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Feedback Linearizable Feedforward Systems:
A Special Class

Issa Amadou Tall, Member, IEEE

Abstract—The problem of feedback linearizability of systems in feedfor-
ward form is addressed and an algorithm providing explicit coordinates
change and feedback given. At each step, the algorithm replaces the invo-
lutive conditions of feedback linearization by some, easily checkable. We
also reconsider type II subclass of linearizable strict feedforward systems
introduced by Krstic and we show that it constitutes the only linearizable
among the class of quasilinear strict feedforward systems. Our results allow
an easy computation of the linearizing coordinates and thus provide a sta-
bilizing feedback controller for the original system among others. We illus-
trate by few examples including the VTOL.

Index Terms— Feedback linearization, linear ordinary differential equa-
tions (ODEs), linear systems, (strict) feedforward forms.

I. INTRODUCTION

Linear systems constitute, without doubt, the most well-known class
of control systems. Their importance resides in the fact that several
physical systems can be modeled using linear dynamics making thus
their analysis and design very simple. The controllability, observability,
reachability, and realization of linear systems have been expressed in
very simple algebraic terms. Another crucial property of linear con-
trollable systems is that they can be stabilized by linear feedback con-
trollers. Although not all systems can be modeled using linear dy-
namics, the approximation of nonlinear phenomena by linear models
has proved to be a satisfactory tool for their local study. The draw-
back of linearization is that some important properties of a nonlinear
system, like global controllability, might be lost by the operation. It
is not however surprising that the question of transforming nonlinear
control systems into linear ones has attracted much attention in the past
thirty years. To give a brief account of that, consider a control system

� � �� � ���� � ������ ��� �� � �� ����

The two problems below were investigated in the early 80’s.
Problem 1: When does there exist, locally or globally, a diffeo-

morphism � � ���� giving rise to new coordinates system � �
���� � � � � ���

� in which � takes the linear form

	 � �� � 	�� 
�� � � �
�

� � � �
�

�

Problem 2: Can we find a change of coordinates� � ���� coupled
with an invertible feedback � � ���� � ����
 that transform � into
a linear system 	 � �� � 	� � 

?

The first problem was pioneered by Krener [8] and completely
solved by the author. The second problem was proposed and par-
tially solved by Brockett [3] in the single-input case �� � 
�
with constant function �. The general case of Problem 2 has been
solved independently by Hunt and Su [5], and Jakubczyk and Re-
spondek [7] who gave necessary and sufficient geometric conditions
in terms of Lie brackets of vector fields defining the system (see
Theorem II.1 below). Although those conditions did provide a way
of testing the state and feedback linearizability of a system, they
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offer little on how to find linearizing change of coordinates (and
feedback) except by solving a system of partial differential equations
(PDEs). If Problem 2 is solvable with a controllable pair ��� ��,
then the equilibrium of � can be stabilized by the feedback law
� � ������������ � �

���
��	�����, where the polynomial


��� � �� � �

���
���

��� is Hurwitz. Hereafter, ��� �� is assumed
to be always controllable, i.e., ��� 	
�������� 
 
 
 � ������ � �.
Feedback linearization techniques have been used to improve the
dynamical behavior of chaotic systems (see Lorenz system in [11],
[14]) and have been applied to optimal control problems with a recent
regain of interest. In [4], the authors used pseudospectral method
to solve optimal control subject to feedback linearizable dynamics.
Mayer’s problem has been considered in [1] (see also [14]) and an
optimal solution for globally feedback linearizable time-invariant
systems obtained. Recall that Mayer’s problem consists of finding
��
� and ��
� with 
 � �
�� 
� � that minimize a functional cost
� � ����
��� 
�� subject to �� � ���� � ����� and inequality
constraints ����� �� � �, ����� � � with initial and terminal states
satisfying ����
��� ��
��� � �. Though these papers deal with feed-
back linearizable systems, dynamics are usually assumed linear, and
linearizing coordinates left to be found. In [9], [10] Krstic studied Type
I and Type II subclasses of strict feedforward systems and showed they
are linearizable by giving explicit coordinates changes. A single-input
control system � is in feedforward form (FF)-form if

