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1. Introduction. 

Carl de Boor's algorithm [I] provides a clever way to compute the mixed-radix 

FFT in a series of steps. Using this algorithm, the intermediate results produced by the 

algorithm have a meaningful interpretation. In this paper, we will describe this algorithm 

as published by de Boor. We will then introduce a compact new form of matrix notation, 

the Kronecker product, and a special-purpose matrix called the shuffle permutation. 

Finally, using some elementary properties of the Kronecker product and shuffle 

permutations, we can demonstrate how the de Boor algorithm can be rewritten as a 

product of matrices in a variety of powerful and simple ways. 

At the heart of the algorithm, de Boor rewrites an Novector (one-dimensional 

array) interchangeably as a two- or three-dimensional array whenever it is more 

convenient; we will use de Boor's left-subscript notation (I) to communicate how this is 

done: 

z(1) z(A + I) ... 'z(A[B-I]+I) 

(I) AxB Z := 
z(2) z(A + 2) z(A[B-I]+2) 

, or bBz(m,n):= z(m+ A[n-I]). 

z(A) z(2A) z(AB) 

The three-dimensional form will be 

AxBxCz(a,b,c):= z(a + A[b -I] + AB[c -I]). 

When we actually rewrite the algorithm in terms of matrix multiplication, such 

matrix expressions ofz won't be very useful. For the most part, we will instead view this 

description as a system to index the location of each component of the vector. 



Since we will use complex exponential terms frequently, for compactness we 

write: 

-2ttilA A 12 th A I(2) OlA:=e , =, ,··,so atOl A = .
 

Furthermore, we will number the components of any arbitrary N-vector from I to N, in
 

accordance with de Boor; hence, we use de Boor's equation for the OFT accordingly:
 

N 

(3)	 Z(n):=Lz(v)Ol~-IX.-I), l~n,v~N. 
,-I 

This equation differs from other analysis equations, such as the one used by 

Kammler [3], not only in the numbering but also in the lack of a liN constant on the right 

side. These differences are only a matter of preference, and will not pose a problem as 

long as we remember to adjust the results, or use the corresponding synthesis equation. 

2. De Boor's algorithm. 

The algorithm works for the mixed-radix or general case N =PIP2 P3 ••• PM' where 

P" p" ... , PM are positive integers. We will construct a series of data arrays, numbered 

Zo through Z M. For each integer k such that 0 ~ k ~ M, we define 

(4)	 B:=p'P2 ···Pk-\ fork<:2; B:=I fork=O,1 

P:= p., p,,:= I. 

It should be noted that A, B, and P depend on k, and properly should be written as 

A., B., and p., respectively. For the majority of this paper, we will be treating k as a 

constant, and will omit the subscripts for notational convenience. The subscripts will be 
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utilized only when it becomes necessary to clarify to which values of A and B ,we are 

referring. 

Now we write our original N-vector z as a two-dimensional BP x A array, and let 

Zk be an A x BP array such that each column of Zk is the OFT of the corresponding row 

of z, like so: 

z(l) 
I 

z(BP+I) z(2BP+ I) z(BP[A -1]+ I) r l 

z(2) z(BP+2) z(2BP+2) z(BP[A-I]+2) r 2 

BPxA Z ;:; z(3) z(BP+ 3) z(2BP+3) z(BP[A -I] + 3) = r3 

z(BP) z(2BP) z(3BP) z(N) 

i\ (I) i\ (I) 1\(1) rsp(l) 

r,(2) r2 (2) r3 (2) r sp (2) 

AxBpZk ;:; r t (3) r2 (3) r3 (3) rsp (3) 

r t (A) r2 (A) r3 (A) rsp(A) AxBP 

or compactly 

A 
( ) A () L (.) (;-IXm-l)AxBpZk m,n ;:; rn m;:; BPxAZ n,l ro If '  

;=1  

A 
(5) AxSP Zk (m,n) =L z[n + BP(i -I)]w ~-IXm-l) , 0 ~ k ~ M. 

i=1 

Since it is readily apparent that 1\-1 = 1\ Pk and 1\-1 Pk-I =Bk we can deduce 

immediately that 

AP	 AP 
" () (,-IXm-l) "Z[ B( I)-I-.> (,-IXm-l)(6)	 APxSZk-1 ( m,n) ;:; ~ BxAPZ n,v ro Ai' ;:; ~ n+ v- jJJ Ai' , I ~ k~ M. 
1'=1 \'=1 

We note that in equation (5) we set each component of Zk to a complex 

polynomial with coefficients taken from z, selected by "steps" of size BP; in (6), we 
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found Zk_1 by a similar process, the difference being that steps of size B were used 

instead. One might guess that by summing the correct P components of Zk we would 

collect all of the necessary samples of the original vector z, and possibly derive a 

component of Zk_l. In fact, by adjusting the OJ multipliers appropriately, a modification 

of this summation will determine Zk_l. 

