Southern Illinois University Carbondale

OpenSIUC

Honors Theses University Honors Program

12-1988

The Language Ada and Concurrent Processes

Jeftrey Kurt Lovelace

Follow this and additional works at: http://opensiuc.lib.siu.edu/uhp_theses

Recommended Citation
Lovelace, Jeffrey Kurt, "The Language Ada and Concurrent Processes” (1988). Honors Theses. Paper 197.

This Dissertation/ Thesis is brought to you for free and open access by the University Honors Program at OpenSIUC. It has been accepted for inclusion

in Honors Theses by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/uhp_theses?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/uhp?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/uhp_theses?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/uhp_theses/197?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

“The Language Ada and Concurrent Processes”

written and designed by

Jeffrey K. Lovelace

under the direction of

Dr. Albert Crawford
Department of Computer Science
Southern {1linots University at Carbondale

for

UHON 499

Senior Project

In the following text, | would like to reflect upon my learning
experience of "The Language Ada and Concurrent Processes.”

when selecting a project, | chose an area dealing with three very
important and widely used items in the field of computer science. These
are, the UNIX operating system, the language Ada, and concurrency
programming. | hope to apply this knowledge directly to the field which |
venture into.

I felt this independent undertaking had to be a project which would
reflect the culmination of my gained knowledge since starting college, and
at the same time, show my aspiration to set high goals and achieve them.
In some aspects, | have gone beyond the goals | have set, and in others, |
have fallen short.

[began by finding an "expert” to lead me in my endeavor. At that time,
very few doctors in the department were educated in the language Ada. At
times, | found that to be a hinderance, but nonetheless, Dr. Albert
Crawford inspired me to continue on my independent journey. After
setecting a specific topic, | spent the summer of 1988 reading various
texts on Ada, so | would have a competent working knowldege of the
language Ada before beginning my programming assignment in the fall of
1988. with some experience gained in Ada from a previous course and the
time devoted over the summer, | felt confident enough to begin my project.

Dr. Crawford and | sat down and devised an agenda to follow for the
fall semester. The project would be broken down into two phases. The
first phase would introduce me to the UNIX system, the language Ada, and

concurrent programming, and the second phase would test my ability to
design a mult-tasking program.

To briefly describe the first phase, the two task simulation involved a
dog chasing a cat in a one hundred yard by one hundred yard field. The user
would enter the two animals starting locations (i.e. the X and Y
coordinates of each), and their speeds. (Note: The dog 15 always faster
than the cat) Once these pieces of Information were inserted into the
system, the simulation would begin. During the process of the simulation,
there 1s a constant visual display of the X,Y coordinates for each animal.
The simulation ends when the dog is less than six feet from the cat. At
the termination of both task, a report of the final coordinates and the time
it took for capture 1s displayed.

Now to describe the more complicated second phase. This phase dealt
with a multi-tasking strategic defense simulation. The premise behind
this phase 1s that a country is considering strengthening their defensive
capabilities. They would like to purchase a space based defensive missle
platform which would deter or destroy any attack on their country. The
primary contractor boasts a high success rate, but the country is unsure of
the true peformance (refer to Table 2 - Performance Specifications p. 11).
To provide more reliable information before buying the muiti-biltion dollar
weapon, they requested the design of a computer software package which
would simulate the defensive weapon. By using this simulation, they could
insert different "scenarios” into the system to see if the weapon
performed to specifications. By using this software package, they could
make a better educated decision before investing the billions of dollars.

To describe the package design in more detail, it is broken down into
four blocked units, a missie task, a bomber task, a process control task,
and a screen {/0 task. To begin a description of each task and its function,
| will start at the highest level in the hierarchy and work down,

TASK
CONTROL
PROCEDURE PROCEDURE PROCEDURE
OPERIG... DISPLAY_ FAL_RESULT
SCREEN | DIRECTIONS _DISPLAY
TASK TASK
OFFENSE) DEFERSE
PROC PROC PROC PROC PROC
LAUNCH ||MOVEMENT || STATUS || LAURCH || MOVEMERT

Task Control is a designed block to control the flow of the
multi-tasking program, obtain vartant values from the user, display
directions upon request, start up lower level task, and return final result
values to the user. This unit is the central manager of the software
package.

Task Offense and Defense are essentially of the same purpose except
for opposite sides (refer to Table 1 - Specifications p.10). The offensive
task attempts to guide the nuclear eguipped bomber through the one
hundred mile range of the defensive space platform without being hit.
(Note: the offensive weapon in this simulation has been referred to as a
nuclear equipped bomber, but it could be any other type of offensive
weapon) On the other side, the defensive task attempts to track and
destroy its target. Each task is considered an individual unit (i.e. one
plane or one missle), and the user defines how many copies of each task
are to be executed. These two tasks invoke launch and movement
procedures, and the offensive task invokes an extra procedure referred to
as status. Now that the system has been described in an outlined form, |
would like to move on to the actual progress report of the learning
experience.

During the process of designing and implementing the two phases, |
quickly grasped and completed phase one, but struggled in phase two.
Phase one came together quickly as | became acquainted with the concepts
and syntax of writing concurrent programs. No major stumbling blocks
occurred, and the project was finished on time. | cannot say the same for
the second phase,

Phase two started off fairly quick with the initial defining of
packages and task. | then began coding, and found that | needed to devote
more time in studying the design and implementation of tasks. After
checking out a few reference books (refer to reference table p. 8-9), |
became more adept at writing code for tasks. One weakness { feit | had
was moving from sequential design thought processes to concurrent design

thought processes. The references | had read, described tasks and how
they interact with other tasks, but did not define how to design a
multi-task environment. | continued the hand coding process for about
four weeks.

After successfully hand tracing the program several times, | went to
the 1ab to begin entry and testing of each module. Butlding test harnesses
for each block was time consuming and slow, but | felt this was the best
direction to proceed in. As progress continued, | began to realize some
additions and modifications | was going to need in order for the system to
handle ail possibilities. This again detracted me from the original time
schedule.

Another problem | found to be a hinderance to my progress was the
lack of experienced people in the language Ada to reference. As |
mentioned earifer, Dr. Crawford and one graduate student were the only
people in the department having experience in the language Ada. At times,
| found myself spending hours in the Ada reference manual trying to track
down syntax errors.

