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Anatomy, ultrastructure and physiology of hornwort stomata
 

Jessica Regan Lucas
 

Introduction' 

Hornworts, phylum anthocerotophyta, constitute a small group ofplants which 

range from tropical to temperate climates. As in all bryophytes, the gametophyte is the 

dominant life stage of homworts. The gametophyte is a simple thallus, superficially 

resembling that of simple thalliod liverworts. The sporophyte consists of a foot 

embedded in the gametophyte and a long cylindrical sporangium. A basal meristem 

indeterminately produces new cells throughout the growing season. Due to the basal 

meristem, all stages ofcellular development can be found in the sporophyte. In the 

center ofthe sporangium is a sterile columella, oftenjust rows of 16 cells. Surrounding 

the columella are sporogenous cells which give rise to alternating tiers of psuedoelaters 

and spores. Generally containing two chloroplasts with pyrenoids, assimilative cells 

surround the sporogenous cells and make up most of the sporophyte. A single layer of 

epidermal cells with cuticle form the boundary between the atmosphere and the 

assimilative cells. Longitudinally oriented, stomata are scattered amongst 

nondifferentiated epidermal cells (Bold 276-279). 

The term stoma (plural=stomata) refers to two specialized epidermal cells on a 

plant body and the aperture which forms between them. In tracheophytes, stomata are 

integral to water transport in plants because evaporation of water through the stomatal 

pore draws water through the water conducting tissue. Diurnal rhythms ofstomatal 

movement allow maximum levels of carbon assimilation to occur while minimizing 

water loss. Though the exact rhythm varies for each plant, it is strongly correlated to the 

plant's carbon dioxide concentration mechanism, i.e. C3, C4, or CAM (Taiz and Zeiger 

1998). Since a water transport system is crucial to success on land, the development of 

stomata was a landmark in plant evolution. It is generally assumed that stomata are 

homologous among plant groups, but a growing amount ofevidence implies otherwise, 

especially among the basal phyla (Renzaglia et al. 2000). 

Although diverse in microanatomy, all stomata are composed of two adjacent 

guard cells that function in response to changes in turgor pressure. In face view, two 

basic guard cell morphologies are found: reniform and graminicous, the latter 

predominated in grasses and other monocots. For most plants, specialized epidermal 

cells originate either perigenously or mesogenously, which serve as companions to guard 

cells. These subsidiary cells act as ion reservoirs necessary to ionic fluxes accompanying 

stomatal movement. An opening forms when a turgid pair ofadjacent guard cells 

separate from each other; no pore is present in a flaccid set ofguard cells. Special wall 



thickenings and microfibril arrangements facilitate the differential swelling ofthe guard 

cells. 

Light is the most important environmental factor that causes the characteristic 

opening and closing of stomata, but humidity and carbon dioxide concentration also 

influence guard cell movement (Taiz and Zeiger 522). Such triggers, through internal 

signals, cause solutes to accumulate in the guard cells and water to consequently diffuse 

into the cells. Sucrose, potassium, chloride, and malate ions are the principal solutes 

regulating the osmotic potential in guard cells (Outlaw 1983). 

Virtua1lyall tracheophytes develop stomata but the presence of these structures in 

bryophytes is not universal. Of moss lineages, only the more advanced'true mosses 

possess functional stomata, the Takakiales and Andreaeales lackstomata completely and 

rudimentary stomata are found on Sphagnum moss capsules. Stomata oftrue mosses are 

found only on the base ofthe capsule, a region known as the apophysis. In homworts, 

stomata are restricted to only three ofthe six genera (Renzaglia et a12000). Anthoceros, 

Folioceros and Phaeoceros form stomata while Dendroceros, Notothylus, and 

Megaceros lack them. The fact that stomata occur in all groups ofembryophytes except 

liverworts supports the hypothesis that the liverworts are the earliest divergent extant 

group of land plants (Kenrick and Crane 1997). Until recently, the speculation that 

liverworts are the basal-most embryophyte group was widely accepted: AccLimuIating 

molecular (Hedderson et al. 1998, Nishyama and Kato 1999) and morphological data 

(Garbary and Renzaglia 1998, Renzaglia et aI. 2000) suggest that homworts, rather than 

Iiverworts, are the oldest living group ofland organisms. In such analyses, liverworts 

form a monophyletic clade with mosses. Along with the presumption that the different 

bryophyte groups diverged from one another before the sporophyte had evolved much 

complexity, these phylogenies suggest that a reevaluation of the evolution ofstomata is 

in order (Renzaglia et aI 2000). 

