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Abstract

An edge-magic total labelling (EMTL) of a graph G with n vertices
and e edges is an injection λ : V (G)∪E(G) → [n+e], where, for every
edge uv ∈ E(G), we have wtλ(uv) = kλ, the magic sum of λ. An edge-
magic injection (EMI) µ of G is an injection µ : V (G) ∪ E(G) → N
with magic sum kµ and largest label mµ. For a graph G we define and
study the two parameters κ(G): the smallest kµ amongst all EMI’s µ

of G, and m(G): the smallest mµ amongst all EMI’s µ of G. We find
κ(G) for G ∈ G for many classes of graphs G. We present algorithms
which compute the parameters κ(G) and m(G). These algorithms
use a G-sequence: a sequence of integers on the vertices of G whose
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sum on edges is distinct. We find these parameters for all G with
up to 7 vertices. We introduce the concept of a double-witness: an
EMI µ of G for which both kµ = κ(G) and mµ = m(G); and present
an algorithm to find all double-witnesses for G. The deficiency of G,
def(G), is m(G)−n−e. Two new graphs on 6 vertices with def(G) = 1
are presented. A previously studied parameter of G is κEMTL(G), the
magic strength of G: the smallest kλ amongst all EMTL’s λ of G. We
relate κ(G) to κEMTL(G) for various G, and find a class of graphs B for
which κEMTL(G)−κ(G) is a constant multiple of n− 4 for G ∈ B. We
specialize to G = Kn, and find both κ(Kn) and m(Kn) for all n ≤ 11.
We relate κ(Kn) and m(Kn) to known functions of n, and give lower
bounds for κ(Kn) and m(Kn).

Keywords: edge-magic injection; magic strength; G-sequence; k-minimum
G-sequence; m-minimum G-sequence; Well Spread-sequence; double-witness.
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1 Introduction, κ(G), m(G)

We use N = {1, 2, 3, . . .} for the set of natural numbers, and [s] = {1, 2, . . . , s}
for the set of the first s natural numbers. Here G will be a simple graph
without isolated vertices, with vertex-set V (G) of order n ≥ 2, and edge-set
E(G) of size e ≥ 1. Consider an injection µ : V (G) ∪ E(G) → N, which
we represent by labelling each vertex and edge of G with a distinct natural
number, this is a total labelling of G. For edge uv ∈ E(G) let its weight
under µ be wtµ(uv) = µ(u) + µ(v) + µ(uv).

A magic valuation of G is an injection λ : V (G) ∪ E(G) → [n + e],
where, for every edge uv ∈ E(G), we have wtλ(uv) = kλ, for a constant
kλ, called the magic sum of λ. Magic valuations were introduced by Kotzig
and Rosa in [5], and have been studied further under the name edge-magic
total labellings (EMTL’s). Here we use ‘EMTL’ instead of ‘magic valuation’.
Wallis, Baskoro, Miller, and Slamin [14], and Wallis [13] contain much infor-
mation about EMTL’s. See Gallian [2] for numerous classes of graphs that
have an EMTL, and for other information on this and related topics. There
is now extensive ongoing research in the field of graph labellings, much of
it stimulated by magic valuations which were amongst the first labellings
studied.

Here we focus on edge-magic injections of a graph G.
Definitions: Edge-magic injection (EMI) of G; kµ, mµ

(1) The injection µ is an edge-magic injection of G if for every edge uv ∈
E(G) we have wtµ(uv) = kµ, for some constant kµ called the magic
sum of µ.

(2) mµ is the largest label used in µ. So µ : V (G) ∪ E(G) → [mµ].

Thus an EMI of G is a relaxed form of an EMTL of G, in that the labels
of G can be any natural number. The idea of an EMI also comes from [5].
Not every graph has an EMTL, an example is K4. But every graph has an
EMI (see Theorem 3.1) and this is one advantage of studying EMI’s over
studying EMTL’s. It appears that very little research has been carried out
on EMI’s as compared to EMTL’s.

One avenue of research in EMTL’s is to extend the list of graphs that have
an EMTL. Another is to investigate properties of EMTL’s. With this second
idea in mind Avadayappan, Vasuki, and Jeyanthi [1] defined the following
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parameter, called the magic strength of G, for any graph G that has an
EMTL. We denote this parameter by κEMTL(G).

Definition: κEMTL(G)
Let G have an EMTL. Then

κEMTL(G) = min{kλ |λ is an EMTL of G with magic sum kλ},

is the smallest kλ amongst all EMTL’s λ of G.
All known values of κEMTL(G) are given in Theorem 1.1 below.
In [6] it was shown that Kn has an EMTL if and only if n ∈ {2, 3, 5, 6}.

The values of κEMTL(Kn) for n ∈ {2, 3, 5, 6} in line 1 of Theorem 1.1 come
from Section 7.1 of [14] where all such EMTL’s were found, although κEMTL(G)
was not considered; see also Section 2.3.3 of [13]. The values of κEMTL(G) for
the graphs G in lines 2–6 of Theorem 1.1 are from [1], and those in lines 7
and 8 are from Section 2 of Murugan [7].
Remark: All graphs G in Theorem 1.1 that contain an ‘n’ in their notation
have n vertices, except for G = B∗

n−2
2

, n−2
2

which has n + 1 vertices.

Kn, Pn, and Cn represent the complete graph, the path, and the cycle
respectively. The bi-star Bn−2

2
, n−2

2
for n even and ≥ 4 is obtained from two

disjoint copies of the star K1, n−2
2

by joining the center vertices with a new

edge; and B∗
n−2

2
, n−2

2

is obtained from Bn−2
2

, n−2
2

by subdividing this new edge

with a new vertex, it has n + 1 vertices. The Huffman tree HTn+1
2

for n

odd and ≥ 3 is the path Pn+1
2

with a pendant edge attached to every vertex

except the last. The twig TWn
3

for n ≡ 3 (mod 6) is the path Pn
3

with two
pendant edges attached to every vertex.
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Theorem 1.1 ([14], [1], [7])

κEMTL(G) =





6, 9, 18, 25, G = K2, K3, K5, K6;⌈
5n + 3

2

⌉
, G = Cn, (n ≥ 3);

9n + 6

4
, G = n

2
K2, (n ≡ 2 (mod 4));⌈

5n + 1

2

⌉
, G = Pn, (n ≥ 2);

5n + 2

2
, G = Bn−2

2
, n−2

2
, (n even and ≥ 4);

2n + 5, G = B∗
n−2

2
, n−2

2

, (n even and ≥ 4);⌈
9n + 5

4

⌉
, G = HTn+1

2
, (n odd and ≥ 3);

13n + 9

6
, G = TWn

3
, (n ≡ 3 (mod 6)).

Because every graph G has an EMI, we may define a new parameter,
κ(G) = κEMI(G), as a more general version of κEMTL(G). It appears that
κ(G) has not been considered before.

Definitions: κ(G), k-minimum EMI of G; witness for κ(G)

(1) κ(G) = min{kµ |µ is an EMI of G with magic sum kµ}, is the smallest
kµ amongst all EMI’s µ of G.

(2) EMI µ is a k-minimum EMI of G if kµ = κ(G); and µ is a witness for κ(G).

