S T

shel ]l (sarray,count)
int ¥sarrays:
int county

i
register int i, i, k. 5, wi
int x, alS1;

al0l=%9;

alll=5;

ald]1=73;

alZl1=2y

al4l=1;

for (w=0; wil; w++) {
k=alwly
=t
for (i=k; i<county ++i) {

= garraylil;
Jd=1—k;

- XL SR N Y i



=g
smEtlg
sarraylel=y;

while («isarrayifil %&
sartrayli+kl=sarray
=ik

T
b

O

3

™
i_l-

[
a -

sarrayl j+lki=ug

[

(W)

3
B

£y i =gount)

e
L

f&#*##*#*##*##**##****#*ﬁ#**##*###*###*##*#**#*m########*######***ﬁ**###ﬁ*/

/% function quick:

This is the guicksort algorithm.

¥/

A3 300 R R ICROIOIOROR R R K 00 K R O ok o O st sk s RO RSO SO IORORDIORODR R IOR ook R ook e ok ok /

quick (sarray,count)
int ¥sarrays
int county

£
A%
gstisarray,d,count—1})g

x
o

gz (sarray, left,right)
int ¥sarray;
int left,right;

J
L

register int 1. i

int M, w3

i=lett;

J=rights

w=garrayl (left+tright) 7235

da
while{sarraylildx %% i<right)
whilel{xisarraylil &% ikxleft)

it (id=3) o
y=gsarraylils
sarraylil=sarraylil;

sarraylil=y;

=i+l

d=i-13
} while (i<=3);
if (left< i) gs{sarray,left,i);
if (Ldright) gs(sarray,i,.rightly

3
K

222 ELEF SIS SIS LIS ERLESIFESITSEELEITLIIELSIESERELELEITEETED DS EE Y

/% function heapsort:

This is the heapsort algorithm.

¥/

A BRI 3R0K R Ol sk R ORI R OR SoOR R R o ok oo R R R R R R R R ok Rk R R R R R Rk xk /

heapsort{sarray, tount)
int ¥sarray;
int countg

ra
L
int temp:
register int nextpositiong
create_heap (sarray,count) ;
for (nextposition=count-1;

L P B S St Y

nextposition>=Z;

I

nextposition--) <



Earraytneutpasitimn]=5array[1];
sarraylll=temp;
adiust (sarray.nextposition-17;

L

¥

RB KRR AR RO RO AR R R AR R AR R KA AR R R RO R AR KRRk h R/
/¥ function adiust: This function, when necessary, switches parents and x/
g children to assure that the heap is correct. R/
3 3000 3O%50K 0k 5 3030K0R KR RO OR s0k0K ok ok oK K K3 ik skl s oK KRR KR OKK kiR R R OO R KRR R ek K/

adiust {sarray, k}
int ¥sarray;
int ki

e
-

int parent, child, temp:

parent=1;
child=2;
if ((k>=3) L& (sarrayl3l:sarrayl[21)) child=3y
while ({child<=k) %% (sarraylchildlisarrayliparentl)) <
temp=sarraylchildl;
sarraylchildl=sarraylparentl;
sarraylparentli=temp;
parent=child;
child=Z¥parent;
if (child+l<=k) it (sarraylchild+ll*sarraylchiid]l) child++;

[

k3
o

B2 SRS ST EETILE TSSO E PRSI ST SIS TERIPIESIEIEIEIEIETERTEI DS VY
/% function create_heap: This function creates a heap within an array. X/
IS S35 8553003803200 8¢303 00820823338 828 3333280082830 83 0388338350852 23382 9

create_heap {(sarray, count)
int X¥sarrays
int county

int node, parent, temp;
register int nextnode;
for (nextnode=2; nextnodedcounts; nextnode++) o
node=nestnode;
parant=rnode/2:
while {(i{node !'= 1} &% (sarraviparentl<sarraylnodel)) I
temp=sarraylparentl;
sarraylparentl=sarraylnodel;
sarraylnodel=temp;
node=parent
parent=node/2}

()

A 30RCHOR OO RN R R K R OR300 30 0K 350K R K 00K ROK 0ROR ORI O ROR HOR ORI RO R KRR K /S

/% function mergesaort: This function is the merge sort algorithm. ¥/
AR R R R R R R R K AR R R O R RO R AR RN R KRR AR KA A RN KRR KRR/

mergesart {(sarray, count)
int %sarray:
int count;

Ed
L5

int low=l;
W opmde e g ke



Migh=count—1:
msort {sarray.low.high) s

b
g

msort (sarray, low, high?’
int Xsarvravyg

int 1low;

int highs

ra
.