��� � �� ����� � �����

�
�

����� � ����� � 
 
 
 � ���� � � � � �

����� � ����� � 
 
 
 � ���� � � � � �

and � is in strict feedforward form (SFF)-form ���� if

�� ����� � �����

�
�

����� � �������� 
 
 
 � ���� � � � � �

����� � �������� 
 
 
 � ���� � � � � �

����� � �� �� � �
� � � � ����

For those classes, Krstic mentioned the difficulty, in general, of sys-
tematically finding linearizing coordinates. Inspired by his work, we
extended the two classes to all state (resp. feedback) linearizable (SFF)-
systems and provided a state [20] (resp. feedback [21]) linearizing co-
ordinates. Let us first mention that (SFF)-systems have been introduced
as early as in the papers of Teel [22], [23] and have been followed
since by a growing literature [2], [9], [10], [13], [16], [20]. What made
(SFF)-systems appealing is that a stabilizing feedback controller can al-
ways be constructed when their linear approximation around the equi-
librium is controllable [22], [23]. Problem 1 were tackled in [17] for the
feedforward case. If there is a component �� or �� that is nonlinear with
respect to the variable �� , then finding an explicit linearizing coordi-
nates becomes extremely difficult and might necessitate solving PDEs.
For that reason we restricted our study to a special class of (FF)-sys-
tems, called feedforward-nice, for which the components �� and �� are
affine with respect to the variable �� for all � � � � �. In Section II
we give our first result as an algorithm allowing to construct explicitly
feedback linearizing coordinates in a finite number of steps. We show,
at each step, that the involutivity conditions of Theorem II.1 reduce to
�������� being proportional to ������ , � � �� 
 
 
 � �. A change of
coordinates, followed by feedback, is thus constructed (bottom up) to
cancel all terms containing the variable �� except for the corresponding
component ���� that is normalized. In Section III we consider Type II
systems and give necessary and sufficient conditions for their lineariza-
tion. We illustrate by few examples including the vertical take-off and
landing aircraft. Let mention that for general control systems different
algorithms have been obtained in [12] and recently in [18], [19]. While

the former uses the integration of a system of 1-forms the latter papers
are based on an explicit solving of the flow box theorem and they all
differ with the method for feedforward systems.

II. MAIN RESULTS

For reasons mentioned previously, we deal with a subclass of (FF)-
systems for which the components ����� � 
 
 
 � ��� and ����� � 
 
 
 � ���
are affine with respect to �� for � � � � �. This subclass, ���	
�� �
�� � ���� � �����, call it feedforward-nice is hereby described in the
�-coordinates by

�������� ��������� 
 
 
 �� � � ��������� 
 
 
 � ���� �����

����������������� 
 
 
 � ��� � ��������� 
 
 
 � ���� �����

with ������ � �, �� � �, and �� � ��. We suppose that ���	
��

is linearly controllable and, in particular, �� ������������� �� � for
� � � � �� �. We recall briefly the main result of [17].

A. State Linearization

Consider ���	
�� and apply successively changes of coordinates
� � ����

�� � �� � � �� ��

�� � �� ��������� 
 
 
 � ��� � ��������� 
 
 
 � ���
(II.I)

with

��� � ��
 �

�

�

��������� 
 
 
 � ����� �����

��� � �

�

�

��������� 
 
 
 � ����� ����������� 
 
 
 � ����� ����

starting from � � � � � down to � � � to bring ���	
�� into a
control-normalized form ����	
�� � �� � ����� � ������

���������
���������� 
 
 
 � ����

���������� 
 
 
 � ���� �����
��������� ����� � ��� 
 
 
 � �� ��� � ���

Ignoring ��� � � (the only component that depends on �), ����	
�� ap-
pears as a system in ���� whose control input is ��. If the system is
not affine in ��, then ����	
�� (hence ���	
��) is not linearizable. Oth-
erwise, the same operation is repeated for ����	
��, then for its trans-
forms, so on.

