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Abstract

In this paper we address the problem of state (resp. feedback) linearization of nonlinear single-input control systems
using state (resp. feedback) coordinate transformations. Although necessary and sufficient geometric conditions have
been provided in the early eighties, the problems of finding the state (resp. feedback) linearizing coordinates are subject
to solving systems of partial differential equations. We will provide here a solution to the two problems by defining
algorithms allowing to compute explicitly the linearizing state (resp. feedback) coordinates for any nonlinear control
system that is indeed linearizable (resp. feedback linearizable). Each algorithm is performed using a maximum of
n − 1 steps (n being the dimension of the system) and they are made possible by explicitly solving the Flow-box or
straightening theorem. We illustrate with several examples borrowed from the literature.

1. Introduction and Preliminaries

In the late seventies and early eighties the problem of
transforming a nonlinear control system, via change of co-
ordinates and feedback, into a linear one, has been intro-
duced and is known today as feedback linearization. The
feedback classification was applied first to linear systems
for which a complete picture has been made possible. The
controllability, observability, reachability, and realization
of linear systems have been expressed in very simple al-
gebraic terms. A crucial property of linear controllable
systems is that they can be stabilized by linear feedback
controllers. Because of the simplicity of their analysis and
design; because several physical systems can be modeled
using linear dynamics, and due to the observation that
some nonlinear phenomena are just hidden linear systems,
it is thus not surprising that the linearization problems
were (and still are) of paramount importance and have
attracted much attention. Uncovering the hidden linear
properties of nonlinear control systems turns out to be
useful in analyzing the latter systems though some global
properties might be lost during the operation. This paper
proposes a way of finding the linearizing coordinates. To
give a brief description of the linearization problems we
will start first by recalling some basic facts about linear
systems.

1.1. Linear Systems
We consider linear systems of the form

Λ :





ẋ = Fx + Gu = Fx +
m∑

i=1

Giui,

y = Hx

where x ∈ Rn, Fx and G1, . . . , Gm are, respectively, linear
and constant vector fields on Rn, Hx a linear vector field

on Rp, and u = (u1, . . . , um)> ∈ Rm. To any linear system
Λ we attach two geometric objects: (a) the controllability
space

Cn = span [GFG · · · Fn−1G]

as a n× (nm) matrix whose columns are those of the ma-
trices F i−1G, i = 1, . . . , n, and (b) the observability space

On = span [HT (HF )T · · · (HFn−1)T]T,

as a (np)× n matrix whose rows are those of the matrices
HF i−1, i = 1, . . . , n. The system Λ is controllable (resp.
observable) if and only if dim Cn = n (resp. rankOn = n).
By a linear change of coordinates x̃ = Tx and a linear
feedback u = Kx + Lv, where T , K, and L are matrices
of appropriate sizes, T and L being invertible, the system
Λ is transformed into a linear equivalent one

Λ̃ :

{
˙̃x = F̃ x̃ + G̃v,

ỹ = H̃x̃

with F̃ x̃ = T (F + GK)T−1, G̃ = TGL and H̃ = HT−1.
It is shown in the literature [2], [14] that the dimension
of Cn and the rank of On, (hence the controllability and
observability), are two invariants of the feedback classifica-
tion of linear systems. The problem of feedback classifica-
tion for linear systems Λ is to find linear state coordinates
w = Tx and linear feedback u = Kx+Lv that map Λ into
a simpler linear system Λ̃. It is a classical result of the
linear control theory (see, e.g., [2], [14]) that any linear
controllable system is feedback equivalent to the following
Brunovský canonical form (single-input case):

ΛBr : ẇ = Aw + bv, w ∈ Rn, v ∈ R,
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where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 1
0 0 0 · · · 0




b =




0
0
...
0
1




When K = 0 and L = 1, that is, only a linear change
of coordinates is applied, the system ΛBr is replaced by
Λλ : ẇ = Aλw+bv, w ∈ Rn, v ∈ R, where Aλ is the matrix
A with the first column replaced by λ = (λ1, . . . , λn)T. In
the case of multi-input linear control systems, we can find

positive integers ρ1 ≥ · · · ≥ ρm,
m∑

i=1

ρi = n (called control-

lability, Brunovský or Kronecker indices) such that ΛBr is
a cascade of single-input linear systems Λ1

Br, . . . , Λ
m
Br :

Λi
Br : ẇi = Aiwi + bivi, wi ∈ Rρi , vi ∈ R,

with A = diag {A1, . . . , Am} and b = diag {b1, . . . , bm} .
For a complete description and geometric interpretation
of the Brunovský controllability indices we refer to the lit-
erature [2], [11], [12] , [13], [14], [25] and references therein.

1.2. Nonlinear Systems and Linearization Problems.

Consider a smooth (resp. analytic) control-affine system

Σ : ẋ = f(x) + g(x)u = f(x) +
m∑

i=1

gi(x)ui, x ∈ Rn

around an equilibrium (xe, ue), that is, f(xe) + g(xe)ue =
0. We assume that f, g1, . . . , gm are smooth (resp. ana-
lytic) and (xe, ue) = (0, 0) ∈ Rn ×Rm or simply f(0) = 0.
Let

Σ̃ : ˙̃x = f̃(x̃) + g̃(x̃)v = f̃(x̃) +
m∑

i=1

g̃i(x̃)vi, x̃ ∈ Rn

be another smooth (resp. analytic) control-affine system.
The systems Σ and Σ̃ are called feedback equivalent if there
exist

Γ :

{
x̃ = φ(x)
u = α(x) + β(x)v

a transformation that maps Σ into Σ̃, that is, such that

(PDEs)

{
dφ(x) · (f(x) + g(x)α(x)) = f̃(φ(x))

dφ(x) · (g(x)β(x)) = g̃(φ(x)).

We will briefly write Γ = (φ, α, β) and put Γ∗Σ = Σ̃.
When α ≡ 0 and β ≡ idm, then we say that Σ and Σ̃
are state equivalent, and we simply write φ∗Σ = Σ̃. The
following two problems were considered in the late 1970s
by Brockett [4], and Krener [16].

Problem 1. When does there exist a local diffeomorphism
w = φ(x) defining new coordinates w = (w1, . . . , wn)T in
which the transformed system φ∗Σ takes the linear form

Λ : ẇ = Fw + Gu = Fw +
m∑

i=1

Giui, w ∈ Rn, u ∈ Rm ?

Problem 2. When did there exist a (local) feedback
transformation Γ = (φ, α, β) that takes Σ into a linear
system

Λ : ẇ = Aw + Bv = Aw +
m∑

i=1

bivi, w ∈ Rn, v ∈ Rm ?

When Problem 1 (resp. Problem 2) is solvable,
then the system Σ is called state linearizable, shortly
S-linearizable (resp. feedback linearizable, shortly, F-
linearizable). Problem 1 was completely solved by
Krener [16] and Problem 2 partially by Brockett [4] for
m = 1 and β constant. A generalization was obtained
independently by Hunt and Su [11], Jakubczyk and Re-
spondek [13], who gave necessary and sufficient geometric
conditions in terms of Lie brackets of vector fields defining
the system. Indeed, attach to Σ the sequence of nested
distributions D1 ⊂ D2 ⊂ · · · ⊂ Dn, where

Dk =
{

adq
fgi, 0 ≤ q ≤ k − 1, 1 ≤ i ≤ m

}
, k = 1, . . . , n

with ad0
fgi = gi and adl

fgi = [f, adl−1
f gi] for all l ≥ 1.

Theorem 1.1 (i) A control system Σ : ẋ = f(x) + g(x)u
is locally state equivalent to a linear controllable system
Λ : ẇ = Fw + Gu if and only if
(S1) dim span {g(x), adfg(x), . . . , adn−1

f g(x)} = n;

(S2) [adq
fg, adr

fg] = 0, 0 ≤ q < r ≤ n.
(ii) A control system Σ : ẋ = f(x) + g(x)u is locally

equivalent, via a feedback transformation Γ = (φ, α, β) to
a linear controllable system Λ : ẇ = Aw + bv if and only if
(F1) dim span {g(x), adfg(x), . . . , adn−1

f g(x)} = n;

(F2) Dn−1 is involutive, that is, [Dn−1,Dn−1] ⊆ Dn−1.

If the transformation Γ = (φ, α, β) linearizes Σ, then
(PDEs) should hold with f̃(φ(x)) = Aφ(x), g̃(φ(x)) = B.
Although the conditions (S1) and (S2) (resp. (F1) and
(F2)) provide a way of testing the state (resp. feedback)
linearizability of a system, they offer little on how to find
the state (resp. feedback) linearizing group Γ except by
solving (PDEs) which is, in general, not straightforward.
Indeed, for the single-input case, the solvability of (PDEs)
is equivalent of finding a function h with h(0) = 0 such that

Lg(h) = 0, LgLf (h) = 0, . . . , LgL
n−2
f (h) = 0, LgL

n−1
f (h) 6= 0,

where for any vector field ν and any function h, Lν(h) =
∂h
∂xv(x) is the Lie derivative of h along ν. We propose
here to give a complete solution to both problem 1 and
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problem 2 without solving the corresponding partial dif-
ferential equations. We will provide an algorithm giv-
ing explicit solutions in each case. Recall that we have
previously obtained explicit solutions for few subclasses
of control-affine systems, namely strict feedforward forms,
strict-feedforward nice and feedforward forms, for which
linearizing coordinates were found without solving the cor-
responding PDEs (see [28], [29], [31]). Indeed, for those
subclasses we exhibited algorithms that can be performed
using a maximum of n(n+1)

2 steps each involving compo-
sition and integration of functions only (but not solving
PDEs) followed by a sequence of n + 1 derivations. What
played a main role in finding those algorithms were the
strict feedforward form structure, that is, the fact that
each component of the system depended only on higher
variables. In this paper we consider general control-affine
systems for which we provide a state and a feedback lin-
earizing algorithms that can be implemented each using
a maximum of n steps. Those algorithms are, in part,
based on the explicit solving of the flow-box theorem [32]
and differ completely from those outlined in [28], [31] (see
also [18], [19]). Another approach was proposed in [24]
based on successive integrations of differential 1-forms. It
relies on successive rectification of vector fields via the
characteristic method using quotient manifolds in order
to reduce, at each step, the dimension of the system by
one. The difference between our approach and the later
is two fold: (a) explicit formulas are given in term of
convergent series without solving any PDE or ODE; (b)
the algorithm provides a sequence of control-affine sys-
tems without restriction on any manifold or performing a
quotient on some direction. We will address here the sin-
gle input case; the generalization to multiple-input control
systems is in consideration and expected to appear some-
where. Let us mention that the linearization techniques
have been very useful and are still of interest nowadays.
If Problem 1 or Problem 2 is solvable with a controllable
pair (A, b), then the equilibrium of Σ can be stabilized

by the feedback law u = −β(x)−1(α(x) +
n∑

j=1

kjϕj(x)),

where the polynomial p(λ) = λn +
n∑

j=1

kjλ
j−1 is Hurwitz.