We begin by using a double summation for the right-hand side: 

AP 

AP'B Zk_1 (m,b) = L:z{b + B(v - 1)}"iJ ~'xm-') 
v;\" 

P A 

= LL:z{b + B(T] + P[i -1] -1)}"iJ ~P(i-I)-IJ(m-I), V = T] + P(i -1). 
" ..1 ; ..1 

In order to simplify the exponential term, we convert Zk_1 to a three-dimensional array 

with the substitution m = a + A(p-l), 1 $ a $ A, 1$ P $ P: 

P A 

A,PdZk_1 (a,p,b) = L L:z{b + B(T] -1) + BP(i -1)}"iJ ~'+P(i-I)J(a-I+A[p-Ij) 
11=1 ;",1 

P A 
= L L:z{b + B(T] -1) + BP(i -1)}"iJ ~')la-I+A(p-I)JOJ ~-Ixa-I)OJ ::;:(i-IXP-I) • 

11 ..1 i_I 

The last OJ AP factor reduces to 1, and the next to last reduces to a power of OJA : 

P A 
""..rb + B( -I) + BP(· -1)''''- (i-1Xa-I)OJ ("-I)[a-I+A(p-I»

AxPxBZk_1 (a,p,b) -- LJLJ...... T) I JU" A AP 
'1=1 ;=1 

= t{t:z{b + B(T] -1) + BP(i -1)]ro ~-Ixa-I) r~llla-I+A(p-I)J. 

Now we see that the summation inside the braces can be written in terms of Zk : 

A 

L:z{b + B(T] -1) + BP(i -1)]ro ~-lXa-l) =A,BpZk [a,b + B(T] -1)] 
;=1 
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leaving 

p 
" ( b 'I.., ("-I)(o-I+A(p-I»)(7) AxPxBZk-1 (a,p,b) = L..J AxBxpZk Q, ,T))lU AP 
'1=1 

as de Boor's expression of Zk_1 in terms of Zk . 

Now that we have a procedure for finding each vector from the one next higher in 

number, we examine the meaning of the first and last in the series. Following the 

discussion presented earlier, ZM is constructed by forming Z into an N x 1 matrix and 

finding the DFT of each row; since the DFT of a I-vector is certainly itself, the result is a 

1x N matrix storing the original vector z. On the other hand, to find Zo we write Z as an 

N x 1 matrix, or a single row. Since only one row is present, Zo contains the DFT of the 

entire vector z. We can show this formally using equations (5) and (6); since AM = 1, 

I 

(8) zM[n] = A'BpzM[I,n] = Iz[n + N(i -I):PJ ~-Ixm-I) = z[n], 
;=1 

and using (6) and the fact that B, = 1, 

N	 N 
(9)	 zorn] =APdzo[n,I] =Iz[I+(v-I):PJ~-lxn-l) = IZ[v:PJ~-IXn-l) =Z[n]. 

,-I ,.1 

3. Efficiency and implementation of de Boor's algorithm. 

The summation performed in equation (7) is simply the evaluation of a complex 

polynomial of degree P = Pk -1, requiring 1 operation (defined as a complex 

multiplication followed by an addition) to adjust the <0 factor, and Pk -1 operations to 

compute each component. The procedure can be implemented as follows. 
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Let x(a,p):= OJ,;I+A(P-I); we can compute the summation III equation (7) by the 

following nested multiplication. 