B. Feedback Linearization

Now we analyze the subclass ���	
�� under the feedback group

� �
� � 	���

� � ���� � ������

Notice that 	 cannot take any particular form as (II.1) simply because
the feedback destroys the (FFnice)-structure unless ���� � ��� and
���� � �, where � � �, � � ��. Before we proceed, recall the
following from [5] and [7] (see also [6]).

Theorem II.1: System � � �� � ���� � ����� (not necessarily
���	
��) is locally equivalent, via a feedback transformation �, to a
linear controllable system � � �� � �� � �� if and only if (F1)
��� 	
��	��� � �; (F2) �	��	�� 
 	� , � � � � �.

Here 	� � 	
����� ����� � � � � ��
�
��� and (F2) stands for involu-

tivity conditions that are equivalent to the involutivity of 	��� (see
e.g. [7]). The main result of this section follows.

Theorem II.2: Assume ���	
�� is �-linearizable. We can bring
���	
�� into a linear controllable system � � �� � �� � �� via an
explicit feedback transformation � whose components are obtained by
composing, differentiating, inverting, and integrating the components
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of �������. Moreover, the algorithm giving � involves a maximum of
��� � ���� steps.

The proof is constructive and allows to compute, explicitly, a lin-
earizing change of coordinates and feedback without solving the cor-
responding PDEs. It appears in the proof that the coordinates changes
are globally defined though the inverse of the feedback is only locally
guaranteed. Using this equivalent linear form �, it is proved in [14]
that Mayer’s optimal solution for globally feedback linearizable sys-
tems always lies on a constraint arc which allows to characterize and
build such optimal solution for single-input systems. For multi-input
systems, efficient numerical procedures (like pseudospectral method
[4]) can be developed. The main difficulty, however, remains in finding
linearizing coordinates which underlines the importance of our results.
Before we proceed for the proof, we make the following assumption
for simplicity.

Assumption 1: For any continuously differentiable function �� 	
����� 
 
 
 � ��� such that ���� 	 � and ����������� �	 � we can
explicitly find an inverse �� 	 ����� 
 
 
 � ����� ���, i.e., a contin-
uously differentiable function �, locally around the origin, such that
����� 
 
 
 � ����� ����� 
 
 
 � ����� ���� 	 �� . �

Let us make clear that what is assumed is not the existence of the
function �, which is guaranteed by the implicit function theorem, but
rather the possibility of explicitly computing�. The assumption simpli-
fies the problem but is not necessary; indeed, instead of taking �������

into a linear form �� 	 	�� 
�, we can always bring it, via explicit
coordinates change and feedback, to the feedback form (see [21] for
(SFF)-forms)

���� 	 ��


������� � �
�������� � � � � �� �

��� 	 ��
(II.2)

Proof of Theorem II.2: Let �������� � �� 	 ����� � ������. Since

����� 	 ����

�� ��������

��� ������� ����
� ��� ���

���
��� �	 �

using Assumption 1 we can apply the change of coordinates

� 	 ����
�
	

�� 	 ����� 	 �� � � �	 �� �

�� 	 ����� 	 ����

����������

��� �������

and the feedback � 	 �� ��������������� ����������� ��� �
�� ����������� to transform the system such as ����������� ��� 	 ��.

Step 1: Involutivity of�� implies ���� ��	���� 	 ����	�����
��, where
�� and �
 are smooth functions. Since �� 	 �����, ������ 	 �, and
�������� 	 ��, it follows that �
 	 �� 	 �. Thus the involutivity
of �� reduces to the simple algebraic condition (necessary for �-lin-
earization)

����� 	�
�� ���
����

	 � ��� ��� �� � � �� �

that is ������ 	 ��

��������� 
 
 
 � ��� �

���������� 
 
 
 � ��� are affine in
the variable �� for all � � � � �

������	�� 
�������� 
 
 
 � ����� � ��

������� 
 
 
 � �����

� ��������� 
 
 
 � ����� � ���
������� 
 
 
 � �����

	��
�������� 
 
 
 � ����� � ��������� 
 
 
 � �����

� �� ��

������� 
 
 
 � ����� ��
������� 
 
 
 � ����� �

If ����� fails the algorithm ends: the system is not linearizable. If
it holds, then we annihilate all terms containing �� in all components
(except ��������� 	 ��) using �� � substeps.