See Sections 3 and 4 of [7] for related, but different, parameters of G;
and see Kong, Lee, and Sun [3] for a similar parameter, but concerning the
vertices of G.

The second parameter of a graph G which we consider is m(G).

Definitions: m(G), m-minimum EMI of G; witness for m(G), def(G)

(1) m(G) = min{mµ |µ is an EMI of G with largest label mµ}, is the
smallest mµ amongst all EMI’s µ of G.

(2) EMI µ is a m-minimum EMI of G if mµ = m(G); and µ is a witness
for m(G).
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(3) def(G) = m(G) − n − e, the deficiency of G, is the smallest number
such that there exists an EMI µ : V (G) ∪ E(G) → [n + e + def(G)].

The concept of ‘deficiency’ comes from [5]; the formulation we use is
slightly different from that used there. By Definition (1) above it is clear
that m(G) = n+ e if and only if G has an EMTL (if and only if def(G) = 0).
As an example of some graphs G with m(G) = n + e + 1 (equivalently,
def(G) = 1) see the 10 graphs shown in [5], each has n ≤ 6.

We summarize our paper:
In Section 2 we give a lower bound for κ(G), and then find κ(G) for all

incomplete graphs G in Theorem 1.1. In Section 3 we define a G-sequence
A, and show that every graph G on n vertices has an EMI. In Section 4 we
present algorithms that, for a fixed G, compute κ(G), and find all witnesses
for κ(G), i.e., all k-minimum EMI’s of G. In Section 5 we present algorithms
that compute m(G), and find all witnesses for m(G), i.e., find all m-minimum
EMI’s of G. In Section 6 we present our results from the algorithms of
Sections 4 and 5 for graphs G with n = 2, 3, 4, 5, or 6 vertices. We find two
new graphs G with def(G) = 1 on 6 vertices. We also consider graphs G
with n = 7 vertices, and trees T with up to n = 10 vertices. In Section 7 we
specialize to G = Kn. Finally, in Section 8, we consider miscellaneous items.

2 κ(G) for certain G

In this section we find κ(G) for all graphs G in Theorem 1.1 except for
G = Kn where n ∈ {2, 3, 5, 6}. In Section 7 we show κ(Kn) = κEMTL(Kn) for
all n ∈ {2, 3, 5, 6}, (see Table 3).

If a graph G has an EMTL then, since an EMTL of G is an EMI of G,
we have

κ(G) ≤ κEMTL(G). (1)

However κ(G) < κEMTL(G) is possible. From [1] the graph B2,2 has
κEMTL(B2,2) = 16, but see Fig. 1 for an EMI µ of B2,2 with kµ = 15 < 16.
Indeed, in Theorem 2.4(ii), we show that κ(B2,2) = 15.

Fig. 1 here
In Theorem 2.1 below we let V (G) = {v1, v2, . . . , vn} and let di denote

the degree of vertex vi for i = 1, 2, . . . , n. We order the vertices so that
d1 ≤ d2 ≤ · · · ≤ dn.
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Theorem 2.1 Let G have n vertices, e edges, and vertex degrees [d1, d2, . . . , dn]
where d1 ≤ d2 ≤ · · · ≤ dn. Then

(i) κ(G) ≥
⌈

6ne + e2 + 3e + 2m(G) − 2n − 2
∑n

i=1 i di

2e

⌉
,

(ii) κ(G) ≥
⌈

6ne + e2 + 5e − 2
∑n

i=1 i di

2e

⌉
.

Proof. (i) Let µ be an EMI of G with magic sum κ(G) and with largest la-
bel mµ. When summing κ(G) over every edge, each edge label µ(uv) appears
one time and each vertex label µ(vi) appears di times. That is,

eκ(G) =
∑

uv∈E(G)

µ(uv) +
∑

vi∈V (G)

di µ(vi). (2)

In order to minimize the RHS of Equation (2) we use the n + e labels
{1, 2, . . . , n + e − 1,mµ} on G. We place the largest e labels {n + 1, n +
2, . . . , n + e − 1,mµ} on the e edges; and the smallest n labels {1, 2, . . . , n}
on the n vertices in reverse order, so that µ(vi) = n− i+1 for i = 1, 2, . . . , n.
So

eκ(G) ≥ 2ne + 2mµ + e2 − 2n − e

2
+

n∑

i=1

di (n − i + 1).

Now, using
∑n

i=1 di = 2e, and mµ ≥ m(G), and noting that κ(G) is an
integer, gives the result.
(ii) Use (i) and m(G) ≥ n + e.
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Corollary 2.2 Let G be a r-regular graph with n vertices and e edges.
Then

(i) κ(G) ≥
⌈

4ne + e2 + e + 2m(G) − 2n

2e

⌉
,

(ii) κ(G) ≥
⌈

4n + e + 3

2

⌉
.

Proof. For (i) we use Theorem 2.1, and nr = 2e, and
∑n

i=1 i =
(

n+1
2

)
.

And for (ii) we use (i) and m(G) ≥ n + e.

The graphs G in lines 2 and 3 in Theorem 1.1 are regular, we have:

Theorem 2.3

(i) κ(Cn) = κEMTL(Cn) =

⌈
5n + 3

2

⌉
, (n ≥ 3).

(ii) κ(n
2
K2) = κEMTL(n

2
K2) =

9n + 6

4
, (n ≡ 2 (mod 4)).

Proof. (i) When G = Cn we have e = n, and Corollary 2.2(ii) gives
κ(Cn) ≥ d5n+3

2
e = κEMTL(Cn). The upperbound κ(Cn) ≤ κEMTL(Cn) comes

from Equation (1). The proof of (ii) is similar using e = n
2
.

Now for the irregular G in lines 4–8 in Theorem 1.1 we have:
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Theorem 2.4

(i) κ(Pn) = κEMTL(Pn) =

⌈
5n + 1

2

⌉
, (n ≥ 2).

(ii) κ(Bn−2
2

, n−2
2

) = 2n + 3, (n even and ≥ 4).

(iii) κ(B∗
n−2

2
, n−2

2

) = κEMTL(B∗
n−2

2
, n−2

2

) = 2n + 5, (n even and ≥ 4).

(iv) κ(HTn+1
2

) = κEMTL(HTn+1
2

) =

⌈
9n + 5

4

⌉
, (n odd and ≥ 3).

(v) κ(TWn
3
) = κEMTL(TWn

3
) =

13n + 9

6
, (n ≡ 3 (mod 6)).

Proof. (i) Here G = Pn with n vertices and e = n − 1 edges and de-

grees [1, 1,

n−2︷ ︸︸ ︷
2, . . . , 2], so

∑
idi = n2 + n − 3. Then Theorem 2.1(ii) gives

κ(Pn) ≥
⌈

5n
2

+ 1
n−1

⌉
=

⌈
5n+1

2

⌉
. And κ(Pn) ≤ κEMTL(Pn) =

⌈
5n+1

2

⌉
comes

from Theorem 1.1 and Equation (1). Thus κ(Pn) = κEMTL(Pn) =
⌈

5n+1
2

⌉
.