This can be used to improve the dynamical behavior of
chaotic systems as it can be seen for the Lorenz control
system in [26]. Feedback linearization techniques have also
been applied to optimal control problems (e.g. minimiz-
ing time) and have regained some interest recently. In
[7] the authors used pseudospectral method to solve op-
timal control problem of feedback linearizable dynamics
subject to mixed state and control constraints. As men-
tioned by the authors, such problems frequently arise in
astronautical applications where stringent performance re-
quirements demand optimality over feedback linearizing
controls. Mayer’s problem has also been considered in [1]
(see also [26]) and an optimal solution for globally feedback
linearizable time-invariant systems, subject to path and

actuator constraints, obtained. Recall that Mayer’s prob-
lem consists of determining u(t) and x(t) with t ∈ [t0, tf ]
that minimize a functional cost J = Φ(x(tf ), tf ) subject
to the dynamics ẋ = f(x) + g(x)u and inequality con-
straints s̃(x, u) ≤ 0, c̃(x) ≤ 0 when initial states are given
and terminal states satisfy Ψ(x(t0), x(tf )) = 0. In all these
problems however, either the dynamics are assumed to be
already linear or a linearizing coordinate is known through
the natural outputs. Let mention that due to the difficulty
of solving the partial differential equations in one part, and
the fact many systems are not feedback linearizable, the
exact feedback linearization has been extended in various
ways. The notions of partial linearization, approximate
linearization, pseudo-linearization, extended linearization,
etc, have been introduced in the literature [3], [5], [6], [8],
[9], [15], [17], [21], [36] to off-set the difficulties associated
with exact linearization. Partial linearization is thought
when the system fails to satisfy the integrability conditions
and relies on the idea of finding the largest subsystem that
can be linearizable. Approximate linearization was first
developed in [17] and later generalized in [15] using Taylor
series expansions up to some degree. The changes of coor-
dinates and feedback obtained in this case are polynomial
that linearizes the system up to some degree, and their
obtention relies on a step-by-step algorithm or by the use
of outputs of the system defining a relative degree for the
system. In many of the methods proposed, the integrabil-
ity conditions are either weakened or they are applied to a
specific class of systems (we refer the interested reader to
[5] for a survey and the references therein). The paper is
organized as following. In Section 1.3 we give some defini-
tions and notations to be used throughout the paper. The
first main result on state linearization is given in Section
2 where an algorithm is presented, and the feedback case
considered in Section 4. Illustrative examples follow each
section and are given in Section 3 and Section 5. A con-
structive solution of the flow box theorem as well as the
convergence of the series is presented in Section 6 followed
by a conclusion.

1.3. Notations and Definitions
For simplicity of exposition we first consider single-input

control systems

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

The case of multi-input systems is more involved and will
be addressed somewhere else. Let 0 ≤ k ≤ n − 1 be an
integer.

Definition 1.2 We say that Σ is Brunovský k-linear if

g(x) = b, adfg(x) = Ab, . . . , adn−k−1
f g(x) = An−k−1b,

where (A, b) is the Brunovský canonical pair.

We will denote hereafter the coordinates in which the sys-
tem is Brunovský k-linear by the bolded variables xk =
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(xk1, . . . ,xkn)T and the system by ΣBr
k , where k = k. It

follows easily that a Brunovský k-linear system takes the
form

ΣBr
k :





ẋkj = Fkj(xk1, . . . ,xkk+1), if 1 ≤ j ≤ k

ẋkk+1 = Fkk+1(xk1, . . . ,xkk+1) + xkk+2

· · ·
ẋkn−1 = Fkn−1(xk1, . . . ,xkk+1) + xkn

ẋkn = Fkn(xk1, . . . ,xkk+1) + u.

A more compact representation of ΣBr
k is obtained as

ΣBr
k : ẋk = Fk(xk1, . . . ,xkk+1) + Ax̂k + bu, xk ∈ Rn,

where x̂k = (0, . . . , 0,xkk+2,xkk+3, . . . ,xkn)T is a vector
whose first k + 1 components are zero. The Brunovský
k-linear forms will play a crucial role in the state lineariza-
tion algorithm. For the feedback linearization algorithm
in Section 4, the Brunovský k-linear forms are replaced by
the feedback k-forms defined as following.

Definition 1.3 A control-affine system Σ : ẋ = f(x) +
g(x)u is said to be in (FB)k-form, and we denote it ΣFB

k ,
if in some coordinates xk = (xk1, . . . ,xkn)T, it takes the
form

ΣFB
k :





ẋkj = Fkj(xk1, . . . ,xkk+1), if 1 ≤ j ≤ k

ẋkk+1 = Fkk+1(xk1, . . . ,xkk+2)
. . .

ẋkn−1 = Fkn−1(xk1, . . . ,xkn)
ẋkn = Fkn(xk1, . . . ,xkn) + u,

where k = k. For simplicity we chose the coefficient of the
control input u to be 1 but this is not a restriction.

2. Main Results: S-Linearizability

The first result is as follows and states that any S-
linearizable system can be transformed into a linear form
via a sequence of explicit coordinates changes each giving
rise to a Brunovský k-linear system.

Theorem 2.1 Consider a controllable system

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

Assume it is S-linearizable (denote Σ , ΣBr
n and

x , xn). There exists a sequence of explicit co-
ordinates changes ϕn(xn), ϕn−1(xn−1), . . . , ϕ1(x1) that
gives rise to a sequence of Brunovský k-linear systems
ΣBr

n , ΣBr
n−1, . . . , ΣBr

0 such that ΣBr
k−1 = ϕk∗(ΣBr

k ) for any
1 ≤ k ≤ n. The Brunovský k-linear system ΣBr

k is mapped
into the Brunovský (k− 1)-linear system ΣBr

k−1 if and only
if

(S£k+1) , ∂2Fk

∂x2
kk+1

= 0. (2.1)

Moreover, in the coordinates w , ϕ1(x1) the system Σ
(actually ΣBr

0 ) takes the simpler linear form

Λλ : ẇ = Aλw + bu ,





ẇ1 = λ1w1 + w2

ẇ2 = λ2w1 + w3

· · ·
ẇn−1 = λn−1w1 + wn

ẇn = λnw1 + u,

where λ1, . . . , λn are constant real numbers.

The condition (2.1) remains the main criteria for the lin-
earizing algorithm; it is a simplified version of Theorem
1.1 (S2). It barely means that the nonlinear vector field
Fk(xk1, . . . ,xkk+1) should be affine with respect to the
variable xkk+1. At each step, we need to check if that con-
dition is satisfied, then proceed if yes and stop otherwise.
The proof of this theorem relies mainly on the flow-box
theorem for which we gave recently explicit solution [32]
(see below) and on Theorem 1.1 (S2).

Theorem 2.2 Let ν be a smooth vector field on Rn,
any integer 1 ≤ k ≤ n such that νk(0) 6= 0 and
σk(x) = 1/νk(x).
(i) Define z = ϕ(x) by its components as following

ϕj(x) = xj +
∞∑

s=1

(−1)sxs
k

s!
Ls−1

σkν (σkνj)(x)

ϕk(x) =
∞∑

s=1

(−1)s+1xs
k

s!
Ls−1

σkν (σk)(x)

(2.2)

for any 1 ≤ j ≤ n, j 6= k. The diffeomorphism z = ϕ(x)
satisfies ϕ∗(ν) = ∂zk

.
(ii) The diffeomorphism x = ψ(z) given by its components

ψj(z) = zj +
∞∑

s=1

zs
k

s!

(
s−1∑

i=0

(−1)iCi
s∂

i
zk

Ls−i−1
ν (νj)(z)

)

ψk(z) =
∞∑

s=1

zs
k

s!

(
s−1∑

i=0

(−1)iCi
s∂

i
zk

Ls−i−1
ν (νk)(z)

)

(2.3)
for any 1 ≤ j ≤ n, j 6= k, is the inverse of z = ϕ(x), that

is, such that
∂ψ(z)
∂zk

= ν(ψ(z)).

Above, ϕ∗(ν) = ∂ϕ
∂x (ϕ−1(z))ν(ϕ−1(z)) is the mapping of

tangent space induced by the diffeomorphism z = ϕ(x),
and we have adopted the following notation

∂zk
=

∂

∂zk
, ∂zk

· h =
∂h

∂zk
, . . . , ∂i

zk
· h =

∂ih

∂zi
k

, i ≥ 2.

The following remarks are of paramount importance here.
R1. The expressions above are not series around the origin
or in the variable xk as the coefficients Ls

σkν(σkνj)(x) are

5



evaluated at x = (x1, . . . , xn) and might well depend on
xk.
R2. If the vector field ν is independent of some variable xl

(l 6= k), then the diffeomorphism ϕ(x) is also independent
of the variable xl (except a linear dependence).
R3. If any of the components of ν(x) is zero, say
νj(x) = 0, then ϕj(x) = xj .

A proof of the theorem and the convergence of the series
will be given in Section 6. In Section 3 we illustrate with
few examples, in particular Example 3.4 will justify the
fact that the expressions (2.2)-(2.3) of Theorem 2.2 are
not Taylor series at the origin. For further details we refer
to [32].