General Substep: Assume for some � � � � � � �, that ��������

has been transformed, by coordinates changes and feedback to

������	

��
�������� 
 
 
 � �����

���������� 
 
 
 � �����

��� ��

������� 
 
 
 � �����

��
������� 
 
 
 � ����� if � � � � ��

��
�������� 
 
 
 � �����

���������� 
 
 
 � ����� if �� � � � � ��

It is straightforward that � 	 ���� whose components are

�� 	 �� � � �	 �

�� 	 �� 
�������� 
 
 
 � ����� � ��������� 
 
 
 � �����

where 
����� 	 �����
�





������� 
 
 
 � ����� �� �� and

������ 	 �

�




�
������� 
 
 
 � ����� �� 
�������� 
 
 
 � ����� �� �

cancels �����

������� 
 
 
 � ����� � �
������� 
 
 
 � ������ in the com-
ponent ������ still preserving the (FFnice)-form. We transform �������

via � 	 ���� 	 � � � 	��, with �� as above, into

�������� �
������	��
�������� 
 
 
 � ��������������� 
 
 
 � �����
��������	��� ������	�� �����	��� 
 
 
 � �� ����

Remark that at each substep the inverse of the diffeomorphism is easily
computable. Indeed, for the general substep the inverse � 	 ������
is such that �� 	 �� for � �	 � and

�� 	 �� � ��������� 
 
 
 � �����


 ���

�






������� 
 
 
 � ����� �� ��

Since �������� 	 ����
���������� � ����������� with
����������������� �	 �, we can use the assumption to explicitly find
the inverse of ���� 	 ����
����������� �����������.

Then apply the change of coordinates and feedback

�� 	 �� � � 	 �� 
 
 
 � �� �� �� 	 �����

���� 	 ����
����������� ������������ � 	 ���

to normalize ����� 	 ����. This last substep can be omitted in case
the system will be brought to the feedback form (II.2).

General Step: Define the projection � � �� � ���� as
����� 
 
 
 � ��� 	 ���� 
 
 
 � �����

�. The projection ����������� is a
(FFnice)-system in ���� with control input � 	 ��. The necessary
condition for linearization becomes

������� 	�
�� ���
������


 �� ��� ��� �� � � �� ��

We repeat the same procedure as in Step 1 to construct coordinates
change that annihilates all terms containing the variable ����. The dif-
feomorphism obtained is thus extended in �� by adding the �th com-
ponent as identity. Then a feedback is applied as above to normalize
the 2nd last component (in this case �������� 	 ����). The procedure
will be repeated �� � �� times as long as the corresponding �����
conditions are satisfied for the corresponding system. The diffeomor-
phisms � and � taking ������� into a control-normalized �������� and
�������� into the Brunovský canonical form are obtained by integra-
tions, derivations, compositions of the components of ������� , and
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��������, respectively. The feedback is obtained in general by inverting
a nonlinear function (Assumption 1) but can be circumvented if we
transform the system into (II.2). One can easily check that there is a
maximum of � � � � �� � �� � � � � � � � ��� � ���	 substeps,
a difference of � substeps with the �-linearization due to the use of
feedback.

Example II.3: Let us consider the system in (FFnice)-form

������� 

�����
� �

���
� �� �
��	 �

�

���
�� ��	��
���

��
� �� �
� �
��	 �

� �

���
�� �����

�

We rectify ���� � ���
��� � �
���� �	�
����� � �
������ ��
�

and put ������� in ��������. Since �
��� � �	�
����� � �
��� �
�
��
��	� ��� � ��
��	� ��� with ��
��	� ��� � 	����� � �
�� and
��
��	� ��� � �, a change of coordinates annihilating the component
�
 is

��� � ��� ��	 � �	
��
 � �
 ���

�

�
��
��	� ���� � �

���
� ��� � ��

with inverse

�� � ���� �	 � ��	
�
 � ��
 � � ��
� � �� � ���.