int mid;g

if (low < high) £
mid=({lowthigh)/2);
muort (sarray,low.mid) ;
msort{sarray.mid+1l,high);
marge (sarray, low,mid,high);

[

-\.
#
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/% function merge: This funchtion merges the two subarrays together, X/
A3 o ok K o ROR ok oK K O KRR RO ORI KR KOR R R RO O R RO R R R R R R Rk

marge (sarray, low,mid, high)
int Xsarrays

int Lowg

int midy

int highs

ks
S~

register int h.i,3.k;
F¥ HERE IS THE TEMFORARY ARRAY %/
it temparraylIZ000071;

=1 ey
i=1owg
J=mid+1;
while ((hi=mid) %% {(J<=high))
if {(smarraylhldi=sarraylil) {
temparrayli l=sarraylhl;
++g

-

B

i
5

elae |
temparrayli I=sarraylil;
j++;
AR o
it thimid} for (k=3J; ki<=highj; k++)
temparrayli I=sarraylk1y
1oy
elase for {(k=h; ki=micd; k++} {
temparraybi I=gsarraylkl;
ity
for (k=iowt bki=high; k++) sarraylbl=temparcaylils

.
¥
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A% function radsort: This is the radix exchange method of sorting. %/
AR T R | Rt R T R Ty F Yt IR EEY it LY Pt S L § e s L L A Y F Y P ey R Y Y L B T - R K E s T R o TRV IR T 1 Vg TR L PR Y Lt RN IR T



radsort {sarray,count)
int ¥Xsarravy;
int countj

r
L5

-)-
J

int bitnum;g
int bitarrayl1é&];

[y

itarraylOl=0x1y

bitarrayllI=0x2;

n]

itarrayL2]1=0x4;

bitarrayL33=0:8;

b
b
b
b
b
b
b
b
b
I
b
b
b

-

itarrayLd4]1=0:10;
itarrayl33=0x20y
itarrayl&l1=0:140;
itarrayl[71=0x80; ‘
itarrayl8I1=0:2100y
itarrayl9i=04200;3
itarrayl101=0x400;
itarrayl[111=0x800;
itarrayll12]1=0:1000;
itarrayl 13 1=002000;
itarrayl141=014000;%
itarrayl[13]1=0:8000;3
itrnum=15;

slgarray,O,count—1,.bitnum,bitarrayl;

A0 OROROK RO B O R RO K K OR OKOK ok ok R RO R R K ROROR SOR KOO R R R RO IOOR R KRR KK R K XK/
¥ function re:;  This is the recwsive algorithm. X/
BB MOOR KR RO K KRR R KK OK OK R 0 OK KOROK R 0K K O SR K K KK Rk 0K R Ok ROk R RO ROk /

Fs(sarray,left,right,bitnum,bitarray)

int
it
int
int
it

S
.

-
i

i

o

Xsarrays
lett:
rights
bitnum;
Xbitarrays

egister int i, ij
nt temp;

f (hitrnums=0){
i=lefty
J=rights
do < .
whiled(! (sarrayblil ¥ bitarraylbitnuml) &% i<right) 1-++;
while((sarraylil % bitarraylbitnuml) %% J3Xleft) S——;
if (i<=4)
temp=garraylil;
sarrayliI=sarraylil;
sarraylil=temp;
1=1+13
d=i-13
Fowhile (i<=4):
bitrum——3
if ((ddleft)y 11 (1:right)?) rs(sarray,left,right.bitnum,bitarrayl;
else L
if (leftd<i) rsisarray,left,i,bitrnum,bitarray);
if (i<right) rs(sarray,i.right,bitnum,bitarray);

v
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/% function inorder: This function generates the inorder case array.

/
A3 R0RIOROR RO RO R R ROk s s AOROMOI e O RO 3R R RO e s R OO i ok R R o Rooiolok ok /

inorder (rndarray, count)
int ¥rndarravys;
int count;
{
imt indxs
for (indu=0zindxz<countiindx++) rndarraylindxI=indg

a
o
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/% function revorder: This function generates the revorder case array.