2.1. Linearizing Coordinates

In this section we define an algorithm that shows how to
compute the linearizing coordinates for the system. The
algorithm stands also as a proof of Theorem 2.1. Although
the algorithm generates a sequence of new coordinates
xn,xn−1, . . . ,x1 as stated in Theorem 2.1, at each step,
say Step n−k, we will reset the coordinates of the system
as x, i.e., set x = xk and take the coordinates of its trans-
form as z, i.e., put z = xk−1. Moreover, the corresponding
system ΣBr

k will be renamed as Σ : ẋ = f(x) + g(x)u and
its transform ΣBr

k−1 by Σ̃ : ż = f̃(z) + g̃(z)u.
A. (S£)-Algorithm. Consider a linearly controllable sys-
tem

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

Without loss of generality take g(0) = b = (0, . . . , 0, 1)T.
This algorithm consists of n− 1 steps.
Step 0. Set Σ , ΣBr

n and x , xn = (xn1, . . . ,xnn)T.
Apply Theorem 2.2 with ν = g(x) to construct a change
of coordinates z = ϕ(x) given by (2.2), such that
ϕ∗(g)(z) = ∂zn. Such change of coordinates transforms
Σ into

Σ̃ : ż = f̃(z) + g̃(z)u = (ϕ∗f)(z) + (ϕ∗g)(z)u, z ∈ Rn,

where g̃ = b. Denote xn−1 , z and ϕn , ϕ. It follows that
the change of coordinates xn−1 = ϕn(xn) transforms ΣBr

n

into

ΣBr
n−1 :ẋn−1=Fn−1(xn−1) + Ax̂n−1 + bu, xn−1 ∈ Rn,

where x̂n−1 ≡ 0 and Fn−1(xn−1) = f̃(xn−1) = ϕn∗(f).
Step 1. Reset the variable x , xn−1 and Σ , ΣBr

n−1 :
f(x) + g(x)u with g(x) = b and f(x) = Fn−1(x1, . . . , xn).
For Σ to be S-linearizable, Theorem 1.1 (S2) should be
satisfied, which is equivalent to

[adq
fg, adr

fg] = 0, 0 ≤ q, r ≤ n− 1. (2.4)

Taking q = 0 and r = 1 we get in particular [g, adfg] = 0
or equivalently (because g = ∂xn)

(S£n) , ∂2f

∂x2
n

= 0.

It follows that f should be affine with respect to the vari-
able xn. If this condition fails then the system is not S-
linearizable and the algorithm stops. Otherwise, the vector
field f decomposes uniquely as

f(x1, . . . , xn) = Fn−1(x1, . . . , xn−1) + xnν(x1, . . . , xn−1).

Because g, adfg are linearly independent, then ν(0) 6= 0.
Apply Theorem 2.2 to define a change of coordinates
z = ϕ(x) such that ϕ∗(ν) = ∂zn−1 . Denote z , xn−2

and ϕ , ϕn−1. The diffeomorphism xn−2 = ϕn−1(xn−1)
transforms ΣBr

n−1 into

ΣBr
n−2 :ẋn−2=Fn−2(xn−2) + Ax̂n−2 + bu, xn−2 ∈ Rn,

where x̂n−2 = (0, . . . , 0,xn−2n)T and Fn−2(xn−2) =
ϕn−2∗(Fn−1) is function of the variables
xn−21, . . . ,xn−2n−1.
Step n− k. Assume that ΣBr

n has been taken, via a com-
position xk = ϕk+1 ◦ · · · ◦ ϕn(x) of diffeomorphisms, into

ΣBr
k : ẋk = Fk(xk1, . . . ,xkk+1) + Ax̂k + bu, xk ∈ Rn,

where x̂k = (0, . . . , 0,xkk+2,xkk+3, . . . ,xkn)T, and the
last n− k components of the vector field Fk(xk) are zero.
Once again reset the variable x , xk and denote ΣBr

k sim-
ply by Σ : ẋ = f(x) + g(x)u with g(x) = b and

f(x) = Fk(x1, . . . , xk+1) + Ax̂k

where x̂k = (0, . . . , 0, xk+2, xk+3, . . . , xn)T. Notice that in
these coordinates

g = ∂xn , adfg = −∂xn−1 , . . . , adn−k−1
f g = (−1)n−k−1∂xk+1

which implies that adn−k
f g = (−1)n−k ∂Fk

∂xk+1
. For r = n −

k − 1 and q = r + 1, the condition [adq
fg, adr

fg] = 0 of
Theorem 1.1 (S1) is equivalent to

(S£k+1) , ∂2f

∂x2
k+1

=
∂2Fk

∂x2
k+1

= 0.

If the condition fails to be satisfied, then the system is not
state linearizable and the algorithm stops. If satisfied this
means that Fk is affine with respect to the variable xk+1

and decomposes as

Fk(xk) = fk(x1, . . . , xk) + xk+1ν(x1, . . . , xk),

where ν is a nonsingular vector field in Rn that depends
exclusively on the variables x1, . . . , xk. By Theorem 2.2
we can construct a change of coordinates z = ϕ(x) such
that ϕ∗(ν)(z) = ∂zk

. Moreover the components of ϕ are
such that

ϕj(x) = xj + φj(x1, . . . , xk), 1 ≤ j ≤ n. (2.5)

This change of coordinates transforms Σ into

Σ̃ : ż = f̃(z) + g̃(z)u = (ϕ∗f)(z) + (ϕ∗g)(z)u
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where g̃(z) = (ϕ∗g)(z) = (0, . . . , 0, 1)T and

f̃(z) = (ϕ∗Fk)(z)+[zk+1−φk+1(ϕ−1(z))](ϕ∗ν)(z)+ϕ∗(Ax̂)(z).

Because the k first components of Ax̂ are zero, then (2.5)
implies ϕ∗(Ax̂)(z) = (0, . . . , 0, zk+2, . . . , zn, 0)T. We then
deduce that f̃(z) = Fk−1(z) + Az̃, where Fk−1(z) =
(ϕ∗Fk)(z) − ϕk+1(ϕ−1(z))∂zk

depends exclusively on the
variables z1, . . . , zk and

Aẑ = zk+1∂zk
+ (0, . . . , 0, zk+2, zk+3, . . . , zn, 0)T

= (0, . . . , 0, zk+1, zk+2, . . . , zn, 0)T

is such that the k first components are zero. Notice that
when k = 0, the expression above reduces simply to

F0(z) = z1λ, where λ = (λ1, . . . , λn)T.

This ends the general step and shows that a sequence of ex-
plicit coordinates changes ϕn(xn), . . . , ϕ1(x1) can be con-
structed whose composition z = ϕ1 ◦· · ·◦ϕn(xn) takes the
original system Σ into the linear form Λλ.
B. Summary of Algorithm. Start with a system

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

Step 0. Normalize the vector field g 7−→ g =
(0, . . . , 0, 1)T. Apply a linear change of coordinates to
transform the linearization such that ∂f

∂x (0) = Aλ.
Step n− k. If the condition

(S£k+1) , ∂2f

∂x2
k+1

= 0

fails, the algorithm stops: The system is not S-linearizable.
If (S£k+1) holds, then decompose the vector field f as

f(x1, . . . , xk+1) = F (x1, . . . , xk) + xk+1ν(x1, . . . , xk).

Apply Theorem 2.2 to construct a change of coordinates
z = ϕ(x) ∈ Rn that rectifies the nonsingular vector field

ν(x) = ν1(x)∂x1 + · · ·+ νn(x)∂xn ,

that is, such that ϕ∗(ν)(z) = ∂zk
. Find the transform ϕ∗Σ

of the system in precedent step. For k = n−1, n−2, . . . , 2
repeat Step n − k. End if system is linear or algorithm
fails.

3. State Linearization: Examples

In what follows we illustrate with few examples.

Example 3.1 Consider a single-input control system

Σ : ẋ = f(x)+g(x)u ,





ẋ1 = x2 − 2x2x3 + x2
3 + 4x2x3u

ẋ2 = x3 − 2x3u

ẋ3 = u

with f(x) = (x2 − 2x2x3 + x2
3, x3, 0)T and g(x) =

(4x2x3,−2x3, 1)T. First rectify the vector field ν(x) , g(x)
by applying Theorem 2.2 with n = 3 and σ3(x) = 1. Since

Lν(ν1) = −8x2
3 + 4x2, L

2
ν(ν1) = −24x3, L

3
ν(ν1) = −24,

we have Ls−1
ν (ν1) = 0 for all s ≥ 5 and hence

z1 = ϕ1(x) = x1 +
∞∑

s=1
(−1)s xs

3

s!
(Ls−1

ν ν1)(x),

= x1 − 4x2x
2
3 − 4x4

3 + 2x2x
2
3 + 4x4

3 − x4
3

= x1 − 2x2x
2
3 − x4

3.

Likewise, Lν(ν2) = −2 and Ls−1
ν (ν2) = 0, s ≥ 3, yielding

z2 = ϕ2(x) = x2 +
∞∑

s=1

(−1)s xs
3

s!
(Ls−1

ν ν2)(x)

= x2 − x3(−2x3) + (1/2!)x2
3(−2) = x2 + x2

3.

We apply the change of coordinates

z1 = x1 − 2x2x
2
3 − x4

3, z2 = x2 + x2
3, z3 = x3

to transform the original system into

Σ̃ : ż = f̃(z) + g̃(z)u ,





ż1 = z2 − 2z2z3

ż2 = z3

ż3 = u,

where g̃(z) = (0, 0, 1)T and f̃(z) = (z2−2z2z3, z3, 0)T. The
vector field f̃(z) = (z2 − 2z2z3, z3, 0)T decomposes

f̃(z) = (z2, 0, 0)T + z3(−2z2, 1, , 0)T.

The next step is to rectify ν(x) = (−2z2, 1, 0)T. Theo-
rem 2.2 with k = 2 and σ2(z) = 1 yields

w1 = z1 +
∞∑

s=1
(−1)s zs

2

s!
Ls−1

ν (ν1)(z)

= z1 − z2(−2z2) + (1/2!)z2
2(−2) = z1 + z2

2

w2 = z2

w3 = z3.

The system is then transformed, under these change of co-
ordinates, to the linear Brunovský form ΛBr. The lineariz-
ing coordinates for the original system are thus obtained
as a composition of the two-step coordinate changes

w1 = x1 − 2x2x
2
3 − x4

3 + (x2 + x2
3)

2 = x1 + x2
2

w2 = x2 + x2
3

w3 = x3.

