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INTRODUCTION

R.A. Fisher [5] introduced the concept of Fisher information in 1925 as a means

to compare statistics by what he called “the intrinsic accuracy” of their random

sampling distributions. He studied the loss of accuracy with the use of different

estimates for an unknown parameter, such as the median or the maximum likelihood

estimate. Fisher information appears in the Cramér-Rao Inequality, which provides

a lower bound for the variance of an unbiased estimator, and is associated with the

asymptotic variance of maximum likelihood estimates.

Order statistics also play an important role in statistical inference. The amount

of information we obtain from a random sample is simply the sum of the information

we obtain from each independent observation. However, if the independent observa-

tions are ranked in order of their numerical value, they are neither independent nor

identically distributed. Just a few of these order statistics may tell us more about

the mean, for example, than twice as many unordered observations. A natural ques-

tion is then, “Which part of the ordered sample contains the most information?”

This problem was first discussed by John Tukey [14] in 1965 in terms of linear sensi-

tivity measure. He studied the sensitivity of asymptotic efficiency in inference using

blocks of consecutive order statistics, when one order statistic is added adjacent to

the block. He noted that the linear sensitivity of any estimate is bounded above by

the Fisher information through the Cramér-Rao Inequality.

Fisher information in order statistics presents a means of finding and comparing
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relatively efficient estimators. Regarding unbiased estimators, Fisher information is

associated with efficiency through the Cramér-Rao Inequality. When the estimator

is unbiased, the Cramér-Rao lower bound is exactly the reciprocal of the Fisher

information. The order statistics that minimize the variance of the linear unbiased

estimate are precisely those that contain the most Fisher information about the

unknown parameter [18].

Finding the Fisher information contained in a random sample is simple. How-

ever, once order statistics are introduced, although the definition of Fisher infor-

mation is straightforward, the calculation is very complicated because they are not

identically distributed. Much research has been done in order to simplify the calcu-

lation of exact Fisher information in ordered data. For example, Type-I and Type-II

censored data, and, more recently, experiments under various hybrid, random, and

progressive censoring schemes have been studied. Research has also been extended

to other situations, including record data, truncated samples, weighted samples,

and order statistics and their concomitants from bivariate samples. Asymptotic

Fisher information in order statistics has been considered for many common distri-

butions [18].

In this paper, we will concentrate on the exact Fisher information contained in

certain subsets of the order statistics. Chapter 1 presents some well known results

about order statistics and Fisher information. It also discusses the determination

of Fisher information contained in a single order statistic. Chapter 2 is a survey of

the different approaches that have been developed to find the Fisher information in
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collections of order statistics. Specifically, we look at Type-II and multiple Type-II

censored data. We also study methods of finding the Fisher information in scattered

collections of order statistics. Chapter 3 applies the results of Chapter 2 to a few

common distributions in order to calculate the exact Fisher information in consec-

utive and scattered collections of order statistics. For the exponential distribution,

we compute the amount of information about the scale parameter contained in con-

secutive order statistics. For the normal and logistic distributions, we compute the

information about the location parameter in consecutive order statistics. For the

logistic distribution, we also derive a simple expression for the information contained

in pairs of order statistics, and find the optimal selection of order statistics.
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CHAPTER 1

BACKGROUND

Suppose X is a continuous random variable with probability density function

f(x; θ), where θ ∈ Ω ⊆ R is an unknown scalar. Under certain regularity conditions

(e.g., Rao [13], p.329), the Fisher information contained in X about θ is defined as

IX(θ) = E

�
∂

∂θ
log f(x; θ)

�2

, (1.1)

where log represents the natural log. If log f(x; θ) is twice differentiable and f(x; θ)

also satisfies

d

dθ
E

�
∂

∂θ
log f(x; θ)

�
=

�
∂

∂θ

��
∂

∂θ
log f(x; θ)

�
f(x; θ)

�
dx,

then we have

IX(θ) = −E

�
∂2

∂θ2
log f(x; θ)

�
. (1.2)

This holds if X is a discrete random variable with probability mass function f(x; θ),

under the modified assumption that summation and differentiation with respect to

θ are interchangeable. By considering θ to be a vector of parameters, results can

be generalized to compute the Fisher information matrix, which is used to calculate

the covariance matrix associated with maximum likelihood estimates. However, for

the remainder of the paper we will assume that X is absolutely continuous and that

θ is a scalar.
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1.1 FISHER INFORMATION IN THE SAMPLE

One basic property of Fisher information is its additivity. Suppose X and Y

are independent variables with probability density functions fX(x; θ) and fY (y; θ),

respectively. Let IX(θ) and IY (θ) be the informations contained in X and Y , re-

spectively. Then the joint density of (X, Y ) is the product fX(x; θ)fY (y; θ), and the

information contained in (X, Y ) is

IX,Y (θ) = E

�
∂

∂θ
log f(X; θ)f(Y ; θ)

�2

=E

�
∂ log f(X; θ)

∂θ

�2

+ E

�
∂ log f(Y ; θ)

∂θ

�2

+ 2E

�
∂ log f(X; θ)

∂θ
· ∂ log f(Y ; θ)

∂θ

�

=IX(θ) + IY (θ),

since

E

�
∂ log f(X; θ)

∂θ
· ∂ log f(Y ; θ)

∂θ

�
= E

�
∂ log f(X; θ)

∂θ

�
E

�
∂ log f(Y ; θ)

∂θ

�
= 0

by the independence of X and Y . If, on the other hand, X and Y are not inde-

pendent, then it has been noted (e.g., Abo-Eleneen and Nagaraja [1]) that Fisher

information has the subadditivity property, IX,Y (θ) < IX(θ) + IY (θ).

Now if we consider a random sample X1, ..., Xn from a density f(x1, ..., xn; θ),

it follows that I1,...,n(θ) = nIX(θ), where I1,...,n(θ) is the information in the entire

sample and IX(θ) is the information contained in a single observation. Let X1:n <

X2:n < · · · < Xn:n denote the order statistics from this sample. The joint pdf of all

order statistics is given by (e.g., Arnold et al. [2], p.10)

f1···n:n(x1, ..., xn) = n!f(x1) · · · f(xn), for x1 < · · · < xn,

5



which is clear since there are n! orderings of the xi. It follows from

n�

i=1

∂2 log f(Xi:n; θ)

∂θ2
=

n�

i=1

∂2 log f(Xi; θ)

∂θ2

that the information contained in the vector X = (X1:n, ..., Xn:n) of all order statis-

tics is the same as the information contained in the entire sample.

It is also known that the Fisher information contained in a sufficient statistic

is equal to the information in the sample. The factorization theorem (e.g., Casella

and Berger [4], p.276) states that a statistic T (X) is sufficient for θ if and only if

there exist functions g(t; θ) and h(x) such that

f(x; θ) = g(T (x); θ)h(x).

Then, since h(x) does not depend on θ,

∂

∂θ
log f(x; θ) =

∂

∂θ
log g(T (x); θ),

which gives the equality of information.

Exponential Distribution

Let X1, ...Xn be a random sample from an exponential distribution, i.e.,

f(x; θ) = 1
θe

−x/θ for x ≥ 0. Then,

IX(θ) = −E

�
∂2

∂θ2
log(

1

θ
e−x/θ)

�
= −E

�
∂2

∂θ2
(− log θ − x

θ
)

�
= − 1

θ2
+

2E(x)

θ3
=

1

θ2
.

Thus, the information contained in X = (X1:n, ...Xn:n) about θ is IX = n/θ2.

Normal Distribution

Let X be N(θ, σ2), where σ2 is given and θ is unknown. Then IX(θ) = 1/σ2.

Thus, the information contained in X = (X1:n, ...Xn:n) about the mean is IX(θ) =
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n/σ2. In particular, if X is N(θ, 1), then IX(θ) = n. Similarly, if σ2 is unknown,

one can find the information contained in the sample about the scale parameter to

be IX(σ2) = n/(2σ4).

1.2 FISHER INFORMATION IN A SINGLE ORDER STATISTIC

There are many situations where it is practical to consider an order statistic

instead of the unordered random observations. To reduce costs, rather than testing

the lifetime of each component in a k-out-of-m system, a company may test only

the lifetime of the system, which is the (m − k + 1)th order statistic. In ballistic

experiments, where several projectiles are fired at a target, often only the worst shot

is used for further analysis. In this example, it may be important to understand the

amount of information contained in the observation that was the greatest distance

from the target, or the sample maximum [7].

Consider a continuous population with pdf f(x; θ), and let X1:n < X2:n < · · · <

Xn:n denote the order statistics from a sample of size n. While it is straightforward

to compute the information contained in a single observation or the whole sample,

determining the information contained in a subset of the order statistics is much

more involved. To find the information in the rth order statistic, we use the definition

given in equation (1.2), where the pdf is of Xr:n is given by

fr:n(x; θ) =
n!

(r − 1)! (n− r)!
F (x)r−1 (1− F (x))n−r f(x).