set T := Zk (a, b, P)
 
for nu = P-I to 1 step-I
 

(10)	 set T:= T ·x(a,p) + Zk (a, b, nu) 
next nu 
set Zk_1 sea, p, b) := T 

Ignoring the minimal cost of copying the temporary variable T into and out of the arrays 

in the first and last lines of the algorithm, the cost is equal to p" - I operations, with 

x(a,p) already computed. Since x(l, 1) = I and x(a,p) = x(a -I,p)·OJ AP' we can 

perform the whole computation of Zk_1 by using the following algorithm: 

set x := I 
(II)	 for b = 1 to B 

forp=ltoP 
for a = I to A 

! Compute the summation with code (10) here, using x (a, p) = x 
setx:= X·OJ AP 

next a
 
nextp
 

nextb
 

A savings of B operations would be possible if the outermost loop simply reset x = 1, 

instead of multiplying it by OJAP when a = A, b = P; it might also improve the precision 

by eliminating the floating-point error in calculating OJ::;: = I. As it is written here, the 

algorithm	 (II) consumes Pk operations in the innermost loop, for a total of A~~~k = 

NPk operations. To compute the entire DFT, we only need to load the ZM array, construct 

a loop which sets A, B, and P and executes the algorithm in (II) for each k from M to I, 

and then unload the Zo array. When this is done, the cost of computing Zo from ZM is 
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LM NPk operations, as expected. With the modification, the cost savings when N =QM, 
k=1 

(i.e"~=P2= ... =PM=Q)isabout 

QM _I I 
QM+IM "" QM' 

An improvement of about 5% results when N =1024 =210 
• 

4. Kronecker products and shuffle matrices: definitions & properties. 

We would like to rewrite de Boor's algorithm in matrix form, using only N x N 

matrices. The matrices that express each step of the algorithm are patterned, but 

confusing and bulky to write. We will introduce a new notational tool called the 

Kronecker product, used to write large matrices made up of repeated submatrix "blocks" 

that differ from one another by a scalar multiplier. The notation looks like this: 

A[I,q. B A[I,2]. B A[I,L].B  

A[2,1]. B A[2,2].B A[2, L]. B
 

A[K,q.B A[K,2].B A[K,L].B 

f(MxJ.N 
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In tenus of individual components, we have 

(13) A KxL ~ B MxN [m + M(k -I),n + N(l-I)]:= A[k,!]· B[m,n].  

In this paper, we will be working exclusively with square matrices; thus we will always
 

set M = N. Also, we use an even further abbreviated notation for the special case when
 

the left matrix is an identity:
 

B. 
B' 

B
'" 

I Pxp ~BNXN:= 

B NPxNP 

1M ~ B NxN [m + N(k ,-I),n + N(l-I)] = I[k,!]· B[m,n]. 

For compactness, we will sometimes write this as B<,;';N' 

Two simple properties of Kronecker products will be useful. The first one, 

associativity, is tedious, but not difficult to show. For A KxL' B MxN' and CoxP ' we have 

{A ~ (B ~ C)}[o + O(m -I) + MO(k -I),p+ P(n -I) + NP(l-I)] 

= A[k,l]· (B ~ c)[o + O(m-I),p + P(n -I)] 

=A[k,l]· (B[m,n]· C[o,pJ) = (A[k,l]· B[m,nJ)· C[o,p] 

=(A ~ B)[m+ M(k -I),n + N(l-I)]· C[o,p] 

= {(A ~ B) ~ c)[o + O(m-I) + MO(k -I),p + P(n -I) + NP(l-I)] 

so that 

(14) A~(B~C)=(A~B)~C.
 

The second one is slightly longer. For A KxK' BMxM' CKxK' DMxM' we have
 

(A ~ B)(C~ D)[b + M(a -I),c + M(d -I)] 
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N M 

= II(A ® B)[b + M(a -I),i + M(j -I)]' (C® D)[i + M(j -I),c + M(d -I)] 
I=,j ;=) 

N M 

=IIA[a,j].B[b,i].C[j,d].D[i,c] 
j .. l ;=1 

N M 

=IA[a,j] .C[j,d]IB[b,i]. D[i,c] = (AC)[a,d] .(BD)[b,c] 
j=1 ;=1 

= {AC ® BD}[b + M(a -I),c + M(d -I)] 

so that 

(15) (A®B)(C®D)=AC®BD.
 

(This result also holds for matrices that are not square, as long as AC and BD are  

defined.)
 