(ii) Here G = Bn−2
2

, n−2
2

with n vertices and e = n − 1 edges and degrees

[

n−2︷ ︸︸ ︷
1, . . . , 1, n

2
, n

2
], so

∑
idi = 3n2−4n+2

2
. Then Theorem 2.1(ii) gives κ(Bn−2

2
, n−2

2
) ≥⌈

4n+5
2

− 1
2(n−2)

⌉
= 2n + 3. Now consider the EMI µ of Bn−2

2
, n−2

2
shown

below. It has kµ = 2n + 3 and mµ = 2n, label 3n
2

is unused. Hence
κ(Bn−2

2
, n−2

2
) ≤ 2n + 3, and so κ(Bn−2

2
, n−2

2
) = 2n + 3.
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•

•

•

•

n + 1

2

n

n + 2
n − 1

...
3n−4

2 n+6
23n−2

2

n+4
2

• •
2n

•

•

•

•

1

2n − 1

3

2n − 24

...
n
2

3n+4
2

n+2
2

3n+2
2

(iii) Here G = B∗
n−2

2
, n−2

2

with n + 1 vertices and e = n edges and degrees

[

n−2︷ ︸︸ ︷
1, . . . , 1, 2, n

2
, n

2
], so

∑
idi = 3n2+2n−2

2
. Theorem 2.1(ii) gives κ(B∗

n−2
2

, n−2
2

) ≥
⌈

4n+9
2

+ 1
n

⌉
= 2n + 5. And we have κ(B∗

n−2
2

, n−2
2

) ≤ 2n + 5 from Theorem 1.1

and Equation (1). Thus κ(B∗
n−2

2
, n−2

2

) = κEMTL(B∗
n−2

2
, n−2

2

) = 2n + 5.

(iv) Here G = HTn+1
2

with n vertices and e = n − 1 edges and degrees

[

n+1
2︷ ︸︸ ︷

1, . . . , 1, 2,

n−3
2︷ ︸︸ ︷

3, . . . , 3], so
∑

idi = 5n2−9
4

. Again Theorem 2.1(ii) gives κ(HTn+1
2

) ≥⌈
9n+3

4
+ 1

2n−2

⌉
=

⌈
9n+5

4

⌉
, and κ(HTn+1

2
) ≤

⌈
9n+5

4

⌉
from Theorem 1.1 and
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Equation (1). Thus κ(HTn+1
2

) = κEMTL(HTn+1
2

) =
⌈

9n+5
4

⌉
.

(v) Here G = TWn
3

with n vertices and e = n − 1 edges and degrees

[

2n
3︷ ︸︸ ︷

1, . . . , 1, 3, 3,

n−6
3︷ ︸︸ ︷

4, . . . , 4], so
∑

idi = 4n2−n−9
3

. Theorem 2.1(ii) gives κ(TWn
3
) ≥⌈

13n+6
6

+ 2
n−1

⌉
= 13n+9

6
, and κ(TWn

3
) ≤ 13n+9

6
from Theorem 1.1 and Equa-

tion (1). Thus κ(TWn
3
) = κEMTL(TWn

3
) = 13n+9

6
.

Remark: See Figure 1 for an example of the EMI of Theorem 2.4(ii) with
n = 6. We have κEMTL(Bn−2

2
, n−2

2
) − κ(Bn−2

2
, n−2

2
) = n−4

2
. Hence, for a graph

G with n vertices, we can have the difference κEMTL(G) − κ(G) as large as
a constant multiple of n − 4, i.e., a constant multiple of n for sufficiently
large n.

We conclude this section with the following result which could be useful
when searching for an EMI µ of G with kµ < κEMTL(G) for regular G with
an EMTL.

Theorem 2.5 Let G be a r-regular graph (r ≥ 2) with an EMTL, and let
λ be a witness for κEMTL(G), so kλ = κEMTL(G). Now suppose that µ is an
EMI of G with kµ < κEMTL(G). Then

∑

u∈V (G)

µ(u) <
∑

u∈V (G)

λ(u).

Proof. Let Sλ =
∑

u∈V (G) λ(u) +
∑

uv∈E(G) λ(uv) be the sum of all the
labels of λ, define Sµ similarly.

Now λ is an EMTL of G with kλ = κEMTL(G), so

eκEMTL(G) =
∑

u∈V (G)

rλ(u) +
∑

uv∈E(G)

λ(uv) = (r − 1)
∑

u∈V (G)

λ(u) + Sλ.

The first equality is true since each vertex label λ(u) appears r times and
each edge label λ(uv) appears one time when summing κEMTL(G) over every
edge. Similarly,

ekµ = (r − 1)
∑

u∈V (G)

µ(u) + Sµ.

Now kµ < κEMTL(G) so µ is not an EMTL of G, and thus Sλ < Sµ. So

eκEMTL(G) − (r − 1)
∑

u∈V (G)

λ(u) < ekµ − (r − 1)
∑

u∈V (G)

µ(u).
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So

(r − 1)


 ∑

u∈V (G)

µ(u) −
∑

u∈V (G)

λ(u)


 < e (kµ − κEMTL(G)) < 0.

The last inequality is true since kµ < κEMTL(G). But r ≥ 2, and so

∑

u∈V (G)

µ(u) <
∑

u∈V (G)

λ(u).

3 G-sequences

Let S and T be sets of distinct natural numbers, ordered or unordered.
Definitions: S↑, S↓, S + T

(1) S↑= max{s | s ∈ S}, is the largest element in S.

(2) S↓= min{s | s ∈ S}, is the smallest element in S.

(3) S + T = {s + t | s ∈ S, t ∈ T}.

Let G have vertex set V (G) = (v1, v2, . . . , vn) for n ≥ 2, fixed in this
order. Let A = (a1, a2, . . . , an) be an ordered sequence of n distinct natural
numbers. Now label vertex vi with ai, say `(vi) = ai, for each i = 1, 2, . . . , n.
Definitions: P(A), G-sequence, G(A)′, k(G(A)), E(A), G(A), m(G(A))

(1) P(A) = {ai + aj | vivj ∈ E(G), 1 ≤ i < j ≤ n}.

(2) A is a G-sequence if each ai + aj ∈ P(A) is distinct, equivalently, if
|P(A)| = e = |E(G)|.

(3) G(A)′ is the graph G whose vertices have been labelled with elements
of A.

(4) k(G(A)) is the smallest integer≥ P(A)↑ +1 that lies outside A+P(A).
That is, k(G(A)) = min{[P(A)↑ +1,∞) ∩ (A + P(A))}.

(5) E(A) = {k(G(A)) − ai − aj | vivj ∈ E(G), 1 ≤ i < j ≤ n} ⊂ N, are the
edge labels of G.
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(6) G(A) is the total labelling of G with vertex labels A and edge labels
E(A): for edge vivj ∈ E(G) where 1 ≤ i < j ≤ n let its label be
`(vivj) = k(G(A)) − ai − aj ∈ E(A).

(7) m(G(A)) = max{A↑, k(G(A))−P(A)↓}, is the maximum of the vertex
labels and the edge labels on G(A).

Theorem 3.1 G(A) is an EMI of G with magic sum k(G(A)).

Proof. The vertex labels of G(A) are distinct, and, since A is a G-
sequence, then each edge label k(G(A))−ai−aj is also distinct. Furthermore,
since k(G(A)) 6∈ A + P(A), then every k(G(A)) − ai − aj 6∈ A, i.e., every
edge label is different from every vertex label. Thus this total labelling of G
is an injection into N. It has magic sum k(G(A)), so is an EMI.