Nagaraja [9] showed that the regularity conditions necessary to define IX(θ) are

enough to define Ir:n(θ).
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Since the order statistics are not identically distributed, there is no reason to

expect the Fisher information in the rth order statistic to equal that in a single

observation. An interesting question is whether Ik:n(θ) is always greater than IX(θ),

the information in a single observation. Iyengar et al.[7] considered this problem by

studying the Fisher information in a sample from a weighted distribution. Suppose

a random sample X1, ..., Xn comes from a pdf that belongs to the exponential family

of distributions

f(x; θ) = a(x)eθT (x)−C(θ). (1.3)

In this case, the information in a single observation is given by IX(θ) = C ��(θ), and

the information in the sample is nC ��(θ). Let Y have the weighted distribution with

pdf

fw(y; θ) =
w(y; θ)f(y; θ)

E {w(X; θ)} . (1.4)

Using the definition in (1.2), they show that the information contained in Y is

IY (θ) = IX(θ) +
∂2

∂θ2
log E {w(X; θ)}− E

�
∂2

∂θ2
logw(Y ; θ)

�
. (1.5)

Iyengar et al. [7] noted that the density a single order statisticXr:n is a weighted

distribution, where the weight function is w(xr; θ) = F (wr; θ)r−1(1 − F (xr; θ))n−r

and E {w(X; θ)} is independent of θ. Hence, from (1.5),

Ir:n(θ) = IX(θ)− E

�
∂2

∂θ2
logw(Xr:n; θ)

�

= IX(θ)− E

�
∂2

∂θ2
{(r − 1) logF (Xr:n; θ) + (n− r) log(1− F (Xr:n; θ))}

�
.

(1.6)
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Using this result they proved that the Fisher information in Xr:n is greater(less)

than or equal to that in a random observation X from the density f(x; θ) if

(r − 1) logF (xr; θ) + (n− r) log(1− F (xr; θ)) (1.7)

is a concave(convex) function of θ for every xr. Furthermore, they showed that the

inequality if strict if the function (1.7) is strictly concave(convex) for every θ.

Exponential Distribution

For the exponential distribution, expressions for Ir:n(θ) were derived by Na-

garaja [9] in terms of moments of order statistics. For r = 1, consider the distribu-

tion of X1:n,

F1:n(x) = 1− {1− F (x)}n

= 1− {1− (1− e−x/θ)}n

= 1− {e−x/θ}n

= 1− e−x/(θ/n),

given x > 0. Thus, the sample minimum is also exponentially distributed, with

scale parameter θ/n. Hence the Fisher information about θ in the smallest order

statistic is I1:n(θ) = 1/θ2. Since

fr:n(x; θ) =
n!

(r − 1)!(n− r)!

1

θ
(1− e−x/θ)r−1e−(n−r+1)x/θ

and noting that

∂

∂θ

�
e−x/θ

1− e−x/θ

�
=

x

θ2
e−x/θ

(1− e−x/θ)2
,

9



we find that

∂2 log fr:n(x; θ)

∂θ2
=

1

θ2
− 2(n− r + 1)

θ2
x

θ
+

2(r − 1)

θ2
x

θ

e−x/θ

1− e−x/θ

− (r − 1)

θ2

�x
θ

�2 e−x/θ

(1− e−x/θ)2
.

Taking the expectation, for r = 2,

I2:n(θ) =
1

θ2
+

2n(n− 1)

θ2

∞�

j=0

1

(n+ j)3

� 1

θ2
+

2n(n− 1)

θ2

� ∞

x=0

1

(n+ x)3
dx

=
1

θ2
+

(n− 1)

nθ2
,

for large n. For r ≥ 3,

Ir:n(θ) =− 1

θ2
+

2(n− r + 1)

θ2
E (Xr:n)−

2(n− r + 1)

θ2
E (Xr−1:n)

+
n(n− r + 1)

(r − 2)θ2
E (X2

r−2:n−1).

(1.8)

The following expressions for the mean and variance of exponential order statistics

(e.g., Arnold et al. [2], p.73)

µr:n = E (Xr:n) =
r�

i=1

1

n− i+ 1
,

σ2
r:n = V ar(Xr:n) =

r�

i=1

1

(n− i+ 1)2
,

(1.9)

allow us to write E (Xr:n) − E (Xr−1:n) = 1/(n − r + 1) and E (X2
r−2:n−1) =

V ar(Xr−2:n−1) + (E (Xr−2:n−1))
2. Thus, equation (1.8) simplifies to

Ir:n(θ) =
1

θ2
+

1

θ2
n(n− r + 1)

r − 2
(µ2

r−2:n−1 + σ2
r−2:n−1)

=
1

θ2
+

1

θ2
n(n− r + 1)

r − 2




�

r−2�

i=1

1

n− i

�2

+
r−2�

i=1

1

(n− i)2



 .
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r 1 2 3 4 5 6 7 8 9 10

θ2Ir:10 1 1.9945 2.9753 3.9302 4.8399 5.6734 6.3770 6.8497 6.8741 5.8561

Table 1.1. Ir:10(θ) – Fisher information the rth order statistics from Exp(θ)

For large n, the information in the rth order statistic can be approximated for

r ≥ 3 as

Ir:n(θ) ≈
2

θ2
+

n

θ2
(1− p)

p
{log(1− p)}2,

where p = r/n, 0 < p < 1. Nagaraja observed that the function g(p) = (1 −

p){log(1− p)}2 is monotonically increasing in the interval (0, p0) and monotonically

decreasing in (p0, 1), where p0 is approximately 0.7968. Hence, for sufficiently large

n, Ir:n(θ) increases as r increases up to roughly 0.8n and then decreases. Thus, the

80th sample percentile contains the maximum information about the parameter θ,

with about (2 + 0.65n) times the information contained in a single observation.

Weibull Distribution

The exponential distribution is a special case of the Weibull distribution with

shape parameter α = 1. More generally, Iyengar et al. consider a random sample

from a Weibull distribution with density f(x; β) = αβxα−1e−βxα
for x ≥ 0, where

α > 0 is known and β > 0 is the unknown scale parameter. It is easy to see that

this pdf belong to the exponential family in (1.3) when it is rewritten in the form

f(x; β) = αxα−1e−βxα+log(β).

11



Thus the information about β in a single observation is

IX(β) = C ��(β) =
∂2

∂β2
[− log β] =

1

β2
,

which is independent of the value of α. From equation (1.6), Iyengar et al. found

the Fisher information contained in Xr:n about β as

Ir:n(β) =
1

β2
− E

�
∂2

∂β2
{(r − 1) log(1− e−βXα

r:n) + (n− r) log e−βXα
r:n}

�

=
1

β2
− E

�
∂

∂β
{(r − 1)

Xα
r:ne

−βXα
r:n

1− e−βXα
r:n

− (n− r)Xα
r:n}

�

=
1

β2
− (r − 1) E

�
∂

∂β

Xα
r:n

eβXα
r:n − 1

�
.

Since 1
exp{βxα}−1 is a decreasing function of β for all x, the expression given in (1.7)

is concave, and thus Ir:n(β) ≥ IX(β) for all β and α. In fact, Iyengar et al. found

that for all β and α,

I1:n(β) = IX(β)

Ir:n(β) > IX(β), 1 < r ≤ n.

Normal Distribution

For the normal distribution, Nagaraja [9] showed that the information con-

tained in Xr:n about the mean can be expressed in terms of expectations of some

functions of the standard normal pdf φ and cdf Φ. If we have a sample from N(θ, 1),

12



then the pdf if φ(x− θ) and the cdf is Φ(x− θ). Since

∂2

∂θ2
log fr:n(x; θ) =

∂2

∂θ2
log

�
n!

(r − 1)! (n− r)!
Φr−1(x− θ)

× (1− Φ(x− θ))n−r φ(x− θ)

�

= 1− (r − 1)

�
(x− θ)φ(x− θ)

Φ(x− θ)
+

φ2(x− θ)

Φ2(x− θ)

�

+ (n− r)

�
(x− θ)φ(x− θ)

1− Φ(x− θ)
− φ2(x− θ)

[1− Φ(x− θ)]2

�
,

substituting z = x− θ, we have

Ir:n(θ) = E

�
− ∂2

∂θ2
log fr:n(x; θ)

�

= 1 +

� ∞

−∞
(r − 1)

zφ(z)

Φ(z)
fr:n(x)dz −

� ∞

−∞
(n− r)

zφ(z)

1− Φ(z)
fr:n(x)dz

+

� ∞

−∞
(r − 1)

φ2(z)

Φ2(z)
fr:n(x)dz +

� ∞

−∞
(n− r)

φ2(z)

[1− Φ(z)]2
fr:n(x)dz

= 1 +

� ∞

−∞
nzφ(z)

(n− 1)!

(r − 2)! (n− r − 2)!
Φr−2(z) (1− Φ(z))n−r−2 φ(z)dz

−
� ∞

−∞
nzφ(z)

(n− 1)!

(r − 1)! (n− r − 1)!
Φr−1(z) (1− Φ(z))n−r−1 φ(z)dz

+

� ∞

−∞

n(n− 1)

r − 2
φ2(z)

(n− 2)!

(r − 3)! (n− r − 4)!
Φr−3(z) (1− Φ(z))n−r−4 φ(z)dz

+

� ∞

−∞

n(n− 1)

n− r − 1
φ2(z)

(n− 2)!