In addition to the Kronecker product, we will also need special notation to 

describe the operation of rearranging the components of an arbitrary vector by "shuffling" 

its components. We write S P,Q to denote a permuted PQ x PQ identity matrix with the 

following action: first, the arbitrary PQ column vector z is laid down as a Q x P array by 

columns, and then the rows are picked up to produce the product vector, S P,Qz, Thus we 

lay down z by columns 

z[I] z[Q+ 1] z[Q(P-I) + I] 
z[2] z[Q+ 2] z[Q(P -1) + 2] 

z[Q] z[2Q] z[PQ] QxP 

and pick up the rows to obtain 
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S P,QZ := (z[I], z[Q + I],,,, ,z[Q(P -I) + 1],z[2],z[Q + 2],,,, ,z[Q(P - I) + 2], 

... ,z[Q],z[2Q],.·· ,z[PQ]f. 

If we write the equation in tenus of individual vector components, we have 

(16) {SP.Qz}[p+(q-I)P]:=z[q+(p-I)QJ, 15,p5,P,I5,q5,Q 

The action is called a P-shuffle ofz, and the S P,Q array can be described as a Q-shuffle of 

the columns of the PQ by PQ identity matrix. The effect of S P,Q is to shuffle the 

adjacent components of z to positions P apart; conversely, it brings together components 

that were originally spaced Qpositions apart. 

When we examine the shuffle penuutation's effects on vectors interpreted as 2­

dimensional arrays, the following property follows immediately from equation (16): 

Reshuffling the shuffled vector, we have: 

QxP {SQ,pS P,Qz}(q,p)= PxQ(S P,Qz)(p,q) 

and in this way we deduce that 

(17) S~I,Q=SQ,p. 

Ifwe shuffle a vector and express it 3-dimensionally, we get: 

A<PxB {S A,BPz}(a,p,b) = {S A.BPz}[a + (p -l)A + (b -l)AP] 

= {S A,BPZ} [a + [p +(b -I)P -I]A]  

= z[p + (b -I)P + (a -l)BP]  
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(18)
 

Since the application of S A.BP cycles the subscripts to the left, we can apply three
 

successive shuffle matrices to bring back the identity:
 

AxPxB {S APBS PBAS BAPz}(a,p,b)= PxBxA {S PBAS BAPz}(p,b,a) . . , . , 

=BxAxP {S B.APz}(b,a,p) 

and, in this way, we see that 

It then follows that 

Setting B = I in equation (19) shows that a I-shuffle is simply the identity: 

Let's consider the action of a Kronecker product of an identity and a shuffle 

permutation, say s<;1. Wh~n this matrix is applied to an N-vector z, it partitions z into 

AB-subvectors and performs an A-shuffle on each piece. Since the A-shuffle reverses the 

2-dimensional interpretation of each AB-subvector from A x B to B x A ,and the total 

matrix leaves the order of the subvectors unchanged, the result is to convert 

AXBxpz(a,b,p) to BxAxpz(b,a,p). We can demonstrate this formally: 

AxBxP {S<;1z}(a,b,p) = {(I PxP 18> S A,B )z}[a + (b -I)A + (p -I)AB] 

N 

=L: (I PxP 18> S A,B )[a + (b -I)A + (p -1)AB,n]· z(n) 
11=1 
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· AD P 

= L;L;(Ip.p @SA,B)[a+(b-I)A + (p -1)AB,i + AB(j -I)], z[i + AB(j -I)] 
;'.1 j=1 

AB P  

=L;L;Ip.p[p,j]'S A,B[a + (b -1)A,i]'z[i + AB(j -I)]
 
;=( j=1 

AB  
=L;S A,B[a + (b -1)A,i]· z[i + (p -I)AB]  

i ..1 

AB  
=L;S A,B[a +(b -1)A,iLBxP z(i,p).  

i-I 

Letting y[i] = ABxP z(i,p), I:s: i :S: P, we have 

P 

AxBxP {SC::1 z}(a,b,p) =L;S A,B[a + (b -1)A,i]y[i] = {S A,By}[a + (b -I)A] 
j=( 

=AxB {S A.By}(a,b) = BxAy(b,a) = y[b + (a -I)B] = ABxPz[b + (a -1)B,p] 

so that 

(21) AxBxP{S<;1z}(a,b,p) = BxAxpz(b,a,p)  

Thus, with combinations of shuffle pennutations like those in equations (18) and (21), we
 

can construct matrix sequences that pennute the indices in a 3-dimensionally interpreted
 

vector in any desired way.
 