Example 1
Consider the graph G shown: A = (4, 5, 1, 2) is a G-sequence since all num-

bers in P(A) = {3, 5, 6, 7, 9} are distinct. Then P(A)↑= 9 and A + P(A) =
{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. So k(G(A)) = min{[10,∞) ∩ ({1, 2, 3} ∪
[15,∞})=15. This gives E(A) = {6, 8, 9, 10, 12}, the edge labels on G(A).
Finally A↑= 5 and P(A)↓= 3, so m(G(A)) = max{5, 15 − 3} = 12 is the
largest label on G(A).

G

• •

••

v4

v3v2

v1

V (G) = (v1, v2, v3, v4)

G(A)′

• •

••

2

15

4

A = (4, 5, 1, 2)

G(A)

• •

••

2

15

4
10 8

6 12

9

A = (4, 5, 1, 2)
E(A) = {6, 8, 9, 10, 12}
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4 Computing κ(G), k-minimum EMI’s of G

In this section G is a fixed graph. We present an algorithm to compute κ(G),
and a second algorithm to compute all witnesses for κ(G).
Definition: k(G)
k(G) = min{k(G(A)) |A is a G-sequence}, is the smallest value of k(G(A))
amongst all G-sequences A.

Theorem 4.1 We have κ(G) = k(G).

Proof. To see that κ(G) ≤ k(G) let X = (x1, x2, . . . , xn) be a G-sequence
with k(G(X)) = k(G). By Theorem 3.1 the EMI G(X) of G has magic sum
k(G(X)) = k(G). Hence, by definition of κ(G), we have κ(G) ≤ k(G).

Conversely let µ be a k-minimum EMI of G, so kµ = κ(G); and let
A = (a1, a2, . . . , an) be the sequence of vertex labels of this G written in the
same order as V (G) = (v1, v2, . . . , vn). Then κ(G)−ai−aj for all pairs {i, j}
where vivj ∈ E(G) and 1 ≤ i < j ≤ n are the edge labels of this G. Since µ
is an EMI then these are all distinct, hence the ai + aj are distinct, and so
A is a G-sequence. The smallest edge label can be 1 so, κ(G) − P(A)↑≥ 1,
i.e., κ(G) ≥ P(A)↑ +1. Also, if κ(G) ∈ A + P(A) then κ(G) − ai − aj ∈ A
for some vivj ∈ E(G) with 1 ≤ i < j ≤ n, thus some edge label is equal to a
vertex label, a contradiction. So κ(G) 6∈ A + P(A). Thus κ(G) is an integer
≥ P(A)↑ +1 that lies outside A + P(A), but k(G(A)) is the smallest such
integer. Hence κ(G) ≥ k(G(A)) ≥ k(G), since A is a G-sequence.

Combining the above paragraphs gives κ(G) = k(G).

So to compute κ(G) we will compute k(G), see Algorithm κ(G) below.

Definition: Wk(A)
Let A = (a1, a2, . . . , an) be a G-sequence.

Wk(A) = {W |W is a G − sequence with P(W )↑ +1 ≤ k(G(A))}.

Note that A ∈ Wk(A). Note also that if W ∈ Wk(A) then W↑≤
⌈

k(G(A))−1
2

⌉

so |Wk(A)| ≤ Perm
(
n,

⌈
k(G(A))−1

2

⌉)
, the number of permutations of length

n from the set
[⌈

k(G(A))−1
2

⌉]
; i.e., |Wk(A)| is finite.

Theorem 4.2 Let A be a G-sequence. Then

k(G) = min{k(G(W )) |W ∈ Wk(A)}.
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Proof. Let X be a G-sequence with k(G(X)) = k(G). If k(G) 6= min{k(G(W )) |W ∈
Wk(A)} then X 6∈ Wk(A), i.e., P(X)↑ +1 > k(G(A)). So k(G(X)) ≥ P(X)↑
+1 > k(G(A)), i.e., k(G) > k(G(A)), a contradiction to the minimality of
k(G). Hence the result.

The following algorithm is a finite procedure for computing k(G), i.e.,
κ(G), it uses Theorem 4.2.
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Algorithm κ(G): Compute κ(G)

(1) Let A0 = (a1, a2, . . . , an) be a G-sequence.

(2) Compute k(G(A0)).

(3) List Wk(A0) in lexicographic order.

(4) For each W ∈ Wk(A0) compute k(G(W )):

IF we find W = A1 with k(G(A1)) < k(G(A0))

THEN let A0 = A1 at Step (2) and repeat

ELSE output κ(G) = k(G) = k(G(A0)).

Definition: k-minimum G-sequence; witness for κ(G)
Let X = (x1, x2, . . . , xn) be a G-sequence. Then X is a k-minimum G-
sequence if k(G(X)) = κ(G); we also call X a witness for κ(G).
Remark: So a ‘witness for κ(G)’ can be both a G-sequence X or the cor-
responding EMI G(X) of G. A Corollary of Theorem 4.1 is then:

Corollary 4.3 G-sequence X is a witness for κ(G) if and only if EMI
G(X) is a witness for κ(G).

Once κ(G) is known we can find all k-minimum G-sequences, i.e., all
witnesses for κ(G).

Theorem 4.4 Let X be a k-minimum G-sequence. Then all k-minimum
G-sequences lie in Wk(X).

Proof. Let W be a k-minimum G-sequence, then k(G(W )) = κ(G). So
P(W )↑ +1 ≤ k(G(W )) = κ(G) = k(G(X)), i.e., W ∈ Wk(X).

We give an algorithm to find all witnesses W for κ(G). For this we need:

Theorem 4.5

(i) Let µ be a k-minimum EMI of G. Then 1 ∈ N appears as a label of G.

(ii) Let X = (x1, x2, . . . , xn) be a k-minimum G-sequence. Then either
xi = 1 for some xi ∈ X, or P(X)↑ +1 = κ(G), (not both).

16



Proof. (i) Let ` ∈ N be the smallest label used in µ. Now define an
injection µ′ : V (G) ∪ E(G) → N given by µ′(w) = µ(w) − (` − 1) for all
w ∈ V (G) ∪E(G). It is straightforward to check that, if ` > 1, then µ′ is an
EMI of G with magic sum kµ′ = kµ − 3(`− 1) < kµ = κ(G), a contradiction.
Hence ` = 1 as required.
(ii) Since k(G(X)) = κ(G) then the labelled graph G(X) is a k-minimum EMI
of G, and so, from (i), the label 1 has been used on a vertex or an edge, (not
both). If 1 is a vertex label on some vi then xi = 1. Or, if 1 is an edge label,
then it is the smallest edge label, so 1 = k(G(X))−P(X)↑= κ(G)−P(X)↑.
That is, P(X)↑ +1 = κ(G).

Remark: See Table 3, n = 2 where both cases of Theorem 4.5(ii) are illus-
trated.

Definition: witness(κ(G))

witness(κ(G)) = {W |W is a k−minimum G−sequence}.

We use Theorem 4.5(ii) in the following algorithm where we assume that
κ(G) is known.
Algorithm witness(κ(G)): Find witness(κ(G))

(1) Let X = (x1, x2, . . . , xn) be a k-minimum G-sequence.

(2) List all W = (w1, w2, . . . , wn) ∈ Wk(X) with some wi = 1 or

P(W )↑ +1 = κ(G), (not both).