/
£ 3R O RORICTOR SKOR ORI SOIOR SRR 0RO RCROIOROIOK RO IOROROR R ROKR OO OO IO KRR R RORR R KRRk R/

revorder (Fndarray, count)
int %rndarray;
int count;
i
int indx;
int wval;

val = count-1;

for (indz=0;indx<count;inds++)
g
.

rndarraylindx J=val;
val = val-1g

[

e
5
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/¥ function average: This function generates the average case array. */
A% K RO OROR SROROKOROIOIOR R K OK R R OROROK ORS00 CROIOK SRR SO ook ok SOk OR OO R R R R OO R R /

average {rndarray, count)
int ¥rndarrays
int countg

s
(N

int indxg
int stime;
long ltime;

Ttimes=timea (NULL) ;

stime=(unsigned int) ltime/d;

srand (stime) ;

for (indx=0jindx<count;indx++) rndarraylindxl=rand();

.
)

/30K CROK KCROROKOKOKOKOR 0k K skOfOR R R k0K SOKOKROR ROK KR K OK 0K KOR 330KKOR OKCKOK KK ROKORSKOK R KKK KRR KKK KRR ¥ X/
7% function displayvarray:This function displays the array. ¥/
730K 0RO ROK T R O0OROR OR300 R KK R ROR R OK OROR OO K0ROK KKK R sk Ok ROKOKSKROIOIOR HOKORIOK OO KOKOKK R KR K/

displayarray(sarray,count)
int ¥sarravs
int count;

i
int indx;

int lcount=0;

frr (indy=0 1rmhdve<sronmts 1ndsy+-+) f

¢



printf {("%d ",sarraylindidi;
loount=lcount+i;
if {lcount>35) £

lcount=0;

printf ("\n);

[

?
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/% function filetimes: This function moves the timing results to disk. %/
ISP SR 2SS 220338233 FEEST IR F ST FEIRRSEIIRISTEERSS LSS ST Y

filetimes(results,high,outf)
double ¥resultsy

int highsg

FILE Xoutf:

K
L5
imt index;

fprintt (outf, "\n");
for {(index=0; index<highs ++index) fprintfloutf," %+ ",resultslindexl)y

fprintf (outf,"\n");

[
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lnwam:]

Bubble sort on revorder case of size(l00): 1. 000000
Buhble sort on revarder case of size(300): &.000000
Bubble sort on revorder case of size(l000): 24, 000000
Bubble sort on revorder case of cize{2000): e L0000
EBubble sort on revorder case of slize(D000): 598. 000000
Bubbhle sort on revorder case of size(l10000): 2394, 000000
Bubble sort on inorder case of size(l0): O, 000000
Bubble sort on inorder case of size{300): O, 000000
Bubble sort on inorder case of size(lQO0): O, 000000
Bubble sort on inorder case of s G O00O0DO0
Fubble sort on inorder case of T, DOOOD0
Bubble sort on inorder case of size(l0000): 1.000000
Bubble sort on average cases of sizell00):

0, 000000 O, 000000 O, 000000 O, 000000 G, 000000 1. 000000

Average time: G. 142857

Bubble sort on average cases of size(500):

Average time:

1. 400000

fubble sorlt on average cases of size (2000}

Avarage time: &5, 700000

Bubble sort on average cases of size(D000):

Bubble sort on average cases of size(loo00):

1655, 000000 1AHIB. QOO0
fAverage timer 1é4de, 500000
Shaker sort on revorder case of size(l00): 1. Q00000
Shaker sort on revorder case of size(S00) s 6. 000000
Shalker sort on revorder case of size (1000): 24,000000
Shaker sort on revorder case 0Ff sizxe(Z2000): 96,000000
Shaker sort on revorder cese of size(3000): 997. 000000
Shaker sort on revorder case of size (1Q000): 2390, 000000
Shaker sort on inorder case of size(l00): O, 000000
Shaker sort on inorder case of size (S0 s O.000000
Shaker sort on inorder case of size(lQ00): O.Q000000
Shaker sort on inorder case of size (20000 O,.000000
Shaker sort on inorder case of size (H[000): O.000000
Shaker sort on inorder case of size (1000071 O, 000000

Shaker sort on average cases of size(100);

1. 000000

0. 142657

Average times

Ghabkmre sOort om aversace racoes of oi@e (500

A;J‘q ac”f'uqffx %Qmero\Jeﬂ \[’Or PIRE Far wn



TL,O00000 5.000000  4.000000 I.000000  4.000000 3. 000000

r Srerewerowew

Average time: 3F.33TT33

Shaker sort on average cases of size(1000):

L 000000 12, 000000 14, Q00000 13, ODO000 14 . 000000

Average time: 13.400000

Shaker sort on average cases of size(Z000):

S4. 000000 S95.000000 55.000000 S53.000000

Average time: S54.250000

Shaker sort on average cases of size(S000):

FAS. 000000 ZX6.000000 IE9. 000000
Average time: 340, 000000

Shaker sort on average cases of size{lod00):