Unlike mosses and tracheophytes tharhave well-defined water conducting 

strands, homworts lack such tissue. Because of this anatomical peculiarity, the water 

transport function typically attributed to stomata is highly questionable in these plants. 

Intercellular spaces form interior to anthocerote stomata therefore gas exchange is a 

possible function of these stomata Unlike other archegoniates, diurnal movements 

appear to be absent in bryophytes. Although true moss stomata have been reported to 

function as do those oftracheophytes (Garner and Paolillo 1973), Paton and Pierce's 

(I 954) comprehensive study ofbryophyte stomata calls into question physiological 

similarities betWeen vascular and nonvascular plant stomata. 



In the present study it was hypothesized that stomata in hornworts were 

. independently derived from those ofother embryophytes. This hypothesis was tested by 

observing the development, ultrastructure and physiology ofhornwort guard cells. First, 

the cells were examined with the light and fluorescent microscopes to determine general 

cellular features and stomatal distribution. Light and transmission electron microscopy 

were utilized to explore development and ultrastructure of the cells. General patterns of 

development were visualized using scanning electron microscopy. To determine whether 

the cells function in response to ionic changes as in other plants, stomata were stained 

with cobaltinitrite and fast violet B to localize potassium cations and organic acids 

(malate) respectively. By observing stomata at various times during day and night, the 

presence ofcircadian rhythms was evaluated. Effects of the phytohormone, abscisic acid 

(ABA), which is responsible for the closing ofstomata during water stress, was explored 

in hornworts. Stomatal features ofhornworts will be evaluated in comparison with those 

of mosses and tracheophytes. 

Materials aDd Methods: 

Live plants were collected in southern Illinois by KSR and JRL. In late June 

2000, Anthoceros agrestis and Phaeoceros leavis were collected from a recently tilled 

cornfield in Jackson county in Southern llIinois. P. leavis was collected in Cove Hollow 

(Jackson County) in October 1999. Many collections were received by mail. A. 

punctatus was collected in Oregon and provided by Dr. David Wagner. A. caucasicus 

and P. carolineaus from the Iberian peninsula were contributed by Cecilia Sergio. Dr. 

Martha Cook contributed Phaeoceros carolineaus that was collected from a Illinois State 

University greenhouse in Normal, Illinois. A California collection of P. leavis and P. 

mohrii were acquired from Dr. Terry O'Brien. Anthoceros sp. was collected in Idaho by 

Jim Thompson. The plants were kept under continuos light in covered dishes and 

moistened as needed with distilled water until utilized. Voucher specimens were 

deposited in the personal herbarium ifKSR and JRL. 

LjiPlt microsCQPY' 

Tissue embedded in a I: I SpurrslPolybed resin (see TEM) was cut into thick 

sections with a diamond knife and adhered with heat to a glass slide. The sections were 

then stained with 1.5% (w/v) aqueous toluidine blue containing sodium borate, allowed 

to cool and gently rinsed with water. Sectioned specimens were monitored to evaluate 

the stage ofdevelopment, cell and tissue organization. Optimal material was further 

examined in the TEM (see below). 