Of course, these linearizing coordinates could have been
obtained directly or by other methods. The emphasis here
is on the applicability of the method to any linearizable
system.
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Example 3.2 We consider the following example

Σ : ẋ = f(x)+g(x)u ,





ẋ1 = x2 + ((1/2)x2 − (1/12)x3x4)u

ẋ2 = x3 + (1/2)x3u

ẋ3 = x4 + x4u

ẋ4 = u.

Because of the strict feedforward structure, we showed in
[28] (using a 4-step algorithm) that the change of coordi-
nates

z = ϕ(x) ,





z1 = x1 − (1/24)
(
12x2x4 − 4x3x

2
4 + x4

4

)

z2 = x2 − (1/2)
(
x3x4 − (1/3)x3

4

)

z3 = x3 − (1/2)x2
4

z4 = x4

(3.1)
linearizes the system. We can recover such coordinates
directly by applying the algorithm given in the proof. De-
note by f(x) = (x2, x3, x4, 0)T and

ν(x) , g(x) = ((1/2)x2 − (1/12)x3x4, (1/2)x3, x4, 1)T .

The first step consists of rectifying the control vector field
via Theorem 2.2. Since ν3 = 1, hence σ3 = 1 we have

Lν(ν1) = (1/2) (x3/2)−(1/12)
(
x2

4 + x3

)
= (1/6)x3−(1/12)x2

4,

and L2
ν(ν1) = 1

6x4− 1
6x4 = 0, i.e., Ls

ν(ν1) = 0, s ≥ 2. Thus

ϕ1(x) = x1 − x4ν1(x) + (1/2)x2
4Lν(ν1)

= x1 − (1/2)x2x4 + (1/6)x3x
2
4 − (1/24)x3

4.

Also Lν(ν2)= 1
2x4, L2

ν(ν2)= 1
2 and Ls

ν(ν2)=0, s ≥ 3 implies

ϕ2(x) = x2 − x4ν2(x) + (1/2)x2
4Lν(ν2)− (1/6)x3

4L
2
ν(ν2)

= x2 − (1/2)x3x4 + (1/4)x3
4 − (1/12)x3

4

= x2 − (1/2)x3x4 + (1/6)x3
4.

Similarly Lν(ν3) = 1 and Ls−1
ν (ν3) = 0, ∀s ≥ 3. Hence

ϕ3(x) = x3 − x4ν3(x) + (1/2)x2
4Lν(ν2)

= x3 − x2
4 + (1/2)x2

4 = x3 − (1/2)x2
4.

Because ν4(x) = 1, we get ϕ4(x) = x4 and the change
of coordinates (3.1) rectifies the control vector field g and
linearizes the system. Notice that the algorithm described
in [28] allowed only to find (3.1) by computing one compo-
nent at a time (holding other components identity), start-
ing from ϕ3 then ϕ2 and finally ϕ1 and updating the sys-
tem after each step. A composition of different coordinates
changes gave (3.1). However, Theorem 2.2 allows to com-
pute those components independently to each other. .

Example 3.3 Consider ν(x) = x3∂x1 +(x2 +x3)∂x2 +∂x3

in R3. Here Lν(ν1) = 1 and Ls−1
ν (ν1) = 0 for s ≥ 3 and

Ls−1
ν (ν2) = x2 + x3 + 1 for all s ≥ 2. It follows that

ϕ1(x) = x1 +
∞∑

s=1

(−1)sxs
3

s!
Ls−1

ν (ν1)(x)

= x1 − x3ν1(x) + (1/2!)x2
3Lν(ν1)(x)

= x1 − (1/2)x2
3

and

ϕ2(x) = x2 +
∞∑

s=1

(−1)sxs
3

s!
Ls−1

ν (ν2)(x)

= x2 − x3ν2(x) +
∞∑

s=2

(−1)sxs
3

s!
(x2 + x3 + 1)

= (x2 + x3 + 1)e−x3 − 1.

To find the inverse first notice that ∂i
z3
·Ls−i−1

ν (ν1)(z) = 0
if (i, s) 6= (0, 1), which yields

ψ1(z) = z1 +
∞∑

s=1

zs
3

s!

(
s−1∑

i=0

(−1)iCi
s ∂i

zn
Ls−i−1

ν (ν1)(z)

)

= z1 + (1/2!)z2
3ν1(z) = z1 + (1/2)z2

3 .

From ∂i
z3
· Ls−i−1

ν (ν2)(z) = 0 for all i ≥ 2, we deduce

s−1∑

i=0

(−1)iCi
s ∂i

z3
Ls−i−1

ν (ν2)(z)

= Ls−1
ν (ν2)(z)− s∂z3L

s−2
ν (ν2)(z) = z2 + z3 + 1− s.

By Theorem 2.2 (ii) we get the 2nd component of ψ(z) as

ψ2(z) = z2 +
∞∑

s=1

zs
3

s!

(
s−1∑

i=0

(−1)iCi
s ∂i

z3
Ls−i−1

ν (ν2)(z)

)

= z2 +
∞∑

s=1

zs
3

s! (z2 + z3 + 1)−
∞∑

s=1

zs
3

s! s

= (z2 + 1)ez3 − z3 − 1.

It is straightforward to verify that the inverse is

x = ϕ−1(z) ,





x1 = ψ1(z) = z1 + (1/2)z2
3

x2 = ψ2(z) = (z2 + 1)ez3 − z3 − 1
x3 = ψ3(z) = z3.

Example 3.4 Consider the non singular vector field
ν(x) = λ(x3)∂x1 + ∂x3 , x ∈ R3, where λ is a flat func-
tion, that is, λ and all its derivatives are zero at x3 = 0. A
well-known example is the function defined by λ(0) = 0,
and λ(x3) = exp(−1/x2

3) if x3 6= 0. It is straightforward to
check that Ls−1

ν (ν1)(x) = λ(s−1)(x3) for all s ≥ 1, where
λ(k)(x3) is the kth derivative of λ. Should (2.2) have been
a series around 0 or at xk = 0 the straightening diffeomor-
phism would have been identity:

z = ϕ(x) ,





ϕ1(x) = x1 +
∞∑

s=1

(−1)sxs
3

s!
Ls−1

ν (ν1)(0) = x1

ϕ2(x) = x2 +
∞∑

s=1

(−1)sxs
3

s!
Ls−1

ν (ν2)(0) = x2

ϕ3(x) =
∞∑

s=1

(−1)s−1xs
3

s!
Ls−1

ν (1)(0) = x3

which is impossible. However we can verify easily that
ϕ1(x) = x1 −

∫ x3

0
λ(u) du which coincides with

ϕ1(x) = x1 +
∞∑

s=1

(−1)sxs
3

s!
λ(s−1)(x3).
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Indeed,
∫ x3

0
λ(u) du = −

∞∑
s=1

(−1)sxs
3

s!
λ(s−1)(x3) because

the two functions coincide when x3 = 0 and it is enough to
verify that their derivatives are also equal. The derivative
of the right hand side gives after simplification

−
∞∑

s=1

(−1)sxs−1
3

(s− 1)!
λ(s−1)(x3)−

∞∑
s=1

(−1)sxs
3

s!
λ(s)(x3) = λ(x3).

Now to find the inverse of the normalizing coordinates, let
us apply Theorem 2.2 (ii) with n = 3 and k = 3. First we
have Ls

νν = λ(s)(x3)∂x1 for all s ≥ 1. We thus have

ψ(z) = z +
∞∑

s=1

zs
3

s!

(
s−1∑

i=0

(−1)iCi
s ∂i

z3
(Ls−i−1

ν ν)(z)

)

= z +
∞∑

s=1

zs
3

s!

(
s−1∑

i=0

(−1)iCi
s

)
λ(s−1)(z3)∂z1

=




z1 −
∞∑

s=1

(−1)szs
3

s!
λ(s−1)(z3)

z2

z3




It clearly follows that ψ(z) =
(

z1 +
∫ z3

0

λ(s) ds, z2, z3

)T

which was predictable directly by inverting z = ϕ(x). .

4. Main Results: F-Linearizable Systems

Below we give our main result, that is, an algorithm
allowing to construct explicitly feedback linearizing coor-
dinates. We first recall the following well-known result.

Theorem 4.1 A control system Σ : ẋ = f(x) + g(x)u is
locally F-equivalent to a linear controllable system if and
only if it is S-equivalent to a feedback form

(FB)





ż1 = f̂1(z1, z2)

ż2 = f̂2(z1, z2, z3)
· · ·

żn−1 = f̂n−1(z1, . . . , zn)

żn = f̂n(z1, . . . , zn) + ĝn(z1, . . . , zn)u.

The proof of Theorem 4.1 is straightforward and can be
found in the literature (e.g. [11], [12], [13], [25]). Let f̂ =
(f̂1, . . . , f̂n), ĝ = (0, . . . , 0, ĝn) and ĥ(z) = z1. It follows
that the feedback transformation Γ , (ϕ̂, α̂, β̂) defined by
w = ϕ̂(z), u = α̂(z) + β̂(z)v, where

ϕ̂1(z) = ĥ(z), ϕ̂2(z) = Lf̂ (ĥ), . . . , ϕ̂n(z) = Ln−1

f̂
(ĥ)

α̂(z) = −
Ln

f̂
(ĥ)

LĝL
n−1

f̂
(ĥ)

and β̂(z) = − 1

LĝL
n−1

f̂
(ĥ)

brings (FB) into the Brunovský canonical form ΛBr. Con-
sider Σ : ẋ = f(x) + g(x)u and recall Definition 1.3
that Σ is in (FB)k-form, if in some coordinates xk =
(xk1, . . . ,xkn), it takes the form

ΣFB
k :





ẋkj = Fkj(xk1, . . . ,xkk+1), if 1 ≤ j ≤ k

ẋkk+1 = Fkk+1(xk1, . . . ,xkk+2)
. . .

ẋkn−1 = Fkn−1(xk1, . . . ,xkn)
ẋkn = Fkn(xk1, . . . ,xkn) + u,

where k = k.

Theorem 4.2 Consider a linearly controllable system

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

Assume it is F-linearizable (let Σ , ΣFB
n and x , xn).