1555, 000000 1570000000

Average time: 1341.300000

Select sort on revorder case of size(idd): O.000000
Select sort on revorder case of size (S00): 5.000000
Select sort on revorder case of size(1000): 10, 00000C
Select sort on revorder case of size (Z000)
Select sort on revorder case of size (S0O00)
Select sort on revorder case of size(l0oQO): FB4.000000
Select sort on inerder case of size(l00): O, Q00000
Select sort on inorder case of sized(500): 2.000000
Select sort on inprder case of sizg(lioo0)
Select sort on inorder case of size (Z2000)
Select sort on inorder case of sized(3000):
Select sort on inorder case of size(10000): 757.000000
Select sort on average cases of size(lOd):

w=
-
b
o
.
-
=,
o
-

k3
=
o
&

0.000000 0 . OO0O00 0. O0DO00 0. 000000 0. 000000 (aEelolelnlnls)

Average time: 0.000000

belect sort on average cases of size(3200):

2.000000 2, 000000 2. 00000 22000000 2. 000000 2000000

Average time: 2.000000

Select sort on average cases of size(1000):

Select sort on average cases of size (2000):

IO, 000000 ITi.000000  FZO.000000 0. 000000
KA P,

Average time: 20.250000

Belect sort on average cases of size (S000):

189. 000000  189.,000000 190, 000000
Average time: 189, Z33333

Select sort on average cases of sizxe(l0000):

728.000000 7LHg. 000000

Average time: 758, 000000

Q. 000000



Tneer:
Insart
Insert
Insert
Insert
Insert

sort
sort
sort
sort
sort
sort

on
on
an
an
oan
on

revorder
trevorder
revarder
revorder
revorder
revorder

case
case
case
case
case
Case

51z (1000G) =
sire (2000)

5ize (G000)
size (10000D)

size(100):
size(500)s 4,

QOO0GG0
15, 000000
54 . OO0000

R QOO0

1359, 000000

inorder
inorder
inorder
inorder
inorder
inorder
average

sort
sort
sort
sort
sort
sort
sort

on
on
on
on
an
on
an

case
case
cCase

Insert
Insert
Insert
Insert
Insert
Ingsert
Insert

size(lO0): O.000000
Ssize(D00):s O, 000000
Bize(l000):
case slze (2000%
case size(3000)
case of size(l0000):
cases of size(100):

O. 000000 O, 000000

Q. 000000 G, Q0DOO0O0

1. 000000 O 000000

Average time: 0.142857

Insert sort on average

Insert sort cases of size (2000):

b 750000

Average time:

Insert sort on average cases of size (G000):

1ébb.bbb6ET

1468, Q00000
Average time:

Insert sort on average cases of size(l0000):

Average time:

Shell sort on revorder case of size(lOoo0): 2.000000
Shell sort on revorder case of size(2000): 8,000000
Shell sort on revorder case of size (5000): 2000000
Shell sort on revorder case of size(8000): 109.000000
Shell sort on revorder case of size(lQDO0): 170, Q00000
Shell sort on revorder case of size(20000): &77.000000
Shell sort on inorder case of size(l1000): 1.000000
Shell sort on inorder case of size{(2000):1 1.000000
Hhell sort on inorder case of size(Z000): 1.,000000
Shell sort on inorder case of size(8000): 2.000000
Shell sort on inaorder case of size(lO0DO0): 3, 000000
Shell sort on inorder case of size(20000): 5.000000
Shell sort on average cases of size{lO0Q):

1.428571

2. 000000
Average time:

Shell sort on average cases of size(Z2000):

S5.000000  4,000000 5.000000

4. 000000

Shell sort an average cases of size(3000):

Q. 000000



Average time:

24, 000000 25000000

2530400000

23000000

2L O00000-

Shell sort on average cases of size (BOOO):

Average times:

Shell sort on

Average time:

Cluick sort on
Guick sort on
Buick sort on
Hulick sort on
Bluick sort on
CGuick sort on
Cuick sort on
Buick sort on
Guick sort an
CGuick sort on
Cluick sort on
Cuick wsmort on
Quick sort on

1.000000 O,

Average times:

Cuick sort on

....... 1.
Average time:
Gluick

sort on

2.000000 2.