5. Single-step matrix expression of de Boor's algorithm. 

Now let's try to express equation (7) in tenns of N x N matrices. We will find 

an expression for the matrix Tk such that. 

12
 



In other words, T k will perform a single "step" of de Boor's algorithm; because it doesn't 

produce a complete 10FT, but only an intermediate result, we will call it an intermatrix, In 

this section we will write out the matrix formula using a "brute force" approach, and then 

find a compact expression for T k using Kronecker products, For comparison we will 

tackle de Boor's equation (7) directly, using shuffle products to find another expression 

for T k , After we find Th we will arrive at a complete Fourier transform just by 

multiplying all of the Tk together: 

Let's proceed to write out the entire matrix on a line-by-line basis, Referring to 

equation (7), we get the following unwieldy result: 

w W W 
0,0 0,1 0,/' - I 

w W	 W 
1.0 1.1	 1,1' - I 

w	 W W 
2,0 2,1 2,/' - 1 

w w 
... J'..-:.!~~ ... ... !.'.:-..I..}... 

w W W u,o 0,1 0,1' -I 
w W W 

1.0 1,1 I, /' - I 
w W W 

2,0 2.1	 2, l' - I 

w	 w(22) T. = 
................. .1.'.:-:.1)... ....... .. . ~~ :-:. ~:.I.'. :-: .1•..
 

w W w 
0,0 0,1 0, I' - 1 

W W W 
1,0 1,1 I, /' - I 

W W W 
2,0 2.1 1,1' -I 

w W	 W 
P -I,D I' - 1,1	 1,1' - I 
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The vertical lines separate B columns of submatrices, the horizontal lines separate IJ 

rows, and Wk,l is an A x A submatrix given by 

0) (kA)1 
AP 

0) (kA+I)1 
AP 

co (.l4+2)1
Ar 

(23) 

I 
0) AI' 

kJ 
=O)p 0)"

AP 

0) (A-1)1 
AP Axil. 

The pattern to this expressIOn IS apparent if we observe that In each row of Th the 

submatrices are spaced by B; this indicates that dividing the vector following Tk into A-

vectors and P-shuffling the subveetors would simplify Tk' Since the submatrices act on 

subvectors spaced B apart, we use an adaptation of the Sp B shuffle to bring the subvectors 

together, so that the matrix that acts after the shuffle will simplify to the following: 

w W W
 
1I,1I 11,1 II, I' - I  

W W W
 
I." 0' I. r - I  

w w n. W 

w w 
0,0 0.' 

w W 
I,D J.l 

(24) T = w w• 

w w w 

'"  0, I' - 1
'.' 
W W W 

,"' U 1. r - I 

W W ... w 
r - 1.0 P - U p - I.P~1 
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Finally, we can rewrite this using another Kronecker product to get 

Wo,o WOI WO,P_I 

whereQAP:= 
Wl,o WI,I WI,P_I 

W p_IO Wp_I,1 Wp_1•P_1 

6.	 Intermatrix expression: another method. 

Although the result in (25) is valid, it has the drawbacks of being messy to write 

and difficult to verify without a lot of matrix computation. Instead, we can use shuffle 

permutations and Kronecker products to derive a result directly from de Boor's equation. 

We proceed by noting that if we break up a vector z into P-size pieces and Fourier 

transform each piece, it could be written as: 

P 

{F (AB)}( b) - " (b"" (,-IXp-l)PxAxB P Z p,G, - L.J PxAxS Z T),G, ?J P 
"I 

or equivalently 

P 

{F (AB)}( b) - " (b"" (,-I)(A(p-I)1(26) PxAxB P Z P,Q, - L...J PxAxB Z l'l,a, ,!JJ AP • 

"I 

In order to bring this closer to de Boor's equation, we define new N x N diagonal 

matrices n and n P A as follows: 

d =CD (,-IXa-!) 
l1+P(a-l) AP 

r. D(d d d d) d - ("-IXa-l)••	 = "2' 3"'" N' ,+P(a-I)+AP(b-l) - CD AP  

=I.x.@npA ·
 

(27) 
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We can insert the Q matrix into equation (26). 