It transforms the system into

���� � �
� ��
 � ��� �
� ��	 � ��
�� ���	 � �
� ���
���
 � �
� ��	� ���� � ��

Now ����� � ���
� �� �� ��
� and �� � ��
 � ���������� � ������� with

��� � � and ��� � ��
. Thus the change of coordinates

	� � ��� �
����� � �
����� � ��� � ��
���
	� � ��� � � �� �

with �
����� � �����
��

�
������
� ��	� ����� � � and

�
����
� ��	� ���� �

��

�

������
� ��	� ���
����
� ��	� ���� � ���
���

annihilates �� and brings ������� into ��������:

�������� 

�	� � �
�	
� �		 � �
�	�
�	
 � �
�		� �	� � ��

The change of coordinates � � 
�	�

�� � 	�� �	 � ���	
 �
�		
�
 � �
�	
� �� � � �
�	
 �
�


 		 � ���	
 ���		 �
�	�

and feedback � � ������	
� �
�		 � ������		� �
�	� �
������	��� linearizes the system: ��� � �
, ��
 � �	, ��	 � ��,
��� � �. The feedback law (���� � �� � ���

	 � �
�

 � �	�� ��

Hurwitz)

� � �
�
�		

��

��
� �
�	�

��

��
� ��
��	� � � � �� ��
��	�

���	
 ���	 ���	�

re-expressed in original coordinates, locally asymptotically stabilizes
the system on ���� ��� for � � � � ��	. �

Example II.4: Consider a simplified model of a VTOL with dy-
namics [15] (see Fig. 1.)1

1A special thank you to Linda G. for her invaluable assistance.

Fig. 1. Forces acting on the aircraft.
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�
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 �



�
�����

(II.3)

where � , � , � and denote the mass, moment of inertia, distance be-
tween wingtips and gravitational acceleration. The control inputs are
the thrust � , and the rolling moment due to the torque � , whose di-
rection forms a fixed angle � with the horizontal body axis. The posi-
tion of center mass and the roll angle with respect to the horizon are
���� ���, and �� while ��
� �
� and �
 stand for their respective ve-
locities. Thus the system is a two-input control system in (SFF)-form.
Let fix � � ��� � �
� ����� so as to compensate the force due
to acceleration (sign minus denotes opposite direction to that force)
and normalize � , � , and � to 1. Taking � � � as control input, and
�	 � ��, �� � �
, �� � ��, �� � �
�	 ����, the system rewrites
� 
 �� � ���� � �����, � � ��, � � � with

���� � ��
� � � ��� �
��� ������ ���

� �
�
 �� � �� ���

 ��� 	 ������� �

�

���� � ���	 �
�� ������ �� 	 �
�� �
���� �� ��
��

This system is in (FFnice)-form. Since ��, �	, �� are zero and �� � �,
only two substeps are required to rectify �.

To cancel ����� � 	 �
�� �
���, observe that ����� �
��������� ��� � ������� ��� with ��� � � and ��� � 	�
�� �
���.
Thus 
���� � �� �
���� � �
���� with �
���� � �, �
���� �
�

�

�
	 �
�� �
����� � �	 �
����
������. It follows that the

change of coordinates (and its inverse):

	 �
���
�
�

	� � �� � � �� ��

	� � �� � 	 �
����
������

� �
�	�
�
�

�� � 	� � � �� ��

�� � 	� � 	�
����
�	��	�

transform the system ������� into (keep same notation)

��� � �

��
 � � � �� � 	 �
����
������� �
��� �����
�	 �
�� ������

��	 � �� � 	�
����
������
��� � � �
�
 �� � ��� � 	 �
����
������� ���


 ��
�	 �
����������



�

��� � �	 �������
��� � �
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with control vector field ���� � ��� � ���� 	
���� �� �� �� ��
�. To an-

nihilate �����, we calculate ����� � �� ������ 
 ������. Thus the
change of coordinates (and its inverse)