Upon reaching the deadiine for the project, | had about three-fourths
of the basic software package up and running, The software package at the
time of the deadline, would aliow the user to input the variables into the
system, and in about 75% of the possible conditions tested, the defensive
units would track their targets successfully. The other 25% had problems
in following their targets to completion. | suspect those 25% were either
getting lost or the target was returning invalid coordinates.

In clostng, this has been a very valuable learing experience in several
perspectives. | have learned to be better prepared when designing

multi-task environments, more so than in sequential programming. | have
learrned how to deal with the difficulty of having to rely primarily on text
references rather than people. Finally, | have experienced a first hand
dealing with UNIX, Ada, and concurrency programming. With this
experience, | feel | have gained an additional educational experience]n
which the current undergraduate curriculum does not offer.

REFERENCE TABLE & DESCRIPTION

"Discrete - Event Simulation®
by Jerry Banks & John S. Carlson, 11

Main reference for use in simulations and how they work, when to use
simulation, and why they are useful. The text described when simulation
is an appropriate tool and gave several examples.

“Ada* as a Second Language®
by Norman H. Cohen

Main reference used in studying the language Ada. Several items were
convered in this text. | learned about the following items:

Basic constructs of the language Ada
Compilation units

Subprogram

Statements

Standard and private types

Tasks

Packages

Once | had completed reading this text, | concentrated on learning the
concepts of concurrency programming. | used this text as my initial
reference for tearning about task, task bodies, task types, rendezvous,
entry catls, accepts statements, and activation and termination of task.
| felt after completing this text, | still needed futher references and
examples of how to write tasks.

“Concurrent programmsing in Ada*"
by Alan Burns

This text was read after convering "Ada* as a Second Language.” This
reference gave me a more intense view of tasking, specifically deating
with inter-process communication

l.e. Synchronization
Deadlock & Indefinite Postponements

8

System Performance and Reliability
Shared Vartables
Rendezvous

and inter-task communication
i.e. Entry statement
Accept statement
Select statement,

“The UNIX** Programming Environment”
by Brian W. Kernighan and Rob Pike

Use this reference to learn the basic features and fundamental
properties about the UNIX programming environment.

“Ada* primer*
by Philip I. Johnson

| used this text primarily during the first phase, “Cat & Dog." This text
helped me with syntax and generat development of the first project.

“Good Programming Practice in Ada"
by P.A. Luker

This reference was used during the second phase, "Strategic Defense
Simulation.” This text provided additional examples of packages, tasks,
type declarations, blocking, and 1/0. | found this book to be written with a
strong reference to the language Pascal which proved to be an advantage
for me. | have mastered the language Pascal thoroughly and programmed in
it for the last five years. This text helped me to understand some of the
more complicated features of Ada by referencing the language Pascal.

* Adais aregistered trademark of the U.S. Government (Ada Joint
Programming Office)

*% NIX is a trademark of Bell Laboratories

TABLE | - SPECIFICATIONS

\ OFFENSIVE | DEFENSIVE | COMMENTS
SPEED | 2083.33 ri7sec| 2199.99 fisssc | resches MACH S
RANGE | 1000+ miles 100 miles torens 100 m
POSITION|cartns surface . | sorths sarface | positions
MODE EVASIVE TRACKING

10

TABLE 2 : PERFORMANCE SPECIFICATIONS

DEFENSIVE MISSLE PLATFORM

MAX # OF DEFENSIVE

FUTURE EXPANSION

MISSLES 100 PLANNED
FUTURE EXPANSION
MAX RANGE PER 100 HILES
CAPABILITIES
MISSLE
MAX TRACKING THIS IS A RESTRICTION
OF THE HARDWARE.
ABILITY AT « 30 TARGETS FUTURE EXPANSION

SPECIFIC INSTANCE

POSSIBLE.

PLATFORM IS
RELOADING NONE REUSABLE. WOULD NEED

TO BE REFILLED BY
CAPABILITIES AUXILARY UNIT.
MISSLE LAUNCH MAX DELAY IN WORST
DELAY BE EN 025 SECONDS CASE: 100 MISSLES

CYCLES

= 2.5 SEC OFFENSIVE
DISTANCE = 0.97 HILES

(R

S E R R R R R S R R R A R E R R A RS R T AR E R E R F SRR R RN R R EF R EE

--+ CHAIRPERSON : DR, ALBERT CRAWFCRD
--§ DEPARTHENT : COMPUTER SCIENCE

-~ ¥
-=% HAME : JEFFREY K. LOVELACE £
-~ COURSE : URON 499 ¥
--+ TITLE : "THE LANBUAGE ADA AND CONCURRENT PROCESSES" ¢
~- PHASE : 1 - DG CHASE CAT SIMULATION)
--4 ¥
'
)
¥

me LS R HHE H H E HE H HE H HE
with TEXT_10;
use TEXT_IB;

procedure DOG_CHASE_CAT is

package REAL_ID is new FLOAT_IO{FLOAT);
use REAL I0;

package INT_ID is new INTEGER IO(INTEGER};
use INT_I0;

CAT.X & INTEBER;
CATY ; INTESER;
D05 X : INTEBER;
086 Y : INTEGER;

CAT SPEED : INTEGER;
DOG_SPEED : INTEGER;

TINE ¢ FLOAT:
INCREMENT : FLOAT 5= 0.25;
oK : CHARACTER;

RS R R E R R R R R R R R R R R E A R RS R R R R A E

—-—3 ¥
--# TASK SETUP]
-3 ¥
~-% This task is used to retrieve the necessary inforaation froa #
--+ the user to begin the sieulation. ¥
-]
-- START releases task to begin execution #
--% [NITIAL_WEDW passes initial location of cat %
--# to calling routine i
--+ INITIAL_BARK passes initial location of dog ¢
--# to calling routine t
) ¥

R HH R O
task SETUP is
entry START;
entry INITIAL_HEGW(CAT X,CAT_Y : INTEBER);
entry INITIAL_BARK(DOG_X,DO6_Y & INTEGER);
end SETUP;