["']( b) - ("-IXo-l) z( b)PxAxB ~"z 1l,Q, - ro AP PxAxB T),Q, 

p 

{F(AB)",}( b) - " ["']( b"" ("-I)(A(p-l»
PxAxB P :.oil!: Z P,Q, - L... PxA)(B :.." Z 1l,Q, ,JJJ AP 

",I 
P 

=" z(TJ a b)ro ("-IXo-l)ro ("-I)(A(p-l»L.. PxAxB " AP AP 
",I 

P 
=" z(TJ a b"., ("-I)(o-I+A(p-I»)L.. PxAxB "fJJ AP . 

"=1 

The right side almost matches de Boor's equation; we only need to substitute 8P.ABZk for Z 

and simplify: 

p 

{F(AB)", 8 }( b)" [8 ]( b"" ("-I)(o-I+A(p-I»
pxAxB P :.." P.ABZk p,a, ;;::: L... PxAxB P,ABz/r. ll,a, fJJ AP 

",I 
P

=" Z ( b TJ"" ("-I)(o-I+A(p-l»L... AxBxP k Q, , ?J AP • 

"=1 

Now we use de Boor's equation (7) to write 

At this point, we insert a shuffle permutation of the type defined in equation (21), and all 

of the subscripts match up. Since the indexing is the same on both sides, we can 

dis'continue the indices altogether and write 

or equivalently 

8 (B) F (AB)", 8 
Zk_l;;::: A P P :.." P AS Z ! .. . 

Since by definition Zk_1 =Tk Zk , we see that 
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T = SIB) F1AB)Q,!B) S(28) k A,P P P,If. P,AR' 

The expression (28) is moderately simple, but we would prefer to combine the 

two shuffle permutations. In order to do this, we observe that lAB = I B ® I A , ~d use the 

special properties of the shuffle permutation and Kronecker product: 

T. = (I BxB ®S Ap)(I ABxAB ® Fp)(I BxB ® Op A) SPAB. . . 
= (I BxB ® S A.p)(I BxB ® I AxA ® Fp)(I BxB ® 0P.A) S p.AB  
= {I BxB ®[SA.p(I AxA ®Fp)OP,A]}SP.AB  
= {I BxB ®[(Fp ®IAxA)SuOpA]}SPAB' . , , 

To go further, we would like to commute the S and 0 terms: 

r> ]( ) (p-IXu-l) ( )
PxA [ ;:"'~P,AZ p,a =: ro AP PxA Z p,a , 

[S r> ]( ) (p-IXu-l) ( )
AxP If. p:"''''p AZ a,p =: ro AP pxA Z p,a 

- (p-IXu-l) [S ]( )- ro AP AxP A,p Z Q,p. 

Comparing the right side with the first equation, we substitute SA.pZ for z, switch the 

indices, and combine to get 

I.e. 

Returning to the factorization of T. , we write 

T. = {I BxB ®[(Fp ® IAxA)OAPSu]) Sp AB" , 

={I BxB ®[(Fp ®IAxA)OA,p]}(lBxB ®SA,P)Sp,AB' 
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Now we can combine the shuffle permutations. Basically, the left one swaps the first two 

indices, and the right one cycles all three indices to the left, with the result that only the 

second and third indices interchange, as follows: 

AxPxB[(lBxB ® SAP) SPABz](a,p,b) = PxAxB[S P~Bz](p,a,b). . . 
=AXBxpz(a,b,p)  
= AxPxB[(SP.B ® IAxA)z](a,p,b).  

We substitute the new shuffle in place of the old ones to obtain 

T. = {I BxB ®[(Fp ® I AxA )QA.P ]}(S P.B ® I AXA)
(29) 

= (I BxB ® Fp ® I AxA)(I BxB ® Q AP)(S PB ® I AxA)'. . 
Because of the side proofs, this derivation is a little longer than the proof of our earlier 

matrix expression (25), but the steps are much easier to verify: 

As a check, we can derive (25) from the last result if we notice that 

We only need to combine the three terms inside the square brackets: 