(3) For these W compute k(G(W )).

IF k(G(W )) = κ(G)

THEN output W into witness(κ(G))

ELSE reject W.

5 Computing m(G), m-minimum EMI’s of G

In this section G is fixed. We present an algorithm to compute m(G), and a
second algorithm to compute all witnesses for m(G).
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Recall Definition (7) of Section 3: For a G-sequence A = (a1, a2, . . . , an)
we have m(G(A)) = max{A↑, k(G(A))−P(A)↓}. So m(G(A)) is the maxi-
mum of the vertex labels and the edge labels of G(A), i.e., the largest label
of G(A). Analogous to the definition of k(G):

Definition: m(G)
m(G) = min{m(G(A)) |A is a G− sequence}, is the smallest value of
m(G(A)) amongst all G-sequences A.

Analogous to Theorem 4.1:

Theorem 5.1 We have m(G) = m(G).

Proof. To see that m(G) ≤ m(G) let Y = (y1, y2, . . . , yn) be a G-sequence
with m(G(Y )) = m(G). Now the total labelling G(Y ) of G is an EMI µ of
G with mµ = m(G(Y )) = m(G). Hence, by definition of m(G), we have
m(G) ≤ m(G).

Conversely let µ be a m-minimum EMI of G, so mµ = m(G); and let
A = (a1, a2, . . . , an) be the sequence of vertex labels of this G written in the
same order as V (G) = (v1, v2, . . . , vn). Then kµ − ai − aj are the edge labels
of this G for edges vivj where 1 ≤ i < j ≤ n. As before, these are all distinct,
hence the ai + aj are distinct, and A is a G-sequence. Now by definition of
k(G(A)) we have k(G(A)) ≤ kµ. So m(G(A)) = max{A↑, k(G(A))− P(A)↓
} ≤ max{A↑, kµ −P(A)↓} = mµ = m(G). And then by definition of m(G),
since A is a G-sequence, we have m(G) ≤ m(G(A)) ≤ m(G), as needed.

Combining the above paragraphs gives m(G) = m(G).

So, to compute m(G) we will compute m(G), see Algorithm m(G) below.

Definition: Wm(A)
Let A = (a1, a2, . . . , an) be a G-sequence.

Wm(A) = {W |W is a G−sequence with W↑≤ m(G(A))}.

Note that A ∈ Wm(A). Note also that |Wm(A)| ≤ Perm (n,m(G(A))), i.e.,
|Wm(A)| is finite.

Theorem 5.2 Let A be a G-sequence. Then

m(G) = min{m(G(W )) |W ∈ Wm(A)}.
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Proof. Let Y be a G-sequence with m(G(Y )) = m(G). If m(G) 6=
min{m(G(W )) |W ∈ Wm(A)} then Y 6∈ Wm(A), i.e., Y ↑> m(G(A)). So
m(G(Y )) ≥ Y ↑> m(G(A)), i.e., m(G) > m(G(A)), a contradiction to the
minimality of m(G). Hence the result.

Using Theorem 5.2 we have:
Algorithm m(G): Compute m(G)

(1) Let A0 = (a1, a2, . . . , an) be a G-sequence.

(2) Compute m(G(A0)).

(3) List Wm(A0) in lexicographic order.

(4) For each W ∈ Wm(A0) compute m(G(W )):

IF we find W = A1 with m(G(A1)) < m(G(A0))

THEN let A0 = A1 at Step (2) and repeat

ELSE output m(G) = m(G) = m(G(A0)).

Definition: m-minimum G-sequence; witness for m(G)
Let Y = (y1, y2, . . . , yn) be a G-sequence. Then Y is a m-minimum G-
sequence if m(G(Y )) = m(G); we also call Y a witness for m(G).

Once m(G) is known we can find all m-minimum G-sequences, i.e., all
witnesses for m(G).

Theorem 5.3 Let Y be a m-minimum G-sequence. Then all G-sequences
with m(G(W )) = m(G) lie in Wm(Y ).

Proof. Let W be a m-minimum G-sequence, then m(G(W )) = m(G). So
W↑≤ m(G(W )) = m(G) = m(G(Y )), i.e., W ∈ Wm(Y ).

The proof of the following Theorem is similar to the proof of Theorem 4.5.

Theorem 5.4

(i) Let µ be a m-minimum EMI of G. Then 1 ∈ N appears as a label of G.

(ii) Let Y = (y1, y2, . . . , yn) be a m-minimum G-sequence. Then either
yi = 1 for some yi ∈ Y or P(Y )↑ +1 = k(G(Y )), (not both).
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Remark: See Table 3, G = K2, where both cases of Theorem 5.4(ii) are
illustrated. Theorem 5.4(ii) gives us a quick method to compute k(G(Y )) for
a m-minimum G-sequence Y when 1 6∈ Y .

Definition: witness(m(G))

witness(m(G)) = {W |W is a m−minimum G−sequence}.

We use Theorem 5.4(ii) in the following algorithm where we assume that
m(G) is known.
Algorithm witness(m(G)): Find witness(m(G))

(1) Let Y = (y1, y2, . . . , yn) be a m-minimum G-sequence.

(2) List all W = (w1, w2, . . . , wn) ∈ Wm(Y ) with some wi = 1 or

P(Y )↑ +1 = k(G(W )), (not both).

(3) For these W compute m(G(W )).

IF m(G(W )) = m(G)

THEN output W into witness(m(G))

ELSE reject W.

6 Results for G with n = 2, 3, . . . , 7, double-witnesses

In this section, for a fixed graph G with n = 2, 3, . . . , 7 vertices we present our
results from Algorithm κ(G) and Algorithm m(G). (For a typical fixed G,
the witnesses from Algorithm witness(κ(G)) and Algorithm witness(m(G))
are too numerous to list.)

All the 1252 simple graphs G with up to 7 vertices are listed and numbered
as G1, G2, · · · , G1252 in Read and Wilson [10]. We use this numbering sys-
tem, and for graph G# we compute the quadruple: (G#, κ(G#),m(G#), def(G#)).

Definitions: (k,m)-minimum G-sequence; double-witness, (k,m)-minimum
EMI of G; double-witness, double−witness(G)

(1) Let A = (a1, a2, . . . , an) be a G-sequence. Then A is a (k,m)-minimum
G-sequence if both k(G(A)) = κ(G) and m(G(A)) = m(G); we also call
A a double-witness.
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(2) Let µ be an EMI of G. Then µ is a (k,m)-minimum EMI of G if both
kµ = κ(G) and mµ = m(G); we also call µ a double-witness.

(3) double−witness(G) = {W |W is a (k,m)−minimum G−sequence}.

Algorithm double-witness(G): Find double−witness(G)

For each X ∈ witness(κ(G)) compute m(G(X)).

IF m(G(X)) = m(G)

THEN output X into double−witness(G)

ELSE reject X.