SRR R R R R R R RN R R R R R R R R R R R

-~)
~—# TASK C[CAT ¥
--3)
-~% This task represents the functioning of the cat during the '
--+ simulation, ¥
e |]
--+ START releases task to begin execution #

--% LAGT MEOW passes cat’s current Iocation to &

- calling routine i
_..l, 3
R R R R E F R R E R E R R SR R R R A R R
task CAT is
entry START;
entry LAST_MEOW(CAT X,CAT_Y : INTEGER};
end CAT;

R E AR R R R R R R R R R A R R R R R R R R R R R R R AR R R R R 2T

-4 $
-—# TASK DOG ¥
--3 1
--¢ This task repressnts the functiening of the dog during the]
--+ simulation. ¥
—% H
--% START reieases task to begin execution ¢
--+ LAST BARK passes dog‘s eurrent location to #
~-% calling routine ¥
-4 3

R N R R R R R R E R L R R R R RS
task DOB is
entry START;
entry LAST_BARK{DOG_X,DB6_Y : INTEBER);
and DOG;

SRR P R R E R R L EE FE R R4
--% TAGK FINAL

--% This task prints out the location of where the dog captured
-~k the cat, and how much tiae it took.

--% FINISHED releases the task when task D06
ad] and task CAT have terminated

e e W ak M e W

S A R R F R L R R LR E R R B R RR R R R R
task FINAL is
entry FINISHED;
end FINAL;

~e R R R A R R R R R R R R R R R R R T E R R R

-- ¥
-t PROCEDURE CLEAR_SCHREEN]
--3 ¥

R PR I R R R LR R E LR
pracedure CLEAR_SCREEN is

begin
tor T in 1,.25 loop
NEW_LINE;

end loop}

end CLEAR_SCREEN;

R R FH F R R P F F R EE R LR R R R E R AR

~n ¥
- TASK BODY FINAL *
-} ¥

SRR R R R P F R E R E A R E R R E 388
task body FINAL is

bkegin

accept FINISHED;
accept FINISHED;

CLEAR_SCREEN;

PUT_LINE{"'##%E, CRUNCH, CRUNCH, the dog caught the cat®);
PUT("at :");

PUT(DOB_X,3};

PUT(, " 5

PUT(DBG_Y,3};

NER_LINE;

NEW_LINE;

PUT{"It took the dog");

PUT{TIME,4,2,0);

PUT_LINE{* seconds to catch the cat*);

end FINAL;

R R F R S R R R R R R R R R R P R R R R R RN R R E

T | 3
--% TASK BODY SETUP ¥
-4 *

SRR EE R RS LR E R R R E R E R R E F R R E
task body SETUP is

begin
accept START;

PUT_LINE{*Welcome to a computer simulation of a dog chasing a*lhy
PUT_LIKE("cat in a field. In this simulation, the computer will®);
PUT_LINE("execute the dog catching the cat much faster than in®);
PUT_LIKE("real time, but at the end of the chase, the actual');
PUT_LINE("location and amount of real tise elapsed will be");
PUT_LINE{"displayed. The field, in real space is 100 yards by"};
PUT_LIKE("100 yards, which will be represented by a 100 x 100°};
PUT_LINE{"aatriz grid. As in real lite, if the cat hits a boundary,®);
PUT_LINE("or the fence, the cat will have to aove along the femce,");
PUT_LINE("and cannot escape. During the chase, the distance between®);
PUT_LINE(*the dog and the cat will be displayed. 5o lets get started!"};
NEW_LINE;

PUT_LIME(*HIT ANY KEY AND <{return> TO CONTINUE..."};

BET{CH);
CLEAR_SCREEN;

PUT_LINE ("ENTER THE CAT'S ¥ POSITION (1-1003*);
GETICAT X);

NEW_LINE;

PUT_LINE{"ENTER THE CAT'S Y POSITION (1-1001");
BETICAT V)3

CLEAR_SCREEN;

PUT_LINE("Now before entering the dog's position, we ask that you®);
PUT_LINE("place the dog at least 23 yards away from the cat in");
PUT_LIRE{"order to give it a sporting chance--but nometheless, it");
PUT_LINE("is not necessay®)y

PUT_LINE{"HIT ANY KEY AND {return} TO CONTINUE....");

BET{CHY;

CLEAR_SCREEN;

PUT{"RENENBER, THE CAT IS AT *i;
PUTICAT_X);

PUT(®,");

PUT(CAT Y};

NEW_LINE;

PUT _LINE(*ENTER THE DDG'S ¥ POSITION (i-100)*);
BET(DOB_X);

NEW_LINE;

PUT_LINE(*ERTER THE BOG'S ¥ POSITION (1-1000%);
GETID0S_Y);

CLEAR_SCREEN;

PUT LINE("Mow we realize there are various kinds of cats and dogs,"};
PUT_LIKE("sp we are going to allow you to enter their types. '1;
PUT_LINE("Remeaber, the dog will always be faster than the cat.”);
PUT LINE{"HIT ANY KEY AND <return’ TG CONTINUE...."};

BET(CH};
CLEAR_GCREEN;

PUT_LINE(*ENTER THE CATS SPEED (3-5)"):
PUT_LINE(*3 = CAT WITH 3 LEGS");
PUT_LINE(*4 = STANDARD CAT *);
PUT_LINE(*S = CAT IN PURSUIT OF DINNER®);
BET(CAT_SPEED);

CLEAR_SCREEN;

PUT_LINE(*ENTER THE DOBS SPEED (4-B}"};
PUT_LINE("6 = POODLE®);

PUT_LINE ("7 = BOLDEN RETRIEVER");
PUT_LINE("8 = SALUKI HUNTING DOG");
GET(DOB_SPEED);

CLEAR_SCREEN;

PUTTDR, the cat is at ™)
PUT(CAT_K)3

PUT(™ "5

PUTICAT_¥};

NEW_LINE;

PUT{"and the dog is at *};
PUTIDOG_X);

PUT(™,");

PUT{BOB_Y);

NEN_LINE;

PUT("and we have a"};

it DOB_SPEED = & then
PUT{® poodle"];
elsif DO6_SPEED = 7 then
PUT(" golden retriever®l;
else
PUT(® saluki hunting dog®);
end if;

PUT(® chasing a%);

it CAT_SPEED = 3 then

PUT_LINE(® three-legged cat.®};
elsif CAT_SPEED = 4 then

PUT LIME(® standard cat,");

else
PUT_LIRE(® cat in pursuit of dinner."};
end 1f;

NEW_LINE;
PUT_LINE("HERE WE 6D........ “;
NEW_LINE;

PUT_LINE("HIT ANY KEY AND {retura) TO CONTINUE...