There exists a sequence of explicit coordinates changes
ϕn(xn), ϕn−1(xn−1), . . . , ϕ2(x2) that gives rise to a se-
quence of (FB)k-forms ΣFB

n−1,ΣFB
n−2, . . . , ΣFB

1 such that for
any 2 ≤ k ≤ n we get ΣFB

k−1 = (ϕk)∗ΣFB
k . Moreover, in the

coordinates z , ϕ2(x2) the system Σ (actually ΣFB
1 ) takes

the feedback form (FB).

A direct consequence of this result is the following corol-
lary.

Corollary 4.3 Consider a linearly controllable system Σ
and assume it is F-linearizable. Then Σ is linearizable by
the feedback transformation w = ϕ̂ ◦ ϕ(x), u = α̂(ϕ(x)) +
β̂(ϕ(x))v, where z = ϕ(x) is the diffeomorphism taking Σ
into the feedback form (FB), and Γ = (ϕ̂, α̂, β̂) the trans-
formation taking (FB) into to the Brunovský form ΛBr.

The proof of Theorem 4.2 follows from the algorithm be-
low.
A. (F£)-Linearizing Algorithm. Consider the system
Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R and assume it
is F-linearizable. Applying a linear feedback z = Tx, u =
Kx + Lv, if necessary, we assume that ∂f

∂x (0) = A and
g(0) = b, where (A, b) is the Brunovský canonical pair.
The algorithm below consists of a maximum of n−1 steps.
Step 1. Set Σ , ΣFB

n and x , xn = (xn1, . . . ,xnn)T.
Apply Theorem II.2 ([33]) with ν = g(x) to construct a
change of coordinates z = ϕ(x) such that ϕ∗(g)(z) = ∂zn .
If we denote xn−1 , z and ϕn , ϕ, it thus follows that
the change of coordinates xn−1 = ϕn(xn) takes ΣFB

n into

ΣFB
n−1 :





ẋn−11 = Fn−11(xn−11, . . . ,xn−1n)
ẋn−12 = Fn−12(xn−11, . . . ,xn−1n)

. . .

ẋn−1n−1 = Fn−1n−1(xn−11, . . . ,xn−1n)
ẋn−1n = Fn−1n(xn−11, . . . ,xn−1n) + u.

Remark that this first step is independent of whether Σ is
F-linearizable or not. It depends only on the fact that the
vector field g is nonsingular, and hence, can be rectified.
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Step n−k. Assume that a sequence of explicit coordinates
changes ϕn, . . . , ϕk+1 were found whose composition xk =
ϕk+1 ◦ · · · ◦ ϕn(xn) takes ΣFB

n into the (FB)k-form

ΣFB
k : ẋk = Fk(xk) + bu, xk ∈ Rn,

where (recall that k = k)

Fkj(xk) =





Fkj(xk1, . . . ,xkk+1), 1 ≤ j ≤ k

Fkj(xk1, . . . ,xkj+1), k + 1 ≤ j ≤ n− 1
Fkj(xk1, . . . ,xkn), j = n.

Once again reset the variable x , xk and denote ΣFB
k

simply by Σ : ẋ = f(x) + g(x)u with g(x) = b and

fj(x) =

{
fj(x1, . . . , xk+1), 1 ≤ j ≤ k

fj(x1, . . . , xj+1), k + 1 ≤ j ≤ n,

where the last component fn depends only on x1, . . . , xn.
We showed in Section 6 (6.1) that there exist smooth
functions Θ(x) = Θ(x1, . . . , xk+1), Fj(x) = Fj(x1, . . . , xk)
and νj(x) = νj(x1, . . . , xk) for 1 ≤ j ≤ k such that
fj(x1, . . . , xk+1) = Fj(x) + νj(x)Θ(x) 1 ≤ j ≤ k with
Θ(0) 6= 0. Moreover, νk(0) 6= 0 because ∂fk

∂xk+1
(0) 6= 0. De-

fine the nonsingular vector field ν(x) = ν1(x)∂x1 + · · ·+
νk(x)∂xk

∈ Rk and apply Theorem II.2 ([33]) to construct
a change of coordinates z = ϕ(x1, . . . , xk) ∈ Rk such that
ϕ∗(ν)(z) = ∂zk

. Extend such change of coordinates in Rn

(still called ϕ) by

z = ϕ(x) = (ϕ1(x), . . . , ϕk(x), xk+1, . . . , xn)T.

The inverse x = ψ(z) = ϕ−1(z) is also obtained by Theo-
rem II.2 ([33]). Clearly, the inverse is of the form

x = ψ(z) = (ψ1(z), . . . , ψk(z), zk+1, . . . , zn)T.

The change of coordinates transforms the system Σ into

Σ̃ : ż = f̃(z) + g̃(z)u = ϕ∗f(z) + ϕ∗g(z)u,

where ϕ∗g(z) = (0, . . . , 0, 1)T and

f̃(z) = ϕ∗f(z) =
k∑

j=1

ϕ∗
(
fj(x1, . . . , xk+1)∂xj

)

+
n∑

j=k+1

ϕ∗
(
fj(x1, . . . , xj+1)∂xj

)
.

It is easy to see that the second term is equivalent to
n∑

j=k+1

ϕ∗
(
fj(x1, . . . , xj+1)∂xj

)
=

n∑
j=k+1

fj(ψ(z))∂zj . (4.1)

The first term rewrites
k∑

j=1

ϕ∗
(
fj(x)∂xj

)
=

k∑
j=1

ϕ∗
(
Fj(x1, . . . , xk)∂xj

)

+
k∑

j=1

ϕ∗
(
Θ(x)νj(x1, . . . , xk)∂xj

)

=
k∑

j=1

F̃j(z1, . . . , zk)∂zj + Θ(ψ(z))∂zk

(4.2)

We deduce from (4.2) that the first k − 1 components de-
pend only on the variables z1, . . . , zk and the kth com-
ponent depends on z1, . . . , zk+1. In the other hand (4.1)
shows that the jth component (j = k + 1, . . . , n) depends
on the variables z1, . . . , zj+1. We thus conclude that

f̃j(z) =

{
f̃j(z1, . . . , zk), 1 ≤ j ≤ k − 1

f̃j(z1, . . . , zj+1), k ≤ j ≤ n,

where the last component f̃n depends only on z1, . . . , zn.
Denote xk−1 , z and ϕk , ϕ. Thus the change of coordi-
nates xk−1 = ϕk(xk) brings the system ΣFB

k into

ΣFB
k−1 :





ẋk−1j = Fk−1j(xk−11, . . . ,xk−1k)
if 1 ≤ j ≤ k − 1

ẋk−1k = Fk−1k(xk−11, . . . ,xk−1k+1)
. . .

ẋk−1n−1 = Fk−1n−1(xk−11, . . . ,xk−1n)
ẋk−1n = Fk−1n(xk−11, . . . ,xk−1n) + u.

This completes the induction an the algortihm; conse-
quently, we can construct a sequence of explicit coordi-
nates changes ϕn(xn),ϕn−1(xn−1),. . . ,ϕ2(x2) whose com-
position z = ϕ2 ◦ · · · ◦ ϕn(xn) takes the original system Σ
into the (FB) form.
B. Summary of Algorithm. Start with a system Σ : ẋ =
f(x) + g(x)u, x ∈ Rn, u ∈ R.
Step 0. Normalize the vector field g 7−→ g = (0, . . . , 0, 1)T

and apply a linear feedback to put the linearization in
Brunovský form (not necessary but very recommended).
Step n− k. If the condition

(F£k+1) , ∂2fj

∂x2
k+1

= γn−k(x)
∂fj

∂xk+1
, 1 ≤ j ≤ k

fails (γn−k(x) not the same for first k components) then
system is not feedback linearizable and algorithm stops. If
(F£k+1) is satisfied, then decompose the first k compo-
nents f1, . . . , fk as following (see (6.1))

fj(x1, . . . , xk+1) = Fj(x) + νj(x)Θ(x) 1 ≤ j ≤ k.

Apply Theorem II.2 ([33]) to construct a change of coordi-
nates z = ϕ(x) ∈ Rn to rectify the nonsingular vector field

ν(x) = ν1(x)∂x1 + · · ·+νk(x)∂xk
+0 ·∂xk+1 + · · ·+0 ·∂xn ,

that is, such that ϕ∗(ν)(z) = ∂zk
. Compute ϕ∗Σ the

transform of precedent system. Repeat Step n − k for
k = n − 1, . . . , 2. End if system is in (FB) form or algo-
rithm fails.

5. Feedback Linearization: Examples

Example 5.1 Consider a single-input control system

Σ : ẋ = f(x) + g(x)u ,





ẋ1 = x2(1 + x3)
ẋ2 = x3(1 + x1)− x2u

ẋ3 = x1 + (1 + x3)u
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with f(x) = (x2(1 + x3), x3(1 + x1), x1)T and g(x) =
(0,−x2, 1+x3)T. We first rectify the vector field g(x). Put
ν(x) = g(x) and apply Theorem II.2 ([33]) with n = 3 and
σ3(x) = (1 + x3)−1, thus σ3ν = −x2(1 + x3)−1∂x2 + ∂x3 .
Since ν1 = 0 and ν2(x) = −x2, we have ϕ1(x) = x1 in
one side, and

Lσ3ν(σ3ν2) = 2x2(1 + x3)−2, L2
σ3ν(σ3ν2) = −6x2(1 + x3)−3

in the other, and recurrently

Ls−1
σ3ν (σ3ν2) = (−1)ss!x2(1 + x3)−s.

It follows that

z2 = ϕ2(x) = x3 +
∞∑

s=1

(−1)sxs
3

s!
Ls−1

σ3ν (σ3ν2)(x) = x2(1 + x3).

To calculate ϕ3(x), notice that Lσ3ν(σ3) = −(1 + x3)−2

and L2
σ3ν(σ3) = 2(1 + x3)−3. Thus a simple recurrence

shows that Ls−1
σ3ν σ3 = (−1)s−1(s− 1)!(1 + x3)−s, for s ≥ 1

which implies

z3 = ϕ3(x) =
∞∑

s=1

(−1)s+1xs
3

s!
Ls−1

σ3ν (σ3)(x)

=
∞∑

s=1

1
s

(
x3

1 + x3

)s

= =
∞∑

s=1

∫ (
x3

1 + x3

)s−1 (
x3

1 + x3

)′
d x3

=
∫

1
1 + x3

dx3 = ln(1 + x3).