Remark: If G-sequence A is a double-witness we use bold numbers in A.
Fig. 2 here

(G26, 13, 8, 0) (G29, 12, 9, 0) (G30, 13, 9, 0) (G31, 13, 9, 0)
(G32, 14, 10, 1) (G34, 13, 10, 0) (G35, 13, 10, 0) (G36, 14, 10, 0)
(G37, 14, 10, 0) (G38, 14, 10, 0) (G40, 14, 11, 0) (G41, 14, 11, 0)
(G42, 14, 11, 0) (G43, 14, 11, 0) (G44, 15, 11, 0) (G45, 15, 12, 0)
(G46, 15, 12, 0) (G47, 15, 12, 0) (G48, 15, 12, 0) (G49, 16, 13, 0)
(G50, 16, 13, 0) (G51, 17, 14, 0) (G52, 18, 15, 0)

Table 1. The (G,κ(G),m(G), def(G))-quadruple for the 23 graphs G on
n = 5 vertices.
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(G61, 15, 9, 0) (G68, 15, 11, 1) (G69, 15, 10, 0) (G70, 15, 10, 0)
(G77, 14, 11, 0) (G78, 15, 11, 0) (G79, 15, 11, 0) (G80, 15, 11, 0)
(G81, 15, 11, 0) (G82, 15, 11, 0) (G83, 16, 11, 0) (G84, 16, 12, 1)
(G85, 16, 11, 0) (G92, 15, 12, 0) (G93, 15, 12, 0) (G94, 15, 12, 0)
(G95, 15, 12, 0) (G96, 16, 12, 0) (G97, 16, 12, 0) (G98, 16, 12, 0)
(G99, 16, 12, 0) (G100, 16, 12, 0) (G101, 16, 12, 0) (G102, 16, 12, 0)
(G103, 16, 12, 0) (G104, 16, 12, 0) (G105, 17, 12, 0) (G106, 18, 13, 1)
(G111, 16, 13, 0) (G112, 16, 13, 0) (G113, 16, 13, 0) (G114, 16, 13, 0)
(G115, 17, 13, 0) (G116, 17, 14, 1)∗ (G117, 16, 13, 0) (G118, 16, 13, 0)
(G119, 16, 13, 0) (G120, 16, 13, 0) (G121, 17, 13, 0) (G122, 16, 13, 0)

(G123, 17, 13, 0) (G124, 16, 13, 0) (G125, 17, 13, 0) (G126, 17, 13, 0)
(G127, 17, 13, 0) (G128, 17, 13, 0) (G129, 17, 13, 0) (G130, 18, 13, 0)
(G133, 18, 15, 1) (G134, 17, 14, 0) (G135, 17, 14, 0) (G136, 17, 14, 0)
(G137, 17, 14, 0) (G138, 17, 14, 0) (G139, 17, 14, 0) (G140, 17, 14, 0)
(G141, 17, 14, 0) (G142, 17, 14, 0) (G143, 18, 15, 1)∗ (G144, 17, 14, 0)
(G145, 17, 14, 0) (G146, 18, 14, 0) (G147, 17, 14, 0) (G148, 17, 14, 0)
(G149, 17, 14, 0) (G150, 18, 14, 0) (G151, 17, 14, 0) (G152, 18, 14, 0)
(G153, 18, 14, 0) (G154, 18, 14, 0) (G156, 18, 15, 0) (G157, 18, 15, 0)
(G158, 18, 15, 0) (G159, 18, 15, 0) (G160, 18, 15, 0) (G161, 18, 15, 0)
(G162, 18, 15, 0) (G163, 18, 15, 0) (G164, 18, 15, 0) (G165, 18, 15, 0)
(G166, 18, 15, 0) (G167, 18, 15, 0) (G168, 18, 15, 0) (G169, 18, 15, 0)

(G170, 18, 15, 0) (G171, 18, 15, 0) (G172, 18, 15, 0) (G173, 18, 15, 0)
(G174, 18, 15, 0) (G175, 19, 15, 0) (G177, 19, 16, 0) (G178, 19, 16, 0)
(G179, 19, 16, 0) (G180, 19, 16, 0) (G181, 19, 16, 0) (G182, 19, 16, 0)
(G183, 19, 16, 0) (G184, 19, 16, 0) (G185, 19, 16, 0) (G186, 19, 16, 0)
(G187, 19, 16, 0) (G188, 19, 16, 0) (G189, 19, 16, 0) (G190, 20, 17, 1)
(G191, 20, 17, 0) (G192, 20, 17, 0) (G193, 20, 17, 0) (G194, 20, 17, 0)
(G195, 21, 17, 0) (G196, 20, 17, 0) (G197, 20, 17, 0) (G198, 20, 17, 0)
(G199, 20, 17, 0) (G200, 21, 18, 0) (G201, 22, 19, 1) (G202, 21, 18, 0)
(G203, 21, 18, 0) (G204, 22, 19, 1) (G205, 22, 19, 0) (G206, 22, 19, 0)
(G207, 23, 20, 0) (G208, 25, 21, 0)

Table 2. The (G,κ(G),m(G), def(G))-quadruple for the 122 graphs G on
n = 6 vertices.

Remark: In Table 2 the two graphs G116 and G143 marked with a ∗ each
have def(G) = 1; thus we have found two new graphs G on 6 vertices with
def(G) = 1. See the incomplete list of 7 graphs G on 6 vertices with def(G) =
1 in [5]; the complete list is {G68, G84, G106, G116, G133, G143, G190, G201, G204}.
Graph G116 is K2 ∪K4: we have also confirmed that G116 does not have an
EMTL (def(G116) > 0) by exhaustive search without the aid of a computer.
Graph G143 has 8 edges and odd degrees [1, 3, 3, 3, 3, 3] so we may also use
Theorem 1 of Ringel and Llado [11] to confirm that G143 does not have an
EMTL.
Remark: A graph may have a large number of double-witnesses, eg., graph
G77 on 6 vertices has 3840 double-witnesses. The smallest graph without a
double-witness is G70 = 2P3, and the next smallest is G79 = B2,2. Both
these graphs G have an EMTL and satisfy 15 = κ(G) < κEMTL(G) = 16,
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see Figs. 1 and 3. The smallest graph without both a double-witness and an
EMTL is G106 = 2K3.
Fig. 3 here

Theorem 6.1 Let G have an EMTL. Then G has a double-witness if and
only if κ(G) = κEMTL(G).

Proof. Graph G has an EMTL so m(G) = n + e.
For the forward implication: Let Z be a double-witness for G. So m(G(Z)) =

m(G) = n + e, i.e., G(Z) is an EMTL. Thus κEMTL(G) ≤ k(G(Z)) = κ(G).
Hence, from Equation (1), κ(G) = κEMTL(G).

For the backward implication: Let X be a witness for κEMTL(G), then
k(G(X)) = κEMTL(G) = κ(G). Also, since G(X) is an EMTL, m(G(X)) =
n + e = m(G). That is, X is a double-witness for G.

We have a countable class of graphs without a double-witness:

Corollary 6.2 For even n ≥ 4 the bi-star Bn−2
2

, n−2
2

does not have a

double-witness.

Proof. From the Remark after Theorem 2.4 we have κ(Bn−2
2

, n−2
2

) < κEMTL(Bn−2
2

, n−2
2

),

the contrapositive of Theorem 6.1 then gives the result.

Note: A file containing the (G,κ(G),m(G), def(G))-quadruples for the 888
graphs G on n = 7 vertices is available from the authors. As is a file con-
taining the (T, κ(T ),m(T ), def(T ))-quadruples for the 200 trees T on up to
n = 10 vertices.