Fresh sporophyte tissue was prepared by longitudinally cutting the diploid phase 

in halfand scraping the epidermis clean ofcells. The epidermis was mounted in distilled 

water and viewed on an Olympus BX40 light microscope. Aqueous ruthenium red 

(I :5000) was used to visualize pectin in epidermal peels. To evaluate possible diurnal 

cycles in stomatal movement, A. punctatus collections were exposed to 12 hours oflight 

and 12 hours of dark and observed for stomatal closure. Plants were observed at four 

different times during the day and night to observe the aperture and scored either as open, 

closed, or occluded, which was determined by focusing through the pore. Around 150 

stomata were observed. Epidermal peels ofmoss capsules and hornwort sporophytes 

were dehydrated on glass slides with glycerin and 80% ETOH. Four sporophytes were 

dehydrated, each with about ten stomata. 

All light and fluorescence micrographs were taken using either 50 ASA I1ford 

black and white or 400 ASA Provia color slide film on an Olympus PM-30 camera 

attached to a Leitz Orthoplan Microscope. 

Fluorescence Microscopy: 

Epidermal peels were prepared and mounted in a 0.4M sorbitol fluoromount 

solution and autofluorescence was recorded The addition ofsorbitol was necessary to 

prevent plasmolysis. A I:500 mixture ofDAPI in OAM sorbitol f1uoromount solution 

was applied to other epidermal peels to determine the location of nuclei in guard cells. 

Aniline blue stain (0.005% w/v) was applied for twelve hours to detect callose in 

epidermal peels. 

Transmission Electron Microscopy: 

Sporophytes were dissected from the gametophyte and cut into small pieces while 

in 4% glutaraldehyde in 0.05 M cacodylate buffer. At room temperature for 4 hours, the 

tissue was fixed in 4% glutaraldehyde in 0.05 M cacodylate buffer and then overnight at 

40 C. The tissue is washed three times, over two hours, in cacodylate buffer (0.05 M, pH 

7.2), posttixed in 2% 0504 in same buffer, rinsed in water, and en bloc stained in 2% 

aqueous uranyl acetate (VA) for 16 hours at 40C. After dehydration in a graded acetone 

series, the material was infiltrated slowly over six days with a I: I mix ofSpurrs/Polybed 

resin and cured at 650 C for 16 hours. Specimens were thick sectioned and stained with 

1.5% toluidine blue with sodium borate and monitored for the presence of stomata. 

Promising blocks were thin sectioned and poststained with ethanolic VA and basic lead 

citrate for 5 minutes each. Observations were made on a Hitachi H500 TEM. 



\. -- / 

Scanning Electron Microscopy: 

The tissue was fixed as in the TEM fixation then dehydrated in a graded ethanol 

senes. After dehydration, the tissue was critically pointed dried, placed on stubs, and 

coated with gold and palladium. Specimens were viewed on a Hitachi S570 SEM. 

Histochemical stains: 

Potassium localization' Sporophytic epidennal peels were stained in Macullum's 

reagent prepared as follows (Raschke and Fellows 1971). Four grams cobl.lItous nitrate 

and seven grams sodium nitrate were dissolved in 13ml of distilled water after which 2ml 

glacial acetic acid was added. This solution was stirred for one hour to finish 

preparation. The stain was centrifuged for three minutes and chilled to 4"C before use. 

All cells were removed from the epidennis as described above while in the stain and on a 

freezing Petri dish, a dish filled with ice that was necessary to keep the stain and tissue at 

a low temperature. At least three minutes passed before the tissue was rinsed with cold 

distilled water. Two minutes of staining with cold 3% (v/v) aqueous ammonium sulfide 

solution on a freezing Petri dish followed. Before the tissue was mounted in water and 

viewed, it was rinsed again in cold water. Black crystals are indicative ofthe potassium 

ion. Since this is a ubiquitous ion in cells it is common to find some staining all over the 

peel and heavy staining in the active assimilative cells. In control plants (Zea mays), 

guard and subsidiary cells stand out from the rest of the epidennis due to their high 

activity, in comparison with the rest of the epidennal cells. 

This stain was prefonned on II different sporophytes from five species and 

approximately 195 stomata were observed. 