(r − 1)! (n− r − 2)!
Φr−1(z) (1− Φ(z))n−r−2 φ(z)dz

= 1 +

� ∞

−∞
nzφ(z)fr−1:n−1(z)dz −

� ∞

−∞
nzφ(z)fr:n−1(z)dz

+

� ∞

−∞

n(n− 1)

r − 2
φ2(z)fr−2:n−2(z)dz +

� ∞

−∞

n(n− 1)

n− r − 1
φ2(z)fr:n−2(z)dz.

Thus, for 3 ≤ r ≤ n− 2 and n ≥ 5,

Ir:n(θ) = nE r−1:n−1{Zφ(Z)}− nE r:n−1{Zφ(Z)}+
n(n− 1)

n− 2
E r−2:n−2{φ2(Z)}

+
n(n− 1)

n− r − 1
E r:n−2{φ2(Z)}+ 1,
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where the expectation E i:j is taken with respect to the distribution of Zi:j, an order

statistic from the standard normal distribution.

For other values of r and n,

Ir:n(θ) =






1, r = 1, n = 1

1 + 2E {φ2(Z)
Φ(Z) }, r = 1, n = 2

1− nE 1:n{Zφ(Z)}+ n(n−1)
n−2 E 1:n−2{φ2(Z)}, r = 1, n ≥ 3

1 + 6E 1:2{φ2(Z)
Φ(Z) }, r = 2, n = 3

1 + nE 1:n−1{Zφ(Z)}− nE 2:n−1{Zφ(Z)}+ nE 1:n−1{φ2(Z)
Φ(Z) }

+n(n−1)
n−3 E 2:n−2{φ2(Z)}, r = 2, n ≥ 4.

For a symmetric population, it is known that Xi:n and −Xn−i+1:n have the

same distribution (e.g., Arnold et al. [2], p.26). This follows from the fact that

f(−x + θ) = f(x + θ) and F (−x + θ) = 1 − F (x + θ) for a distribution that is

symmetric about θ. Hence Ir:n(θ) = In−r+1:n(θ). The remaining values of Ir:n(θ)

can be found using this equality. The amount of information about θ in a single

order statistic was given by Nagaraja [9] for sample size n ≤ 10. UsingMathematica

for numerical integration, these values are extended in Table 1.2 to include values

for n up to 20. The median order statistics contain the most information about θ.

For even n the median order statistics X(n/2):n and X(n/2+1):n both contain the same

amount of information by the symmetry of the normal distribution. For n = 10, the

X5:10 and X6:10 each contain 0.6622 times the total information in the sample. For

n = 20, the proportion of information contained in the median statistic is 0.6498.

Iyengar et al. [7] compared the Fisher information in a single order statistic
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with that in a single observation for the case of a Normal(θ, 1) distribution. In

order to show that the expression given in (1.7) is concave, they write it in terms of

the standard normal pdf φ and cdf Φ. Its second derivative is

∂2

∂θ2
{(r − 1) logΦ(xr − θ) + (n− r) log(1− Φ(xr − θ))}

= (r − 1)
∂

∂θ

�
φ(xr − θ)

Φ(xr − θ)

�
− (n− r)

∂

∂θ

�
φ(xr − θ)

1− Φ(xr − θ)

�
.

Here, h(x) = φ(x)/(1 − Φ(x)) is the usual hazard rate function, and its reciprocal

M(x) = (1−Φ(x))/φ(x) is known as the Mills ratio. Iyengar et al. used the fact that

M(x) is a strictly decreasing function for all x, hence h(xr−θ) is strictly increasing.

Also, they note that by the symmetry of the normal density,

φ(x)

Φ(x)
=

φ(−x)

1− Φ(−x)
,

and therefore φ(xr − θ)/Φ(xr − θ) is strictly decreasing. Thus, since the second

derivative above is negative for all xr, the rth order statistic of a normal sample of

size n > 1 for 1 ≤ r ≤ n always contains more Fisher information about the mean

than a single observation. As noted by Zheng et al.[18], it follows that the sum

of the Fisher information contained in each order statistic is strictly greater than

the information in the whole sample, i.e.,
�n

r=1 Ir:n(θ) > I1···n:n(θ). This is also the

subadditivity property of Fisher information.
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n|r 1 2 3 4 5 6 7 8 9 10

1 1

2 0.7403

3 1.9648 2.7806

4 2.1914 2.7806

5 2.3848 3.2286 3.4869

6 2.5568 3.6102 4.0652

7 2.7127 3.9448 4.5619 4.7524

8 2.8555 4.2437 5.0006 5.3448

9 2.9874 4.5145 5.3952 5.8701 6.0210

10 3.1099 4.7625 5.7550 6.3446 6.6220

11 3.2243 4.9914 6.0863 6.7790 7.1662 7.2911

12 3.3317 5.2043 6.3938 7.1803 7.6655 7.8979

13 3.4328 5.4033 6.6810 7.5542 8.1281 8.4556 8.5622

14 3.5284 5.5903 6.9507 7.9044 8.5599 8.9730 9.1732

15 3.6189 5.7667 7.2050 8.2342 8.9654 9.4569 9.7408 9.8338

16 3.7051 5.9338 7.4458 8.5462 9.3481 9.9120 10.2722 10.4479

17 3.7871 6.0925 7.6745 8.8423 9.7108 10.3422 10.7726 11.0233 11.1057

18 3.8655 6.2437 7.8924 9.1242 10.0557 10.7504 11.2461 11.5657 11.7224

19 3.9405 6.3881 8.1006 9.3934 10.3847 11.1393 11.6961 12.0794 12.3040 12.3780

20 4.0125 6.5262 8.2998 9.6511 10.6994 11.5107 12.1251 12.5679 12.8552 12.9966

Table 1.2. Ir:n(θ) – Fisher information the rth order statistics from N(θ, 1)
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CHAPTER 2

FISHER INFORMATION IN A COLLECTION OF ORDER

STATISTICS

In this chapter, we look at the methods developed to find the Fisher Information

in various collections of order statistics. Although the recipe is simple, having to

evaluate a multiple integral makes finding the Fisher information in order statistics

very complicated. Several papers have aimed to find alternative expressions that

simplify the detailed calculation of exact information.

We first consider the Fisher information in the first r order statistics. This is

referred to as a Type-II censored, or right censored, sample. In Type-II censoring,

n items are tested, but only the first r < n of them are observed. Type-II censoring

has many applications in life testing. For example, to reduce the cost and time of

testing, the observer may wait only until the rth failure and decide to censor the

remaining observations. We also consider corresponding results for left censored

samples, where only the last n− r + 1 observations are recorded.

Mehrotra, Johnson, and Bhattacharyya [8] defined three extended hazard rate

functions, and derived the Fisher information in a right censored sample in terms

of these functions. Park [10, 11] took an indirect approach, and used recurrence

relations to compute the Fisher information in consecutive order statistics. Using

these relations, he derived the information in right and left censored order statis-

tics in terms of the information contained in the minima and maxima, respectively,

17



from samples of size up to n. These results aid in the computation of exact Fisher

information in consecutive order statistics, which can be used, for example, to de-

termine the number of order statistics to censor in order to achieve a certain level of

efficiency. However, the k order statistics that provide the most information about

a parameter may not be the first k order statistics. Thus, it is necessary to consider

the information in scattered blocks.

Zheng and Gastwirth [17] followed the approach used by Mehrotra et al. to

obtain results that allow for the calculation of information under multiple Type-II

censoring, when disjoint blocks of order statistics are removed from the sample. In

multiple Type-II censored data, a number of blocks of consecutive order statistics are

available. Right censoring is the special case where a single block is removed from the

right of the sample. The Fisher information contained in scattered blocks of order

statistics has also been studied by Park [12], who derived an expression that depends

only on the information in pairs of order statistics. Both Zheng and Gastwirth and

Park reduced the computation of FI in any collection of order statistics to at most

a double integral.

2.1 RIGHT CENSORED SAMPLE

The Fisher information contained in the first r order statistics from a sample

of size n is defined to be

I1···r:n(θ) =

� ∞

−∞
· · ·

� x2:n

−∞

�
∂

∂θ
log f1···r:n

�2

dF1···r:n, (2.1)
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where f1···r:n is the joint density of X1:n, . . . , Xr:n and satisfies certain regularity

conditions. The direct computation of Fisher information from (2.1) is tedious and

requires the calculation of multiple integrals. Two approaches simplify the necessary

calculations.

The first approach was detailed by Mehrotra et al. [8], who decomposed

I1···r:n(θ) as a function of moments of the following three extended hazard rate

functions

K1(Xj:n) = − F �(Xj:n; θ)

1− F (Xj:n; θ)
,

K2(Xi:n) =
F �(Xi:n; θ)

F (Xi:n; θ)
, and

K3(Xi:n, Xj:n) =
F �(Xj:n; θ)− F �(Xi:n; θ)

F (Xj:n; θ)− F (Xi:n; θ)
,

(2.2)

where F �(x; θ) = ∂F (x; θ)/∂θ. When θ is scalar, K1 is the standard hazard rate

function and K2 is the reversed hazard rate function. Let ψθ(x) = ∂ log f(x; θ)/∂θ.

First, using moment relations, they showed that the partial derivative of the

log likelihood of (X1:n, ..., Xr:n) is a linear function of K1, K2, K3, and ψθ. For the

right-censored case,

∂

∂θ
log f1···r:n(x1, ...xr; θ) =

r�

i=1

∂ log f(xi; θ)

∂θ
− (n− r)

F �(xr; θ)

1− F (xr; θ)

=
r�

i=1

ψθ(xi)− (n− r)K1(xr).