Average time:

Cuick sort on

L. 000000 =

Average lime:

Gluick sort on

DOGOO0 4,
Average time:
sort

Cluiclk on

DOOOOD 9,
Average time:

st
sort
sor i
st
sort

R

Heap
Heap
Heap
Heap
Heap

I P—

on
an
on
an
on

RO bbLbLLL

average cases of

50, 000000

QOO000

et g

RSP

ot
of
of
of
ot
of
of
of
of
of

revorder
revorder
revorder
revorder
revorder
revaorder
inorder
inorder
1norder
inorder
inorder
inorder
average

Ccase
case
case
case
case
case

case

case
case
case
case of
case of
cases of

CHI QOO0

0.285714

average cases of

1.000000

Aver ade Cases of

average cases of

8. 500000
of
of
of
of
of

Py

irevorder
revorder
revorder
revordear
reavarder

I

case
case
CAsE
case
case

.y g ey

size (20000)

Size (1000 O, 000000
size (2000):

gize (S000) 2
size (BOO0O) :
size (10000)
size (20000)
size (1000)
aize(2000): 1.000000

2000000

6. 000000

size (S000):
5ize(8000):
size(10000):
iz (20000

sire (1000)

size (10000}

Ssize (20000) ¢

size (1000) 1. 000000

i (2000 1, OO0000

size (O000)
5lize (8000) 2

gsize (10000) s 8. 000000

= e MY . T vV

O OOO000



on
on
on
an
on
on
Qan

sort
sort
sort
sort
sort
sart
sort

Heapn
Heap
Heap
Heap
Heap
Heap
Heap

1.000000 1.
Average time:

Heap sort on
DOGO00 1.
Average time:

Heap sort on

5.

Average time:
Heap sort on

7. Q00000 8,
‘Average time:

Meap sort on

G O00000 Qe

fAverage time:

Heap sort on

Average time:

sort
sort
sort
sort
sort
sort
st
sort
sort
sort
sort
sart
sort

Merge
Merge
Merge
Merge
Mer ge
Mer g e
Mexr e
Merge
Merge
Merge
Merge
Merge
Merge

an
on
on
an
an
an
an
on
on
an
on
an
an

Average time:

Merge sort on

______ 1.
Average time:

Merge sort on

,,,,,, 4.
Average time:

Merge sort on

bt S S N L N L B ial WP L A L -7

Size (1000)
wilre (20007«
size (S000)
size(B000):
case of size(l0000):
case of size (20000)
cases of size(l1000)

ot
of
of
of

inorder
inorder
inorder
inorder
inorder
inorder
avarage

case
casea
case
case

1. 000000

...... 0. 000000

0.857145

average cases of size (Z2000):

2000000

1. 300000

average cases of size(3000):

average cases of size(8O00):

2. 00a00d

7. 750000

8. 000000

average cases of size (10000)

average cases of size (20000)

2. 0000300

8. 000000

13. 000000

5. GO0000

s

a
-~
n
=
o
-
o’

e =n
.
hs
-
g
-
L

2 7000000

2. GO0000

Size (LOO0O0) s 8. 000000
15, OO0000

20000000

revorder case of size (1000}
Fevorder case of size (2000)
revorder case of size (30003
Fevorder case of size (g000)
revorder case of OO ) 1
revorder case of size (Z0000):
inorder case of size(1000):
inorder case of size(2000):
inorder case ot size(S000):
inorder case of size(BOO0D):
inorder case of size (10000)
inorder case of size (200007
average cases of size (1000)

1. 000000 1. 000000

0.85714%

P

average cases of size (Z2000)

1.4668667

average cases of

1. 000000



Avaerage time: 7.000000

Merge sort on average cases of

Q.Q00000 9. 000000

9. 000000

2. 000000
Avaerage time:

Merge sort on average cases of
15000000 15, 000000
Average time: 15.000000
Radix sort on revorder case of
Radix sort on revorder case of
Radix sort on revorder case of
Radix sort on revorder case of
Radiy sort on revorder case of
Radix sort on revorder case of
Radiy sort on inorder case of
Radix sort on inorder case of
Radix sort on inorder case ot
Radix sort on inorder case of
Radix sort on inorder case of
Radiy sort on inorder case of
Radix sort on average

O, 0GOCG00

Aver-age time:

0. 000000

0. 2853714

0. 000000

Radix sort on average cases of

FRadix sort on average cases of

Kadix sort on average cases of

Radix sort on average cases of

s5ize (10000) ;

51za (20000)

size (1000
size (Z2000)
sire (S000)
Size(8000)
size(l0000): 4. 000000
Size (Z20000):

size (1000)

0. 000000

1. 000000

¢ 1, 000000

size {D000)
S51ixe(B000):s Z.000000

1. 000000

size (S000):

2.000000

2. 000000

s2ize(B0Q0)

s5ize (10000)

Slze (20000)

. 000000
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