We apply the change of coordinates z1 = x1, z2 = x2(1 +
x3), z3 = ln(1 + x3) to transform the original system into

ż = f̂(z)+ĝ(z)u ,





ż1 = z2

ż2 = (1 + z1)ez3(ez3 − 1) + z1z2e
−z3

ż3 = z1e
−z3 + u.

The system is in (FB)-form and can be put into the linear
Brunovský form ΛBr : ẇ1 = w2, ẇ2 = w3, ẇ3 = v via





w1 = ĥ(z) = z1

w2 = Lf̂ ĥ(z) = z2

w3 = L2
f̂
ĥ(z) = (1 + z1)ez3(ez3 − 1) + z1z2e

−z3

v = L3
f̂
ĥ(z) + LĝL

2
f̂
ĥ(z)u.

The composition of the two-step changes of coordinates
gives linearizing coordinates





w1 = x1

w2 = x2(1 + x3)
w3 = x3(1 + x1)(1 + x3) + x1x2

and feedback for the original system

v = x2(1 + x3)(x2 + x3 + x2
3) + x1(1 + x1)(1 + 3x3)

+[(1 + x1)(1 + x3)(1 + 2x3)− x1x2]u.

Such linearizing coordinates and feedback could have been
obtained by other methods. We want to point out that the
method is applicable to all feedback linearizable systems.

Example 5.2 Consider a single-input control system

Σ : ẋ = f(x) + g(x)u ,





ẋ1 = x2 − x2
4

ẋ2 = x4 + 2x2
1x4 + 2x4u

ẋ3 = x2
1

ẋ4 = x1 + x2
4 + u

with f(x) = (x2 − x2
4, x4 + 2x2

1x4, x
2
1, x1 + x2

4)
T and

g(x) = (0, 2x4, 0, 1)T. This system is not feedback lineariz-
able as it can be checked that [g, adfg] /∈ span {g, adfg} .
We want to show that the algorithm provides such infor-
mation without having to compute the involutivity of the
distributions. We first start by rectifying the control vec-
tor field g. Identify ν = g(x) with σ4 = 1. We calculate
the component

ϕ2(x) = x2 +
∞∑

s=1

(−1)sxs
4

s!
Ls−1

ν (ν2)(x)

= x2 +
∞∑

s=1

(−1)sxs
4

s!
Ls−1

ν (2x4)(x) = x2 − x2
4.

Since ν1, ν3, ν4 are constants, then ϕ1(x) = x1, ϕ3(x) = x3,
and ϕ4(x) = x4. The change of coordinates z1 = x1, z2 =
x2 − x2

4, z3 = x3, z4 = x4 takes the system into

Σ̃ : ż = f̃(z)+g̃(z)u ,





ż1 = z2

ż2 = z4 − 2z1z4 + 2z2
1z4 − 2z3

4

ż3 = z2
1

ż4 = z1 + z2
4 + u

where g̃ = (0, 0, 0, 1)T and

f̃(z) = (z2, z4 − 2z1z4 + 2z2
1z4 − 2z3

4 , z2
1 , z1 + z2

4)T.

Clearly,

∂f̃

∂z4
= (0, 1−2z1+2z2

1−6z2
4 , 0, 2z4)T,

∂2f̃

∂z2
4

= (0,−12z4, 0, 2)T

from which we deduce that ∂2f̃j

∂z2
4

= γ1
∂f̃j

∂z4
, 1 ≤ j ≤ 3 fails.

The algorithm ends: the system is not F-linearizable.

Example 5.3 Consider the single-input control system
[12]

Σ : ẋ = f(x) + g(x)u ,





ẋ1 = ex2u

ẋ2 = x1 + x2
2 + ex2u

ẋ3 = x1 − x2

with f(x) = (0, x1+x2
2, x1−x2)T and g(x) = (ex2 , ex2 , 0)T.

We first rectify the vector field g(x). Denote ν(x) = g(x)
and apply Theorem II.2 ([33]) with n = 3 and σ2(x) =
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e−x2 , hence σ2ν = ∂x1 + ∂x2 . Since ν3 = 0, then ϕ3(x) =
x3. Because Ls−1

σ2ν (σ2ν1) = 0 for all s ≥ 2, we obtain

z1 = ϕ1(x) = x1 +
∞∑

s=1

(−1)sxs
2

s!
Ls−1

σ2ν (σ2ν1)(x)

= x1 − x2(σ2ν1)(x) = x1 − x2.

To compute ϕ2 notice that Ls−1
σ2ν (σ2) = (−1)s−1e−x2 for

all s ≥ 2. It thus follows that

z2 = ϕ2(x) =
∞∑

s=1

(−1)s+1xs
2

s!
Ls−1

σ2ν (σ2)(x)

=
∞∑

s=1

xs
2

s!
e−x2 = 1− e−x2 .

The change of coordinates

z = ϕ(x) = (x1 − x2, 1− e−x2 , x3)T

whose inverse x = ψ(z) = (z1−ln(1−z2),− ln(1−z2), z3)T

can be obtained directly or by applying Theorem II.2 (ii)
(see [33]), takes the original system into





ż1 = −z1 + ln(1− z2
2)− (ln(1− z2))2

ż2 = (1− z2)[z1 − ln(1− z2
2) + (ln(1− z2))2] + u

ż3 = z1.

A permutation of the variables z̃1 = z3, z̃2 = z1, z̃3 = z2

yields a system in feedback form

(FB)





˙̃z1 = z̃2

˙̃z2 = −z̃2 + ln(1− z̃2
3)− (ln(1− z̃3))2

˙̃z3 = (1− z̃3)[z̃2 − ln(1− z̃2
3) + (ln(1− z̃3))2] + u

that can be linearized by

w1 = z̃1

w1 = z̃2

w3 = −z̃2 + ln(1− z̃2
3)− (ln(1− z̃3))2

v = ẇ3.

We thus deduce that the change of coordinates

w1 = x3

w2 = x1 − x2

w3 = −x1 − x2
2

v = −2x2(x1 + x2
2)− (1 + 2x2)ex2u

brings Σ into Brunovský ΛBr : ẇ1 = w2, ẇ2 = w3, ẇ3 = v.
Notice that such change of coordinates was given in [12].
However, the system was coupled with the given output
y = h(x) = x3 which made finding them straightforward.

6. Appendix: Proofs of Results

Below we establish an equivalence between the involu-
tivity conditions of Theorem 1.1 and a sequence of easily
computable conditions (F£n), . . . , (F£1) each stating the
fact that the second derivative of f with respect to some
variable is proportional to its first derivative with respect
to the same variable. This constitutes the core of the al-
gorithm.
Simple Involutivity Conditions. Consider the system Σ :
ẋ = f(x) + g(x)u and assume without loss of generality
that g(x) = (0, . . . , 0, 1)T and

fj(x) =

{
fj(x1, . . . , xk+1) 1 ≤ j ≤ k

fj(x1, . . . , xj+1) k + 1 ≤ j ≤ n,

where 1 ≤ k ≤ n− 1 and fn depends only on x1, . . . , xn.
Claim: If the following distributions

Dj(x) = span
{

g(x), adfg(x) . . . , adj−1
f g(x)

}
, 1 ≤ j ≤ n

are involutive, then there is a function γn−k such that

(F£k+1) , ∂2fj

∂x2
k+1

= γn−k(x)
∂fj

∂xk+1
, 1 ≤ j ≤ k.

Moreover, functions Θ(x) = Θ(x1, . . . , xk+1) and Fj(x) =
Fj(x1, . . . , xk) and νj(x) = νj(x1, . . . , xk) exist such that

fj(x1, . . . , xk+1) = Fj(x) + νj(x)Θ(x) 1 ≤ j ≤ k (6.1)

with Θ(x) depending exclusively on γn−k(x).
Proof: Remark that the vector field f can be written as

f(x) =
k∑

j=1

fj(x1, . . . , xk+1)∂xj +
n∑

j=k+1

fj(x1, . . . , xj+1)∂xj

and that the function Θ given above is independent of
j; otherwise the decomposition (6.1) would have been
trivial. For any 1 ≤ j ≤ n denote by ∆j =
span

{
∂xn−j+1 , . . . , ∂xn

}
the module generated over the

field of smooth functions, that is, each element of ∆j is
a linear combination of the vector fields ∂xn−j+1 , . . . , ∂xn

whose coefficients are smooth functions. We first verify
easily that

adfg = −∂fn−1

∂xn
∂xn−1−

∂fn

∂xn
∂xn = µn−1(x)∂xn−1+ϑn−1(x)

where µn−1(x) = −∂fn−1
∂xn

and ϑn−1(x) ∈ ∆1. An induction
argument implies that for any 1 ≤ j ≤ n− k − 1, we have

adj
fg = µn−j(x)∂xn−j + ϑn−j(x)

where µn−j(x) = (−1)j
j∏

i=1

∂fn−i

∂xn−i+1
and ϑn−j(x) ∈ ∆j . In

particular for j = n− k − 1 we have

adn−k−1
f g = µk+1(x)∂xk+1 + ϑk+1(x)
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where ϑk+1(x) ∈ ∆n−k−1. The Lie bracket with f gives

adn−k
f g =

k∑
j=1

[
fj(x1, . . . , xk+1)∂xj

, µk+1∂xk+1 + ϑk+1

]

+
n∑

j=k+1

[
fj(x1, . . . , xj+1)∂xj

, µk+1∂xk+1 + ϑk+1

]

= −µk+1(x)
k∑

j=1

∂fj

∂xk+1
∂xj

+ ϑ̃k,

where ϑ̃k(x) ∈ ∆n−k = span
{
∂xk+1 , . . . , ∂xn

}
. This is due

to the following facts:

(i) adn−k−1
f g ∈ ∆n−k;

(ii) fj(x1, . . . , xj+1)∂xj ∈ ∆n−k, k + 1 ≤ j ≤ n;

(iii) [fj(x1, . . . , xk+1)∂xj
, ∆n−k] = fj(·)[∂xj

, ∆n−k];

(iv) [∆n−k,∆n−k] ⊆ ∆n−k.