Organic jons' A 0.5% (w/v) Fast Violet B solution in O.IM Tris buffer (pH 8.0) 

was used to visualize organic ions (Palevitz et al. 1981). The solution deteriorates 

quickly so must be mixed immediately before each use. Keeping the stain free from light 

and on ice slows the deterioration process which is visualized by a color change in the 

solution from clear, bright yellow to opaque red-orange. Epidennal tissue was stained 

for three minutes while covered then rinsed in buffer and mounted in water. The tissue 

must be examined quickly for the stain dissipates with time. Vacuoles in positive cells 

stain pink. 

Five species ofhornworts were sampled, 14 sporophytes with about 235 total 

stomata. 

Movement: 



Hornworts were generally kept under continuous light but the A. puncfafus 

collection was transferred into darkness for 12 hours each night. After three days of this, 

plants were immediately sliced longitudinally, mounted in water, and viewed on an 

Olympus microscope at various times during the day and night. No more than two 

minutes were needed to prepare the slides. Plants were observed directly after removing 

them from the dark, midday, before placing them in the dark, and while they were in the 

dark. 

Sporophytes were cut longitudinally and floated on a drop ofaqueous ABA 

solution. The hormone concentrations were IxlO-3, 6xIO-s, and 6xI0-6. The tissue was 

checked about every half hour for two hours to determine if the stomata had reacted to 

the hormone. For each concentration two sporophytes with about ten stomata were used. 

Two capsules of Campylium hispidulum were prepared as hornwort sporophytes and 

floated in the IxIO-3 ABA solution. Eight to fifteen stomata were present on each 

apophysis. 

Results; 

To coherently describe stomata and their walls, a set of terms is commonly used 

(Fig. IA, B). The area where the two cells separate from each other is the pore or 

aperture. The cell wall that surrounds the stomatal pore and where the two guard cells 

meet is designated the ventral wall, the opposite anticlinal wall is termed the dorsal wall. 

The tangential wall that faces the atmosphere is the outer wall and the opposite 

paradermal wall is the inner wall. Often at the junction of the ventral wall surrounding 

the pore with either the inner or outer wall, wall materials accumulate forming inner and 

outer ledges respectively. 

Development: 

The first visible stomatal precursor is a rounded epidermal cell with a prominent 

starch filled cWoroplast (Fig. 2A). This guard mother cell elongates and its anticlinal . , 
\YlIlls bulge into neighboring epidermal cells(Fig. 2B). Typically, one equal longitudinal, 

anticlinal division of this cell forms the two guard cells(Fig. 2C). Occasionally a slightly 

oblique division of the rounded guard mother cell will yield two guard cells. No 

subsidiary cells are formed in the development of the guard cells or surrounding 

epidermal cells. Wall thickenings begin to form in the midregion of the outer ventral 

wall before the middle lamella breaks down(Fig. 20). During the degradation of the 

middle lamella, intercellular spaces form schizogenously internal to the stoma within the 

assimilative layer. Sheets and strings of remnant middle lamella material can been seen 



between guard cells, surrounding epidermal cells, and subtending assimilative cells (Fig 

3A). Concomitantly WliII material is laid down primarily to form highly thickened inner 

and outer waJls(Fig 3A). Upon initial separation of the two guard ce/ls, the ventral 

thickened inner and outer wall regions are pu/led apart and act as ledges(Fig. 3D). A 

mature stoma averages 70J.lm long, 30J.lffi wide, and 20J.lm deep; the aperture in face 

view is approximately a third of the length and a fifth of the width of the complex (Fig. 

3A). 

A regimented pattern for stomatal placement seems to lacking in homworts, for 

their appearance on the epidermis is not evenly distributed or in distinct arrangements. 

Rarely stomata are found that are directly adjacent to one another. More stomata are 

seen on older sections of sporophyte and no mature stomata are found on the sporangium 

still within the involucre. Rounded guard mother ce/ls are found on all ages of 

sporophyte epidermis, from areas which have no mature stomata to the tip of the 

dehiscing sporangium. Often the older stomata are occluded with perhaps a waxy or 

mucilaginous material so that even ifthe pore is open little gas exchange could occur. 

Bacteria have been found living in the pore amongst the occlusion. 