� �����
�
�

�� � �� � � �� ��

�� � �� � � �����	
������

� �����
�
�

�� � �� � � �� �

�� � �� 
 � �����	
������

transform the latter system into �������	 � �� � �	��� 
 �����


��
 � �� 
 � �����	
������
��� � � � �� � � �������������� ����� 	
���

� ������������

�
�

��� � �� 
 � �������������
��� � � ���� �� � ��� 
 � �������������� 	
�

� ��
�� �����	
�����

�
�

��� � �� 	
�����
��� � 
�

Since �� �	

���� � � � �� �	

���� while �� �	�
���� �� � � �� �	�
����,
condition ����� �� ��� �	�
��

�
�� � �
����� �	�
����, � � � � �

fails because �
��� is not unique. Thus, the system is not
�-linearizable. �

III. LINEARIZABLE SYSTEMS OF TYPE II

Consider Type II (SFF)-systems described in [10] by

��� � ��

 
 �����

� � � � � ���
� � � � � �

��� � 

(III.1)

where �
� � � � � ���
 are smooth functions, ����� � �. Type II have a
linear drift 	��� � �� while Type I take the form

��
 � �� 

��


���

��������

 
 ������


��� � ��

� � � �� � � � � �� �

��� � 


and were introduced in [9], [10] (see also [17], [20] beyond that class),
where it is showed that a linearizing coordinates is

� � ����
�
�

�
 � �
 �
�

���

�

�
�������

�� � �� � � � �� � � � � ��

For Type II systems, Krstic [10] defined recursively the functions
������� � � � � ������ for � � �� � � � � � as

�� �
�

��

�

�

����
��� � � � � �� ��

�

�

���



�������
������ � � � � �� �� ��� (III.2)

Next, he defined ������� for � � �� � � � � �� � as

�� �
��


��


��������
�

������ 
 ���

������� (III.3)

He then obtained the following result.

Theorem III.1 (Krstic [10]): If

�����

� � � � � ��� �
��


���



���������� 
 ����� � � � � �� ��� (III.4)

���� � � � �� �, then the diffeomorphic transformation

�� � �� �
��


���



��
�

�������� � � � � � �� �

�� � ��

(III.5)

converts the (SFF)-system (III.1) into the chain of integrators ��
 �
��� � � � � ����
 � ��, ��� � 
. Thus 
 � �

�

��

���

� �� globally

asymptotically stabilizes the origin of (III.1).
Observe that (III.4) is in the form

�����

� � � � � ��� �
�

���



���������� � � � � � �� � (III.6)

with �������� � �������� and �������� � ����� � � � � �� ���. We say
that (III.1) is quasilinear if (III.6) holds for some functions ��������.
Clearly, (III.1) given by (III.4) is quasilinear and linearizable provided
the coefficients �� satisfy (III.3) with �� given by (III.2). Does any
linearizable quasilinear system satisfy (III.2)-(III.3)-(III.4)? We will
show that the answer is yes. Notice that (III.1)–(III.6) can be put in the
compact form

�� � ��
 ����
 � ��
 �

������
 (III.7)

with ��� �� the Brunovský pair, and � � ����������
������ a upper
triangular nilpotent matrix (u.t.n.m) whose entries are smooth func-
tions of the variable ��. The main result of this section is the charac-
terization of the linearizability of (III.7).

Theorem III.2: Let (III.1)–(III.6) be quasilinear or in compact form
(III.7). The three conditions below are equivalent.

(i) System (III.7) is linearizable by change of coordinates.
(ii) There exists an invertible (u.t.m) � � ����������
������ s. t.

�� ����

��
 ���
� ��� � � for all � 	 
��
(III.8)

(iii) System (III.7) is in the form (III.4) with �� given by (III.3) and
�� given by (III.2).