Thus, the Fisher information can be expressed as a function of the moments of the

extended hazard rate functions and score function ψθ(x).

Mehrotra et al. showed that these moments can in turn be expressed as a linear

combination of

τij = E(ψθ(Xi:n) ψθ(Xj:n)). (2.3)
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For example,

(n− r)E {ψ(Xi:n)K1(Xr:n} =
n�

j=r+1

τij,

(n− r)E {K2
1(Xr:n)} =

2

n− r − 1

n−1�

i=r+1

n�

j=i+1

τij.

These moment relations allow I1···r:n(θ) for r < n − 1 to be expressed only in

terms of τij in the following manner

I1···r:n(θ) = I1···n:n(θ)−
�

n�

i=r+1

τii −
2

n− r − 1

n−1�

i=r+1

n�

j=i+1

τij

�
. (2.4)

This expression is particularly interesting because it lets us see how Fisher informa-

tion is reduced from the total information in the sample.

The simplest case is to find the Fisher information in all n order statistics

(X1:n, ..., Xn:n), which is given by

I1···n:n(θ) = n

� ∞

−∞
{ ∂

∂θ
log f(x)}2dF (x)

=
n�

i=1

n�

j=1

τij =
n�

i=1

τii.

Substituting this expression for the information in the sample,

I1···r:n(θ) =
r�

i=1

τii +
2

n− r − 1

n−1�

i=r+1

n�

j=i+1

τij, (2.5)

for r < n − 1. Once τij is computed the FI contained in the first r order statistics

can be calculated easily.

The second approach was developed by Park [11], and uses the conditional

Fisher information, which follows from the Markov chain property of order statistics

(e.g., David and Nagaraja [6], p.17). Since

∂

∂θ
log f1···n:n =

∂

∂θ
log f1···r:n +

∂

∂θ
log fr+1···n|r:n,
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where fr+1···n|r:n is the conditional joint distribution of Xr+1:n, . . . Xn:n given Xr:n =

xr:n, we have the decomposition of information

I1···n:n(θ) = I1···r:n(θ) + Ir+1···n|r:n(θ), (2.6)

where Ir+1···n|r:n(θ) is the average of the conditional information in Xr+1:n, . . . Xn:n

given Xr:n = xr:n. The calculation of Fisher information in a Type-II censored

sample is reduced to the calculation of a double integral by writing

Ir+1···n|r:n(θ) = (n− r)

� ∞

∞
g(w; θ)fr:n(w; θ)dw,

where

g(w; θ) =

� ∞

w

�
∂

∂θ
log

f(x; θ)

1− F (w; θ)

�2 f(x; θ)

1− F (w; θ)
dx.

The recurrence relation between the cdf’s of order statistics, Fr:n−1 =
n−r
n Fr:n+

r
nFr+1:n yields the decomposition of information nI1···r:n−1(θ) = (n−r−1)I1···r:n(θ)+

rI1···r+1:n(θ). A corresponding decompositions for a left censored sample is given by

Park. Using this and the relation,

fr:n(x; θ) =
n�

i=n−r+1

(−1)i−n+r−1

�
i− 1

n− r

��
n

i

�
f1:i(x; θ),

the expression for the information in the first r order statistics can be written as

a sum of r single integrals. In particular, Park showed that the Fisher information

in Type-II censored data is determined by the information in the smallest order

statistic in samples of size up to n,

I1···r:n(θ) =
n�

i=n−r+1

�
i− 2

n− r − 1

��
n

i

�
(−1)i−n+r−1I1:i(θ), (2.7)
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for 1 ≤ r < n.

The Fisher information in the smallest order statistic, I1:n(θ), can be written

as

I1:n(θ) =

� ∞

−∞
{ ∂

∂θ
log f(x; θ)+(n−1)

∂

∂θ
log(1−F (x; θ))}2nf(x; θ)(1−F (x; θ))n−1dx,

(2.8)

since it has the pdf f1:n(x; θ) = nf(x; θ)(1− F (x; θ))n−1.

Park simplified these expressions using a result from Efron and Johnstone [3],

who found the Fisher information in a random sample in terms of the hazard function

h(x; θ) = f(x;θ)
1−F (x;θ) as

I1:1(θ) =

� ∞

−∞

�
∂

∂θ
log f(x; θ)

�2

dF (x; θ)

=

� ∞

−∞

�
∂

∂θ
log h(x; θ)

�2

dF (x; θ).

Since the hazard function of X1:n is n times that of X,

I1:n(θ) =

� ∞

−∞

�
∂

∂θ
log h(x; θ)

�2

dF1:n(x; θ). (2.9)

Park derived corresponding results for left censored samples. The Fisher infor-

mation in the order statistics (Xs, . . . , Xn) can be written in terms of the information

contained in the greatest order statistic in samples of size up to n,

Is···n:n(θ) =
n�

i=s

�
i− 2

s− 2

��
n

i

�
(−1)i−sIi:i(θ), (2.10)

for 1 < s ≤ n. The information in the largest order statistic is

In:n(θ) =

� ∞

−∞
{ ∂

∂θ
log f(x; θ) + (n− 1)

∂

∂θ
logF (x; θ)}2nf(x; θ)(F (x; θ))n−1dx,

(2.11)
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since it has the pdf fn:n(x; θ) = nf(x; θ)(F (x; θ))n−1. To find an alternative expres-

sion, Park considered a random variable Y whose pdf is the mirror image of f about

x = 0, and which thus has the hazard function f(x;θ)
F (x;θ) . On noting that the hazard

function of Xn:n is n times f(x;θ)
F (x;θ) ,

In:n(θ) =

� ∞

−∞

�
∂

∂θ
log

f(x; θ)

F (x; θ)

�2

dFn:n(x; θ). (2.12)

Park derived simplified expressions for I1:n(θ) and In:n(θ) for several well-known

distributions. Then, using (2.7) and (2.10), we can directly calculate the information

contained in right and left censored samples about the parameter θ. However, as

Park notes, we must consider the accumulation of rounding errors.

The decomposition based on conditional information in (2.6) can also be ap-

plied to finding the information in the first r outcomes from a Type-II progressive

censoring scheme. Type-II progressive censoring, where a different number of sur-

viving items are randomly removed from the test after each observation, has many

applications in life testing. This decomposition can also be used to obtain the the

asymptotic Fisher information contained in the lower pth percentile of the distribu-

tion [18].

2.2 MULTIPLY CENSORED SAMPLE

Consider the k order statistics X = (Xr1:n, . . . , Xrk:n) from a sample of size n.

Let fr1···rk:n denote their joint density with parameter θ. Under certain regularity

conditions, the Fisher information about θ contained in X is given by

Ir1···rk:n(θ) =

� ∞

−∞
· · ·

� xr2:n

−∞

�
∂

∂θ
log fr1···rk:n

�2

dFr1···rk:n. (2.13)
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Zheng and Gastwirth [17] followed the approach used by Mehrotra et al. for

right censored samples in order to simplify the computation of equation (2.13). Their

idea was to consider an arbitrary collection of order statistics as a set of scattered

blocks of consecutive order statistics or, in other words, a multiply censored sample.

They approached the problem of calculating the information in multiply censored

data by censoring the complete sample in several steps, and to study the loss of

information at each stage.

First they consider the case where two arbitrary blocks of order statistics are

available from a sample of size n. For 1 ≤ r ≤ u ≤ v ≤ w ≤ n, Ir···uv···w:n(θ) is found

in three steps:

1. I1···w:n(θ) = I1···n:n(θ)− IR (right censoring)

2. Ir···w:n(θ) = I1···w:n(θ)− IL (left censoring)

3. Ir···uv···w:n(θ) = Ir···w:n(θ)− IM (middle censoring).

Using the Markov property of order statistics, Zheng and Gastwirth show that the

change in Fisher information when a block of order statistics is removed from the

left, the middle, or the right is the same regardless of previous censoring patterns.

This means that

IL = I1···n:n(θ)− Ir···n:n(θ) = I1···rj1j2···jt:n(θ)− Irj1j2···jt:n(θ), (2.14)

IM = I1···n:n(θ)− I1···uv···n:n(θ) = Ii1i2···isu···vj1j2···jt:n(θ)− Ii1i2···isuvj1j2···jt:n(θ), (2.15)

IR = I1···n:n(θ)− I1···w:n(θ) = Ii1i2···isw···n:n(θ)− Ii1i2···isw:n(θ). (2.16)

For example, we have equation (2.15) because IM is precisely the change in informa-
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tion when the block (Xu+1:n, ..., Xv−1:n) is removed from the middle of the sample.

Putting everything together,

Ir···uv···w:n(θ) = I1···n:n(θ)− IR − IL − IM (2.17)

where IR, IL, and IM depend only on where the censored blocks begin and end.

After substituting in the expressions for IR, IL, and IM , the multiple censoring

problem is reduced to censoring on the right, left, and middle. Now, we recall

equation (2.5), which expressed the information in a right censored sample in terms

of τij(i, j). The left censored and middle censored cases can similarly be expressed

as linear combinations of τij by using the extended hazard rate functions K2 and

K3 in (2.2). By symmetry, we have for s > 2

Is···n:n(θ) = I1···n:n(θ)−
�

s−1�

i=1

τii −
2

s− 2

s−2�

i=1

s−1�

j=i+1

τij

�

=
n�

i=s

τii +
2

s− 2

s−2�

i=1

s−1�

j=i+1

τij.