7 G = Kn, Well Spread-sequences

When G = Kn a G-sequence is a Well Spread -sequence, a WS-sequence; see
Kotzig [4], and [6].

An upperbound for both κ(Kn) and m(Kn) due to Wood [15] is:

κ(Kn), m(Kn) ≤ (3 + o(1))n2,

and an upperbound for κ(Kn) due to Pikhurko [9] is:

κ(Kn) ≤ (2.38... + o(1))n2.
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Lower bounds for κ(Kn) and m(Kn) are given at the end of this section in
Theorem 7.6.

We first complete our discussion of graphs G from Theorem 1.1 by dealing
with line 1:

Theorem 7.1 We have κ(Kn) = κEMTL(Kn) for n ∈ {2, 3, 5, 6}.

Proof. For each n ∈ {2, 3, 5, 6} compare the value of κ(Kn) in Section 6
to the value of κEMTL(Kn) in Theorem 1.1.

Definition: dual of A
Let A = (a1, a2, . . . , an) be a WS-sequence. The dual of A is the WS-sequence
A′ = (m(Kn(A)) + 1 − an,m(Kn(A)) + 1 − an−1, . . . ,m(Kn(A)) + 1 − a1).

n κ(Kn)W ∈ witness(κ(Kn)) m(Kn) W ∈ witness(m(Kn)), W ′ def(Kn)

1 1 1 0
2 6 (1,2) 3∗ (1,2)∗, (2,3)∗ 0

(1,3) (1,3)∗, (1,3)∗

(2,3)
3 9 (1,2,3) 6∗ (1,2,3)∗, (4, 5, 6)∗ 0

(1, 3, 5)∗, (2, 4, 6)∗

4 14 (1,2,3,5) 11∗ (1,2,3,5), (7, 9, 10, 11) 1
(1,2,3,7) (1,2,3,7), (5, 9, 10, 11)
(1,2,4,7) (1,2,4,7), (5, 8, 10, 11)

(1, 3, 4, 5), (7, 8, 9, 11)
(1, 3, 5, 8), (4, 7, 9, 11)
(1, 4, 5, 9), (3, 7, 8, 11)
(1, 6, 7, 8), (4, 5, 6, 11)
(1, 6, 7, 9), (3, 5, 6, 11)
(2, 3, 6, 9), (3, 6, 9, 10)
(2, 4, 6, 10), (2, 6, 8, 10)

5 18 (1,2,3,5,9) 15∗ (1,2,3,5,9)∗, (7, 11, 13, 14, 15)∗ 0
(1, 8, 9, 10, 12)∗∗, (4, 6, 7, 8, 15)∗∗

6 25 (1,3,4,5,9,14) 21∗ (1,3,4,5,9,14)∗, (8, 13, 17, 18, 19, 21)∗ 0
(1, 2, 3, 5, 8, 13) (2, 6, 7, 8, 10, 18)∗∗, (4, 12, 14, 15, 16, 20)∗∗

Table 3. Values of κ(Kn), m(Kn), and def(Kn) for 1 ≤ n ≤ 6, and all witnesses.
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Remark: In Table 3 the values and sequences marked ∗ first appeared in
Kotzig and Rosa [5] and [6], and the sequences marked ∗∗ first appeared in
Section 7.1 of [14], see also Section 2.3.3 of [13]. All remaining values and se-
quences are new. (The sequence (8, 13, 17, 18, 19, 21) was printed erroneously
with the ‘13’ as ‘11’ in both [14] and [13].) As before, double-witnesses ap-
pear in bold. Note that the m-minimum WS-sequences appear in W,W ′

pairs.
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n κ(Kn) W ∈ witness(κ(Kn)) m(Kn) W ∈ witness(m(Kn)), W ′ def(Kn)
7 38 (1, 2, 3, 5, 8,13,21) 32 (3, 4, 5, 7, 10,15,23), (10,18,23,26,28,29,30) 4

(1, 4, 5, 7, 9,14,21)
8 51 (2,3,4,6,11,16,22,28) 46 (2,3,4,6,11,16,22,28), (19, 25, 31, 36, 41, 43, 44, 45) 10

(3, 5, 6, 7, 11,16,23,30), (17,24,31,36,40,41,42,44)
9 71 (1, 2, 3, 5, 9,15,20,29,38) 64 (1, 10, 11, 12, 14, 19,27,33,39), (26, 32, 38, 46,51,53,54,55,64) 19

(2, 3, 4, 6, 12,17,22, 29, 41) (2, 10, 12, 13, 14, 18,27,34,41), (24, 31, 38, 47,51,52,53,55,63)
(3, 5, 6, 7, 11,16,25,32,39), (26,33,40,49,54,58,59,60,62)
(10, 12, 13, 14,18,23,32,39,46), (19,26,33,42,47,51,52,53,55)
(12, 13, 14, 16,20,26,31,36,52), (13,29,34,39,45,49,51,52,53)

10 89 (1,2,3,5,9,16,25,30,35,47) 86 (1,2,3,5,9,16,25,30,35,47), (40, 52, 57,62,71,78,82,84,85, 86) 31
(2, 8, 9, 10, 14,18,28, 31, 42, 53), (34,45,56,59, 69, 73, 77, 78, 79, 85)
(6, 10, 14, 15, 22, 24,35,38,41,60), (27, 46, 49,52,63,65,72,73,77,81)
(13, 14, 15, 20,26,29,39,43,47,65), (22,40,44,48,58,61,67,72,73,74)

11 116 (2,3,4,11,26,29,39,43,49,55,60) 110† (6, 7, 8, 10, 14,21,30, 35, 40, 52, 70)††, (41, 59, 71,76,81,90,97,101,103, 104,105) 44
12 140–154 137–150 59–72

Table 4. Values of κ(Kn), m(Kn), and def(Kn) for 7 ≤ n ≤ 11, and all
witnesses, except for the value m(K11) = 110 where the sequence marked ††

is unlikely to be the only witness; a large portion of the search space was left
unsearched. For n = 12 we give lower and upper bounds; see below.

Remark: In Table 4 for m(K11) = 110† see the comments involving ρ∗(n)
below. We have answered Research Problem 2.2 in Section 2.3.4 of [13] which
asks to find m(K7) and m(K8).

If A = (a1, a2, . . . , an) is a WS-sequence then without loss of generality
we let 1 ≤ a1 < a2 < · · · < an. Thus, see Definitions (4) and (7) of Section 3,
we have:

k(Kn(A)) ≥ an−1+an+1 and m(Kn(A)) = max{an, k(Kn(A))−a1−a2}. (3)

Definitions: ρ(A), ρ∗(n) (See [4] and [6].)

(1) Let A = (a1, a2, . . . , an) be a WS-sequence. Then ρ(A) = an + an−1 −
a2 − a1 + 1 is the span of pairwise sums of A.

(2) ρ∗(n) = min{ρ(A) |A is a WS-sequence of length n}, is the smallest
ρ(A) amongst all WS-sequences A of length n.

Theorem 7.2 Let A = (a1, a2, . . . , an) be a WS-sequence. Then

(i) m(Kn(A)) ≥ ρ(A),
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(ii) m(Kn) ≥ ρ∗(n).