Ot:&3JIelles' 

Despite their unique shape, the one to two large chloroplasts ofguard cells make 

stomata easy to identify (Fig. IB). Although a/l epidermal cells have starch filled 

chloroplasts while still in the involucre(Fig. 4A), throughout development the 

chloroplasts ofnonspecialized epidermal cells contact, degenerate(Fig. 4B) and lose their 

ability for electron transport(Fig. 4D). All epidermal chloroplasts are adjacent to the 

inner tangential wall. In guard ce/ls, the plastids are generally found in the ends of the 

guard cells. Like other actively photosynthetic plastids of homworts, guard ce/l plastids 

have a pyrenoid (Fig. 4E). The nucleus is generally associated with the chloroplast. 

DAPI staining has shown the placement of the guard cell nucleus to be mainly in the 

center of the cells, yet this is somewhat variable. Characteristic ofplant cells are 

vacuoles and guard cells are no exception. The one large vacuole occupies the central 

area of guard cells, next to the pore. Membrane bound muItivescuIar bodies are found in 

guard cells. Chloroplasts ofassimilative cells which border the intercellular spaces are 

positioned adjacent to the space (Fig. 4C). 

Wall Structure' 

In tangential section, the guard ce/ls are reniform in shape and an irregularly 

jagged projection partially covers the aperture on the outer surface. The two guard cells' 



lumen are oval in cross section towards the transverse walls and appear circular at the 

pore. In longitudinal anticlinal section from dorsal side approaching the pore is a 

transition from a long oval cell to a centrally constricted, dumbbell shaped cell (Fig. 5A). 

Although the guard cell is elongate, it is still much shorter than other epidermal cells. 

However in cross section, guard cells are larger than other epidermal cells. 

The guard cell walls are stratified into three distinct layers ofparallel 

microfibrils, oriented differently from one another(Figs. 5A, B). These layers are 

difficult to see in the ventral wall where the two guard cells meet because the wall is 

compressed (Fig. 5D). Moreover, this wall does not autofluoresce as all other epidermal 

walls do. The microfibrils of the oldest wall layer are 10ngitudinaJly oriented. Net radial 

micellation was not found. 

At the junction of the ventral wall with either the inner or outer wall, ledges are 

present. The outer ledge extends into a thick outer wall that spans half way across the 

width of the cells. Continuous with epidermal cells, cuticle covers the outer wall. The 

inner wall ledge is even more pronounced; the greatest accumulation of wall materials 

occurs in the center of this wall. Radially aligned microfibrils are found in the inner 

ledge close to the lumen (Fig. 5E). Covering the entire inner wall and ventral wall 

surrounding the pore are middle lamella remnants (Fig. 6C). Near the transverse walls, 

neither the outer or inner wall is very broad. TEM obervations have shown the outer 

ledge to be bordered on the outermost side by a thin layer of wall material oriented 

parallel to the outer wall (Fig. 6B). Beneath this layer is an area of branched fibrillar 

wall material. Ruthenium red staining has shown that pectin is the principle constituent 

of the outer wall outgrowth(Fig. 6A). 

Histochemical stains' 

Results for the cobaltinitrate stain varies with age of the sporophyte. Positive 

staining is seen in all epidermal cells from the foot up to a region with mature stomata 

(Fig. 7A). Localization ofstain precipitate within the guard cells occurs above this 

region (Fig. 7B). A few scattered epidermal cells also stained in this area, but their 

occurrence was not patterned. In the oldest region of the sporophyte, no staining occurs 

in any cells. This section ofthe sporangium has dehisced and the assimilative cells 

appear functionless. Mostly the stain is seen in the lumen of the cells; positive reactions 

occurr on walls also. Often the stomatal pore heavily stains, even in dehisced regions 

(Fig.7B). 

As for the potassium stain, a gradient of staining for malate emerges on the 

sporophyte. In the youngest pieces ofsporophyte all cells stain positively (Fig. 7C). A 



localization is seen as guard cell precursors develop (Fig. 7D). Epidennal cells level with 

spores that have been dispersed do not stain. Seemingly random epidennal cells also 

stain positive for organic ions. 