BETICH);

EAT.START;
D36, START;

accept INITIAL_MEGR{CAT_X,CAT_Y : INTEGER);
accept IMITIAL_BARK(DOS_X,DOG_Y : INTEGER);
accept INITIAL_BARK(DOB_X,DOB_Y : INTEGER);

end SETUP;

Il;

SRR R R N R R R R R R R HE R R R R R E R R R LR R

TASK BODY CAT

]
¥
£

R R R R R F R A PR R R R R R R R R R R E R R F R L R R B R4 R

task bady CAT is

NURER i INTEGER;
DENGN ¢ INTEGER;
SLOPE : FLOAT;

NUMER_NULTIFLIER : FLOAT;

DENOM _MULTIPLIER : FLOAT;

11, ¥2,v1,Y2 : INTEGER;
begin

accept START,

SETUP. INITIAL_MEDWSEAT X, CAT_Y);

SETUP, INITIAL_BARK (D06 _X,D06_Y);

CATLOOP:

loop

exit when (abs{EAT_} - DO6_Y} < 2} and {abs(CAT_Y - DOB_Y} ¢ 21;

PUT{*The cat is at ");
PUT(CAT 1)

PUTE™ , "3
PUT(CAT_¥);

NEW_LINE;

PUT("The dog is at ");
PUTCDOG_X1;
PUTE")y
PUT{DO6_Y1 3

NEW_LINE;
NEW_LINE;

delay 2.0;

if (DB6_Y = CAT_Y) and {(DOB_X < CAT_X) then

if (CAT_X + CAT_SPEED <= 100) then
CRT_X = CAT Y + CAT_SPEED;

elsif (CAT Y + CAT_SPEED {= 100) then
CAT_Y 1= CAT_Y + CAT_SPEED;

else
CAT_Y := CAT_Y - CAT_SPEED;

end if;

elsif (DOB_Y = CAT_Y) and {DBG_X¥ >= CAT_X} then
it (CAT_X - CAT_SPEED)= f} then
EAT_% := CAT_X - CAT_SPEED;
elsif (CAT_Y - CAT_SPEED »= 1) then
CAT_Y := CAT_Y - CAT_SPEED;
else
CAT_Y := CAT_Y + CAT_SPEED;
end if;
end if;

it (D06_¥ = CAT_X) and {DOG_Y { CAT_Y) then
it {CAT_Y + CAT_SPEED <= 100} then
EAT_Y := CAT Y + CAT SPEED;
elsif (CAT_X + CAT_SPEED <= 100} then
CAT_X := CAT X + CAY_SPEED;
else
CAT_% := CAT_X - CAT_SPEED;
end if;
elsif {00B X = CAT_X) and (DDB_Y »= CAT_Y} then
if {CAT_Y - CAT_SPEED)= 1) then
CAT_Y := CAT_Y - CAT_SPEED;
elsif {CAT_X 4 CAT_SPEED <= 100) then
CAT_X = CAT_X + CAT_SPEED;
else
CAT_Y := CAT_X ~ CAT_SPEED;
end if;
end if;

if (BO6_Y /= CAT_X) and {(DOG_Y /= CATY) then

Xt 1= CAT X

X2 := DOB_¥;

¥1 1= CAT Y

Y2 := DOG_Y;

NUMER := Y2 - Y1;

DENOH := X2 - X{;

SLOPE := #laat (NUMER) / float (JENOM);

if (SLOPE < 1.0) and (SLOFE » 0.0) then
KUMER_MULTIPLIER := SLOPE;
DENOM_HULTIPLIER := 1,0 - SLOPE;
elsif {abs(NUMER) = abs{DENOR)} then
KUMER_MULTIPLIER := 0.3;
DENOM_MULTIPLIER := 0.5;
else
DENOM_MULTIPLIER :
NUNER MULTIPLIER :
end if;

abs{f1oat (DENOM) / fipat{NUHER}I;
1.0 - DENON_NULTIPLIER;

it (SLOPE > 0.0) and (NUKER > 0} then
if {CAT_X - integer(float{CAT_SPEED} + DENON_NULTIPLIER))= 1} and
{CAT_Y - integer (f1oat (CAT_SPEED! # NUNER MULTIPLIER} Y= 1} then

EAT_X 1= CAT X - integer{float{CAT_SPEED) # DENON NULTIPLIER!;
CAT Y 1= CAT Y - integer (f1oat (CAT SPEED) # NUMER MULTIPLIER):

else
CAT_X := CAT_X + CAT_SPEED;
end if;

elsif (SLOPE > 0.0) and (NUMER ¢ 0) THEN
if (CAT_X + integer(float(CAT_SPEED) # DENOM MULTIPLIER) <= 100} and
(CAT_Y + integer (f1oat (CAT_SPEED) & WUMER_MULTIPLIER) <= 100] then

CAT_X := CAT_X + integer (finat (CAT_SPEED) # DENOHM_MILTIPLIER};
CAT_Y := CAT_Y + integer {f1oat (CAT_SPEED) & NUMER_MULTIPLIER);

else
EAT_X := CAT_X - CAT_SPEED;
end if;
etsif (SLOPE ¢ .00 and {NUHER ¢ 0) then
if (EAT_X - integer{float (CAT_SPEED} & DENOM_HMULTIPLIER} >= 1) and
(CAT_Y + integer (float (CAT_SPEED) # NUMER_MULTIPLIER) {= 100) then