(2.18)

Zheng and Gastwirth [17] derived the following expression for FI in a middle censored

sample. If v > u+ 2, then

I1···uv···n:n(θ) = I1···n:n(θ)−
�

v−1�

i=u+1

τii −
2

v − u− 2

v−2�

i=u+1

v−1�

j=i+1

τij

�
. (2.19)

The multiply censored case can now be written in terms of τij(i, j). Once these values

are tabulated for a given n, Ir···uv···w:n(θ) can be computed directly. Equations (2.5),

(2.18) and (2.19) allow us to see that the information in different collections of order

statistics is not additive, although this is not obvious when studying the integral

in (2.13). In particular, we see that I1···rs···n:n(θ) = I1···r(θ) + Is···n:n(θ). [18]
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This process was generalized by Zheng and Gastwirth to determine the Fisher

information contained in data from which p disjoint blocks of order statistics are

available. Let the collection of order statistics be defined as

X = (Xi1:n, . . . , Xi1+k1:n; . . . ;Xip:n, . . . , Xip+kp:n), (2.20)

where (Xim:n, . . . , Xim+km:n) represents the mth block of available order statistics.

Then,

IX(θ) = I1···n:n(θ)−
p�

j=0




ij+1−1�

u=ij+kj+1

τuu

− 2

ij+1 − ij − kj − 2

ij+1−2�

u=ij+kj+1

ij+1−1�

v=u+1

τuv



 ,

(2.21)

where i1 > 2, ip + kp < n − 1, and ij+1 − ij − kj > 2, j = 1, ..., p − 1, i0 = k0 = 0,

ip+1 = n + 1. This expression gives the exact Fisher information in a multiply

censored sample, where any number of blocks of order statistics are removed from

the left, middle, and right of an ordered sample.

The advantage of Zheng and Gastwirth’s approach is that once the τij’s are

tabulated the information in scattered order statistics can be found just as easily

as in consecutive order statistics. However, equation (2.21) requires that censored

blocks are of at least two order statistics. While I3478:10(θ) and I38:10(θ) are easily

computed using this result, we have trouble with something like I3579:10(θ), where

the censored blocks contain only a single order statistic. Although this equation also

assumes that (X1:n, X2:n) and (Xn−1:n, Xn:n) are censored, a minor adjustment to

this process allow right and middle censored or left and middle censored to similarly

be written in terms of τij.
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Zheng and Gastwirth also reformulate their result using matrices as follows.

With X defined in (2.20), define the n× n symmetric matrix τ = (τij)n×n as

IX(θ) = 1� (W1(i1−1);··· ;(ip+kp+1)n ⊗ τ) 1,

where W ⊗ τ is the entry-wise multiplication of the two n × n matrices, 1 is the

1× n vector of 1’s, and

W1 (i1−1);··· ;(ip+kp+1) n =





Ci1−2 0 . . . 0

0 Ik1+1

Ci2−i1−k1−2
...

...
. . .

Ikp+1 0

0 . . . 0 Cn−ip−kp−1





.

Ia is the a× a identity matrix, Cb is a (b+1)× (b+1) matrix with 1 in off-diagonal

entries and 0 in diagonal entries.

The description of this matrix formulation given by Zheng, Balakrishnan, and

Park [18] for middle censored data provides a more intuitive way of understanding

the computation of Fisher information using matrices. Suppose the smallest r and

largest (n− s+1) order statistics are available. We have three blocks of consecutive

order statistics,

b1 = (X1:n, . . . , Xr:n),

b2 = (Xr+1:n, . . . , Xs−1:n),

b3 = (Xs:n, . . . , Xn:n),
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where b1 and b3 are the observed tails and b2 is censored from the sample. To find the

Fisher information I1···rs···n:n(θ), r + 2 < s, the matrix τ is partitioned into a 3× 3

matrix τ = (τ kk)3×3, where (τ 11)r×r, (τ 22)(s−r−1)×(s−r−1), and (τ 33)(n−s+1)×(n−s+1)

are diagonal submatrices corresponding to b1, b2 and b3, respectively.

I1···rs···n:n(θ) is the sum of three parts, each corresponding to one of the blocks

of order statistics. For each observed block bk, we take the sum of the diagonal

entries of the corresponding submatrix τ k. For the censored block b2, we take the

sum of all off-diagonal entries of τ 2 multiplied by 1/(s− r−2), the reciprocal of one

less than the size of the block. Thus,

I1···rs···n:n(θ) =
r�

i=1

τii +
n�

i=s

τii +
2

s− r − 2

s−2�

i=r+1

s−1�

j=i+1

τij,

which is the equation given in (2.19).

This can be generalized to a multiply censored case by partitioning τ differently,

following the same process. In any case, the trace of the corresponding diagonal

submatrix is calulated for each observed block, and the sum of the off-diagonal

elements divided by some constant is calculated for each censored block.

Normal Distribution

Consider a sample of size n from N(θ, 1), and suppose we want to find the

amount of information about the mean contained in any set of order statistics.

Then, τij = E (Xi:nXj:n) [18]. Several tables for the product moments of normal

order statistics are printed in the literature. For example, for a sample size of

n = 10, the information contained in the first three and last three order statistics is
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I1 2 3 8 9 10:10(θ) = 10− 2(τ44+ τ55)+2(2τ45+2τ46+ τ47+ τ56)/3 = 9.4239, since by the

symmetry of the normal pdf, E (X6:10X7:10) = E (X4:10X5:10) = E (X5:10X4:10) [18].

2.3 SCATTERED ORDER STATISTICS

Consider again the problem of finding the Fisher information contained in the

k order statistics X = (Xr1:n, . . . , Xrk:n) given in equation (2.13). Park [12] takes a

different approach, and decomposes Ir1···rk:n(θ) as a linear combination of Iij(θ).

Let r1 < · · · < rk. By the Markov property of order statistics, Iri|r1···ri−1:n(θ) =

Iri|ri−1:n(θ). Then we have the decomposition of information

Ir1···rk:n(θ) = Ir1···rk−1:n(θ) + Irk|r1···rk−1:n(θ)

= Ir1···rk−1:n(θ) + Irk|rk−1:n(θ)

= . . .

= Ir1:n(θ) + Ir2|r1:n(θ) + · · ·+ Irk|rk−1:n(θ).

Since Iri|ri−1:n(θ) = Iriri−1:n(θ)−Iri:n(θ), the information in the set of order statistics

(Xr1:n, ..., Xrk:n) can be expressed a sum of single and double integrals,

Ir1···rk:n(θ) = Ir1:n(θ) + (Ir1r2:n(θ)− Ir2:n(θ)) + (Ir2r3:n(θ)− Ir3:n(θ))

+ · · · + (Irk−1rk:n(θ)− Irk:n(θ))

=
k−1�

i=1

Iriri+1:n(θ)−
k−1�

i=2

Iri:n(θ).

(2.22)

In this way the Fisher information in any set of OS can be represented as a linear

combination of the information in pairs of order statistics.

This result and the approach used by Zheng and Gastwirth reduce the problem

of finding the information in arbitrary sets of order statistics to the calculation of
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double integrals. Instead of needing τ(i, j), however, Park’s approach requires com-

putation of Iij:n(θ). The advantage of this method is that all Iij:n(θ)’s can be found

if I1:1(θ) exists. For example, although I1:1(θ) exists for the Cauchy distribution,

Park notes that the τij’s cannot be found for the extreme order statistics of this

distribution.

Park also reformulates the concept described by Zheng and Gastwirth in equa-

tion (2.15) in a more general fashion. If r1, ..., rk are sets of consecutive ordered

integers such that ri ∩ rj �= ∅. If the elements of these sets are the ordered ranks of

order statistics, then

Ir1∪···∪rk:n(θ) =
k�

i=1

Iri:n(θ)−
k−1�

i=1

Iri∩ri+1:n(θ). (2.23)

Park gives the example of I12345:5(θ), which can be decomposed as

I12345:5(θ) = I123:5(θ) + I345:5(θ)− I3:5(θ)

= I123:5(θ) + I2345:5(θ)− I23:5(θ)

= I1234:5(θ) + I345:5(θ)− I34:5(θ)

= . . . .

In the case where k = 2, (2.23) tells us that

Ir1∪r2:n(θ) = Ir1:n(θ) + Ir2:n(θ)− Ir1∩r2:n(θ),

or,

Ir1∪r2:n(θ)− Ir2:n(θ) = Ir1:n(θ)− Ir1∩r2:n(θ).

We have seen this expression before in terms of Zheng and Gastwirth’s work on mul-

tiple censoring patterns. When the block Ir1∩r2:n is removed from the left, middle,
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or right of an ordered sample, the change in information is the same whether we

started with the set of order statistics with ranks in r1 or those with ranks in r1∪r2.
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CHAPTER 3

COMPUTATIONAL RESULTS

We divide the computational results discussed in this chapter into two cate-

gories: Fisher information in censored samples, and the optimal spacing problem.