A simple calculation shows (using items (i)-(iv)) that

[
adn−k

f g, adn−k−1
f g

]
= µ2

k+1(x)
k∑

j=1

∂2fj

∂x2
k+1

∂xj + ϑ̂k(x),

where ϑ̂k ∈ ∆n−k = span
{
∂xk+1 , . . . , ∂xn

}
. The involu-

tivity of Dn−k+1 implies that

[
adn−k

f g, adn−k−1
f g

]
=

n∑

j=k

δn−jadn−j
f g = δn−kadn−k

f g + ϑ̆k

for some smooth functions δ0, δ1, . . . , δn−k. Comparing the
two Lie brackets it follows that

(µk+1)2 ·
k∑

j=1

∂2fj

∂x2
k+1

∂xj = −(µk+1)δn−k ·
k∑

j=1

∂fj

∂xk+1
∂xj ,

that is, the condition

(F£k+1) , ∂2fj

∂x2
k+1

= γn−k(x)
∂fj

∂xk+1
, 1 ≤ j ≤ k.

Notice that γn−k = γn−k(x1, . . . , xk+1) depends exclu-
sively on the variables x1, . . . , xk+1 since the components
fj depend only on such variables. A double integration
shows that there exist functions Fj(x) and νj(x), 1 ≤ j ≤ k
such that

fj(x1, . . . , xk+1) = Fj(x1, . . . , xk) + νj(x1, . . . , xk)Θ(x)

where

Θ(x) =
∫ xk+1

0

exp
(∫ t

0

γn−k(x1, . . . , xk, s)ds
)

dt

depends exclusively on γn−k but not on the components.
This achieves the proof of the claim.

Proof of Theorem 2.2.

Below we first give a brief proof of the constructive ap-
proach for rectifying nonsingular vector fields (Theorem
2.2) and we later address the convergence of the series.
Proof of Theorem 2.2 (i). Notice that for any diffeomor-
phism z = ϕ(x) the two following conditions are equiva-
lent.
(a) ϕ∗(ν)(z) = ∂zn .
(b) Lν(ϕj)(x) = 0 and Lν(ϕn)(x) = 1 for 1 ≤ j ≤ n− 1.

For that reason we will show that condition (b) holds.
To start let us take 1 ≤ j ≤ n− 1. It follows directly

Lν(ϕj)(x) = Lν(xj) +
∞∑

s=1

Lν

(
(−1)sxs

n

s!
Ls−1

σnν(σnνj)
)

= νj(x) +
∞∑

s=1

(−1)sxs
n

s!
LνLs−1

σnν(σnνj)

+
∞∑

s=1

(−1)sxs−1
n

(s− 1)!
νn(x)Ls−1

σnν(σnνj)

= νj(x) +
∞∑

s=1

(−1)sxs
n

s!
νn(x)Ls

σnν(σnνj)

−νj(x)−
∞∑

s=1

(−1)sxs
n

s!
νn(x)Ls

σnν(σnνj) = 0.

A direct computation shows that

Lνϕn(x) =
∞∑

s=1

Lν

(
(−1)s−1xs

n

s!
Ls−1

σnν(σn)
)

=
∞∑

s=1

(−1)s−1xs
n

s!
LνLs−1

σnν(σn)

+
∞∑

s=1

(−1)s−1xs−1
n

(s− 1)!
νn(x)Ls−1

σnν(σn)

=
∞∑

s=1

(−1)s−1xs
n

s!
νn(x)Ls

σnν(σn)

+νn(x)σn(x) +
∞∑

s=1

(−1)sxs
n

s!
νn(x)Ls

σnν(σn)

= νn(x)σn(x) = 1.

This ends the sketch of proof of Theorem 2.2 (i).
Proof of Theorem 2.2 (ii). The proof of the inverse is
constructive. It is enough to show it in the case k = n,
that is, we suppose ν(0) = ∂zn . The general case follows
by first applying the following permutation

τ(x) ,





x̃j = τj(x) = xj , j 6= k, j 6= n,

x̃k = τk(x) = xn,

x̃n = τn(x) = xk.

We look for a change of coordinates x = ψ(z) that satisfies
∂ψ(z)
∂zn

= ν(ψ(z)). First, we extend ν in Rn+1 as

ν̂(x, y) = ν̂1(x, y)∂x1 + · · ·+ ν̂n(x, y)∂xn + ν̂n+1(x, y)∂y,
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where ν̂j = νj(x) for 1 ≤ j ≤ n, and ν̂n+1 = νn(x). We
want emphasize here the fact that the components ν̂n(x, y)
and ν̂n+1(x, y) are both equal to νn(x).

Because ν̂(0) 6= 0 there exist a change of coordinates
(z, w) = ϕ̂(x, y) such that ϕ̂∗ν̂ = ∂zn

+ ∂w. An inverse
(x, y) = ψ̂(z, w) should thus satisfy

∂ψ̂

∂zn
+

∂ψ̂

∂w
= ν̂(ψ̂(z, w)). (6.2)

Define the operator ∇ , ∂zn
+ ∂w and rewrite (6.2) as

∇ψ̂ = ν̂(ψ̂(z, w)). Apply the operator ∇ again on both
side and get (we put ∇2 , ∇ ◦∇)

∇2ψ̂(z, w) = ∇ν̂(ψ̂(z, w)),

=
∂ν̂

∂(x, y)
(ψ̂(z, w))∇ψ̂(z, w)

=
∂ν̂

∂(x, y)
(ψ̂(z, w))ν̂(ψ̂(z, w))

= (Lν̂ ν̂)(ψ̂(z, w)).

A simple recurrence argument yields

∇sψ̂(z, w) = (Ls−1
ν̂ ν̂)(ψ̂(z, w)), for all s ≥ 1.

Define ∂s
w , ∂s

∂ws , and ∂s
zn

, ∂s

∂zs
n

for all s ≥ 1. Since on
the one hand side, ∂w = −∂zn +∇ and on the other hand
side ∇ ◦ ∂zn = ∂zn ◦ ∇, it follows that

∂s
w =

s∑

i=0

(−1)iCi
s ∂i

zn
◦ ∇s−i,

where ∂s
zn
◦∇0 = ∂s

zn
and ∂0

zn
◦∇s = ∇s. We deduce that

∂sψ̂

∂ws
=

s∑

i=0

(−1)iCi
s ∂i

zn

(
∇s−iψ̂(z, w)

)

= (−1)s ∂sψ̂(z,w)
∂zs

n
+

s−1∑

i=0

(−1)iCi
s ∂i

zn
Ls−i−1

ν̂ (ν̂)(ψ̂(z, w)).

Taking ψ̂(z, 0) = (z, 0), we get

∂sψ̂

∂ws

∣∣∣
w=0

=
s−1∑

i=0

(−1)iCi
s ∂i

zn
Ls−i−1

ν̂ (ν̂)(z, 0).

A Taylor series expansion of ψ̂(z, w) with respect to w at
w = 0 is

ψ̂(z, w) =
(

z
0

)
+
∞∑

s=1

ws

s!

(
s−1∑

i=0

(−1)iCi
s ∂i

zn
Ls−i−1

ν̂ (ν̂)(z, 0)

)

Let us define ψ(z) by its components in the following way:
for any 1 ≤ j ≤ n we set ψj(z) = ψ̂j(z, w)|w=zn . Since
for any 1 ≤ j ≤ n, ν̂j(x, y) = νj(x) is independent of the
variable y, it follows that Ls

ν̂ ν̂j = Ls
ννj for all s ≥ 0. We

then deduce that

ψj(z) = zj +
∞∑

s=1

zs
n

s!

(
s−1∑

i=0

(−1)iCi
s ∂i

zn
Ls−i−1

ν (νj)(z)

)
.

To complete the proof we will show that
∂ψj(z)

∂zn
= νj(ψ(z)) for all 1 ≤ j ≤ n; which indeed

follows from the fact that

∂ψj(z)
∂zn

=
∂

∂zn
ψ̂j(z, zn) =

∂ψ̂j

∂zn
(z, zn) +

∂ψ̂j

∂w
(z, zn),

= ν̂j(ψ̂(z, zn)) = νj(ψ(z)).

This ends the proof-sketch of Theorem 2.2. ¤
Convergence. Let us first introduce some useful nota-
tion. For any x ∈ Rn we put x = (x1, . . . , xn). For
the subset Nn ⊂ Rn of n-tuples of integers we use a
bolded variable to denote its elements. Given two n-tuples
m = (m1, . . . , mn) and α = (α1, . . . , αn) we say that
m º α if and only if mi ≥ αi for all 1 ≤ i ≤ n and
we denote by m! = m1! · · ·mn! and mα = mα1

1 · · ·mαn
n .

By extension, for x = (x1, . . . , xn) ∈ Rn we put xm =
xm1

1 · · ·xmn
n and put |m| = m1 + · · · + mn. Let f be an

analytic function with f(x) =
∑

fm · xm its Taylor se-

ries expansion where fm = 1
m!

∂mf
∂xm (0) are constant co-

efficients, and ν = ν1∂x1 + · · · + νn∂xn an analytic vec-
tor field. For any ρ > 0 we define the norm || · ||ρ by
||f ||ρ =

∑ |fm| · ρ|m| and extend the norm to vector fields

by ||ν||ρ = max {||ν1||ρ, . . . , ||νn||ρ} .
(i) We now prove the convergence of the series

ϕj(x) = xj +
∞∑

s=1

(−1)sxs
k

s!
Ls−1

σkν (σkνj)(x).

Assume νk(0) 6= 0 and put σk = 1/νk(x) and take f =
σkνj . Choose ρ > 0 such that ||σkνj ||ρ = κj(ρ) < +∞
for all 1 ≤ j ≤ n and put κ(ρ) = max {κ1(ρ), . . . , κn(ρ)}.
Using Lemma 6.1 (ii) below we obtain, for any 0 < ρ̂ < ρ
and any s ≥ 1, that

||Ls−1
σkν (f)||ρ̂ ≤ (s− 1)!(ρ̂ ln(ρ/ρ̂))−s+1||f ||ρ · (κ(ρ))s−1

≤ (s− 1)!(ρ̂ ln(ρ/ρ̂))−s+1 · (κ(ρ))s
.