CAT_X := CAT_X - integer{fioat (CAT_SPEED) ¥ DENOM_NULTIPLIER};
CAT_Y := CAT_Y + integer {f1pat (CAT_SPEED} # WUMER_MULTIPLIER);

else
EAT_Y := CAT_Y - CAT_SPEED;
end if;
glsif {SLOPE ¢ 6.0} and (DENOR { 0} then
it (CAT_X + integer(float{(CAT_SPEED} * DENOM_MULTIPLIER) {= 100} and
{CAT_Y - integer (f1oat (CAT_SPEED} & NUMER MULTIPLIER) >= 1) then

CAT X := CAT_X + integer (float{CAT_SPEED) & LENON_NULTIPLIER);
CAT ¥ 1= CAT_Y - inteqer (float (CAT SPEED) + NUMER MULTIPLIER);

else
CAT_Y @= CAT_Y + CAT_SPEED;
end if;
end if;
end if;
accept LAST_MEDW(CAT_X,LAT_Y : INTEGER);
DOG.LAST_BARK{DODG_X,D06_Y);
end loop CATLOOP;
FINAL.F INISHED;

end CAT;

R E A S R R R R R R R R R R R R R R ER

-—3 ¥
--# TASK BOBY DODGB t
- %

SR RREEE R R R R R R R IR R R L R R R BT R F R R L
task body DOE is

¥1,Y1,%2,Y2 : INTEGER;
SLOPE + FLOAT;

NUNER : INTEGER:
DENON : INTEGER;

HUMER_MULTIPLIER : FLOAT;
DENOM NWULTIPLIER : FLDAT;

begin
accept START;
SETUP. INITIAL_BARKIDOG_X,DO6_Y1;
TIME := 0.0;
DOGLGOP:
loop
exit when {abs(CAT_X - BO6_X) < 2) and (abs{CAT_Y - DOB_Y} ¢ 2)

CAT.LAST_MEQW(CAT_X,CAT V)3

I = LAT 13
X2 := DOG_X;
Y1 1= CAT_Y;
Y2 1= DOB_Y;
NUKER := Y2 - Y13
DENOM := 12 - X1;

SLOPE := #loat (NUMER) / float (DENDM};

if {5LOPE ¢ 1.0) and (SLOPE > 0.0) then

NUBER_MULTIPLIER :
DENOM _NULTIPLIER :

SLOPE;
1.0 - SLOPE;

elsif (abs(NUMER) = abhs{DENDNH))} then

NUMER _MULTIPLIER := 0.3;
DENGH_MULTIPLIER := 0.35;

else

DEHOM_MULTIPLIER @
HUNER_MULTIPLIER s

abs (float (DENBM) / fioat{NUMER});
{.0 - DENOM_MULTIPLIER;

"B

end if;
if {SLOPE » 0.0) and (NUKER > G} then

DOG_Y := DOB_X - integer{float(DOG_SPEED} ¢ DENOM_NULTIPLIER);
DOB_Y := BOB_Y - integer(float (DOG_SPEED) + NUMER MULTIPLIER);

elsif (SLOPE > 0.0) and (NUMER ¢ 0} then

006} :
noG Y :

DOG_¥ + integer (float (DOG_SPEED) + LENOM_MULTIPLIERI;
DUB_Y + integer{4loat (DOG_SPEED) # NURER _MULTIPLIER);

elsif {SLOPE ¢ 0.0) and (NUMER ¢ @)} then

DUG_X := DOG_X - integer (float (D0G_SPEED) * DENON_MULTIPLIER);
005 Y := DOG Y + integer ({1nat (D06 SPEED) # NUMER WULTIPLIER);

11

elsif {SLOPE ¢ 0.0) and {DENGN < 0} then

BOB_Y := DOG_X + inteqer (f1oat (DOG_SPEED) + DENOM_MULTIPLIERI;
DOG_Y := DUG_Y - integer (float(DO_SPEED) # NUMER MULTIPLIER);

end if;

TIME := TIME + INCREMENT & float{DOG_SPEED);
accept LAST_BARK(DO6_X,D0G_Y : INTEGER);
end loop DOGLOOF;
FINAL.FINISHED;

end D06;

SRR R R R R R R R R R R L E R R LR R R R R R R EE R S R E R R AR S

- t
- B AL1N PROGB R AN §
-t 3

R R R R R R R R F R R R R R R R F R F R AR R R R R A E LR LR
begin

PUT_LINE{"Kelcome to a sisulation of a dog chasing a cat!");
NEW_LINE;

PUT_LINE[®HIT ANY KEY AND {return) TG CONTINUE...");
BET{CH);

CLEAR_SCREEN;

SETUP. START;

end DOB_CHASE_CAT;

R R R R R R R R F R R R F R R R R R R E R R R F R R IR

—%]
--+ NAME t JEFFREY K. LOVELACE £
--+ COURSE : UHON 499 ¥
--& TITLE : “THE LANBUAGE ADA AND CONCURRENT PROCESSES" ¢
~--% PHASE + 2 - A STRATEBIC DEFENSE SINUGLATION #
- 4
--¢ CHAIRPERSOH : DR. ALBERT CRAMWFORD]
--# DEPARTMENT : LONPUTER SCIENCE E
Y]

—— R R R R R R R R R R R R R R R R L E R R LR E LS
with TEXT_I0; use TEXT_16;

with CALENDAR; use CALENDAR;

with 10_EXCEPTIONS; use I0_EXCEPTIONS;

procedire BRIN is
subtype STRING3O is STRING(1..30);

package REAL 10 is new FLOAT_ID (FLOAT};
use REAL_I0;

package INT_ID is new INTEBER_ID {INTEBER);
use INT_ID;

package MISSLE is
procedure LAUNCHI MIS_X, MIS Y, KIS 1 : out FLOAT; NUMTASK : in INTEGER };
procedure MOVEMENT(DISTANCE, WIS_X, MIS_Y, NI5_I : in out FLOAT; NUNTASK : in INVEGER);
precedure STATUS{ ELAPSED TIME : in DURATION; WIT_STATUS : out BOOLEAN };

end MISSLE;

package BOMBER is

procedure LAUNCH{ BOM_X, BON_Y, BOX_I : out FLOAT)

procedyre MOVENENT{ BOM X, BOM_ Y, BOM_I : in ocut FLOAT; NUMTASK : in INTESER);
end BOMBER;

package PROCESS_CONTROL is
procedure DPENING_SCREEN;
procedure DISPLAY_DIRECTIONS;
procedure FINARL_RESHLT_DISPLAY;
end PROCESS_CONTROL;