OJ 0 IP OJ 0 IP OJ 0 IP Wo.o 

OJ 0 I 

(Fp ® IAxA)QA.P = P OJ I I P OJ (P-I)IP WO•I 

OJ 0 IP OJ (P-I)IP 
OJ (P-lxP-J)1

P 
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OJ ~ WO,P_I 

OJ (P-llW 
P O,P-I 

(30) 
OJ~ Wo,o 

WO,O 

OJ(P-11W 
P 0,1 

WO,I 

OJ (P-IXP-1lW 
P O,P-I 

WO,P_I 

= 
WI,O WI,I WI,P_I 

=QA,P 

W p _1O W p _11 Wp_1,P_1 

In this way, we can demonstrate again that 

Tk = (I BxB ® Q A,P )(8 P,B ® I Ad')' 

Thus, the two different fonns ofTk we've found are, in fact, interchangeable, 

7. Zipper identities. 

If we take de Boor's algorithm and apply it to the simple case M = 2, we can 

reduce the product of the two intennatrices to simpler, memorable fonns called "zipper" 

identities, For example, the Fourier transfonn of an RQ-vector using equation (29) 

reduces like this: 

FRQ =T,T2 = {Ilxl ® [(FR ® I QxQ )QQ,R ]}(8R,I ® I QxQ ) ,  

{I RxR ®[(FQ ®I'xl)Q',Q]}(8Q,R ®I,x')'  

Remembering that QI,Q = I Q, we simplifY this to 

and finally we get Kammler's "twiddle factor" zipper identity [3] 
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If we work out the simple caSe of our other intennatrix identity (25), it reduces as 

follows: 

FpQ	 =[(I,x,I8iQQ,p)(8p"I8iIQxQ)][(lpxP I8iQ',Q)(8Q,p I8iI'xl)]  

= [(QQ,P )(1 PxP I8i IQxQ)][(I PxP I8i QI,Q )(8Q,p)]  
=(QQ,p)(I PxP I8iQ',Q)(8Q,p),  

Here we observe using the definitions of W (23) and Q (25) that when A = I, WkJ =CJ) kJ , 

and thus 

Q-I
CJ)Q 

CJ) 2(Q-I)CJ)I 
Q Q

QI,Q = 

CJ) (Q-I) CJ) 2(Q-I) (Q-1XQ-l) 
CJ)QQ Q 

Therefore, this fonnula yields another zipper identity, 

The reason for the name of this equation and (31) now becomes obvious: if we use a 

zipper identity to find the Fourier transfonn of a P, P2 P3 .. , PM -vector, the fonnula will 

contain a Fourier transfonn operating on a P2 P3 .. , PM -vector, which will be replaced by 

essentially the same fonnula, containing a Fourier transfonn matrix of size P3 ", PM' and 

so on, As the fonnula is simplified to the end, when it contains only Q and 8 tenns, each 

of the original M factors is peeled off through the P variable in the zipper identity (32), 

and the F tenn continually "unzips", throwing Q matrices to the left and 8 matrices to the 

right. 
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8. The FFT as a product of intermatrices. 

The complete FFT, of course, can be written by stringing the intermatrices for 

each k in order. 

FN =[(I B,,",I8iFr, I8iIA,xA,)(IB,xB,I8iQA,.p)(Sr,.B,I8iIA,xA)]· 

(33) [(lB,XB, I8iF P, I8iI A,xA,)(lB,xB, 18iQA,.P)(SP"B, I8iI A,xA)]' 

[(I B.u x B.u ® F1'.\1 f8) I A.\I x A", )(1 B",xB", ® nAM,P.~f )(8 P.\I,BM ® IA",XAM )]. 

In some cases, this might be the most useful way to write the Fourier transform, since we 

can apply the same formula M times, only adjusting the A, B, and P variables. We could 

also, however, want to rearrange this formula, and collect all of the shuffles, for example. 

Therefore, we want to find out how these matrices commute. This is not difficult since 

each matrix contains an identity term in the Kronecker product, which can be rewritten as 

the product of two smaller identities. Let's examine how a shuffle commutes with a 

Fourier term: 

Thus, a shuffle term commutes freely with any Fourier transform term with a larger k 

value, basically because the identity portions of the shuffle and the Fourier terms are 

large enough to overlap. This result would be far from obvious if we examined the 
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matrices involved directly, but it is easy to see using the properties of the Kronecker 

product. 

Similarly, we can break up the I factor of the Q term in the same way, and 

demonstrate that the shuffle will commute with all of the higher-numbered Q terms. 