Theorem III.2 establishes the fact that the linearizability conditions
(III.6) with (III.3), (III.4) obtained by Krstic are necessary and suf-
ficient for the quasilinear systems (recall not all Type II systems are
linearizable). As a consequence we deduce the following algorithm
whose importance is two fold: (a) it allows to test whether a quasi-
linear system is linearizable or not, and (b) when linearizable, it gives
a linearizing change of coordinates. Let us recall that a matrix � �
����������
������ is said to be in Toeplitz form if �� � � � � � �

�������� � ��

��

���� � � � � � ��
���������� (III.9)

Linearization Procedure: Consider the (SFF)-system (III.7).
Step 1) Take �� as the matrix � with the last row and last column

deleted. If �� is not a (u.t.n.m) in Toeplitz form, then STOP,
the system is not linearizable.

Step 2) If �� is a (u.t.n.m) in Toeplitz form, solve �� ��
 �� � � � to
get �� . Then compute the function �
������ via

�
������ � �
�

��

��


��


�

�

�
���������������� (III.10)
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Since � should be Toeplitz, the obtention of �� and ����

gives � by adding to �� the last column and row accord-
ingly.

Step 3) If �� (resp. ��) is the last column of � (resp. � ), check
if �� � ������ � � �

�� � �. If no, the system is not
linearizable and if yes, it is by � � ������.

Proof of Theorem III.2: We will show ������ ���� ����� �����.
• ������ ��� is direct and can be deduced from Theorem III.1.
• ��� � ���� We proved in [20] that (III.1) in ��, is

linearizable iff �� � �������� � 	�����, where
������ � �
�
����������

�

�
��������. The (u.t.m)

� � �����������������

���� ��
 � � � � 	
 �������� � �
�

��

�

�

�������

�������� � �
�

��

�

�

��������

�

�

��������������

satisfies (III.8) and defines � � ������ that linearizes
the system. Assume the implication true for systems in
����. Let (III.1) be an �-dimensional system linearizable by
� � ���� � ������
 
 
 
 
 ���
 �����
 
 
 
 
 ���
 
 
 
 
�������

�.
Set ����
 
 
 
 
 ��� � ���
 
 
 
 
 ���

�. The projection ���� is lin-
earizable by ������� � ������
 
 
 
 
 ���
 
 
 
 
 �������

�.
By induction ����� � �� � �

�����
���������� for

� � � with ���� � ��������. Since � � ���� lin-
earizes the system, 
� � ��������� � ��������� �
�������������� ������ � ��. Thus ����� � �������
which implies ����� � ��������. Also ����� �
�� � �

���
���������� ������� � ���

���
�����������. We

then deduce that ����� � ���
���
���

���������� �	����. The
change of coordinates � � ���� is in the form � � ������,
where ����� satisfies (III.8) necessarily.

• ���� � ����� Consider the system (III.7) and assume that � �
����������������� exists and satisfies (III.8). Define �� and ��
such that for � � � � � � �� � we have �������� � ��������
and for � � � � � � � we have �������� � �������������.
This is possible provided that (III.9) is satisfied. That’s the only
point we need to clarify because �������� ��� � � for all
� � �� is already equivalent to (III.2)-(III.3)-(III.4). Condition
(III.9) is satisfied since �� ���. Let �� (resp. ��) denote the
matrice � (resp. �) with the last row and last column deleted.
�������� ��� � � for all � � �� implies that �� ��� �� � �
�. �� being in Toeplitz form (hence is �� �) and invertible, thus
�� � ���� �� � is also in Toeplitz form.

Example III.3: Reconsider Example II.3 and let � � �, that is
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�� � ��

This is a quasilinear (SFF)-system 
� � �� � ��� ������� in ��,
where � � ������ is a (u.t.n.m) with ���� � ���� � �

�������� � �������� �
�

�

 �������� � �

�

�

 �������� � ��

We look for an invertible (u.t.m) � � ������ in Toeplitz form, i. e.,
���� � �, � � � � �; ���� � ���� � ���� and ���� � ���� such that
�� �� � �� � � �. We deduce the system of ordinary differential equa-

tions (ODEs):�������������������������������� � �,����������
����� � � which yields ���� � �������� and ���� � ��������. In-
tegrating (III.10) for ���� � ���� � �, ���� � � gives �������� �

����������. Hence the change of coordinates � � ������ defined
by

�� � �� �
�

�
���� �

�

�
���

�
� �

�

��
���
 �� � �� �

�

�
���

�� � �� �
�

�
���� �

�

�
���
 �� � ��

linearizes the system (compare with Example II.3 when � � �).