=R R R R R R R R R R EE R R R R R F R S R R T A R R R E LR E R R

- $
- TASK TYPE DEFENSE _TYPE ¢
-3 %
--¢ This task type is used for the space based missie group. ¥
--t Juring execution, there are two entry points into a defensive #
--& task, They are: #
-3 ¥
--& START reieases a task to begin execution ¢
--% WISSLE_POSITION passes missle coordinates to calling ¢
--& routine ¥
. ¥

—— R R L R R R R R R R R R EE R F R R R RN R H R R RS
task type DEFENSE_TYPE is
entry START(NUNTASK : in INTEBER)
entry HISSLE POSITIONG DISTANCE, MIS_X, MIS_Y, NIS_I : out FLOAT);
end DEFENSE_TYPE;

R R R R R R R R R R F R R R R R R R F R R R R 2 HEE

-]
--# TASK TYPE OFFENSE_TYPE ¥
-3)
--¢ This task type is used for the incoming nuclear besbers. L
--# [uring exectuion, there are two entry peints into an t
--% offensive task. They are: ¥
-—%]
--& START releases a task to begin execution §
--¢ BOMBER_PGSITICN passes bomber toordinates io ctalling ¢
--# routine £
-— L

R R R AR F R R R R R R R R E R R AR R R RS R R R R R R R R EH
task type OFFENSE_TYPE is
entry START(NUNTASK : in INTEBER };
entry BOMBER_POSITION(BOM_X, BOM_Y, BOM_I : out FLOAT);
end OFFENSE_TYPE;

- EE R R LS R R R R R AR R LR R R FERR S
-3 Tas5K CONTROL

--# This task acts as the central samager for the execution of the
--¢ sgimulation, It controis retrieval of inforaation froa the

--% user, initiates a direction display (if requested), start up
-~ lower level task {0ffense & Defense), and calls for the final
--¢ display of inforsation resulting from the simulation.

W e W W W e R W

R R F R R R R EE R R R R E
task CONTROL;

re b R R SRR HE FEFF R R R R R R RS R R E R R R E R R R HE IS

-=4 TASK SCREEN_ID

--¢ This task controls all printing to the streen once tasks
--¢ begin execution, The calling task pakes a request to send
~--t putput to the screen via the SCREEN_ID.LOCK. 1f the task
--% js pot currently in use, the SCREEN_IO task will honor the
--% call and print the inforaation sent fros the calling task.
--¢ Once the calling task is finished, it will UNLOCK the

~-& GCREEM_ID task, in which case, the SCREEN_ID task is free
--% to honor other calling tasks requests.

o W W W o W W W W W e

S EREER R R R R A SRR H PR E R R
task SCREEN_ID is
entry LOCK;
entry STRING_IB(OUT_LINE : STRING3D)j
entry INT_10{ OUT_INT : INTEGER);
entry RERL_IO(DUT_REAL : FLOAT);
entry UNLOCK;
end SCREEN_ID;

BOM_MAX_SPEED : constant FLOAT := 2053.333;
NIS_MAX _SPEED : constant FLOAT := 2199.999%;
OFFENSE : arrayil..10) of DFFENSE_TYPE;
DEFENSE s arrayli..i0) of DEFENSE_TYPE;
NUMBON : INTEGER;

HUMAIS : [NTEGER;

e BEREEEHEEFHEFEEEHEREEE RS SRR H R EEEHERE R R E R RS
- ¥

resuw i 1l UA S HERND

--¢ This is a function created to handle the task of taking the
--% square root of a real number,

oW o W

SRR R S EEH H E R E RS L E R R RS R R RS
function SRT(X & in FLOATy EPS ¢ in FLOAT := 0.01) return FLOAT is

BLD_VALLE : FLOAT;
NEW_VALUE ¢ FLDAT;

begin

OLD_VALUE 3= 0.0
NEW_VALUE 1= X/2.9;

while abs{NEW_VALUE - DLD_VALUE) > EPS loop

OLD_VALUE := NEW_VALUE;
HEW_YALUE := 0.5 # (OLD_VALUE + X/DLD_VALUE);

end loop;
return NEW_VALUE;

end SERT;

=R R R R R R R R R R R R R R R R R R R F R R E R AR R E R R R R RS T F

- 3
-t FUNCTION RANDOKW_VALUE)
e |)

B R R R R R HHE R EHF FE S R E R R
function RANDOM_VALUE (DIRECTION_CHAR ; in CHARACTER) return FLOAT is

NEW _VALLE : FLDAT;
begin

-- limited random value generator to two values
-~ for debugoing purposes

if (DIRECTION_CHAR = "X") then

KEW_VALUE := 1.0;
else

WEW_VALUE 1= 0.0
end if;

return NEW_VALUE;
end RANDOM _VALUE;

=R R R R R R R R R F R S E R R R R RS R R E R R R R

-—3]
-3 PACKAGBE BODY HISSLE ¥
-3 == S==ssSon==o= 3
—F *

oM R P M P R H R PR
package body MISSLE is

procedure LABNCH{ RIS X, MIS_Y, MI5_7 : out FLOAT; NUMTASK : in INTEGER) is
begin

MIS_X := 528000.0;
BISY 1= 526000.0;

Nlo_L «= Valg
end LAUNCH;

procedure KOVEMENT(DISTANCE, MIS_X, WIS_Y, MIS_Z ¢ in cut FLOAT; NUMTASK : in INTEGER) is

BOM_X 1 FLOAT;
BON_Y + FLOAT;
BON_I : FLOAT;

X_DIRECTION : FLOAT;
Y_DIRECTION : FLOAT;
I_DIRECTICN = FLOAT;

1_MuULY : FLOAT;
Y_MULT : FLOAT;
1_MULT : FLOAT;
DENON t FLDAT;
TASKPOS 1 INTEBER;
begin

TASKPOS == NUMTASK;

if {NUMTASK > NUMBOM) then
TASKPOS 1= NUMTASK MOD NUMBOM;
end if;