Since the shuffle commutes freely with all of the non-shuffle terms to the right in the 

equation, we can collect the shuffle permutations at the end of the equation: 

(34) 

The Q term would commute with lower-numbered F terms; unfortunately, the F term 

with the same value of K stands in the way, preventing the Q terms from being collected 

on the left. We can still use equation (30), which we derived when we showed that the 

two intermatrix expressions we found were interchangeable, to obtain: 

(35) 

This form of the DFT can also be found by expanding the zipper identity (31). 

Since we cannot commute the matrices any further, let's reexamine the collected 

shuffle permutations. Let's extend the indexing system we used earlier to express vectors 

as 2- or 3-dimensional matrices to the M-dimensional case; then we could write 

We analyze the effect of the shuffles on an arbitrary vector z, as usual, but express the 

result M-dimensionally: 
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PM,PM-",P, {[D(S P.,B. @ I A.d.)}}(PM ,PM-I"" ,P, ,P,) 

=~",p"-,,.,p' {[fI (Sp"B, @IA,'A)}}(PM,PM-I"",P"PI), 

since the first shuffle reduces to an identity. The second shuffle is not an identity; rather, 

it swaps the last two indices: 

Furthennore, the third shuffle cycles the last three indices: 

The pattern continues; after the application of the shuffles for k = I, 2, up to I are 

eliminated, the final I indices turn up in reverse order. The process continues to the 

logical end: 

~",~"_,, ,p, {[D(S P,.B, @ I A'd')}}(PM ,PM-I" ",p, ,PI) 

(36) =~",p' , ,P -, {[S PM.BM @ I A"'A,, ]z}(PM,PI""'PM-' ,PM-I) 
M

=P" ...,p" {Z}(Pl"",PM-I,PM)' 

Therefore, the set of shuffle pennutations simply reverses the order of the indexing that 

we used. In fact, this is a generalization of the idea behind the familiar "bit shuffle" 

pennutation used when p, = P, = ... =PM =2, which Karnmler [3] represents by B. If 

we replace the shuffles by the shorthand representation B, the entire Fourier transfonn is 

written 
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which we note is the version of the transform used extensively by Eubanks [2]. 

9. Summary. 

Carl de Boor's algorithm is tremendously useful because it provides a simple way 

to factor a mixed-radix FFT into sparse matrices that can be applied to a vector one at a 

time in an orderly fashion, while still leaving the meaning of the intermediate results clear 

after each step. We can multiply the factors in an iterative procedure, if so desired, or we 

can collect the components which "shuffle" the intermediate results at the end, making 

the total FFT simpler in appearance. In the latter case, the reshuffling at the end takes the 

form of a "bit shuffle." 

The elegance behind de Boor's algorithm is revealed when we apply powerful 

matrix notation, specifically Kronecker products, to simplifY the intricate matrices 

involved. Using simple properties of this notation, we can manipulate the results and 

express the final form in a logical, readily understandable way, which would be much 

more difficult and far from obvious without Kronecker products and shuffle 

permutations. These matrix tools are applied, and simple properties demonstrated, using 

de Boor's vector indexing system, which is used to create a 2- or 3-dimensional array 

isomorphic to the N-vector. When we extend his vector-as-matrix concept beyond the 3­

dimensional case to M dimensions, the exact operation of the bit shuffle is made obvious. 
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Improvements in the notation could make de Boor's algorithm clearer. A 

readable way to index the components of a matrix, in the same way de Boor indexes 

vectors, would make the proofs of elementary properties of Kronecker products much 

more intuitive. Also, it might be possible to devise a shuffle permutation notation that 

would make the interactions of various shuffle permutations easier to visualize. 

REFERENCES 

(I] CARL DE BOOR, FFT as nested multiplication, with a twist, SIAM J. Sci. Stat. 
Comput., I (1980), pp. 173-178. 

[2]	 D. A. EUBANKS, An analysis ofde Boor's algorithm for computing the mixed radix 
FFT, M. S. Thesis, Southern Illinois University at Carbondale, Carbondale, 1986. 

[3] DAVID KAMMLER, A First Course in Fourier Analysis, Prentice-Hall, to appear. 

25
 


	Southern Illinois University Carbondale
	OpenSIUC
	5-1997

	Kronecker Product Factorization of de Boor's Mixed-Radix FFT
	Leonard Hoffnung
	Recommended Citation


	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27