In the first category, we consider the Fisher information in blocks of consecutive

order statistics. Many of these results can be found using more than one of the

approaches considered in the previous chapter. For example, the Fisher information

in the first r order statistics can be expressed as a linear combination of τij, which

was derived by Mehrotra et al. [8], or in terms of the information contained in the

sample minimum, as discussed by Park [10, 11].

Zheng and Gastwirth [17] extended the use of τij to express the Fisher infor-

mation in multiply censored samples, where any number of blocks of size 2 or more

are removed from the sample. However, two particular censoring patterns are of pri-

mary interest when looking at symmetric distributions. By studying the asymptotic

Fisher information in consecutive order statistics, Zheng and Gastwirth found that

the middle portion of data from normal, logistic, and Laplace distributions contains

more information about the location parameter than any other interval of the same

length, although this is not always true for order statistics from a Cauchy distri-

bution. With this in mind, it makes sense to compare the amount of information

about the location parameter that is contained in the median, the middle two order

statistics, and so on, when studying a symmetric distribution.
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To this end, we aim to find the information contained in the block of consecutive

order statistics (Xr:n, ..., Xs:n). Using Zheng and Gastwirth’s approach, this problem

can be done in two steps by first censoring on the right and then the left. The

equations in (2.15) describe the change in information when a block of order statistics

is removed from the sample, and gives the special case, I1···s:n(θ) − Ir···s:n(θ) =

I1···n:n(θ)− Ir···n:n(θ), when the block (X1:n, ..., Xr−1:n) is further censored. Thus, for

1 ≤ r < s ≤ n, the Fisher information in the middle s − r + 1 order statistics can

be written in terms of the information in right and left censored samples as

Ir···s:n(θ) = I1···s:n(θ) + Ir···n:n(θ)− I1···n:n(θ). (3.1)

This in turn can be expressed in terms of τij. Alternatively, using (3.1) in conjunction

with Park’s simplified equations for right and left censored samples given in (2.7)

and (2.10), the Fisher information in any set of consecutive order statistics can easily

be computed using only the information in a sample’s minimum and maximum for a

specified distribution. Equation (3.1) is also a special case of Park’s decomposition

of information in (2.23) with r1 = {1, ..., s} and r2 = {r, ..., n}, r < s.

The equations in (2.15) also yield another method of computing the Fisher

information in a single order statistic,

Im:n(θ) = I1···m:n(θ) + Im···n:n(θ)− I1···n:n(θ)

= Ir···m:n(θ) + Im···s:n(θ)− Ir···s:n(θ),

for 1 ≤ r ≤ m ≤ s ≤ n. In certain cases, the information in right or left censored

data may be simpler to calculate, making these expressions particularly useful.
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Zheng and Gastwirth found that a different censoring pattern contains more

information about the scale parameter of a symmetric location-scale distribution.

For the normal, logistic, Cauchy, and Laplace distributions, they studied the infor-

mation contained in the two tails. Equation (2.19) allows the Fisher information

in the two tails to be calculated as a linear combination of τij. For example, they

found that 50% of the data, 25% in each tail, contains more than 95% of the total

Fisher information in the sample for the normal, logistic, and Laplace distributions.

For the Cauchy distribution, the tails contain more than 80% of the information.

In a later paper, Zheng and Gastwirth [16] studied the Fisher information about

the scale parameter contained in two symmetric portions of the order statistics,

not necessarily the extreme tails. By studying the folded distribution for these

symmetric distributions, Zheng and Gastwirth noted that a single quantile in the

folded distribution gives the same amount of information as two symmetric quantiles

in the original distribution. Using asymptotic formulas for Fisher information and

maximizing the Fisher information in a single block of order statistics from the

folded distribution, they determined the conditions for two symmetric blocks of order

statistics to contain the most information about the scale parameter of each of these

distributions. They found that for the normal, logistic, and Laplace distributions,

the extreme tails are most informative, but that for the Cauchy distribution, more

information is contained around the 25th and 75th percentiles.

The second category looks at the Fisher information in scattered order statis-

tics. In the optimal spacing problem, the aim is to choose a fixed number of order
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statistics from a given sample of size n in order to estimate an unknown parameter.

The optimal spacing problem has been studied extensively from the point of view of

minimizing the asymptotic variance of the estimators. Park [12] studied this with

respect to the Fisher information for the logistic distribution. Following the defini-

tion used by Park, we define the optimal choice for the parameter θ of a particular

distribution to be the subset of order statistics (Xr1:n, ..., Xrk:n) which maximizes

the information Ir1,...,rk:n(θ).

In this chapter we study the exponential distribution, and the location param-

eter of the normal and logistic distributions for different sample sizes. We compute

the Fisher information contained in consecutive order statistics for each of these

distributions. For the logistic distribution, we derive the information in pairs of

order statistics and find the optimal choice of scattered order statistics.

3.1 EXPONENTIAL DISTRIBUTION

Let X1, ..., Xn be a random sample from Exp(θ), and denote its order statistics

X1:n < ... < Xn:n. First we consider the information in Type-II censored data. To

find this, Arnold et al. (p. 167) [2] noted that

T =
r�

i=1

Xi:n + (n− r)Xr:n

is the sufficient statistic. A well-known result for exponential order statistics states

that Z1, ..., Zn, where

Zi = (n− i+ 1)(Xi:n −Xi−1:n), i = 1, 2, ..., n,
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are independent and exponentially distributed. Hence T, which can be expressed in

the form

T =
r�

i=1

(n− i+ 1)(Xi:n −Xi−1:n),

has a Γ(r, θ) distribution. Since the information contained in the sufficient statistic

is precisely that in the sample, I1···r:n(θ) = r/θ2. Park [11] found this result using

the decomposition of information given in (2.6). By the lack of memory property

for the exponential distribution, Ir+1···n|r:n(θ) = (n − r)/θ2. Hence, I1···r:n(θ) =

I1···n:n(θ)− Ir+1···n|r:n(θ) = r/θ2.

In other words, the percentage of Fisher information in any Type-II censored

exponential data is equal to the percentage of data observed. This is true for the

Weibull family of distributions, which Zheng [15] characterized by the Fisher infor-

mation in Type-II censored data and by the factorization of the hazard function. In

particular, he showed that the hazard function can be factorized as h(x) = u(x)v(θ)

for some positive functions u(x) and v(θ) if and only if I1···r:n(θ) = rIX(θ).

In order to find the information in left censored data, Park’s approach requires

the calculation of information in the sample maximum. For i > 2, (1.8) gives

Ii:i(θ) =
1

θ2
+

1

θ2
i

i− 2
µ(2)
i−2:i−1.

Alternatively, by using the following recurrence relations for the standard exponen-

tial distribution (e.g., Arnold et al. [2], p.74),

µ(2)
r:n = µ(2)

r−1:n +
2

n− r + 1
µr:n,

µ(2)
r:n = µ(2)

r−1:n−1 +
2

n
µr:n, 2 ≤ r ≤ n,
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with r = i− 1 and n = i− 1, the information in the Xi:i can be written in terms of

the first and second moments of the sample maximum for different sample sizes,

Ii:i(θ) =
1

θ2
+

1

θ2
i

i− 2
µ(2)
i−1:i−1 −

2

θ2
i

i− 2
µi−1:i−1

=
1

θ2
+

1

θ2
i

i− 2
µ(2)
i−2:i−2 +

1

θ2
i

i− 2

2

i− 1
µi−1:i−1 −

2

θ2
i

i− 2
µi−1:i−1

=
1

θ2
+

1

θ2
i

i− 2
µ(2)
i−2:i−2 −

2

θ2
i

i− 1
µi−1:i−1.

The moments of exponential order statistics are easily tabulated using the expres-

sions for the mean and variance in (1.9). Then, the information in any left censored

sample can be found using equation (2.10). The information in a block of consecutive

order statistics (Xr:n, Xr+1:n, ..., Xs:n) follows from equation (3.1).

For the exponential case, however, the information any single block of consec-

utive order statistics can be found much more simply using only the information

contained in a single order statistic. Since, as Zheng and Gastwirth [17] showed, the

change in information when a block is removed from the right of the sample is the

same regardless of previous censoring patterns,

Ir···n:n(θ)− Ir:n(θ) = I1···n:n(θ)− I1···r:n(θ)

=
n

θ2
− r

θ2

Hence, substituting this into (3.1),

Ir···s:n(θ) =
s

θ2
+ Ir···n:n(θ)−

n

θ2

= Ir:n(θ) +
s− r

θ2

For example, I4567:10(θ) = I4:10(θ) + 3/θ2 = 6.9302/θ2. In other words, the middle

four order statistics contain nearly 70 percent of the information in the sample about
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θ. However, since the four greatest order statistics contain 0.9377 of the information,

the right extreme data are clearly more informative. We can also see that the order

statistics X8:10 and X9:10 each contains nearly 70 percent of the information in the

sample. Furthermore, (X9:10, X10:10) is the block of size 2 that gives most information

about θ, with I9 10:10(θ) = 0.7874. The greatest three order statistics give 0.8850

of the total information in the sample. The Fisher information in any block of

consecutive order statistics is given in Table 3.1.

r|s 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 1.9945 2.9945 3.9945 4.9945 5.9945 6.9945 7.9945 8.9945 9.9945

3 2.9753 3.9753 4.9753 5.9753 6.9753 7.9753 8.9753 9.9753

4 3.9302 4.9302 5.9302 6.9302 7.9302 8.9302 9.9302

5 4.8399 5.8399 6.8399 7.8399 8.8399 9.8399

6 5.6734 6.6734 7.6734 8.6734 9.6734

7 6.3770 7.3770 8.3770 9.3770

8 6.8497 7.8497 8.8497

9 6.8741 7.8741

10 5.8561

Table 3.1. Ir···s:10(θ) – Fisher information in consecutive order
statistics from Exp(θ)

Suppose now that we want to calculate the Fisher information in scattered,

rather than consecutive, order statistics. The first approach considered in Chap-
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ter 2 assumes such a set of data to be a sample from which any number of blocks

of order statistics have been censored. Then, the Fisher information can be ex-

pressed as a linear combination of τij = E [φ(Xi:n)φ(Xj:n)], where φ is the score

function. The values of τ , can easily be computed using any statistical software.