Movement" 

Guard cells are generally always open, although a few closed stomata usually are 

found on a sporophyte. Dark adapted plants mainly have open stomata as do plants 

observed during the nighttime. Attempting to force the stomata closed by using glycerine 

results in roughly a third of stomata closing, while the use ofalcohol does not close the 

stomata. In both treatments, all epidermal cells lose water, seen by the constriction of the 

plasmalemma and cellular contents. Unfortunately the aetuaI movement ofstomata that 

did close was not observed. Neither a 6x I0-5or IxI0-4 solution ofABA caused the 

closure ofstomata. 

Moss stomata: 

Only a few capsules were tested for potassium, organic ions, ABA and 

dehydration. Preliminary results showed that all epidermal apophysis cells stain 

positively for potassium and malate while the operculum is still retained on the capsule. 

After releasal of the operculum, no cells on the epidennis stain. At either development 

stage, the Ix10-4 solution ofABA did not close the stomata. Adding glycerine to capsule 

peels quickly closed stomata. Some stomata on the capsule were obvious because of 

bright red plastids in the guard cells. 

Discussion; 

Development" Due to the basal meristem in hornwort sporophytes all stages of 

stomatal development are observed on one mature sporophyte. At the rounded guard 

mother cell stage can be arrested from developing into a mature stoma. Since stomata 

are not produced in equal numbers at all ages or are evenly distributed on the sporophyte, 

it is likely there is little regulation ofthe development of the precursors. Epidennal cells 

are generally larger than guard cells but this is not true ofhornworts. Mucilage is readily 

produced by hornworts, the cavities on the ventral thallus of the garnetophyte are filled 

with mucilage (Renzaglia 1978); the occlusions, generally of mature stomata, appear to 

be composed of similar material. Many plugged stomata are found on dehisced 

sporophyte tissue so water loss would not be a concern, but such considerations would 

affect living regions ofthe sporophyte. Even so no water transport system is present in 

hornworts (columella), therefore the water that is lost only affects the apoplast and 



surrounding cells. Certainly this loss is minimal in comparison to the combined effects 

of water conducting tissue and evaporative loss via stomata that occurs in traeheophytes 

and mosses. The fact that substomatal chambers form and the placement ofthe 

assimilative cells' chloroplasts next to the chamber leaves little doubt that gas exchange. 

Organelles: The complement oforganelles within guard cells ofanthocerotes is 

similar to those of other plants. Moderate grana stacks, starch granulesoccur in the 

chloroplasts, and a large vacuole occupies in the central cell region. The central 

placement of the vacuole differs from many plants that have vacuoles situated near the 

endwalls (Zeiger et al. 44). Angiosperm guard cell chloroplasts are thought to function 

slightly differently from actively photosynthetic cells (Shimazaki et aI. 1989). The 

chloroplast is thought to assist turgor operated movement by shuttling Calvin-Benson 

intermediates between the stroma and cytosol. The localization ofRubisco in the 

pyrenoid may have profound effects on this process (Vaughn et al. 1992). 

Wall Structure' Pronounced walls are found on the inner and outer surface of 

stomata, especially at the junction with the ventral wall. The outer ledge ofpectin 

appears to be a middle lamella relic from the separation of the guard cells more than an 

active accumulation ofwall material. Pectin is been thought to constitute a large part of 

guard cell walls but only the middle lamella of several plants stains positively with 

ruthenium red (Zeiger et al. 75). The sculpted inner ledge must be planned. 

Wall layering in guard cells is reported for few species (Sack and Paolillo 1983), 

but it is distinct in hornworts. The apparent lack of radial micellation could severely 

affect stomata's ability to form an aperture. Thin dorsal and ventral walls, found in 

hornworts and most plant stomata, could allow the distortion ofcell shape during 

movement (Paton and Pierce 1957). No exceptionally thin walls areas are observed 

which would function as a hinge. 