Proof. (i) Using Equation (3) twice gives m(Kn(A)) ≥ k(Kn(A)) − a1 −
a2 ≥ an−1 + an + 1 − a1 − a2 = ρ(A). For (ii) let Y be a WS-sequence with
m(Kn(Y )) = m(Kn). Then m(Kn) = m(Kn(Y )) ≥ ρ(Y ) ≥ ρ∗(n).

Remark: For n = 2, 3, . . . , 8 the values of ρ∗(n) were first computed by
hand in [4]; these values were verified by computer and extended to n =
12 in [8], see also Section 2.3.4 of [13]. In particular, ρ∗(11) = 110. As
mentioned in the caption for Table 4 and the Remark following Table 4,
for n = 11 the WS-sequence A = (6, 7, 8, 10, 14, 21, 30, 35, 40, 52, 70)†† has
m(K11(A)) = 110, thus m(K11) ≤ 110. But from Theorem 7.2(ii) we have
m(K11) ≥ ρ∗(11) = 110. Thus m(K11) = 110 as given in Table 4. The
inequality of Theorem 7.2(ii) is tight for n = 11.

Definitions: σ(A), σ∗(n) (See [4] and [6].)

(1) Let A = (a1, a2, . . . , an) be a WS-sequence. Then σ(A) = an − a1 + 1
is the span of A.

(2) σ∗(n) = min{σ(A) |A is a WS-sequence of length n}, is the smallest
σ(A) amongst all WS-sequences A of length n.

Remark: As for ρ∗(n), for n = 2, 3, . . . , 8 values of σ∗(n) first appeared in
[4]; and were extended to n = 12 in [8].

Lemma 7.3 Let A = (a1, a2, . . . , an) be a WS-sequence. Then ai ≥ σ∗(i)
for each i = 1, 2, . . . , n.

Proof. For each i = 1, 2, . . . , n consider the WS-sequence Ai = (a1, a2, . . . , ai).
We have σ(Ai) = ai − a1 + 1 ≥ σ∗(i). So ai ≥ σ∗(i) + a1 − 1. But a1 ≥ 1,
and hence the result.

Theorem 7.4 We have κ(Kn) ≥ σ∗(n − 1) + σ∗(n) + 1.

Proof. Let X = (x1, x2, . . . , xn) be a WS-sequence with k(Kn(X)) =
κ(Kn). Using Equation (3) then Lemma 7.3, we have κ(Kn) = k(Kn(X)) ≥
xn−1 + xn + 1 ≥ σ∗(n − 1) + σ∗(n) + 1.

27



Theorem 7.5 We have κ(Kn) ≥ m(Kn) + 3.

Proof. Let µ be a k-minimum EMI of Kn, i.e., kµ = κ(Kn), with largest
label mµ ≥ m(Kn). Whether label mµ is on a vertex or edge, the magic
sum kµ is the sum of this label and two other labels. Hence κ(Kn) = kµ ≥
mµ + 1 + 2 ≥ m(Kn) + 3.

Note: From Theorem 7.2(ii) and [8] we have m(K12) ≥ ρ∗(12) = 137. And
then from Theorem 7.5 we have κ(K12) ≥ m(K12) + 3 ≥ 140. The WS-
sequence S = (1, 3, 5, 6, 9, 21, 32, 41, 51, 58, 65, 79) has k(K12(S)) = 154 and
m(K12(S)) = 150. Thus κ(K12) ≤ 154 and m(K12) ≤ 150.

Hence 140 ≤ κ(K12) ≤ 154 and 137 ≤ m(K12) ≤ 150 as given in Table 4.

We finish this section with lower bounds for κ(Kn) and m(Kn):

Theorem 7.6 For n ≥ 13, we have

(i) κ(Kn) ≥ n2 − 4n + 13,

(ii) m(Kn) ≥ n2 − 5n + 14.

Proof. (i) From [4] we have σ∗(n) ≥ 4 +
(

n−1
2

)
; Theorem 7.4 then gives

the result.
(ii) Also from [4] we have ρ∗(n) ≥ n2 − 5n + 14; Theorem 7.2(ii) then gives
the result.

8 Miscellaneous

Comment on algorithms: The first four algorithms presented in this pa-
per each include an operation which lists the G-sequences in the sets Wk(A),
or Wm(A), in lexicographical order. Then each G-sequence is evaluated to
determine if it produces an equal, or smaller, value as the presently small-
est known value, for k(G(A)), or m(G(A)), or if it is a witness for κ(G), or
for m(G). The actual software implementations of these algorithms do not
follow these instructions exactly as it proved much easier to simply generate
(and evaluate) all reasonable G-sequences while maintaining which ones are
currently the best, and then reporting the final results once the entire set of
reasonable G-sequences has been exhausted. This brute force enumeration
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strategy is one whose efficiency is greatly improved by the known bounds for
σ∗(i), which denotes the smallest that the i-th term of any WS-sequence of
length at least i can be, see Lemma 7.3.
Three new integer sequences: Tables 3 and 4 provide us with three in-
teger sequences that do not appear in the On-Line Encyclopedia of Integer
Sequences, Sloane [12]. We have sent the first 11 terms of each sequence to
[12]. They are: {κ(Kn) |n ≥ 1} = {1, 6, 9, 14, 18, 25, 38, 51, 71, 89, 116, . . .},
{m(Kn) |n ≥ 1} = {1, 3, 6, 11, 15, 21, 32, 46, 64, 86, 110, . . .}, and {def(Kn) |n ≥
1} = {0, 0, 0, 1, 0, 0, 4, 10, 19, 31, 44, . . .}.
Further Research and Questions:

(1) Determine the exact values of κ(K12) and m(K12); and extend Table 4
for n ≥ 13.

(2) For every even n ≥ 2 does Kn have a double-witness? It does for
n = 2, 4, 6, 8, and 10.

(3) For n = 2, 3, 4, 5, and 6 the following is true: κ(G) < κ(Kn) and m(G) <
m(Kn), for all G 6= Kn. Is it true for all n?

(4) Find κ(G) and m(G) for other graphs G, and for graphs Gn ∈ G for a
class of graphs G. In particular, for classes G whose members have an
EMTL; eg., G = {Kn

2
, n
2
| n even and ≥ 2}, and G = {Km,n |m,n ≥ 1}.

See [2] for many other such classes.

(5) For Gn ∈ G investigate the quantity κEMTL(Gn)−κ(Gn). Can κEMTL(Gn)−
κ(Gn) > cn2, for some constant c > 0 and for sufficiently large n? See
the Remark after Theorem 2.4.

(6) Improve the lower bounds on κ(Kn) and m(Kn), see Theorem 7.6.
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Figure 1: A k-minimum EMTL and a k-minimum EMI of B2,2
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Figure 2: All graphs G with n = 2, 3, or 4 vertices. Each G is labelled with a
(k,m)-minimum EMI. Below G is its (G,κ(G),m(G), def(G))-quadruple, and
the (k,m)-minimum G-sequence (double-witness) consisting of the vertex
labels. The smallest graph G without an EMTL (def(G) > 0) is G11 = 2K2,
the second smallest is G18 = K4.
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Figure 3: Two new graphs G on 6 vertices each with def(G) = 1; G = 2P3,
the smallest graph without a double witness, first a k-minimum EMI and
then a m-minimum EMI are shown. (The m-minimum EMI is an EMTL.)
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