OFFENSE {taskpos) . BOMBER_POSITION(BOM_X, BON_Y, BOM_Z)3

X_DIRECTION := BON_X - MIS_I;
Y_DIRECTION := BOM_Y - MIS_Y;
1_DIRECTION 1= BOM_I - NIS_I;

DISTANCE := SORT(X_DIRECTION®#2 + Y_DIRECTIOM##2 + 1 DIRECTION®#2)y
SCREEN_10.L0EK;

SCREEN_10.GTRING_10("Missle distance is "1
SCREEN_I0.UNLOCK;

DENDN := abs (X_DIRECTION) + abs(Y_DIRECTION) + abs(Z_DIRECTION};
S_MULT := X_DIRECTION / DENON;

Y WULT := ¥_DIRECTION / DENON;

IMLT := 1_DIRECTION / DENON;

IS = MISX + (X_MULT # KIS _MAX_SPEED);

KIS Y 3= WIS_Y + {Y_BULT & NIS_NAX_SPEED);

MIS 2 := MIS_I + (I_MULT & NI5_WAX_SPEED);

end NOVENENT;
procedure STATUS(ELAPSED TIME : in DURATION; HIT_STATUS : out BODLEAN) is

CHANCE © FLDAT;
WISSLE_HIT : BOOLEAN;

begin
HISSLE_RIT := false;

if (ELAPSED_TINE <= 20.0} then
CHANCE := 0.95;
elsif (ELAPSED_TINE ¢ 30.0) then
CHANCE 1= 0.90;
elsif (ELAPSED_TINE ¢ 40.0) then
CHANCE := 0.80;
elsif (ELAPSED_TINE < 50.0) then

LAHBLE = V. /Uy

elsif (ELAPSED TINE < £0.0) then
CHANCE := 0.70;

elsif (ELAPSED_TINE < 120.0) then
CHANCE := 0.50;

elsif (ELAPSED_TIME < 180.0) then
CHANCE := 0.30;

elsif (ELAPSED_TIME = 180.0) then
CHANCE := 0.10;

i1 (RANDOM_VALUE(X) < CHANCE) then
MISSLE_HIT := true;

HIT STATUS := NISSLE_KIT;
end STATUS;

end MISSLE;

e R R R R R R R E RN E R R R R RN R R R R RN ERE R RN R R E IR EF R R EEE

-3 E 4
--f PACKABGE BODY BOMBER ¥
--% SSSSSSSSSSSSE SESSTRT == == 3
-— ¥

—— R R R R E R EE R R RN R RS R R R R R R A S R F R SRR R R R R R R RN R
package body BOMBER is

procedure LAUNCH(BON X, BOW_Y, BOM_I : out FLOAT) is

begin
BOH_X := 0.0;
BOH_Y := 26400.0;
BON I := 0.0

end LAUNCH;

procedure MOVEMENT(BOM_X, BOM_Y, BOM_? : in out FLOAT; NUNTASK :

KI5 X : FLOAT;
NIS_¥ ! FLOAT;
HI8_1 : FLOAT;

S_DIRECTION = FLDAT;
Y_DIRECTION : FLOAT;
X_NULT : FLDAT;
¥_MULT : FLOAT;
DENDA ¢ FLOAT}
DISTANCE : FLOAT;

begin
DEFENSE {nustask),HISSLE_PBSITION{DISTANLE 815 _X,MIS_Y,NI5_1);

RANDON_VALUE{"X')y
RANDOM_VALUE{'Y');

X_DIRECTION s
Y_DIRECTION :

DERON t= abs{X_DIRECTION} + absfY_DIRECTION);

X_BULT
Y NOLT

1 _DIRECTION / DENOM;
Y_DIRECTION / DENOM;

.
n n

BOK_X := BOM_X + (X_MULT & BOM_WAX_SPEED);

i1f BOM_Y + {Y¥_MULT * BOM_MAX_SPEED)) 528000.0 then
BON_Y 1= BOM_Y - {Y_NULT # BOM_WAX_GPEED);
else

in INTEGER } is

oun_t < DT T AT Bl F DUR_NRA_SFEDU/
end if;

end MOVEMEHT;

end BOMBER;

~e R R PR R R R R R R R S R R R AR SRR R G R R R R E R T R A

-y '
-+ PARCKAGE BODY PROCESS_CLONTROL ¢
--% =s=zsozmozoszse == :
_-' "

R MR R SRR R R R R R R R R R R AR R R R Y
package body FROCESS _CONIRDL is

procedure OPENING_SCREEN is
begin

new_line{23);

put _line{® Helcome to a strategic warfare defense simulation");
new_lineg;

new_line;

new_line;

put_line(* created by');

new_line;

new_ling;

put_line{* dJeffrey K. Lovelace®};

new_line;

new_line;

put_line(" under the directien pf"};

new_line;

new_ling;

put_linet* Dr. Albert Crawford”};

put_line{" Departaent of Computer Science");
put_line(®- Southern 11linois tniversity at Carbondale");
put_line{® Fall £988'};

new_line}

put line("Do you need instructions on the use of this software package? (Y/N)"};
new_line;

end OPENING_SCREEN;

procedure DISPLAY_DIRECTIONS is
RESPONSE : CHARACTER;
begin

new_Tine{23);

put_line{*The spftware package you are about to use, sisulates the event of"}4
put_line{"s scaled attack of nuciear bowbers. The defense against these boabers®);
put_line(*comes in two forms. One is space based High-speed Anti-Pircraft®);
put_line{*Missies (HAAM) and the other is less effective conventional®);
put_ltine{"Anti-fircraft (AA) guns");

new_line;

put_line{*HIT {(ENTER> TO CONTINUE...");

get (RESPONSE) ;

new_line(29);

put_line(*The purpose of this simulation is to show if the HAAN defense cystea®);
put_line("is effective to the builders specifications before the system is actually®);
put_line(®installed. The user will be allowed to enter variables into the systes"};
put_line(*and then run the sipulation in order to see the resuits. It the results");