(6.3)
Hence the norm of the series ϕj(x) can be approximated
by

||ϕj(x)||ρ̂ ≤ ρ̂ +
∞∑

s=1

ρ̂s

s!

∣∣∣
∣∣∣Ls−1

σkν (f)
∣∣∣
∣∣∣
ρ̂

≤ ρ̂ + ρ̂κ(ρ) ·
∞∑

s=1

1
s

(
κ(ρ)/ ln(ρ/ρ̂)

)s−1

≤ ρ̂ + ρ̂κ(ρ) ·
∞∑

s=1

(
κ(ρ)/ ln(ρ/ρ̂)

)s−1

The series converges and is bounded by ρ̂ + ρ̂κ(ρ)
1−κ(ρ)/ ln(ρ/ρ̂)

if κ(ρ)/ ln(ρ/ρ̂) < 1, that is, if we choose ρ̂ < ρe−κ(ρ).
(ii) To prove the convergence of the series

ψj(z) = zj +
∞∑

s=1

zs
n

s!

(
s−1∑

i=0

(−1)iCi
s ∂i

zn
Ls−i−1

ν (νj)(z)

)
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we use Lemma 6.1 (iii). Taking f = νj we can estimate
the component ψj as follows

||ψj(z)||ρ̂ ≤ ρ̂ +
∞∑

s=1

ρ̂s

s!

(
s−1∑

i=0

Ci
s ||∂i

zn
Ls−i−1

ν (νj)(z)||ρ̂
)

≤ ρ̂ +
∞∑

s=1

ρ̂s

s!

(
s−1∑

i=0

Ci
s (s− 1)!(ρ̂ln(ρ/ρ̂))−s+1||f ||ρ||ν||s−i−1

ρ

)

≤ ρ̂ + ρ̂||f ||ρ
∞∑

s=1

ln(ρ/ρ̂)−s+1

s

(
s−1∑

i=0

Ci
s κ(ρ)s−i−1

)

≤ ρ̂ + ρ̂||f ||ρ
∞∑

s=1

ln(ρ/ρ̂)−s+1

s

(1 + κ(ρ))s − 1
κ(ρ)

≤ ρ̂ +
ρ̂ ln(ρ/ρ̂)

κ(ρ)
||f ||ρ

∞∑
s=1

ln(ρ/ρ̂)−s [(1 + κ(ρ))s − 1] .

The series is convergent provided we chose 1+κ(ρ)
ln(ρ/ρ̂) < 1,

that is, whenever ρ̂ < ρe−1−κ(ρ).
To complete the proof we need to establish Lemma 6.1

below. Before some more notation is needed. Let denote
by ∂i : Cω(Rn) −→ Cω(Rn) the derivation operator with
∂i(f) = ∂f

∂xi
. For α = (α1, . . . , αn) we get

∂α(f) = ∂α1
1 ◦ · · · ◦ ∂αn

n (f) =
∂αf

∂xα
=

∂α1+···+αnf

∂xα1
1 · · · ∂xαn

n
.

For the vector field ν: ∂α(ν) = ∂α(ν1)∂x1 + · · · +
∂α(νn)∂xn . It is easy to see that

Lν(f) =
n∑

j=1

∂f

∂xj
νj =

n∑

j1=1

∂α0(f)× ∂α1(νj1)

where |α0| = 1 and |α1| = 0 with α0 an n-tuple whose
components, except the (j1)th component are zero. By
an inductive argument we check that for any s ≥ 1 the
successive Lie derivatives yield

Ls
ν(f) =

∑

J

∑
∂α0(f)∂α1(νj1) · · · ∂αs−1(νjs−1)∂

αs(νjs),

(6.4)
where J = {j1, . . . , js, 1 ≤ ji ≤ n} and the second sum-
mation is taken over some n-tuples αi = (αi1, . . . , αin),
i = 0, 1, . . . , s with αs = 0, |α0| ≥ 1 and |α0| + |α1| +
· · · + |αs| = s. Let the Taylor expansions of the analytic
functions f, νj1 , . . . , νjs be represented by

f(x) =
∑

m0º0

fm0x
m0 and νji(x) =

∑

miº0

(νji)mix
mi ,

for all 1 ≤ i ≤ s. It follows easily that

∂α0(f) =
∑

m0ºα0

(m0!/α0!)fm0x
m0−α0 ,

and for any 1 ≤ i ≤ s

∂αi(νji) =
∑

miºαi

(mi!/αi!)(νji)mix
mi−αi .

Consequently

Ls
ν(f) =

∑
J

∑
|α|=s

∑
miºαi

[fm0 × (νj1)m1 × · · · × (νjs
)ms

×

(m0!/α0!) · · · (ms!/αs!)]xm−α,

where, we put m = m0 + · · ·+ms and α = α0 + · · ·+αs

for convenience of notation.

Lemma 6.1 Let f (resp. ν) be an analytic function (resp.
vector field). Let s ≥ 1 and t ≥ 0 be given integers and
0 < ρ̂ < ρ two positive real numbers. Define

M = sup
miºαi





∑

|α|=s

(m0!/α0!) · · · (ms!/αs!)(ρ̂/ρ)|m|



.

Then we have the following inequalities

(i) M ≤ s!
(

ln(ρ/ρ̂)
)−s

(ii) ||Ls
ν(f)||ρ̂ ≤ s!

(
ρ̂ ln(ρ/ρ̂)

)−s

||f ||ρ||ν||sρ
(iii) ||∂i

zn
Lt−i

ν (f)||ρ̂ ≤ t!(ρ̂ln(ρ/ρ̂))−t||f ||ρ||ν||t−i
ρ

Proof of Lemma 6.1 (i) Because mi!/αi! ≤ (mi)αi for
all 0 ≤ i ≤ s we deduce that

M ≤ sup
miºαi





∑

|α|=s

(m0)α0 · · · (ms)αs(ρ̂/ρ)|m|



 .

On the other side,

∑

|α|=s

(m0)α0 · · · (ms)αs ≤
(
|m0|+ · · ·+ |ms|

)s

= ms

which implies that

M ≤ sup
miºαi

{(
|m0|+ · · ·+ |ms|

)s

(ρ̂/ρ)|m|
}

≤ sup
miº0

{(
|m0|+ · · ·+ |ms|

)s

(ρ̂/ρ)|m|
}

.

The inequality follows from Stirling s! =
√

2πs(s/e)seλs

where λs > 0, and the fact that the maximum of xs(ρ̂/ρ)x

is
(

s
ln(ρ/ρ̂)

)s

e−s.
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(ii) For any 0 < ρ̂ < ρ we have the following estimates

||Ls
ν(f)||ρ̂ =

∑
J

∑
|α|=s

∑
mi≥αi

[
|fm0 ||(νj1)m1 | · · · |(νjs

)ms
|

(m0!/α0!) · · · (ms!/αs!)
]
ρ̂|m−α|

= ρ̂−|α|
∑
J

∑
|α|=s

∑
mi≥αi

[
|fm0 | × |(νj1)m1 | × · · · × |(νjs)ms |×

(m0!/α0!) · · · (ms!/αs!)
]
ρ|m|(ρ̂/ρ)|m|

= ρ̂−s
∑
J

∑
|α|=s

∑
mi≥αi

[
|fm0 |ρ|m0||(νj1)m1 |ρ|m1| · · · |(νjs

)ms
|ρ|ms|

(m0!/α0!) · · · (ms!/αs!)
]
(ρ̂/ρ)|m|

≤ ρ̂−s
∑
J

∑
|α|=s

∑
mi≥αi

[
|fm0 |ρ|m0||(νj1)m1 |ρ|m1| · · · |(νjs

)ms
|ρ|ms|

(m0!/α0!)| · · · (ms!/αs!)
]
(ρ̂/ρ)|m|

≤ ρ̂−s||f ||ρ||ν||sρ sup
miºαi

{
∑
|α|=s

(m0!/α0!) · · · (ms!/αs!)(ρ̂/ρ)|m|
}

.

Using item (i) above it follows that

||Ls
ν(f)||ρ̂ ≤ s!

(
ρ̂ ln(ρ/ρ̂)

)−s

||f ||ρ||ν||sρ.

Formula (6.3) follows directly if we replace s by s− 1, the
vector field ν by σkν and the function f by σkνj taking
into account that ||f ||ρ ≤ κ(ρ).

(iii) Consider (6.4) where s is replaced by t− i, that is,

Lt−i
ν (f) =

∑

J

∑
∂α0(f)∂α1(νj1) · · · ∂αt−i(νjt−i)

with αt−i = 0, |α0| ≥ 1 and

|α0|+ |α1|+ · · ·+ |αt−i| = t− i.

Differentiating i times with respect to xn we get

∂i
xn

Lt−i
ν (f) =

∑

J

∑
∂α̂0(f)∂α̂1(νj1) · · · ∂α̂t−i(νjt−i) (6.5)

with |α̂0| ≥ 1 and |α̂0| + |α̂1| + · · · + |α̂t−i| = t.
Following the same steps in Lemma 6.1 (ii) we get
||∂i

xn
Lt−i

ν (f)||ρ̂ ≤ t!(ρ̂ln(ρ/ρ̂))−t||f ||ρ||ν||t−i
ρ . Notice that

the power t − i on the last term is due to the fact there
are t − i factors only that involve the components of the
vector field ν.

Conclusion

In this paper we provided algorithms allowing to com-
pute (feedback) linearizing coordinates for single-input
control systems. The algorithms are based on a successive
rectification of one vector field at a time using explicit con-
vergent power series of functions. The algorithms do not
require an a priori checking of the (feedback) lineariza-
tion conditions of Theorem 1.1 (which are usually very

hard). Indeed, at each step those conditions are replaced
with the fact that the second derivative of a certain vec-
tor field is zero (state linearization) or proportional to its
first derivative with respect to the same variable (feedback
case). Thus at each step, the previous system is trans-
formed into a new system who is a cascade between an
affine lower dimensional system and a linear one (or feed-
back form) whose first variable acts as control input for the
lower system. The extension of our results to the multi-
input case is in progress. We expect to apply the explicit
solving of the flow box theorem to Frobénius theorem by
finding coordinates that simultaneously rectify a given set
of vector fields. The algorithms will then be generalized
to multi-input systems.
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