The upper diagonal entries of the symmetric matrix τ are given for n = 10 in Ta-

ble 3.2. Using the expressions for Fisher information given in (2.19) and (2.21)

the Fisher information in the two tails is found simply by counting. For example,

I1 2 3 8 9 10:10(θ) = 10−(τ44+τ55+τ66+τ77)+2(τ45+τ46+τ47+τ56+τ57+τ67)/3 = 9.5739.

Similarly, for a multiply censored sample, I3 4 7:10(θ) = (τ33+τ44+τ77)+τ12+2(τ67)+

2(τ89) + (τ810 + τ910) = 6.8953.

0.8200 0.7200 0.6075 0.4789 0.3289 0.1489 -0.0761 -0.3761 -0.8261 -1.7261

0.6447 0.5461 0.4334 0.3019 0.1441 -0.0531 -0.3161 -0.7105 -1.4994

0.4787 0.3839 0.2732 0.1405 -0.0255 -0.2468 -0.5788 -1.2426

0.3299 0.2430 0.1388 0.0086 -0.1651 -0.4256 -0.9467

0.2117 0.1409 0.0523 -0.0659 -0.2430 -0.5974

0.1500 0.1114 0.0599 -0.0172 -0.1716

0.1978 0.2297 0.2775 0.3731

0.4838 0.6983 1.1272

1.4127 2.3417

5.2707

Table 3.2. Matrix τij for Exp(θ)

However, although this approach works for any multiple censoring pattern
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where the censored blocks are of length greater than one, finding the information

in scattered order statistics such as (X1:10, X3:10, X5:10), where single order statistics

are removed, requires a different approach. Park [12] reduced the computation of

information to finding

E

�
∂

∂θ
log fij:n(xi, xj)dx

�2
,

where fij:n denotes the joint distribution of Xi:n and Xj:n. Nevertheless, even this

expression is quite messy.

It has been noted that the Fisher information in any pair of order statistics

about the scale parameter of the exponential distribution is equal to that of the

shape parameter of the Weibull distribution [12]. Hence, the optimal choice of order

statistics of size k for the Weibull case is the same as that for the exponential

distribution.

3.2 NORMAL DISTRIBUTION

Consider an ordered sample from a normal distribution with unknown location

parameter θ and unit variance. We follow the approach taken by Park [10] in order

to find the Fisher information in blocks of consecutive order statistics. Using the

expression for the Fisher information in the smallest order statistic given in (2.9),

Park derived the following for the normal location parameter in terms of the standard

normal pdf φ and cdf Φ,

I1:n(θ) =

� ∞

−∞

�
x− φ(x)

1− Φ(x)

�2

nφ(x)(1− Φ(x))n−1dx.
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This is computed by Mathematica without difficulty, and we can use Park’s recur-

rence relation in (2.7) to compute the information contained in the order statistics

(X1:n, ..., Xr:n). Park tabulated these values for n = 10. We supply the information

about θ contained in right censored samples for n = 20 in Table 3.3.

Since the normal distribution is symmetric, there are several facts that

reduce the required computations when calculating Fisher information (e.g.,

Arnold et al. [2], p.27). It is well known that for a symmetric distribution,

(Xi:n, Xj:n)
d
=(−Xn−j+1:n,−Xn−i+1:n). From this, it can be shown that

Iij:n(θ) = I(n−j+1)(n−i+1):n(θ).

In general, Park [12] notes that for symmetric distributions,

Ir1...rk:n(θ) = I(n−rk+1)···(n−r1+1):n(θ), (3.2)

where 1 ≤ r1 < · · · < rk ≤ n. Using this result, I1···11:20(θ), for example, can be read

from the table below as it equals I10···20:20(θ).

r 1 2 3 4 5 6 7 8 9 10

I1···r:20 4.0702 6.6885 8.6776 10.2898 11.6428 12.8032 13.8130 14.7007 15.4867 16.1862

Ir···n:20 20 19.8383 19.6185 19.3712 19.0429 18.7177 18.3090 17.8669 17.3687 16.8105

Table 3.3. Ir···s:20(θ) – Fisher information in consecutive order
statistics from N(θ, 1)

Now, using the relation (3.1), the FI in any block of order statistics can be

calculated with the information in right and left censored samples. For example,

I9···12:20 = I1···12:20 + I9···20:20 − I1···20:20 = 2I9···20:20 − I1···20:20 = 14.7374. In other
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words, the middle twenty percent of the data contains approximately 0.7369 of

the total information about the mean that is contained in the entire sample. In

comparison, we may recall from Chapter 1 that the single order statistic with the

most information is the median, X10:20 and X11:20, which have 0.6498 of the total

information.

% Information

% Data Park Z&G

10% 0.6811 0.6810

20% 0.7369 0.7368

30% 0.7867 0.7867

40% 0.8309 0.8312

50% 0.8718 0.8708

Table 3.4. Fisher information in the middle portion of a sample from N(θ, 1)

This approach for calculating the information using recurrence relations is quite

convenient. However, as Park warns, the accumulation of rounding errors is a cause

for concern. Table 3.4 compares the calculation of information in the middle por-

tion of an ordered sample of size 20 using this method and the multiple censoring

approach taken by Zheng and Gastwirth [17] using τij. The values given in the far

right column are taken from Zheng and Gastwirth, and the values in the middle

column can be read from the previous table.
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3.3 LOGISTIC DISTRIBUTION

Consider a sample of size n from the pdf

f(x; θ, β) =
1

β

e−(x−θ)/β

(1 + e−(x−θ)/β)2
, β > 0. (3.3)

Assuming that β > 0 is known, direct computation from the definition in (1.2)

yields the Fisher information contained in a single observation about the location

parameter θ. Since the cdf is given by F (x; θ) = 1/(1 + e−(x−θ)/β),

IX(θ) = E

�
− ∂2

∂θ2
log

1

β

e−(x−θ)/β

(1 + e−(x−θ)/β)2

�

=
2

β2
E

�
e−(x−θ)/β

(1 + e−(x−θ)/β)2

�

=
2

β2

� ∞

−∞
{f(x; θ)}2dx.

We note that f(x; θ) = F (x; θ)[1− F (x; θ)], and so

IX(θ) =
2

β2

� ∞

−∞
F (x; θ)[1− F (x; θ)]f(x; θ)dx

=
2

β2

� 1

0

t(1− t)dt

=
1

β2

1

3
.

Hence, the information in the entire sample is

I1···n:n(θ) = nIX(θ) =
1

β2

n

3
.

In the interest of calculating the information about the location parameter con-

tained in consecutive order statistics, we first reproduce a few results from Park[10].

Without loss of generality, let the scale parameter β = 1, and notice that the hazard
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function is equal to the cdf, h(x; θ) = F (x; θ) = 1/(1 + e−(x−θ)). Using (2.9), the

expression for the information in the sample minimum simplifies to

I1:n(θ) =

� ∞

−∞

�
∂

∂θ
log

�
1

1 + e−(x−θ)

��2

dF1:n

=

� ∞

−∞

�
−e−(x−θ)

1 + e−(x−θ)

�2

n{1− F (x; θ)}n−1f(x; θ)dx

= n

� ∞

−∞

�
e−(x−θ)

1 + e−(x−θ)

�n+1
e−(x−θ)

1 + e−(x−θ)
dx

= n

� 1

0

un+1du

=
n

n+ 2
.

Similarly, we can find the information in the sample maximum from (2.12) to be

In:n(θ) =

� ∞

−∞

�
∂

∂θ
log

�
e−(x−θ)

1 + e−(x−θ)

��2

dFn:n(x; θ)

=

� ∞

−∞

�
1− e−(x−θ)

1 + e−(x−θ)

�2

n{F (x; θ)}n−1f(x; θ)dx

=
n

n+ 2
.

The recurrence relations given in equations (2.7) and (2.10) give the information

contained in right and left censored samples,

I1···s:n(θ) =
n�

i=n−s+1

�
i− 2

n− s− 1

��
n

i

�
(−1)i−n+s−1 i

i+ 2
,

Ir···n:n(θ) =
n�

i=r

�
i− 2

r − 2

��
n

i

�
(−1)i−r i

i+ 2
,

for 1 < r ≤ n and 1 ≤ s < n. As noted in equation (3.2), since the logistic distribu-

tion is symmetric, symmetric selections of order statistics yield equal information.