Histochemical stains' Stomata are only histochemically discernible from other 

epidermal cells at one maturation stage, the final stages of spore maturation. The 

gradient of staining results correlates to the maturation of the sporophyte. After the 

spores have been dispersed there is no need for the sporophyte of equal age to continue 

functioning, therefore no staining is seen. In young sporophytic cells, all epidermal cells 

including guard cells and their precursors stain positively for potassium and malate. This 

is due to the near equal health of these young cells, although the chloroplasts of cells in 

the guard cell lineage are always conspicuous. Because of these chloroplast being more 

developed than surrounding epidermal cells, malate localizations are seen on younger 

sporophyte zones than potassium localizations. The heavy potassium localizations in the 

pore are likely due either to occlusions or organisms living in the aperture. 



The results of maturation are also seen in moss stomata which do not show stain 

localizations in the young stages of capsule development and do not stain after the 

operculum was lost. More intensive studies need to be pursued to determine at which 

stage moss guard cells do exhibit ion localization and how that relates to spore 

development. In addition, the stomatal precursors of model plants such as Zeo mays or 

Vieio labo should be explored histochemically. 

Histochemically and morphologically no subsidiary cells are present on hornwort 

or moss sporophytes. Anomomytic stomata are found in all bryophytes and other 

nonrelated vascular plants. Such guard cells apparently do not need subsidiary cells to 

function, but vascular plants which have no subsidiary cells probably lost the need to 

form such cells unlike bryophytes which appear to be incapable ofdesigning subsidiary 

cells. 

Movement: Stomatal movement, diurnal or otherwise, does not seem to occur in 

hornworts. The only enviromnentaI factor which closes hornwort stomata is desiccation 

(paton and Pierce 1953). Desiccation reduces the size ofall vacuoles so certainly the 

turgor operated stomata should shut during water stress. Glycerine effectively dehydrates 

the epidermal peel, but not all stomata closed. The protoplasts were seen to plasmolyse 

so inadequate infiltration of the glycerine is not the explanation for inconsistency of 

stomatal closure. Possibly the stomata are unable to close at certain stages of 

development. Completely inflexible walls would prevent the movement ofstomata, but 

as ofyet no information has been collected regarding this. Moss stomata do close when 

dehydrated with glycerine. 

ABA is found in all vascular plants and has been detected in mosses; liverworts 

have a physiologically similar hormone, lunularic acid (Tiaz and Zeiger 672). Its 

presence in hornworts is undetermined though. Epidermal peels ofhornwort sporophyte 

did not respond to ABA treatment, neither did the moss capsule epidermis. These results 

are quite preliminary, for a wide range ofABA concentrations was not studied and 

previous studies have shown Funoria Irygrometriea to close when exposed to ABA 

(Gamer and Paolillo 1973). 

Conclusions; 

The development of hornwort stomata is very simple. This is indicated by the 

single longitudinal division of the guard cell precursor, pectinous ledges, lack of 

subsidiary cells, and lack ofradial micellation. Gas exchange seems to be a likely 

function of hornwort stomata, but the absence of vascular tissue makes water transport 

improbable. Histochemical stains for malate and potassium indicate that guard cells 



localize ions for a short time- after the differentiation ofthe epidermis and before spore 

dispersal. Diurnal guard cell movements do not occur in hornworts. Neither dehydration 

or ABA treatment effects the guard cells in respect to movement. 

It is still unclear whether or not hornwort stomata are homologous to stomata of 

vascular plants. The prominent chloroplast, the localization of ions, and the role of 

stomata in gas exchange suggest that anthocerote stomata are related to those of other 

embryophytes. However, the lack of vascular tissue and stomatal movement counter the 

homologous theory. Also in opposition to this paradigm is the distinct wall structure of 

hornwort guard cells. A multilayered wall and ledges of pectin have only been reported 

for a few other plants. In the future to elucidate the homology of these structures, the 

effect ofABA should further be studied. Also the guard cells' ability to transport ions, 

which is essential for movement, should be determined. 
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