IV. CONCLUSION

In this technical note we considered a subclass of single input con-
trol systems in feedforward form, namely (FFnice), for which we gave
a feedback linearizing algorithm. The importance of the algorithm is
two fold: (a) it replaces the solving of the PDEs by simple algebraic
operations involving differentiating, integrating, and composing func-
tions only; (b) it does not require an a priori checking of the feed-
back linearization conditions of Theorem II.1 (which is usually very
hard). Indeed, at each step those conditions are replaced with the fact
that the second derivative of a certain vector field is proportional to its
first derivative with respect to the same variable. Moreover, the algo-
rithm allows to compute a stabilizing feedback controller for the orig-
inal system. The drawback of the linearization technique in general is
that some global properties can be lost during the operation. For feed-
forward systems however, the transformations we obtained are glob-
ally defined though their inverses might not be. A generalization of our
results to multi-input control systems is under investigation for (SFF)
and (FFnice) systems. The VTOL example, which is a 2-input con-
trol system, falls in that class of (FF)-systems. As mentioned earlier,
when the system is not (FFnice), that is, at least one component is non-
linear with respect to the corresponding variable, then the PDEs cannot
be separated into ODEs. Extending those results outside the class of
(FF)-systems requires a different approach and is already challenging
for single-input systems. We are currently working in that direction
with promising results and we are expecting that the new algorithms
will cover all linearizable systems.
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A Pontryagin’s Maximum Principle for Non-Zero Sum
Differential Games of BSDEs with Applications

Guangchen Wang and Zhiyong Yu

Abstract—This technical note is concerned with a maximum principle for
a new class of non-zero sum stochastic differential games. The most distin-
guishing feature, compared with the existing literature, is that the game sys-
tems are described by backward stochastic differential equations (BSDEs).
This kind of games are motivated by some interesting phenomena arising
from financial markets and can be used to characterize the players with
different levels of utilities. We establish a necessary condition and a suffi-
cient condition in the form of maximum principle for open-loop equilib-
rium point of the foregoing games respectively. To explain the theoretical
results, we use them to study a financial problem.

Index Terms—Backward stochastic differential equation (BSDE), non-
zero sum stochastic differential game, open-loop equilibrium point, Pon-
tryagin’s maximum principle, portfolio choice.

I. INTRODUCTION

A. Basic Notations and Problem Formulation

THROUGHOUT this technical note, we denote by � the �-dimen-
sional Euclidean space, ��� the collection of � � � matrices. For a
given Euclidean space, we denote by ��� �� (respectively, � � �) the scalar
product (respectively, norm). The superscript � denotes the transpose
of vectors or matrices. Let ��� �� ����� � be a complete filtered
probability space equipped with a natural filtration

�� � ������� � � � � �	� � 
 ��� 	 �

where ������ is an �-valued standard Brownian motion defined
on the space, 	 
 � is a fixed time horizon, and � � �� . If
� 	 ��� 	 � � ��� � is an ��-adapted square-integrable process
(i.e., �

�
��������� 
 

), then we write � 
 ��

���� 	 �
��. For

simplicity, sometimes we throw away � when there is no danger of
confusion.

In this technical note, we study a class of non-zero sum differen-
tial games of BSDEs, which is inspirited by some interesting financial
phenomena. For simplicity, we only consider the case of two players,
which is similar for � players. Let us now give a detailed formulation
of the problem. Consider the following BSDE:

���� �� ��� � ���� �� �� ���� �� �� ���� ������ ��������

��� �� ���������

�� �� �	 � � ��
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