- put_iinevRERL LHE Sallsvallith vr LRE PUPLRGSET, LHEN Lhe YUNCHdoSET will Ha¥E LDE 7y
put_line{"system installed. Thus, the use of computer sisulation is a cost effective’};
put_line("sethod to see if the product perfores to standards in a real tise setting.”);
new_jineg;
put_line{*HIT {ENTER> TG CONTINUE...");
get (RESPONSE) ;

new_line(23);
put_line(*In this scaled down software package, the user will be allowed to*);
put_linet"enter values for the following variables:®);

new_line;

put_line(" {. Nuaber of incoaing nuclear bombers®);
put_linst* 2. Munber of defensive HAARN's available");
pew_line;

put_line{"This is a prelimipary sisulation in which other variables can be®);
put_line("added if desired.”};

new_line;

put_line{"HIT <ENTER> TD CONTIMIE...");

get [RESPONSE) ;

new_line(25);

end DISPLAY_DIRECTIONS;
procedure FINAL_RESULT _DISPLAY is
begin
null; -- for comspilation
end FINAL_RESULT_DISPLAY;
end PROCESS_CONTROL;

bR R R R R R A SR R E A E R R E R R R R R R E R R

—3]
el 4 TASK BODY DEFENSE _TYPE]
-~})

R R R E R R R E R R P R R R R R EEERE R EEEEE R SRR
task body DEFENSE_TYPE is

STRRT_TIME : VIME;
END_TINE : TINE;
ELAPSED_TIME : DURATION;
BISTANCE : FLOAT;

M1 X : FLOAT;
NIS Y : FLOAT;
Mi5 1 : FLOAT;
NURTASK ¢ INTEBER;

begin

NENTASK := 03
DISTANCE := 728276.431;

aceept START(NUMTASK : in INTEBER);
AISSLE.LAUKCHC WIS_X, WIS_Y, MIS_1, NUNTASK);
START_VIME := CLOCK;
shile { DISTANCE > 17,32030B08 } and (MIS_X ¢ 328000.1) loop
MISSLE.MOVENENT{ DISTANCE, MIS_X, MIS_Y, NIS_I, NUNTASK };
accept HISSLE_POSITION(DISTANCE, MIS_X, MISY, HIS_I : out FLOAT };
end loop;

END_TINE := CLOCK;

ELAPSED_TINE := START_TINE - END_TINE;

MISSLE.STATUS{ ELAFGED_TINE);

end DEFENSE_TYPE;

e R E R R R R R HE RS HEF

-4 L
--F TASK BODY OFFENSE_TYPE ¥
-—f L

S B EFEFEHERE R E L EH E EE HE FEEE HE R R R RS R H R E R E R EHE £ 5
task body OFFENSE_TYPE is

NUNTASK : INTEBER;
BON_X : FLOAT;
BON.Y i FLOAT;
BON_I 3 FLOAT;

MIS_X : FLOAT;
IS Y : FLOAT
MIS1 : FLOAT;

DISTANCE ; FLOAT;
begin
RUMTASK := 05
accept START{ MUMTASK : in INTEBER);
BOMBER. LAUNCH{ BOM_X, BOM_Y, BOM_Z };
accept BOMBER_POSITIDN(BOM_X, BOM Y, BOM_Z : out FLDAT);
DEFENSE {nuatask).MISSLE_POSITIONG DISTANCE, MIS_X, MIS_Y, MIS_ 1)y
while (DISTANCE > 17.32050808) loop
accept BOMBER _POSITION{ BOM_X, BOM_ ¥, BOM_I : out FLOAT };

DEFENSE (nuatask) ,MISSLE_POSITION(DISTANCE, W15 X, MIS_Y, MIS_1);
end loop;

end OFFENSE_TYPE;

R R RN R E R R R R R R R E R A R R R IR E R

-3 |
- TASK #DBDY CONTRAL L
-—F ¥

S R LR R R HE R E R
task body CONTROL is

RESPONSE : CHARACTER;
BOMIMDEX : INTEGER;
NISINDEX : INTEGER;

begin
PROCESS_CONTR{L.OPENING_SCREEN;
get (RESPONSE}
if (RESPONSE = "Y'} or (RESPONSE = “y') then
PROCESS_CONTROL.DISPLAY DIRECTIONS;
else

new_line{Z3);
end if;

PUT_11NE% 10w Hany 1RLDRING nUCLear TOMDETS ! ™73

get (NUNBON) 3
new_linef2d};

put_Jine("How sany defensive HAAM's are available?");
get (NURMIS);
new_line(25);

BOMINDEX :
MEISINDEX :

1
13

while (BOMINDEX (= NUMBOM) or (MISINDEX (= NUMMIS} loop
i+ (BOMINDEX (= KUMBON) then
OFFENSE (bomindex). START(bomindex)
BOMINDEY := BOMINDEX + 1;
end if}

if (MISINDEX <= KUMMIS} then
DEFENSE (misindex) . START(misindex)}
NISINDEX := MISINDEX + 1;
end if;
end 1pop;

end CONTROL;

R R R R R R R R L R R R SR R R L IR R R R R R R R R R REE A

) L
-+ TASK BOBDY SCREEN_ID *
-3 #

o EEERERERE R ER S SRR E S H R R R E R R R RS R AR R TR E IR
tack body SCREEN_10 is

BUT_LINE : STRINS30;
QUT_INT : INTEGER;
BUT_REAL : FLOAT;
PRINT S 1 STRING30;
PRINT I : INTEGER;
PRINT R : FLDAT;

begin
loop
accept LOCK;

loop
select
accept UNLOCK;
exit;
or
aceept STRING ID (OUT_LINE & STRINGIC) do
PRINT_S 1= OUT_LINE;
end STRING IO}
put (PRINT_S);
new_line;
or
accept INT_ID { OUT_INT : INTEGER } do
PRINT_I 1= GUT_INT;
end INT_18;
put {PRINT_1};
new_lines
or
accept REAL_ID (OUT_REAL ; FLORT) do
PRINT_R = DUT_REAL;
end REAL_ID;

PULiinial_Ify
new_line;
eng select;

end loopy
end loop;
end SCREEN_ID;
begin
-- nain program statesents

nuil; -- for compilation
end MAIN;

	Southern Illinois University Carbondale
	OpenSIUC
	12-1988

	The Language Ada and Concurrent Processes
	Jeffrey Kurt Lovelace
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31