Equation (3.1) allows us to find the Fisher information in a block of consecutive

order statistics (Xr:n, ..., Xs:n). We tabulate these values using Mathematica for a
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sample of size 10. These results are summarize in Table 3.5, which provides the

values of Ir···s:10(θ). Many of these values can be found by symmetry. The entries

for r = s give the information in a single order statistic. From this table, we see that

the median order statistics X5:10 and X6:10 each contains 0.75 of the information in

the entire sample. The two middle order statistics from a sample of size n = 10

together contain 0.82 of the information in the entire sample. The middle four

order statistics contain 0.91 of the total information about the mean, while same

order statistics contain only 0.74 of the information about the mean for the normal

distribution.

r|s 1 2 3 4 5 6 7 8 9 10

1 0.8333 1.5152 2.0606 2.4848 2.8030 3.0303 3.1818 3.2727 3.3182 3.3333

2 1.5000 2.0455 2.4697 2.7879 3.0152 3.1667 3.2576 3.3030 3.3182

3 2.0000 2.4242 2.7424 2.9697 3.1212 3.2121 3.2576 3.2727

4 2.3333 2.6515 2.8788 3.0303 3.1212 3.1667 3.1818

5 2.5000 2.7273 2.8788 2.9697 3.0152 3.0303

6 2.5000 2.6515 2.7424 2.7879 2.8030

7 2.3333 2.4242 2.4697 2.4848

8 2.0000 2.0455 2.0606

9 1.5000 1.5152

10 0.8333

Table 3.5. Ir···s:10(θ) – Fisher information in consecutive order
statistics from Logistic(θ, 1)
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For the logistic distribution, these results attest to the fact that the middle

portion of the ordered data provides a large proportion of the total information in

the sample. The question is, how much more information can we obtain by looking at

scattered order statistics? We use the decomposition of information studied by Park

[12] and given in equation (2.22), which reduces the Fisher information contained

in any set of order statistics to a linear combination of the information contained

in pairs of order statistics and that in a single order statistic. Since the Ir:n(θ) has

already been considered in terms of left and right censoring, we need only to derive

an expression for Iij:n(θ).

For a random sample of size n from a distribution F (x; θ) and density f(x; θ),

the joint density of the order statistics Xi:n and Xj:n is given as (e.g., Arnold et al.

[2], p.16)

fij:n(xi, xj; θ) =
n!

(i− 1)!(j − i− 1)!(n− j)!
F (xi)

i−1 (F (xj)− F (xi))
j−i−1

× (1− F (xj))
n−j f(xi) f(xj), −∞ < xi < xj < ∞.

(3.4)

Taking the derivative of the logarithm with respect to θ,

∂

∂θ
log fij:n(xi, xj; θ) = (n− i+ 1)− j

e−(xi−θ)

1 + e−(xi−θ)
− (n− i+ 1)

e−(xj−θ)

1 + e−(xj−θ)
,

upon simplification. Then,

− ∂2

∂θ2
log fij:n(xi, xj; θ) = j

e−(xi−θ)

(1 + e−(xi−θ))2
+ (n− i+ 1)

e−(xj−θ)

(1 + e−(xj−θ))2
.

Taking expectations with respect to the corresponding order statistics,

Iij:n(θ) = j E i:n

�
e−(xi−θ)

(1 + e−(xi−θ))2

�
+ (n− i+ 1)E j:n

�
e−(xj−θ)

(1 + e−(xj−θ))2

�
.
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Since

E i:n

�
e−(x−θ)

(1 + e−(x−θ))2

�
=

� ∞

−∞

e−(x−θ)

(1 + e−(x−θ))2
fi:n(x; θ) dx

=

� ∞

−∞

n!

(i− 1)!(n− i)!

�
1

1 + e−(x−θ)

�i−1 � e−(x−θ)

1 + e−(x−θ)

�n−j

× e−(x−θ)

(1 + e−(x−θ))2
dx

=
i(n− i+ 1)

(n+ 2)(n+ 1)

� ∞

−∞
fi+1:n+2(x; θ)dx

=
i(n− i+ 1)

(n+ 2)(n+ 1)
,

the Fisher information about θ contained in a pair of order statistics from a

logistic(θ, 1) distribution simplifies to

Iij:n(θ) =
j (n− i+ 1)(n− j + i+ 1)

(n+ 2)(n+ 1)
. (3.5)

Table 3.6 provides the information in (Xi, Xj) for a sample size of n = 10. As in

previous tables, Iii(θ) denotes the information contained in the single order statistic

Xi. From this table, we see that the optimal choices of size 2 are (X3:10, X7:10),

(X4:10, X7:10), and (X4:10, X8:10). Each choice contains 89% of the total information

in the sample, compared to 82% in the two central order statistics.

Using the decomposition of information in equation (2.22), we can find the

information in any collections of order statistics without further computation. For

example, the information in the three arbitrary order statistics Xi:n < Xj:n < Xk:n

is given by

Iijk:n(θ) = Iij:n(θ) + Ijk:n(θ)− Ij:n(θ),

where the terms on the right hand side can be found in Table 3.6 for sample
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size n = 10. Computing Iijk:10(θ), we find the optimal choice of size 3 to be

(X2:10, X5:10, X8:10), (X3:10, X5:10, X8:10), (X3:10, X6:10, X8:10), and (X3:10, X6:10, X9:10).

Each of these collections has an information measure of 3.1364, or approximately

94 percent of the total information in the sample. These choices give more in-

formation about θ than the most informative three consecutive order statistics,

I4 5 6:10(θ) = I5 6 7:10(θ) = 2.8788.

i|j 1 2 3 4 5 6 7 8 9 10

1 0.8333 1.5152 2.0455 2.4242 2.6515 2.7273 2.6515 2.4242 2.0455 1.5152

2 1.5000 2.0455 2.4545 2.7273 2.8636 2.8636 2.7273 2.4545 2.0455

3 2.0000 2.4242 2.7273 2.9091 2.9697 2.9091 2.7273 2.4242

4 2.3333 2.6515 2.8636 2.9697 2.9697 2.8636 2.6515

5 2.5000 2.7273 2.8636 2.9091 2.8636 2.7273

6 2.5000 2.6515 2.7273 2.7273 2.6515

7 2.3333 2.4242 2.4545 2.4242

8 2.0000 2.0455 2.0455

9 1.5000 1.5152

10 0.8333

Table 3.6. Iij:10(θ) – Fisher information in pairs of order statis-
tics from Logistic(θ, 1)

For the location parameter of the logistic distribution, these calculations are

easily extended to larger sample sizes. Again, we use Park’s recursive approach to

consider a random sample of size n = 25. The information contained in the middle
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k order statistics is given in Table 3.7 as a proportion of the total Fisher information

contained in the sample. We can compare these results to the Fisher information in

scattered order statistics. For example, Park [12] found the optimal choice of size 4

to be (X5:25, X10:25, X16:25, X21:25), with 0.9607 of the information in the sample. It

is interesting to note that we would need to include the middle 15 order statistics,

or 60% of the data, to get an equivalent amount of information about θ.

Although the calculations for consecutive order statistics and pairs of order

statistics are easily extended to larger sample sizes, determining the optimal choice

of size k poses a heavy computational burden. Even for a value as small as k = 3

from a sample of size 10, there are 120 possible combinations of three distinct order

statistics to compare. For large sample sizes, it is necessary to consider asymptotic

information, especially in regard to distributions for which Iij:n(θ) is complicated.

Data % FI

(X13:25) 0.7511

(X12:25, X13:25, X14:25) 0.8044

(X11:25, X12:25, X13:25, X14:25, X15:25) 0.8496

(X10:25, ... , X16:25) 0.8872

(X9:25, ... , X17:25) 0.9179

(X8:25, ... , X18:25) 0.9426

Table 3.7. Fisher information in the middle portion of a sample
from Logistic(θ, 1)

The Fisher information about the scale parameter of a logistic distribution has
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been studied in a similar manner. Zheng and Gastwirth [17] computed the Fisher

information in the two tails for sample sizes of 15 and 20, and compared these results

with those for normal, Cauchy, and Laplace distributions. Park [12] provided a table

for Iij:5, the information in scattered pairs from a sample of size 5. He also found

the optimal choice of size 4 when n = 25 to be (X1:25, X5:25, X21:25, X25:25) with 86.77

percent of the total information.

3.4 CONCLUSION

In this paper we have studied the exact Fisher information contained in vari-

ous collections of order statistics to determine which part of the ordered sample has

the most information about an unknown parameter. These results may be utilized

to determine censoring patterns or in the selection of efficient estimators. Some re-

search has already been done to compare the efficiencies of the Best Linear Unbiased

Estimator (BLUE) based on subsets of the order statistics and the BLUE based on

the entire sample. Zheng and Gastwirth [16] studied the relative efficiency of the

BLUE based on the the middle portion of the sample compared to the BLUE using

the complete sample for the location parameter of certain symmetric distributions.

For the normal, logistic, Cauchy, and Laplace distributions, they found that sample

sizes of at least 25, 25, 85, and 30, respectively, are needed to get a relative effi-

ciency of 90 percent. It may be interesting to compare the relative efficiency of the

BLUE based on the optimal choice of k order statistics to that based on the most

informative block of k consecutive order statistics.
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